
Published as a conference paper at ICLR 2024

NEGATIVE LABEL GUIDED OOD DETECTION WITH
PRETRAINED VISION-LANGUAGE MODELS

Xue Jiang1,2 Feng Liu3 Zhen Fang4 Hong Chen5 Tongliang Liu6,7

Feng Zheng1∗ Bo Han2

1Southern University of Science and Technology 2TMLR Group, Hong Kong Baptist University
3TMLR Group, University of Melbourne 4University of Technology Sydney
5Huazhong Agricultural University 6Mohamed bin Zayed University of Artificial Intelligence
7Sydney AI Centre, University of Sydney
{csxjiang, bhanml}@comp.hkbu.edu.hk, feng.liu1@unimelb.edu.au,
zhen.fang@uts.edu.au, chenh@mail.hzau.edu.cn,
tongliang.liu@sydney.edu.au, f.zheng@ieee.org

ABSTRACT

Out-of-distribution (OOD) detection aims at identifying samples from unknown
classes, playing a crucial role in trustworthy models against errors on unexpected
inputs. Extensive research has been dedicated to exploring OOD detection in
the vision modality. Vision-language models (VLMs) can leverage both textual
and visual information for various multi-modal applications, whereas few OOD
detection methods take into account information from the text modality. In this
paper, we propose a novel post hoc OOD detection method, called NegLabel,
which takes a vast number of negative labels from extensive corpus databases.
We design a novel scheme for the OOD score collaborated with negative labels.
Theoretical analysis helps to understand the mechanism of negative labels. Ex-
tensive experiments demonstrate that our method NegLabel achieves state-of-
the-art performance on various OOD detection benchmarks and generalizes well
on multiple VLM architectures. Furthermore, our method NegLabel exhibits re-
markable robustness against diverse domain shifts. The codes are available at
https://github.com/tmlr-group/NegLabel.

1 INTRODUCTION

In open-world scenarios, deploying machine learning models faces a critical challenge: how to handle
data from unknown classes, commonly referred to as out-of-distribution (OOD) data (Hendrycks &
Gimpel, 2017). The presence of OOD data can lead to models exhibiting overconfidence, potentially
resulting in severe errors or security risks. This issue is particularly pronounced in critical applications,
such as autonomous vehicles and medical diagnosis. Therefore, detecting and rejecting OOD data
plays a crucial role in ensuring the reliability and safety of the model.

Traditional visual OOD detection methods (Hsu et al., 2020a; Wang et al., 2021b; Huang et al., 2021;
Sun et al., 2021; Wang et al., 2021a) typically rely solely on image information, ignoring the rich
textual information carried by labels. Vision-language models (VLMs) can leverage multimodal
information, which is also beneficial for OOD detection. Some recently proposed methods attempt to
design dedicated OOD detectors for VLMs. Specifically, ZOC (Esmaeilpour et al., 2022) defines the
new task – zero-shot OOD detection, and uses a trainable captioner to generate candidate OOD labels
to match OOD images. However, when dealing with large-scale datasets encompassing a multitude
of in-distribution (ID) classes, like ImageNet-1k, the captioner may not generate effective candidate
OOD labels, resulting in poor performance. MCM (Ming et al., 2022a) uses the maximum logit of
scaled softmax to identify OOD images. However, MCM only employs information from the ID
label space and does not effectively exploit the text interpretation capabilities of VLMs. Therefore,
there exists untapped potential for enhancing OOD detection utilizing VLMs.

In this paper, we design a method to leverage better the knowledge carried by VLMs for OOD
detection. To achieve this, we introduce a large number of negative labels that enable the model to
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Figure 1: Overview of NegLabel. The image encoder extracts input images into image embeddings h .
The text encoder extracts ID and negative labels into text embeddings e . All encoders are frozen in
the inference time. The negative labels are selected by NegMining (see Section 3.1) from a large-scale
corpus. The image-text similarities are quantified through h · e , represented by purple blocks (darker
shades indicating higher similarity). The right part illustrates that ID images tend to produce lower
similarities with neagative labels than OOD images. Our NegLabel score (see Section 3.2) fuses the
similarities of image-ID labels (green) and image-negative labels (blue).

distinguish OOD samples in a more nuanced and detailed manner. Our proposed method NegLabel
detects OOD samples by examining their affinities between ID labels and negative labels. As shown
in Fig. 1, ID samples have higher OOD scores than OOD samples due to the affinity difference.

Specifically, we design the NegMining algorithm to select high-quality negative labels from extensive
corpus databases. This algorithm utilizes the distance between a negative label and ID labels as a
metric to assess their adequacy in terms of semantic divergence. By selecting negative labels with
sufficient semantic differences from ID labels, the algorithm enhances the separability between ID
and OOD samples. Additionally, we introduce a novel scheme for the OOD score, which is positively
correlated with the affinities between images and the ID labels and negatively correlated with those
of the negative labels. The score combines the knowledge from the ID and negative label space,
thus better leveraging the VLMs’ capabilities of comprehending text. Furthermore, we provide a
theoretical analysis to aid in understanding the mechanism of negative labels.

Extensive experiments demonstrate that our method NegLabel achieves state-of-the-art performance
on various zero-shot OOD detection benchmarks and multiple VLM architectures, like CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), GroupViT (Xu et al., 2022), and etc. Combining with CLIP,
NegLabel achieves 94.21% AUROC and 25.40% FPR95 in the large-scale ImageNet-1k OOD
detection benchmark (Huang et al., 2021), even surpasses numerous existing methods in fully-
supervised settings. Furthermore, NegLabel exhibits remarkable robustness against diverse domain
shifts. In summary, our key contributions are as follows:

• Our proposed framework, NegLabel, introduces massive negative labels to boost OOD detection.
The extended label space provides a novel perspective to distinguish OOD samples, leveraging
extra clues by examining the similarities between images and the extended labels.

• We propose the NegMining algorithm (see Section 3.1) to select high-quality negative labels to
enhance the distinction between ID and OOD samples. Based on the picked negative labels, we
design a new scheme for the post hoc OOD score (see Section 3.2) that effectively leverages the
knowledge encoded in VLMs.

• Extensive experimental analyses (see Section 4.2) demonstrate that our method, NegLabel,
achieves state-of-the-art performance on multiple OOD detection benchmarks. Moreover,
NegLabel demonstrates strong generalization capabilities across various VLM architectures.
NegLabel also shows remarkable robustness in the face of diverse domain shifts.

2 PRELIMINARIES

Let X and Y = {y1, ..., yK} be the image space and ID label space, respectively. Note that Y is a set
containing words, e.g., Y = {cat, dog, · · · , bird}, and K is the number of ID classes. Given the ID
feature random variable X in ∈ X and OOD feature random variable Xout ∈ X , we use the PXin

and PXout to present the ID marginal distribution and OOD marginal distribution, respectively.

CLIP-like models (Radford et al., 2021). Given any input image x ∼ PXin and any label yj ∈ Y ,
we extract features of x and yj using the CLIP-like model f , which consists of image encoder f img
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Figure 2: Illustration of NegMining. The al-
gorithm selects negative labels with larger dis-
tances (lower similarities) from the ID labels.
Darker blue squares represent the higher priori-
ties to be picked. Dashed squares represent neg-
ative labels that are impossible to be selected.

Algorithm 1: NegMining
Input :Candidate labels Yc, ID labels Y ,

Text encoder f text
Output :Negative labels Y−

// Calculate text embeddings
1 for yi ∈ Y do
2 ei = f text(prompt(yi));
3 for ỹi ∈ Yc do
4 ẽi = f text(prompt(ỹi));

// Measure candidate-ID
label distance.

5 di = percentileη({− cos(ẽ i, ek)}Kk=1);

// Choose M negative labels
from top-k distances.

6 Y− = topk([d1, d2, · · · , dC ] ,Yc,M).

and text encoder f text. Then the extracted features h ∈ RD and ej ∈ RD are

h = f img(x), ej = f text(prompt(yj)), ∀j = 1, 2, ...,K, (1)
where prompt(·) represents the prompt template for input labels, and D is the embedding dimension.
In zero-shot classification, the goal is to predict the correct label or class for an image without prior
training on that specific class. CLIP-like models’ predictions are based on the cosine similarity of the
image embedding features h and text embedding features e1, e2, · · · , eK :

ŷ = argmax
yj∈Y

{cos(h , ej)}, where ej = f text(prompt(yj)). (2)

Score functions. Following many representative OOD detection methods (Huang et al., 2021; Liang
et al., 2018; Liu et al., 2020), given a threshold γ and a score function S, then x is detected as ID
data if and only if S(x) ≥ γ:

Gγ(x) = ID, if S(x) ≥ γ; otherwise, Gγ(x) = OOD. (3)
The performance of OOD detection depends on how to design a score function S to make OOD
samples obtain lower scores while ID samples have higher scores.

Problem Setting. Zero-shot image classification for a pre-trained CLIP-like model is to classify
images into one of given label names (i.e., ID classes), without any fine-tuning on ID classes (Radford
et al., 2021). In this paper, we work with a pre-trained CLIP-like model and a specific set of class
labels or names for a zero-shot classification task. Therefore, the primary objective of VLM-based
OOD detection in our paper is to identify samples that do not belong to any known ID classes as
OOD without sacrificing ID classification accuracy.

3 METHODOLOGY

As mentioned in Section 2, the semantic labels of ID samples are confined within the bounds of Y ,
whereas OOD labels lie outside this label space. In contrast to traditional image classification tasks,
zero-shot classifiers are trained on more extensive datasets (Radford et al., 2021; Jia et al., 2021)
to gain a broader understanding of the training data. However, when conducting zero-shot image
classification, the ID label space Y can weaken the model’s ability to detect OOD samples, since the
limited label space may not fully capture the differences between ID and OOD samples, ultimately
reducing the model’s sensitivity.

As a zero-shot classifier, a CLIP-like model can scale its label space using any text prompts with
minimal overhead in cosine similarity calculations. Thus, the central concept behind NegLabel is to
enlarge the model’s zero-shot generalization ability by expanding the label space. By capitalizing on
the scalability of the model’s label space, we can effectively utilize the VLMs’ text comprehension
capabilities for zero-shot OOD detection.

3.1 SELECTION OF NEGATIVE LABELS

If there are labels y− /∈ Y that have lower affinities with ID images compared to OOD images, they
can provide hints for detecting OOD samples. These labels are referred to as negative labels, denoted
by y− ∈ Y−, and the objective of selecting negative labels is to increase the gap between Y and Y−.
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The large-scale corpus database contains almost all common concepts and entities worldwide. Its
semantic space can effectively exploit the capacity of CLIP-like zero-shot models, allowing all input
samples to be mapped to richer labels. As shown in Fig. 2, when selecting negative labels from the
corpus, words with high similarity to the ID label space Y should be excluded so that the selected
negative labels have lower affinities with ID samples than OOD samples. More analysis can be found
in Appendix B.4. Then, we propose the NegMining algorithm to select suitable negative labels.

Given a large group of words 1 (contains tens of thousands of nouns, adjectives, etc.) fetched from
lexical database like WordNet (Fellbaum, 1998), we can construct a candidate label space Yc =
{ỹ1, ỹ2, ..., ỹC}, where C is the total number of the candidate words. For each ỹi(i = 1, 2, ..., C),
we calculate the negative cosine similarities as the distance measure between the candidate label and
the whole ID label space:

di = percentileη({dik}Kk=1) = percentileη({− cos(ẽ i, ek)}Kk=1), (4)

where ẽ i = f text(prompt(ỹi)) is the text embedding of the candidate word ỹi, the K is the number
of ID classes, and percentileη, η ∈ [0, 1] represents the 100η-th percentile of the data. When η = 0
means the minimum distance, we usually choose η = 0.05. We use the percentile of the distance
between the candidate label ỹi and all ID labels Y instead of the minimum distance as the metric to
obtain robustness against outlier ID labels, as shown in Fig. 2.

Then we design the negative label selection criteria as Y− = topk({d1, d2, · · · , dC},Yc,M). The
operator topk(A,B,M) first identifies the indices of the top-M elements in set A, and then selects
the corresponding elements from set B based on these indices. The details are shown in Algorithm 1.
In this work, unless noted otherwise, we use M = 10000 as the typical number of negative labels,
which can achieve robust performance on various benchmarks.

It seems that it is better to directly select the negative labels far away from the ID image embeddings.
However, in the zero-shot setting, the ID marginal distribution PXin is unreachable, i.e., there is no
training data to guide the selection of negative labels. Fortunately, the CLIP-like model minimizes the
embedding feature distance between paired image-text in a contrastive learning framework (Radford
et al., 2021). Hence, we use ID labels to search for OOD concepts as negative labels that are far away
from ID labels.

3.2 OOD DETECTION WITH NEGATIVE LABELS

NegLabel Score. Given the selected negative label set Y−, we merge them with the ID labels Y
to obtain an extended label space Yext = Y ∪ Y−. Then, the extended labels are fed into the text
encoder of CLIP to obtain text embeddings . CLIP calculates the cosine similarities between the text
and image embeddings. The proposed OOD score can be formulated as

S(x) = S∗(sim(x,Y), sim(x,Y−)), (5)

where S∗(·, ·) represents a fusion function that combines the similarity of a sample with ID labels
sim(x,Y) and the similarity of the sample with negative labels sim(x,Y−).

As analyzed in Section 3.1, the selected negative labels are far from Y , so ID samples have lower
similarity with negative labels than those of OOD samples. Therefore, the design criterion of S∗ can
be summarized as follows: S∗ is positively correlated with the similarity of the sample in the ID label
space and negatively correlated with the similarity of the sample in the negative label space.

In the extended label space Yext, the OOD detection task can be considered as the model’s confidence
that the image belongs to Y . A natural design is to use a normalization function to check the
proportion of the similarity sim(x,Y) in the extended label space Yext. Here, we propose a NegLabel
score in a sum-softmax form as follows, and more designs are discussed in Appendix A.5:

S(x) =

K∑
i=1

ecos(h,ei )/τ
/( K∑

i=1

ecos(h,ei )/τ +

M∑
j=1

ecos(h,ẽj)/τ
)
, (6)

where K is the number of ID labels, τ is the temperature coefficient of the softmax function, and
M is the number of negative labels. Based on the analysis in Section 3.1, the affinities of the ID
1For the lexical database, we only retained nouns and adjectives as candidate labels because most of the other
words either have their corresponding nouns or adjectives, or do not represent specific concepts or entities.
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images to the negative labels are lower than those of the OOD images. Therefore, the ID samples
will generate higher similarities on the ID labels, resulting in higher OOD scores.

Eq. (6) provides two special considerations for CLIP-like models:

Firstly, the cosine function clamps the similarity in [−1, 1] and results in even smaller divergences
between positive and negative pairs (e.g., the cosine similarities of positive pairs in CLIP are typically
around 0.3 and that of negative pairs are around 0.1 (Ming et al., 2022b)). Such small differences may
not adequately reflect the confidence variance of ID and OOD samples. Therefore, a temperature
coefficient τ is introduced to scale the similarity, reflecting the model’s confidence better.

Secondly, zero-shot models are not finetuned on task-specific ID data. Their classification perfor-
mance is typically weaker than the fully supervised models, making it more susceptible to super-class
confusion (e.g., mistaking a Husky for an Alaskan Malamute). The numerator of Eq. (6) uses the
sum of the sample’s similarity to all ID labels, making the OOD score more robust to super-class
confusion. This design also improves the robustness of the zero-shot OOD detector to domain shifts,
which will be analyzed in Section 4.2.

Grouping Strategy. In Section 3.1, we introduce the NegMining algorithm, which involves picking
words that are as far away from the ID label as possible to expand the label space and avoid high
similarities between ID images and negative labels (called false positives). Nevertheless, false
positives may occur in the ID sample due to limited model performances and semantic overlaps
between ID images and negative labels. This risk increases when more negative labels are used,
increasing the variance of the OOD score. To balance the trade-off between the additional knowledge
gained from negative labels and the risk of false positives, we propose a grouping strategy to divide
negative labels into multiple groups and calculate the OOD score as Eq. (6) in each group separately,
and then obtain the average OOD score across groups.

Specifically, we start by evenly dividing the selected M negative labels into ng groups. Each group
contains ⌊M/ng⌋ negative labels, and any remaining negative labels are discarded. We then calculate
a separate NegLabel score for each group. Finally, we sum up the scores of all groups and take the
average as the final NegLabel score. The grouping strategy limits the risk of false positives within
each group, and further smoothes this noise through averaging across groups. More detailed analysis
can be found in Appendix A.5.

3.3 UNDERSTANDING NEGATIVE LABELS FROM THE PERSPECTIVE OF MULTI-LABEL
CLASSIFICATION

To better understand how negative labels can facilitate zero-shot OOD detection, we provide theoreti-
cal analysis from the perspective of multi-label classification to demonstrate that negative labels can
improve the separability of ID and OOD samples.

For VLMs like CLIP, whether an image and a label match is determined by calculating the similarities
between their embeddings. To simplify the analysis, we assume that the selected negative labels,
ỹi ∈ Y−, are independently and identically distributed (we will discuss the validity of this assumption
later). For each ỹi ∈ Y−, i = 1, 2, ...,M , the input image x has an implicit distribution noted as
H(si; f,x, ỹi) for its similarity score si = sim(x, ỹi). By applying a threshold ψ, the similarity
score can be converted into a binary label s∗i = 1[si≥ψ]. Thus, we can define p = P (si ≥ ψ|f,x, ỹi)
as the probability of classifying the image as positive for the given label ỹi. The introduced negative
labels can be regarded as an M -way multi-label classification task on Y−.

Under the multi-label classification setting, for each negative label ỹi, i = 1, 2, ...,M , the single-label
classification result of an input image x follows the Bernoulli distribution with a parameter p, where
p is the probability that the label of x is ỹi. Hence, based on the relation between Bernoulli and
binomial distributions, for the input image x, the positive count c =

∑
i s

∗
i among M negative labels

follows the binomial distribution B(M,p)2. Specifically, we define the in-distribution positive count

2However, due to the large number of negative labels, covering a wide semantic space, their affinity with the
sample x is variable. Thus, we provide a more general case based on a Poisson binomial distribution in
Appendix B.6. Specifically, we assume that the probability of an image x matching with a negative label is pi,
where different negative labels have different probabilities. This better reflects the real-world scenario, and thus,
we consider the number of matches between an image x and them to follow a Poisson binomial distribution.
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as cin ∼ B(M,p1),x ∼ PXin , and the out-of-distribution positive count as cout ∼ B(M,p2),x ∼
PXout . Recall that the affinities between ID images and negative labels are lower than that of OOD
images, so we have p1 < p2 holds.

Next, we consider a toy OOD score function that only takes the positive count as criteria, i.e.,
S̃(x) = −c, which is a special case of Eq. (5). Then we have S̃in ∼ B(M,p1) and S̃out ∼
B(M,p2). Because the number of negative labels is sufficiently large, according to the binomial
approximation rules 3, the OOD scores S̃in and S̃out can be regarded as following the normal
distribution N (Mp1,Mp1(1− p1)) and N (Mp2,Mp2(1− p2)), respectively.

We use FPRλ as the performance metric of an OOD detector to show the separability between the
ID and OOD samples. The FPRλ metric in relation to the toy function S̃ can be defined as follows:

FPRλ = Φ
[
Φ−1

[
λ;Mp1,

√
Mp1(1− p1)

]
;Mp2,

√
Mp2(1− p2)

]
=

1

2
+

1

2
· erf

(√
p1 (1− p1)
p2 (1− p2)

erf−1(2λ− 1) +

√
M (p1 − p2)√
2p2 (1− p2)

)
,

(7)

where Φ [·;µ, σ] represent the CDF of a normal distribution with µ as mean and σ as standard
deviation, erf(x) = 2√

π

∫ x
0
e−t

2

dt represents the error function.

We target investigating the relationship between the FPRλ metric and the number of nega-
tive labels M . Therefore, we calculate the partial derivative with respect to M and use z =√

p1(1−p1)
p2(1−p2) erf

−1(2λ− 1) +
√
M(p1−p2)√
2p2(1−p2)

to simplify the expression:

∂FPRλ
∂M

=
1

2
· ∂ erf(z)

∂z
· ∂z
∂M

=
e−z

2

2
√
2π
· p1 − p2√

Mp2 (1− p2)
< 0. (8)

It is evident that as M increases, FPRλ consistently decreases. This observation suggests that the
performance of the OOD detector is enhanced by incorporating more negative labels (note that
p1− p2 < 0). Consequently, the inclusion of negative labels provides additional information that aids
in distinguishing between ID and OOD samples. Furthermore, Eq. (8) is negatively correlated with
p2− p1, i.e., the difference between the probability that OOD and ID samples are positively classified
w.r.t. the negative labels. This indicates that selecting negative labels with significant differences in
similarity with ID and OOD samples can help improve OOD detection performance, and it explains
the role of the NegMining algorithm.

Finally, we discuss the plausibility of this theoretical modeling. Readers may notice that as M
increases, z approaches +∞ and FPRλ approaches 0. However, this does not mean that a large
number of negative labels can infinitely optimize the performance of the OOD detector, as the
semantic space formed by images is limited. With M increases, the newly added negative labels
either become less differentiated on ID and OOD images or exhibit semantic overlap with the previous
label. Consequently, this leads to a decline in the difference between the probabilities p2 and p1,
or in some cases, these additional labels may no longer satisfy the assumption of independent and
identically distributed data. In particular, if the similarities between negative labels and ID images are
larger (i.e., p1 > p2), it will cause an increase in FPRλ. The detailed derivations of Eqs. (7) and (8)
can be found in Appendix B.5 and more theoretical analysis can be found in Appendix B.6.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets and benchmarks. We evaluate our method on the ImageNet-1k OOD benchmark (Huang
et al., 2021) and compare it with various previous methods. The ImageNet-1k OOD benchmark is a
widely used performance validation method that uses the large-scale visual dataset ImageNet-1k as
ID data and iNaturalist (Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2018), and
Textures (Cimpoi et al., 2014) as OOD data, covering a diverse range of scenes and semantics. We

3If Mp ≥ 5 and M(1 − p) ≥ 5, the binomial distribution can be approximated by a Gaussian distribution
(Parameswaran, 1979).
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Table 1: OOD detection performance comparison with baselines. All methods are based on CLIP-
B/16. The ID data are ImageNet-1k. All values are percentages. ↑ indicates larger values are better
and ↓ indicates smaller values are better. The shadow part represents our method.

OOD Dataset
iNaturalist SUN Places Textures Average

Methods
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Requires training (or w. fine-tuning)
MSP (Hendrycks & Gimpel, 2017) 87.44 58.36 79.73 73.72 79.67 74.41 79.69 71.93 81.63 69.61

ODIN (Liang et al., 2018) 94.65 30.22 87.17 54.04 85.54 55.06 87.85 51.67 88.80 47.75
Energy (Liu et al., 2020) 95.33 26.12 92.66 35.97 91.41 39.87 86.76 57.61 91.54 39.89

GradNorm (Huang et al., 2021) 72.56 81.50 72.86 82.00 73.70 80.41 70.26 79.36 72.35 80.82
ViM (Wang et al., 2022) 93.16 32.19 87.19 54.01 83.75 60.67 87.18 53.94 87.82 50.20
KNN (Sun et al., 2022) 94.52 29.17 92.67 35.62 91.02 39.61 85.67 64.35 90.97 42.19
VOS (Du et al., 2022) 94.62 28.99 92.57 36.88 91.23 38.39 86.33 61.02 91.19 41.32

NPOS (Tao et al., 2023) 96.19 16.58 90.44 43.77 89.44 45.27 88.80 46.12 91.22 37.93

Zero-shot (no training required)
Mahalanobis (Lee et al., 2018) 55.89 99.33 59.94 99.41 65.96 98.54 64.23 98.46 61.50 98.94

Energy (Liu et al., 2020) 85.09 81.08 84.24 79.02 83.38 75.08 65.56 93.65 79.57 82.21
ZOC (Esmaeilpour et al., 2022) 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19

MCM (Ming et al., 2022a) 94.59 32.20 92.25 38.80 90.31 46.20 86.12 58.50 90.82 43.93
CLIPN (Wang et al., 2023) 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10

NegLabel 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

also follow the settings of MCM (Ming et al., 2022a) and use Stanford-Cars (Krause et al., 2013),
CUB-200 (Wah et al., 2011), Oxford-Pet (Parkhi et al., 2012), Food-101 (Bossard et al., 2014), and
some subsets of ImageNet-1k (Deng et al., 2009) as ID data, and iNaturalist, SUN, Places , and
Textures as OOD data to conduct validation experiments on our method. MCM uses subsets of
ImageNet-1k for fine-grained analysis. For example, MCM constructs ImageNet-10, which mimics
the class distribution of CIFAR-10 (Krizhevsky, 2009) but has high-resolution images. Each OOD
dataset has no classes that overlap with the ID dataset.

Implement details. In this paper, we implement NegLabel on various VLM architectures, including
CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), GroupViT (Xu et al., 2022), AltCLIP (Chen
et al., 2022). Unless otherwise specified, we employ CLIP-B/16 for zero-shot OOD detection, and the
hyperparameters use the following default configurations. The NegMining algorithm takes WordNet
as the corpus and selects M = 10000 negative labels under η = 0.05. We use the NegLabel score in
the sum-softmax form and set τ = 0.01 as the temperature, and use ng = 100 for grouping strategy
by default. More experiment settings can be found in Appendix A.1.

Computational cost. NegLabel is a post hoc OOD detector with about O(2MD) FLOPs extra
computational burden per image, which usually introduce < 1% network forward latency. When
taking M = 10000 negative labels, it takes ∼1ms per sample for OOD detection. NegLabel detects
OOD samples in parallel with the zero-shot classification task without any impact on ID classification
performance. The NegMining algorithm selects and dumps the negative label before the inference
phase, and it usually takes a few minutes to process a large-scale corpus on a single 3090Ti GPU.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

OOD detection performance comparison with baselines. We compare our proposed method,
NegLabel, with other existing OOD detection methods in Table 1. The methods we compared with
include MCM, a method specifically designed for zero-shot OOD detection, as well as traditional
methods that were re-implemented using a finetuned CLIP on the ImageNet-1k, see Appendix A.1
for more details. Our method NegLabel achieves the state-of-the-art on the ImageNet-1k benchmark,
which highlights its superior performance in the zero-shot setting. Furthermore, our method can
surpass traditional methods with a finetuned CLIP, demonstrating CLIP’s strong OOD detection
capabilities in zero-shot scenarios. This is because CLIP can parse images in a fine-grained manner,
which is achieved through its pre-training on a large-scale image-text dataset. Additionally, our
choice of negative labels provides more semantic information, which further enhances the separability
of ID and OOD samples. It is worth noting that our proposed method achieved surprisingly high
performance on the iNaturalist dataset, and we analyze the reason in Appendix B.1. More discussions
about ZOC and CLIPN are in Appendix B.2 and Appendix B.3. We also follow MCM to conduct
experiments on the small-scale benchmark in Appendix A.2. The further investigations with some
case studies can be found in Appendix B.4.

Zero-shot OOD detection performance comparison on hard OOD detection. Following MCM’s
setup, we also explore the performance of NegLabel on hard OOD detection tasks, as shown in
Table 2. For semantically hard OOD detection, we alternate using ImageNet-10 and ImageNet-20 as
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Table 2: Zero-shot OOD detection performance
comparison on hard OOD detection tasks.

ID Dataset OOD Dataset Method AUROC↑ FPR95↓

MCM 98.60 6.00ImageNet-10 ImageNet-20 NegLabel 98.86 5.10
MCM 98.09 13.04ImageNet-20 ImageNet-10 NegLabel 98.81 4.60
MCM 99.39 2.50ImageNet-10 ImageNet-100 NegLabel 99.51 1.68
MCM 87.20 60.00ImageNet-100 ImageNet-10 NegLabel 90.19 40.20
MCM 93.30 14.45WaterBirds Spurious OOD NegLabel 94.67 9.50
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Figure 3: Zero-shot OOD detection performance
robustness to domain shift.

ID and OOD data, as well as using ImageNet-10 and ImageNet-100 to mimic the setting proposed
by (Fort et al., 2021) with high-resolution images. The results in Table 2 show that NegLabel can
significantly outperform MCM in all four experimental settings, demonstrating that NegLabel has
strong discriminative power for semantically hard OOD data. For spurious OOD detection, since
MCM does not provide specific parameters for generating spurious OOD samples, we reproduce one
setting from Ming et al. (2022b) for experimental comparison. The last row of the experimental data
also shows that NegLabel can surpass MCM in zero-shot spurious OOD detection tasks.

Robustness to domain shift. To test the domain generalization capability, we use several versions of
ImageNet with diverse domain shifts as ID samples. OOD samples are still taken from iNaturalist,
SUN, Places, and Textures. The experimental details can be found in Appendix A.3 and the average
results on four OOD datasets are shown in Fig. 3. It is apparent that the zero-shot OOD detection
performance of MCM significantly deteriorates across diverse domain shifts, indicating the difficulty
of zero-shot OOD detection under such conditions. Nevertheless, our method NegLabel continues
to achieve noteworthy performances cross diverse ID datasets, thus demonstrating its remarkable
robustness against diverse domain shifts. MCM heavily relies on the model’s classification ability on
the ID dataset. Therefore, when a domain shift leads to a decrease in ID classification accuracy, the
OOD detection performance of MCM also decreases accordingly. In contrast, our approach NegLabel
treats the ID labels Y as a whole, which is less affected by inter-class confusion, making it more
robust to domain shifts.

Ablation on each module in NegLabel. We conduct an ablation analysis on each module in our
proposed zero-shot OOD detection framework, as shown in Table 3. Note that when NegMining is
not used, negative labels are randomly selected from the corpus.

Comparing the second and fourth rows, negative labels selected by NegMining show +1.81% AUROC
and -6.63% FPR95, indicating that negative labels require greater semantic differences from ID labels.
Comparing the second and third rows, the grouping strategy only provides a slight improvement when
NegMining is not used. However, comparing the first and fourth rows, it yields +0.45% AUROC
and -2.79% FPR95 with selected negative labels, further demonstrating that the grouping strategy
aims to reduce coincidental false positives between ID images and negative labels. The first row and
the last three rows demonstrate that an increasing number of negative labels gradually improves the
performance of OOD detection and then declines. This indicates that NegMining prioritizes selecting
negative labels that are farther away from the ID labels, as they are more discriminative for detecting
OOD images. More detailed analyses can be found in Appendices A.4 and A.5.

Ablation on VLM architectures. We evaluate NegLabel with different VLM architectures and
the results are shown in Table 4. The first part shows results with different backbones of CLIP,
illustrating that the larger backbone boosts the performance of OOD detection. The second part
shows NegLabel can generalize well to various VLM architectures. It is important to note that we
take the same hyperparameters across all architectures, demonstrating the robustness of NegLabel’s
hyperparameters on different VLM architectures.

5 RELATED WORKS

Traditional OOD detection. There exist two major categories of visual OOD detection: training-time
regularization (Hsu et al., 2020a; Bitterwolf et al., 2020; Wang et al., 2021b; Bitterwolf et al., 2020;
Liu et al., 2019; Vaze et al., 2022; Yang et al., 2021) and post hoc methods (Liang et al., 2018; Liu
et al., 2020; Hendrycks & Gimpel, 2017; Lee et al., 2018; Wang et al., 2021a; Jiang et al., 2023).
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Table 3: Module ablation in NegLabel. All methods
are based on CLIP-B/16. The ID data are ImageNet-
1k. More can be found in Appendices A.4 and A.5.

Number of
Negative Labels NegMining Grouping

Strategy AUROC FPR95

10,000 ✓ ✓ 94.21 25.40
10,000 ✗ ✗ 91.95 34.82
10,000 ✗ ✓ 92.01 34.69
10,000 ✓ ✗ 93.76 28.19

1,000 ✓ ✓ 91.60 36.14
20,000 ✓ ✓ 93.85 26.56
50,000 ✓ ✓ 92.70 31.67

Table 4: Comparison with different VLM ar-
chitectures on ImageNet-1k (ID). Detailed re-
sults can be found in Appendix A.6.

Architecture Backbone AUROC↑ FPR95↓

CLIP

ResNet50 92.97 30.70
ResNet50x16 93.43 29.50

ViT-B/32 93.67 27.92
ViT-B/16 94.21 25.40
ViT-L/14 94.47 24.81

ALIGN EfficientNet-B7 90.76 39.66
AltCLIP ViT-L/14 94.60 23.63

GroupViT GroupViT 91.72 33.10

Training-time regularization methods assume that a portion of OOD data can be accessed during
model training. ConfBranch (DeVries & Taylor, 2018) constructs an additional branch from the
penultimate layer of the classifier to learn the ID/OOD discrimination task. The confidence output
from this branch serves as the OOD score during the inference time. G-ODIN (Hsu et al., 2020b)
decomposes prior knowledge to model the probability of ID-ness. CSI (Tack et al., 2020) optimizes
the OOD detector using contrastive learning. MOS (Huang et al., 2021) groups all categories in
advance and adds an additional class to each group to redesign the loss for training. VOS (Du et al.,
2022) generates better energy scores by synthesizing virtual anomalies. LogitNorm (Wei et al., 2022)
provides an alternative loss for cross-entropy loss that separates the influence of logit norm from the
training process. CIDER (Ming et al., 2023) improves OOD detection performance by optimizing
contrastive loss based on the distance between class prototypes and the distance between samples and
class prototypes on the basis of KNN (Sun et al., 2022).

Post hoc methods do not change the model’s parameters and are typically accomplished by designing
the OOD score. MSP (Hendrycks & Gimpel, 2017) uses the maximum predicted softmax probability
as the OOD score. ODIN (Liang et al., 2018) enhances MSP by perturbing the inputs and rescaling
the logits. Energy (Liu et al., 2020) proposes to use the energy function (LeCun et al., 2006) for
measuring OOD-ness. ReAct (Sun et al., 2021) further improves the performance of the Energy
score by feature clipping, while DICE (Sun & Li, 2022) improves the performance of the Energy
score by discarding most salient weights in the fully connected layer. Mahalanobis (Lee et al., 2018)
computes the minimum Mahalanobis distance between the feature and the class-wise centroids as the
OOD score. GradNorm (Huang et al., 2021) designs the OOD score in the gradient space. Lastly,
ViM (Wang et al., 2022) combines the norm of feature residual with the principal space formed
by training features and the original logits to compute the degree of OOD-ness. KNN (Sun et al.,
2022) investigates the effectiveness of non-parametric nearest-neighbor distance for detecting OOD
samples. ASH (Djurisic et al., 2023) works by pruning a large portion of an input sample’s activation
and lightly adjusting the remaining.

CLIP-based OOD detection. The concept of zero-shot outlier exposure, as defined by (Fort et al.,
2021), assumes that the labels of OOD images are known and uses them as candidate labels to
complete the outlier exposure task. Recently, there has been some research into the problem of
zero-shot OOD detection. For instance, ZOC (Esmaeilpour et al., 2022) proposes using a trainable
generator and additional data to generate candidate OOD labels. MCM (Ming et al., 2022a) is
the earliest post hoc zero-shot OOD detection method that uses temperature scaling strategy and
maximum predicted softmax value as the OOD score. Based on MCM, NPOS (Tao et al., 2023)
finetunes CLIP’s image encoder using generated OOD data to optimize the decision boundary between
ID and OOD data for the visual OOD detection task. Our method, NegLabel, is a post hoc zero-shot
OOD detection method that leverages CLIP’s zero-shot capabilities for text to design OOD scores.

6 CONCLUSION

This paper proposes a simple yet effective post hoc zero-shot detection framework called NegLabel.
The approach involves incorporating a large set of negative labels that exhibit significant semantic
differences from the ID labels. The proposed method determines whether an image belongs to OOD
by comparing its affinity towards ID and negative labels. To enhance the distinction between ID and
OOD samples, the NegMining algorithm is proposed to select high-quality negative labels. Moreover,
we design a new scheme for the zero-shot OOD score that effectively leverages the knowledge of
VLMs. Experimental results show that the proposed method achieves state-of-the-art performance on
multiple zero-shot OOD detection benchmarks and generalizes well on multiple VLM architectures.
NegLabel also presents remarkable robustness against diverse domain shifts.
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A FURTHER EXPERIMENTS

A.1 DETAILED EXPERIMENT SETTING.

A.1.1 IMPLEMENT DETAILS.

The proposed method NegLabel is implemented with Python 3.9 and PyTorch 1.9. All the experiments
on a single NVIDIA GeForce RTX 3090Ti GPU. NegLabel is a post hoc OOD detector with about
O(2MD) FLOPs extra computational burden per image (note that M is the number of negative
labels and D is the dimension of the embedding feature), which usually introduce < 1% network
forward latency. NegLabel detects OOD samples in parallel with the zero-shot classification task,
without any impact on ID classification performance. The NegMining algorithm selects and dumps
the negative label in advance, and it usually takes a few minutes for processing the large-scale corpus
like WordNet on a single 3090Ti GPU.

In this paper, we implement NegLabel on various VLM architectures, including CLIP (Radford et al.,
2021), ALIGN (Jia et al., 2021), GroupViT (Xu et al., 2022), AltCLIP (Chen et al., 2022). Unless
otherwise specified, we employ CLIP-B/16 for zero-shot OOD detection and the hyperparameters
use the following default configurations. The NegMining algorithm takes WordNet as the corpus and
select M = 10000 negative labels under η = 0.05. We use the NegLabel score in the sum-softmax
form and set τ = 0.01 as the temperature, and use ng = 100 for grouping strategy by default.

Table 1 reports the results of various mathods that perform OOD detection on fine-tuned CLIP. We
follow the fine-tuning strategy of NPOS (Tao et al., 2023), which fine-tunes the last two blocks of
CLIP’s image encoder and equips a fully connected layer after the image encoder, which maps the
image features into class predictions.

A.1.2 EVALUATION METRICS.

We use two common metrics to evaluate OOD detection methods Huang et al. (2021): the false
positive rate that OOD data are classified as ID data when 95% of ID data are correctly classified
(FPR95) Provost et al. (1998) and the area under the receiver operating characteristic curve (AUROC)
Huang et al. (2021).

A.2 ZERO-SHOT OOD DETECTION PERFORMANCE COMPARISON ACROSS DIVERSE TASKS.

We compare the zero-shot OOD detection performance of NegLabel and MCM on seven different
in-distribution (ID) datasets. As shown in Table 5, our method outperforms MCM on all OOD datasets
regardless of the ID dataset used. Specifically, NegLabel achieved an AUROC of around 99.9% and
FPR95 below 1% on Standford-Cars, CUB-200, Oxford-Pet, Food-101, and ImageNet-10, while
MCM could only achieve this performance on Standford-Cars and ImageNet-10. This demonstrates
the superior OOD detection performance of our method on these datasets. When ImageNet-100 is
used as the ID dataset, our method was able to achieve an average improvement of approximately 4%
AUROC and a decrease of around 20% FPR95 on four OOD datasets compared to MCM. Overall,
our method showes strong zero-shot OOD detection capabilities on different ID datasets.

A.3 ROBUSTNESS TO DOMAIN SHIFT.

To test the domain generalization capability, we use several versions of ImageNet with diverse domain
shifts as ID samples. The ImageNet-Sketch dataset (Wang et al., 2019) consists of 50,000 images,
with 50 images for each of the 1,000 ImageNet classes, rendered in a "black and white" color scheme.
ImageNet-A (Hendrycks et al., 2021b) is a dataset of images labeled with ImageNet labels, collected
by selecting only the images that ResNet-50 models fail to classify correctly. ImageNet-R (Hendrycks
et al., 2021a) is a dataset that includes various artistic representations such as art, cartoons, deviantart,
graffiti, embroidery, graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures,
sketches, tattoos, toys, and video game renditions of ImageNet classes. It consists of 30,000 images,
representing 200 ImageNet classes. The ImageNetV2 dataset (Recht et al., 2019) includes new test
data specifically created for the ImageNet benchmark. These test sets were sampled after a decade
of progress on the original ImageNet dataset. OOD samples are still taken from iNaturalist, SUN,
Places, and Textures. There is no overlapping classes between ID and OOD samples.
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Table 5: Zero-shot OOD detection results based on CLIP-B/16 with various ID datasets.

OOD Dataset
iNaturalist SUN Places Textures Average

ID Dataset Method
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MCM 99.77 0.05 99.95 0.02 99.89 0.24 99.96 0.02 99.89 0.08Stanford-Cars NegLabel 99.99 0.01 99.99 0.01 99.99 0.03 99.99 0.01 99.99 0.01
MCM 98.24 9.83 99.10 4.93 98.57 6.65 98.75 6.97 98.66 7.09CUB-200 NegLabel 99.96 0.18 99.99 0.02 99.90 0.33 99.99 0.01 99.96 0.13
MCM 99.38 2.85 99.73 1.06 99.56 2.11 99.81 0.80 99.62 1.70Oxford-Pet NegLabel 99.99 0.01 99.99 0.02 99.96 0.17 99.97 0.11 99.98 0.07
MCM 99.78 0.64 99.75 0.90 99.58 1.86 98.62 4.04 99.43 1.86Food-101 NegLabel 99.99 0.01 99.99 0.01 99.99 0.01 99.60 1.61 99.90 0.40
MCM 99.80 0.12 99.79 0.29 99.62 0.88 99.90 0.04 99.78 0.33ImageNet-10 NegLabel 99.83 0.02 99.88 0.20 99.75 0.71 99.94 0.02 99.85 0.24
MCM 99.66 1.02 99.50 2.55 99.11 4.40 99.03 2.43 99.32 2.60ImageNet-20 NegLabel 99.95 0.15 99.51 1.93 98.97 4.40 99.11 2.41 99.39 2.22
MCM 96.77 18.13 94.54 36.45 94.36 34.52 92.25 41.22 94.48 32.58ImageNet-100 NegLabel 99.87 0.57 97.89 11.26 96.25 19.15 96.00 20.37 97.50 12.84

The detailed results shown in Table 6 illustrate that the zero-shot OOD detection performance of
MCM significantly deteriorates across diverse domain shifts, indicating the difficulty of zero-shot
OOD detection under such conditions. Nevertheless, our method NegLabel continues to achieve
noteworthy performances cross diverse ID datasets, thus demonstrating its remarkable robustness
against diverse domain shifts. MCM heavily relies on the model’s classification ability on the ID
dataset. Therefore, when a domain shift leads to a decrease in ID classification accuracy, the OOD
detection performance of MCM also decreases accordingly. In contrast, our approach NegLabel
treats the ID labels Y as a whole, which is less affected by inter-class confusion, making it more
robust to domain shifts.

Table 6: Zero-shot OOD detection performance robustness to domain shift. All methods are based on
CLIP-B/16. The ID data are ImageNet-Sketch. All values are percentages. ↑ indicates larger values
are better and ↓ indicates smaller values are better. The shadow part represents our method.

OOD Dataset
iNaturalist SUN Places Textures Average

ID Dataset Method
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MCM 87.74 63.06 85.35 67.24 81.19 70.64 74.77 79.59 82.26 70.13ImageNet-Sketch NegLabel 99.34 2.24 94.93 22.73 90.78 38.62 89.29 46.10 93.59 27.42
MCM 79.50 76.85 76.19 79.78 70.95 80.51 61.98 86.37 72.16 80.88ImageNet-A NegLabel 98.80 4.09 89.83 44.38 82.88 60.10 80.25 64.34 87.94 43.23
MCM 83.22 71.51 80.31 74.98 75.53 76.67 67.66 83.72 76.68 76.72ImageNet-R NegLabel 99.58 1.60 96.03 15.77 91.97 29.48 90.60 35.67 94.54 20.63
MCM 91.79 45.90 89.88 50.73 86.52 56.25 81.51 69.57 87.43 55.61ImageNetV2 NegLabel 99.40 2.47 94.46 25.69 90.00 42.03 88.46 48.90 93.08 29.77

A.4 ABLATION STUDY ON THE NEGMINING ALGORITHM.

We conduct an ablation analysis on each module in our proposed zero-shot OOD detection framework
and the detailed results are shown in Table 7.

The first row displays the performance of NegLabel, while the subsequent rows represent ablation
studies on modules and the number of negative labels. Note that when NegMining is not used,
negative labels are randomly selected from the corpus.

Comparing the second and fourth rows, negative labels selected by NegMining show +1.81% AUROC
and -6.63% FPR95, indicating that negative labels require greater semantic differences from ID labels.
Comparing the second and third rows, the grouping strategy only provides a slight improvement when
NegMining is not used. However, comparing the first and fourth rows, it yields +0.45% AUROC and
-2.79% FPR95 with selected negative labels, further demonstrating that the grouping strategy aims to
reduce coincidental false positives between ID images and negative labels.
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The first row and the last three rows of Table 7 demonstrate the impact of an increasing number of
negative labels on the performance of OOD detection. The fifth row shows that even with a small
number of negative labels, our method can still achieve state-of-the-art performance. Furthermore,
there is a noticeable performance gain in OOD detection when the number of negative labels increases
to 10,000. However, as the NegMining algorithm gives priority to candidate labels that are more
dissimilar from the ID labels, when the number further increases to 20,000, the newly added labels
exhibit more dissimilarities with the ID labels. Consequently, this leads to a decline in performance.
This finding is consistent with the analysis presented in Section 3.3.

Interestingly, even when we indiscriminately use all the words in WordNet, the OOD detector still
demonstrates remarkable performance and surpasses previous methods. This phenomenon suggests
that the broad semantic space constructed by negative labels contributes to harnessing the latent
knowledge of VLMs and provides new clues for OOD detection. For more detailed experiments
regarding the number of negative labels, please refer to Appendix A.4.1.

Table 7: Module ablation in NegLabel. All methods are based on CLIP-B/16. The ID data are
ImageNet-1k.

Number of
Negative Labels NegMining Grouping

Strategy

OOD Dataset. AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

10,000 ✓ ✓ 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

10,000 ✗ ✗ 97.96 9.24 93.89 28.94 89.53 45.08 86.40 56.03 91.95 34.82
10,000 ✗ ✓ 97.96 9.11 93.93 28.67 89.54 45.10 86.62 55.87 92.01 34.69
10,000 ✓ ✗ 99.30 2.65 95.06 23.11 90.90 40.35 89.76 46.63 93.76 28.19

1,000 ✓ ✓ 99.62 1.35 92.42 36.96 88.24 49.44 86.11 56.79 91.60 36.14
20,000 ✓ ✓ 99.18 3.16 95.24 21.47 91.16 37.23 89.83 44.40 93.85 26.56
50,000 ✓ ✓ 98.39 6.89 94.48 25.15 90.20 41.62 87.71 53.01 92.70 31.67

A.4.1 IMPACT OF THE NUMBER OF SELECTED NEGATIVE LABELS.

We explore the impact of the number of selected negative labels on OOD detection. The results
shown in Table 8 demonstrate that increasing the number of negative labels gradually improves the
performance of OOD detection and then declines. This indicates that NegMining prioritizes selecting
negative labels that are farther away from the ID labels, as they are more discriminative for detecting
OOD images. This is consistent with the analysis in Section 3.3.

Table 9 shows the results of randomly selecting words in WordNet as negative labels. The comparison
of Table 8 and Table 9 illustrates the role of NegMining algorithm. Concretely, when the number of
negative label is less than 1,000, we notice that the OOD detection performances of random selection
are better than NegMining. This is because that the negative labels selected by NegMining with
higher rank (i.e., the top-M ranked candidate labels when M is small) are actually both far from ID
and OOD samples, resulting in less divergences in p1 and p2 analysed in Section 3.3. Although the
divergences are small, they can still provide a positive return in detecting OOD samples (i.e., AUROC
> 50% for a binary classifier).

Furthermore, it is unfair to compare the performance of two methods only in the small M case. With
M increases, the performances of random selection gradually converge to 92.18% AUROC as is
performance bottleneck, while NegMining reaches a higher performance of 94.21% AUROC. The
reason is that random selection indiscriminately introduces labels in WordNet, which may be toxic
for OOD detection. In contrast, NegMining carefully selects words that are farther away from the ID
semantics as negative labels, with a longer-term perspective. Therefore, the comparison of Table 8
and Table 9 reveals the effectiveness of the NegMining algorithm.

A.4.2 DISCUSSION OF PERCENTILE DISTANCES.

To further investigate the impact of percentile distances, we conduct an ablation experiment, and the
results are presented in Table 10. The study findings demonstrate that OOD detection performance
improves significantly as the percentile decreases initially, but the rate of improvement gradually
slows down, reaching its peak at the 5th percentile.

This phenomenon can be attributed to two main reasons. Firstly, ID labels that are closer to the
candidate negative label are more likely to represent similar semantic meaning. As a result, by
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Table 8: Impact of the number of negative labels M selected by NegMining on ImageNet-1k
benchmark. The negative labels are selected from WordNet. All values are percentages. ↑ indicates
larger values are better and ↓ indicates smaller values are better.

Negative
Label

Number

OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

100 53.18 99.30 53.34 99.44 53.09 99.05 53.04 99.18 53.16 99.24
200 99.23 2.59 89.83 50.87 85.15 62.33 84.23 69.01 89.61 46.20

1,000 99.62 1.35 92.42 36.96 88.24 49.44 86.11 56.79 91.60 36.14
2,000 99.67 1.17 93.60 29.58 89.90 42.83 88.84 48.10 93.01 30.42
5,000 99.64 1.39 94.83 23.28 91.28 37.58 89.97 44.26 93.93 26.63

10,000 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
20,000 99.18 3.16 95.24 21.47 91.16 37.23 89.83 44.40 93.85 26.56
30,000 98.90 4.42 94.98 22.40 90.75 39.11 89.12 47.00 93.44 28.23
50,000 98.39 6.89 94.48 25.15 90.20 41.62 87.71 53.01 92.70 31.67

Table 9: Results of randomly selecting negative labels on ImageNet-1k benchmark. The negative
labels are selected from WordNet. Each row of different experimental setting reports the average
performance of 10 repeated runs, and the superscript represents its standard deviation.

Random
Selection

OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

100 96.06±0.69 20.08±3.80 92.10±0.39 42.79±2.75 88.06±0.45 55.40±2.48 84.84±1.05 61.73±3.22 90.27±0.41 45.00±2.08

200 96.70±0.48 16.12±2.57 92.91±0.38 36.09±2.07 88.72±0.38 50.71±1.77 84.88±0.66 60.97±2.01 90.80±0.18 40.97±0.93

1,000 97.63±0.11 10.68±0.16 93.75±0.16 29.55±0.85 89.45±0.19 45.00±1.08 85.86±0.36 57.55±1.17 91.67±0.14 35.69±0.68

2,000 97.63±0.09 10.27±0.44 93.99±0.12 28.23±0.76 89.69±0.11 43.82±0.81 85.99±0.33 57.64±0.76 91.84±0.10 34.99±0.47

5,000 97.71±0.07 10.36±0.37 94.01±0.09 28.21±0.51 89.85±0.09 43.30±0.59 86.48±0.11 56.80±0.36 92.01±0.06 34.67±0.35

10,000 97.96±0.04 9.11±0.18 93.93±0.10 28.67±0.57 89.54±0.05 45.10±0.33 86.62±0.22 55.87±0.82 92.01±0.06 34.69±0.25

20,000 97.84±0.02 9.78±0.13 94.08±0.04 27.66±0.25 89.92±0.04 42.83±0.23 86.53±0.06 56.63±0.17 92.09±0.03 34.23±0.15

30,000 97.87±0.01 9.65±0.09 94.10±0.02 27.64±0.18 89.92±0.01 42.88±0.15 86.62±0.06 56.54±0.23 92.12±0.02 34.18±0.12

50,000 97.92±0.01 9.39±0.07 94.12±0.01 27.43±0.11 89.94±0.01 42.86±0.07 86.66±0.02 56.42±0.09 92.16±0.01 34.03±0.05

selecting the ID label as the anchor for the candidate negative label that is in close proximity to it, a
more accurate measurement of the candidate negative label’s distance from the entire ID label space
can be obtained. Secondly, as illustrated in Fig. 2, there are several outliers in the ID label space. If
these outliers are used as anchors, the distance between the candidate negative label and the entire
ID label space would be inaccurate. To improve the quality of negative labels and enhance OOD
detection performance, we use the ID label at the 5th percentile as the anchor. This approach strikes a
balance between accurately measuring the distance between the candidate negative label and the ID
label space while also avoiding outliers that could lead to inaccurate distance measurements.

A.4.3 ABLATION ON CORPUS SOURCES OF NEGATIVE LABELS.

The role of the corpus is to provide a larger and more comprehensive semantic space, so that ID and
OOD data can be characterized and distinguished in a more fine-grained manner in this space. We
conduct ablative analysis using corpus sources for selecting negative labels and the results are shown
in Table 11. We take Wikipedia dataset 4 containing cleaned articles of all languages. Part-of-Speech
Tags dataset 5 is a 370k English words corpus.

In detail, we use the title field in Wikipedia dataset, which contains concepts or entities in the world.
We first randomly sample 70,000 items as candidates, and then pick top-10,000 items as negative
labels by applying NegMining algorithm. As for Part-of-Speech Tags dataset, it is processed like
WordNet, i.e., only using nouns and adjectives in the dataset. We first randomly subsample the words
to 70,000 as candidates, and then select top-10,000 words as negative labels through NegMining
algorithm.

The results of Table 11 show that the proposed negative label is a robust scheme for zero-shot OOD
detection, which can get reasonable performances on multiple corpora, and it is even robust across
multiple languages.

4https://dumps.wikimedia.org/
5https://www.kaggle.com/datasets/ruchi798/part-of-speech-tagging
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Table 10: The choice of distances for the selection of negative labels.

Percentile
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

0.95 98.81 4.88 94.69 24.39 91.18 36.25 89.32 46.81 93.50 28.08
0.90 99.06 3.65 94.62 24.89 90.97 37.31 89.74 44.40 93.60 27.56
0.85 99.26 2.88 94.82 23.71 90.99 37.09 89.96 43.62 93.76 26.82
0.80 99.37 2.43 94.95 22.91 91.14 36.80 89.97 43.76 93.86 26.47
0.75 99.43 2.26 95.20 21.70 91.28 36.55 90.14 43.65 94.01 26.04
0.70 99.45 2.14 95.31 21.01 91.41 36.10 90.21 43.49 94.09 25.69
0.65 99.46 2.08 95.34 21.07 91.47 36.13 90.16 43.85 94.11 25.78
0.60 99.47 2.07 95.39 21.00 91.47 36.31 90.16 43.90 94.12 25.82
0.55 99.47 1.94 95.43 20.81 91.53 35.81 90.13 43.83 94.14 25.60
0.50 99.47 1.95 95.44 20.73 91.54 35.94 90.14 43.90 94.15 25.63
0.45 99.47 1.95 95.48 20.50 91.57 35.83 90.18 43.67 94.18 25.49
0.40 99.48 1.97 95.48 20.56 91.56 35.90 90.21 43.76 94.18 25.55
0.35 99.48 1.95 95.48 20.60 91.59 35.81 90.25 43.58 94.20 25.49
0.30 99.48 1.97 95.49 20.71 91.59 35.94 90.21 43.48 94.19 25.52
0.25 99.48 1.94 95.49 20.52 91.59 35.90 90.19 43.72 94.19 25.52
0.20 99.48 1.96 95.49 20.47 91.60 35.73 90.16 43.83 94.18 25.50
0.15 99.48 1.90 95.49 20.42 91.60 35.72 90.18 43.78 94.19 25.45
0.10 99.49 1.90 95.50 20.44 91.62 35.92 90.14 44.06 94.19 25.58
0.05 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
0.04 99.49 1.91 95.47 20.53 91.65 35.84 90.21 44.06 94.20 25.59
0.03 99.49 1.92 95.42 20.62 91.63 35.98 90.17 44.11 94.18 25.66
0.02 99.49 1.93 95.39 20.79 91.61 35.98 90.28 43.79 94.20 25.62
0.01 99.50 1.96 95.36 20.96 91.63 36.45 90.03 44.73 94.13 26.03
0.00 99.47 2.08 95.27 21.14 91.55 36.91 89.58 47.09 93.97 26.81

Table 11: Comparison with diffrent corpus sources.

Source Language
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

WordNet English 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

Wikipedia English 96.07 20.89 93.08 36.05 90.09 47.48 73.38 86.68 88.16 47.78
French 91.99 47.18 90.62 48.79 90.37 46.30 80.86 76.33 88.46 54.65

Part-of-Speech Tags English 99.23 3.25 94.20 25.93 90.17 43.09 87.77 50.11 92.84 30.59

A.5 ABLATION STUDY ON THE NEGLABEL SCORE.

A.5.1 THE FORM OF THE NEGLABEL SCORE.

In Section 3.2, we discuss about the scheme of designing zero-shot OOD score with negative labels:

S(x) = S∗(sim(x,Y), sim(x,Y−)). (9)

The design criterion of S∗ can be summarized as follows: S∗ is positively correlated with the
similarity of the sample in the ID label space and negatively correlated with the similarity of the
sample in the negative label space.

Here, we provide two implementations, linear and proportional, as follows:

Slinear(x) = T1(sim(x,Y))− α · T1(sim(x,Y−)), (10)

Sproportional(x) =
T2(sim(x,Y))

T3(sim(x,Y)) + T3(sim(x,Y−))
, (11)

where T∗(·) are usually nonlinear transforms, which can map similarities to more discriminative
values. And α is a factor that balances the number of ID and negative labels. Specially, when T is an
exponential-sum transform with temperature coefficient τ , Eq. (11) becomes the sum-softmax form
in Eq. (6).

Table 12 shows the results of different implementations for OOD score function. All experiments
in this table are evaluated on ImageNet-1k benchmark without the grouping strategy. The results
indicate that the proportional scores perform better than the linear scores. This is because the linear
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form just simply fuses the similarities by linear combination, while the proportional form introduces
an extra nonlinearity that normalize and stabilize the similarities.

Comparing row 5 and row 6, the result of sum-softmax score is better than max-softmax with negative
labels. Because the sum-softmax measures the confidence that samples belong to the whole ID label
space, which is more robust against ID inter-class confusion in zero-shot classification. Row 5 and
row 7 show the comparison on whether to use exponential transform. It can be observed that using
exponential function can significantly improve the performance. Because the image-text similarities
in the CLIP-like model are smooth, as analyzed in Section 3.2.

In particular, the optimal temperature coefficient of sum-softmax score is τ = 0.01, which makes the
score act as a soft binarization function (each similarity is magnified 100 times and then scaled by
exponential function, so that only the similarities near to the highest value are treated as positives).
This is similar to our assumption in theoretical analysis (Section 3.3) that each negative label is a
binary classifier. So, we provide some "binarized version" of the score functions, as shown in the
Table 12 with 1 symbols. 1[cos(·,·)≥β] is a function to check if the cosine similarity is larger than β,
and the value equals to 1 if the condition holds. β is a binarization threshold and we set it to 0.25 for
CLIP.

By replacing the exponential transform with the binarization transform (see row 5 and row 9), the
results drop to 90.07% AUROC and 40.53% FPR95, but still show reasonable performances in
zero-shot OOD detection. The binarized scores in linear form (refer to row 3 and row 4) also show
the effectiveness of negative labels. Specially, the score function in row 4 is align with the "toy score
function" S̃ mentioned in theoretical analysis (Section 3.3), without directly using ID label to detect
OOD samples. It still gets 78.12% AUROC, and illustrates the rationality of our theoretical analysis.

Table 12: The form of the NegLabel score. All experiments are evaluated on ImageNet-1k benchmark
without the grouping strategy.

No. Mode Score Function
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

1
K∑
i=1

cos(h , e i)− 0.1 ·
M∑
j=1

cos(h , ẽj) 98.14 9.33 80.26 80.63 68.68 89.29 78.02 82.80 81.27 65.51

2 Linear max
i∈[1,2,··· ,K]

cos(h , e i) 87.75 66.27 89.10 54.81 88.35 51.90 82.30 72.02 86.87 61.25

3
K∑
i=1

1[cos(h,ei)≥β] − 0.1 ·
M∑
j=1

1[cos(h,ẽj)≥β] 95.64 9.34 86.12 44.74 83.93 49.59 75.62 62.06 85.33 41.43

4 −
M∑
j=1

1[cos(h,ẽj)≥β] 98.97 3.47 75.98 78.36 62.04 89.44 75.47 72.62 78.12 60.97

5

K∑
i=1

e
cos(h,ei)

τ

K∑
i=1

e
cos(h,ei)

τ +
M∑
j=1

e
cos(h,ẽj)

τ

99.30 2.65 95.06 23.11 90.90 40.35 89.76 46.63 93.76 28.19

6
max

i∈[1,2,··· ,K]
e
cos(h,ei)

τ

K∑
i=1

e
cos(h,ei)

τ +
M∑
j=1

e
cos(h,ẽj)

τ

99.12 3.75 94.54 24.01 90.92 37.45 89.26 44.72 93.46 27.48

7 Proportional

K∑
i=1

cos(h,ei)

K∑
i=1

cos(h,ei)+
M∑
j=1

cos(h,ẽj)

97.39 13.48 78.99 83.85 68.34 90.24 76.13 85.46 80.21 68.26

8
max

i∈[1,2,··· ,K]
cos(h,ei)

K∑
i=1

cos(h,ei)+
M∑
j=1

cos(h,ẽj)

97.92 10.38 94.03 28.24 89.05 44.34 90.94 40.51 92.98 30.87

9

K∑
i=1

1[cos(h,ei)≥β]

K∑
i=1

1[cos(h,ei)≥β]+
M∑
j=1

1[cos(h,ẽj)≥β]

96.89 5.70 91.80 44.68 86.78 51.00 84.82 60.74 90.07 40.53

A.5.2 COMPARISON WITH DIFFERENT TEMPERATURE VALUES OF SOFTMAX FUNCTION.

As analyzed in Section 3.2, the cosine function clamps the similarity score in [−1, 1] and results in
even smaller divergences between positive and negative pairs (e.g., the cosine similarities of positive
pairs in CLIP are typically around 0.3 and that of negative pairs are around 0.1 (Ming et al., 2022b)).
Such small differences may not adequately reflect the confidence variance of ID and OOD samples.
Therefore, a suitable temperature coefficient τ is important to scale the similarity, allowing better
reflecting the model’s confidence.

We conduct ablation analysis towards the temperature coefficient τ in Eq. (6). The results in Table 13
illustrate that as the temperature coefficient τ increases, the performance of OOD detection shows an
initial increase followed by a decrease trend, achieving the best performance at τ = 0.01.
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Table 13: Comparison with different temperature values of softmax function. The temperature values
are sampled uniformly on the logarithmic axis.

Temperature
OOD Dataset Average

iNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

0.0010 99.14 2.96 94.37 23.46 90.23 36.95 88.65 44.08 93.10 26.86
0.0013 99.19 2.91 94.53 23.44 90.55 36.96 89.01 44.24 93.32 26.89
0.0016 99.22 2.80 94.68 23.29 90.74 36.60 89.21 44.11 93.46 26.70
0.0020 99.27 2.70 94.82 22.80 90.94 36.23 89.39 43.67 93.61 26.35
0.0025 99.32 2.60 94.97 22.38 91.13 35.82 89.56 43.51 93.75 26.08
0.0032 99.36 2.39 95.12 21.73 91.33 35.32 89.74 42.89 93.89 25.58
0.0040 99.40 2.33 95.26 21.40 91.49 35.21 89.90 43.03 94.01 25.49
0.0050 99.44 2.22 95.37 20.81 91.61 35.36 90.04 42.82 94.11 25.30
0.0063 99.47 2.09 95.45 20.38 91.67 35.39 90.15 43.10 94.18 25.24
0.0079 99.49 1.90 95.49 20.58 91.64 35.82 90.23 43.72 94.21 25.51
0.0100 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
0.0126 99.52 1.86 95.44 21.18 91.35 38.19 90.23 45.28 94.14 26.63
0.0158 99.53 1.82 95.34 22.13 91.08 39.73 90.16 46.67 94.02 27.59
0.0200 99.46 2.06 93.13 37.88 87.12 58.11 87.88 59.34 91.90 39.35
0.0251 98.85 5.05 85.14 70.57 75.32 83.09 80.02 77.00 84.83 58.93
0.0316 99.14 2.98 94.36 23.79 90.22 36.82 88.65 44.61 93.09 27.05
0.0398 99.15 2.97 94.42 23.68 90.34 36.85 88.75 44.54 93.17 27.01
0.0501 99.17 2.94 94.48 23.44 90.43 36.86 88.87 44.54 93.23 26.94
0.0631 99.19 2.87 94.53 23.41 90.54 36.65 89.01 44.17 93.32 26.77
0.0794 99.21 2.85 94.61 23.24 90.65 36.61 89.11 44.24 93.39 26.73
0.1000 99.23 2.79 94.70 23.16 90.78 36.49 89.23 44.15 93.49 26.65
0.1259 99.27 2.75 94.82 22.74 90.94 36.26 89.38 44.06 93.60 26.45
0.1585 99.32 2.58 94.98 22.43 91.14 35.76 89.57 43.56 93.75 26.08
0.1995 99.38 2.39 95.17 21.55 91.38 35.34 89.79 42.87 93.93 25.54
0.2512 99.44 2.22 95.37 20.74 91.61 35.20 90.04 42.66 94.11 25.20
0.3162 99.49 1.92 95.49 20.59 91.65 35.82 90.23 43.67 94.22 25.50
0.3981 99.52 1.85 95.39 21.81 91.20 38.97 90.20 46.08 94.08 27.18
0.5012 99.52 1.75 94.72 26.92 89.82 46.69 89.58 51.19 93.41 31.64
0.6310 99.46 2.07 93.15 37.73 87.16 57.93 87.90 59.34 91.92 39.27
0.7943 99.33 2.67 90.90 50.85 83.67 69.90 85.48 66.60 89.84 47.50
1.0000 99.16 3.44 88.61 60.33 80.22 76.39 83.11 71.24 87.78 52.85
1.2589 99.00 4.36 86.65 66.66 77.40 80.79 81.28 74.33 86.08 56.53
1.5849 98.84 5.05 85.13 70.61 75.30 83.10 80.01 77.04 84.82 58.95
1.9953 98.70 5.84 83.96 73.06 73.76 84.56 79.16 78.72 83.90 60.55
2.5119 98.58 6.73 83.06 74.74 72.62 85.67 78.56 79.82 83.21 61.74
3.1623 98.47 7.45 82.36 76.15 71.75 86.43 78.13 80.57 82.68 62.65
3.9811 98.37 8.02 81.81 77.47 71.07 87.09 77.81 81.31 82.27 63.47
5.0119 98.28 8.48 81.37 78.27 70.55 87.60 77.57 81.95 81.94 64.08
6.3096 98.21 8.75 81.01 78.90 70.13 88.00 77.39 82.34 81.69 64.50
7.9433 98.15 9.06 80.73 79.37 69.81 88.28 77.24 82.70 81.48 64.85

10.0000 98.10 9.34 80.51 79.80 69.55 88.52 77.12 82.84 81.32 65.12

A.5.3 EFFECT OF PROMPT ENGINEERING.

We evaluate NegLabel with different prompt template on the ImageNet-1k benchmark, as shown in
Table 14. The first six rows are selected from the 80 prompt templates proposed by CLIP (Radford
et al., 2021). The last two rows are our designed prompt templates.

Comparing the first three rows with the sixth row, it is evident that the performance of OOD detection
significantly decreases when the prompt templates contain negative terms such as "dark", "blurry", and
"low resolution". This may occur because OOD images might exhibit high similarity to prompts with
negative words and ID labels, leading to misclassification. Conversely, when the prompt templates
include positive terms like "good", the OOD detection performance improves noticeably. This is
because OOD images are more likely to have low similarity with prompts containing positive words
and ID labels, thereby enhancing the discrimination between ID and OOD images.

Furthermore, it can be observed from the fourth and fifth rows that excessive neutral words in neutral
prompt templates tend to result in higher similarity between the negative labels and ID labels, thereby
affecting the quality of selected negative labels. Therefore, we design two prompt templates with
fewer neutral words and more positive adjectives as shown in the last two rows. Experimental results
demonstrate that using "The nice <label>." as the prompt template achieves the best performance.
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Table 14: Prompt engineering.

Prompt
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

A dark photo of a <label>. 97.03 14.16 91.50 50.16 86.07 64.75 71.42 86.91 86.50 54.00
A blurry photo of a <label>. 98.64 5.74 91.26 47.36 85.68 61.76 79.14 71.70 88.68 46.64
A low resolution photo of a <label>. 99.39 2.74 93.06 37.79 88.80 52.88 78.33 77.50 89.89 42.73
A cropped photo of a <label>. 98.99 4.15 91.41 48.72 88.31 55.32 74.41 81.45 88.28 47.41
A photo of a <label>. 99.59 1.74 94.83 26.35 90.17 46.92 80.79 72.11 91.34 36.78
A good photo of a <label>. 99.53 2.01 95.32 22.71 90.39 43.99 84.09 61.90 92.33 32.65
<label>. 99.52 1.91 95.77 19.32 92.43 32.79 86.89 59.34 93.65 28.34
The nice <label>. 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

A.5.4 EXPLORING THE GROUP NUMBERS OF THE GROUPING STRATEGY.

We investigate the impact of the hyperparameter (group number) in the grouping strategy and the
corresponding results are presented in Table 15. We use M = 10, 000 negative labels for all
the experiments in this table, and the group number indicates how many subgroups should the
negative labels be divided equally. The first row represents the baseline without using the grouping
strategy when the group number is equal to one. The experimental results demonstrate that using the
grouping strategy substantially enhances the OOD detection performance across four OOD datasets.
Furthermore, as the group number gradually increases, the OOD detection performance remains
stable, oscillating around 94.21% AUROC and 25.40% FPR95. These findings suggest that our
grouping strategy is resilient to the hyperparameter (group number). Hence, we select group number
as 100 for our main experiments.

Table 15: Impact of the group numbers in the grouping strategy on OOD detection. The experiments
are conducted on ImageNet-1k benchmark.

Group
Number

OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

1 99.30 2.65 95.06 23.11 90.90 40.35 89.76 46.63 93.76 28.19
50 99.48 1.94 95.47 20.63 91.62 35.91 90.19 43.56 94.19 25.51
100 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
150 99.49 1.89 95.52 20.47 91.66 35.70 90.20 43.95 94.22 25.50
200 99.49 1.90 95.50 20.58 91.66 35.66 90.24 43.60 94.22 25.43
250 99.50 1.88 95.55 20.22 91.65 35.69 90.18 43.97 94.22 25.44
300 99.50 1.85 95.53 20.32 91.60 35.95 90.14 44.18 94.19 25.58
350 99.51 1.84 95.54 20.32 91.58 35.94 90.13 44.26 94.19 25.59
400 99.50 1.90 95.50 20.61 91.66 35.76 90.25 43.62 94.23 25.47
450 99.50 1.89 95.53 20.48 91.67 35.73 90.21 43.92 94.23 25.50
500 99.52 1.80 95.57 20.20 91.55 36.33 90.02 44.95 94.16 25.82

1000 99.52 1.81 95.57 20.19 91.55 36.32 90.01 44.95 94.16 25.82

A.5.5 EXPLORING THE RELATIONSHIP BETWEEN THE NUMBER OF FUSED GROUPS AND OOD
DETECTION PERFORMANCE IN THE GROUPING STRATEGY.

Another question about grouping strategy is that why the performances increases by calculating the
average OOD score over multiple independent and identically distributed subgroups. To explore this
further, we conduct a series of ablation experiments with fusing different number of groups. Based
on the 100-subgroup setting in Table 15, we randomly pick 1, 2, 5, 10, 20, and 50 subgroups, with
100 negative labels in each subgroup. And then we compute the average NegLabel score over the
picked subgroups, repeating each experiment ten times for more accurate performances. The results
in Table 16 indicate that OOD detection performance improves gradually with an increase in the
number of selected groups. Additionally, the standard deviation generated from multiple experiments
decreases progressively. This trend shows that the performance for each subgroup may be affected by
the randomness of the negative labels. The average strategy of grouping helps NegLabel to stabilize
the OOD score and reduce the variances of zero-shot OOD detection performances.
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Table 16: Impact of the number of fused group in the grouping strategy on OOD detection. We
choose the group number as 100 so the last row represents the original grouping strategy (baseline).

Number of
Fused

Groups

OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

1 98.90±0.018 4.15±0.177 92.93±0.098 37.27±0.515 89.14±0.118 50.65±0.813 87.81±0.275 54.26±1.082 92.20±0.056 36.58±0.233

2 98.89±0.032 4.20±0.181 92.85±0.085 38.11±0.539 89.13±0.116 50.55±0.803 87.66±0.0.242 55.07±0.767 92.13±0.074 36.98±0.422

5 99.35±0.013 2.69±0.081 94.33±0.037 27.62±0.382 90.41±0.072 42.57±0.490 88.87±0.112 48.71±0.576 93.24±0.044 30.39±0.255

10 99.43±0.013 2.26±0.067 94.91±0.036 23.30±0.297 90.99±0.038 38.61±0.288 89.41±0.119 45.74±0.545 93.69±0.036 27.48±0.149

20 99.47±0.008 2.07±0.049 95.20±0.027 21.68±0.218 91.32±0.026 37.04±0.195 89.80±0.046 44.41±0.362 93.95±0.013 26.30±0.154

50 99.48±0.004 1.98±0.043 95.42±0.018 20.72±0.168 91.56±0.018 36.23±0.191 90.12±0.042 43.75±0.223 94.15±0.012 25.67±0.131

100 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

A.5.6 EXPLORING SIMILARITY CHOICES IN EQ. (5).

We tried using L1 distance and KL divergence to measure the similarity between images and negative
labels, and the results are shown below. As the CLIP-like VLM models are trained under cosine
similarity supervision, the features are naturally measured in the cosine space.

Table 17: Choices for similarity measurement between images and negative labels.

Choices
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Cosine (baseline) 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
KL Divergence 98.19 9.19 78.75 85.47 68.61 90.47 73.84 90.07 79.85 68.80

L1 Distance 97.34 11.95 80.28 79.39 69.29 89.14 66.57 86.51 78.37 66.75

Observing the experimental results, it can be seen that when using L1 distance and KL divergence
as metrics, there is a significant drop in performance on SUN, Places, and Textures datasets, while
the impact on iNaturalist dataset is relatively small. This is because our method (based on cosine
similarity) achieves a 99.49 % AUROC on iNaturalist, almost completely distinguishing between
ID and OOD data. Therefore, even when using metrics such as L1 and KL divergence that are not
suitable for cosine space, there is still a significant difference between ID samples and OOD samples
from iNaturalist. For more discussions on iNaturalist, please refer to Appendix B.1.

A.6 ABLATION ON VLM ARCHITECTURES.

The detailed results are shown in Table 18.

Table 18: Comparison with different VLM architectures on ImageNet-1K (ID). All values are
percentages. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Architecture Backbone
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CLIP

ResNet50 99.24 2.88 94.54 26.51 89.72 42.60 88.40 50.80 92.97 30.70
ResNet50x16 99.48 2.00 94.18 29.11 88.85 48.14 91.23 38.74 93.43 29.50

ViT-B/32 99.11 3.73 95.27 22.48 91.72 34.94 88.57 50.51 93.67 27.92
ViT-B/16 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
ViT-L/14 99.53 1.77 95.63 22.33 93.01 32.22 89.71 42.92 94.47 24.81

ALIGN EfficientNet-B7 98.86 4.55 90.93 43.18 85.03 61.01 88.24 49.89 90.76 39.66
AltCLIP ViT-L/14 99.73 1.18 95.74 21.44 93.42 30.11 89.50 41.81 94.60 23.63

GroupViT GroupViT 98.07 8.60 91.52 35.12 88.85 41.63 88.45 47.06 91.72 33.10

A.7 DISCUSSION ABOUT FORT ET AL. (2021).

Fort et al. (2021) use the ground-truth OOD labels for OOD detection, which is inconsistent with
the OOD detection setting in real scenarios. It may not be appropriate and fair to compare Fort et al.
(2021) in Table 1. The performance comparison between our method and Fort et al. (2021) is show in
Table 19.
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Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00000965

0.0 0.1 0.2 0.3 0.4 0.5 0.6

  liliidae

  ligule

  pogonia

  pteropsida

  blue pimpernel

  damselfly

  dragonfly

  lacewing

  gossamer-winged butterfly

  leafhopper
ID Labels
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Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00001710
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  bicolor lespediza

  neonate
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  meconium

  dalmatian laburnum

  Cardigan Welsh Corgi

  Boston Terrier

  Sealyham Terrier

  Dalmatian

  Whippet
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Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00001764
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  hurrying

  spring-loaded
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  pedigree

  ring-around-the-rosy

  Pekingese
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  Shih Tzu
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  Lhasa Apso
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Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00002659

0.0 0.1 0.2 0.3 0.4 0.5 0.6

  siamese

  baby blue-eyes

  silvervine

  lindheimera

  kitten-tails

  Siamese cat

  Persian cat

  Pekingese

  Japanese Chin

  Papillon
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Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00004842

0.00 0.05 0.10 0.15 0.20

  aphyllophorales

  lyginopteris

  rhamnales

  bioko

  sericocarpus

  white-headed capuchin

  Geoffroy's spider monkey

  howler monkey

  titi monkey

  guenon
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Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00005517
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  tract housing

  tiltyard

  fencing material

  cowpens

  unfenced

  split-rail fence

  picket fence

  chain-link fence

  park bench

  through arch bridge
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Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00006059

0.00 0.05 0.10 0.15 0.20

  lobito

  balto-slavic

  barky

  wolf boy

  ferocious

  great white shark

  husky

  Alaskan Malamute

  Siberian Husky

  hammerhead shark
ID Labels
Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00015611
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  reservoir

  inclined fault

  nagano

  asama

  lake

  dam

  suspension bridge

  promontory

  viaduct

  reflex camera
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Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00015943
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  footplate

  loco disease

  alexander iii

  joint-stock company

  dortmund

  steam locomotive

  electric locomotive

  freight car

  railroad car

  high-speed train
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Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00018741

0.0 0.1 0.2 0.3 0.4

  santalum

  balsam fir

  mistletoe fig

  christmasberry

  jumby bead

  Christmas stocking

  gymnastic horizontal bar

  letter opener

  ruler measuring stick

  envelope
ID Labels
Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00020622
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  spiny-backed

  genus anemone

  entozoan

  lycophyta

  amygdalus

  sea urchin

  lionfish

  sea anemone

  sea slug

  spiny lobster
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Negative Labels

Dataset Name: ImageNet
Image Name: ILSVRC2012_val_00033590
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  kaffir bread

  spelt

  bouteloua

  hottentot bread

  baker's yeast

  bagel

  pretzel

  dough

  baguette

  bakery
ID Labels
Negative Labels

Figure 4: Case visualization of ID images. The left part of each subfigure contains the original image,
its filename and its dataset name. The right part shows the softmax-normalized affinities among ID
(blue) and negative (green) labels.
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Dataset Name: iNaturalist
Image Name: 0d930ac10e2cd9b11a29ddc48e30c77d
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  white-leaved rockrose

  genus cosmos

  mountain avens

  common gum cistus

  cinquefoil

  daisy

  small white butterfly

  rose hip

  sea anemone

  pinwheel
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Negative Labels Dataset Name: iNaturalist
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  mountain male fern

  limestone fern

  florida strap fern

  virginia chain fern

  rock polypody

  European green lizard

  common sorrel horse

  earth star fungus

  stick insect

  alligator lizard
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Dataset Name: iNaturalist
Image Name: ef450918017b94a38a8620c95682ae6e
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  red silk-cotton tree

  red-flowered silky oak

  indian coral tree

  coral bean tree

  australian sumac

  pomegranate

  lorikeet

  fig

  koala

  echidna
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Negative Labels

Dataset Name: iNaturalist
Image Name: feae4be7d858cffdf8cac382df3fde0b

0.00 0.02 0.04 0.06 0.08

  hesperis

  alyssum

  sand verbena

  sweet alyssum

  chamois cress

  rapeseed

  common sorrel horse

  maypole

  Basenji

  small white butterfly
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Negative Labels

Dataset Name: Places
Image Name: b_badlands_00000280
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  petrified forest national park

  geological formation

  geological phenomenon

  south dakota

  oligocene

  mitten

  promontory

  valley

  bison

  mountain
ID Labels
Negative Labels

Dataset Name: Places
Image Name: c_crevasse_00001083

0.00 0.01 0.02 0.03 0.04

  glaciated

  calcareous

  geological phenomenon

  ice floe

  siliceous

  geyser

  volcano

  cauldron

  polar bear

  Arctic fox
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Negative Labels

Dataset Name: Places
Image Name: d_desert_road_00000794
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  nevada

  colorado desert

  chihuahuan desert

  tucson

  heavily traveled

  car mirror

  window shade

  moving van

  taxicab

  jeep
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Negative Labels

Dataset Name: Places
Image Name: f_forest_path_00003828
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  pinon pine

  sierra lodgepole pine

  whitebark pine

  kings canyon national park

  jeffrey pine

  split-rail fence

  mountain bike

  fox squirrel

  mailbox

  promontory
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Negative Labels

Dataset Name: SUN
Image Name: sun_ancbrqsjxiylptja
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  ross sea

  antarctic

  weddell sea

  antarctic ocean

  iceberg

  promontory

  polar bear

  albatross

  lifeboat

  ocean liner
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Negative Labels Dataset Name: SUN

Image Name: sun_apmtexbhuncudtkr
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  turkmenistan

  xinjiang

  afghanistan

  dasht-e-kavir

  oligocene

  valley

  bison

  mountain

  promontory

  cliff
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Dataset Name: Textures
Image Name: banded_0047
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  chromatographic

  grey-pink

  chromosomal
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  nonparametric

  zebra

  picket fence

  quilt

  front curtain

  maypole
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Dataset Name: Textures
Image Name: dotted_0197
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  poplin
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  shower curtain

  overskirt

  handkerchief

  front curtain
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Negative Labels

Figure 5: Case visualization of OOD images. The left part of each subfigure contains the original
image, its filename and its dataset name. The right part shows the softmax-normalized affinities
among ID (blue) and negative (green) labels.
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In the original implementation of Fort et al. (2021), they directly apply softmax function on the
cosine similarities between image and text embeddings, i.e., take temperature τ = 1 in Eq. (6) in our
paper. However, we observe that its performance on the ImageNet-1k benchmark is not as expected
because the difference between positive matching and negative matching is too small, as mentioned
in the discussion about the temperature coefficient of NegLabel Score in Section 3.2. We replace
the temperature by τ = 0.01 and achieved satisfactory results, with AUROC of 96.88% and FPR95
of 14.69%, exceeding all existing results (including zero-shot and non-zero-shot OOD detectors)
reported on the ImageNet-1k benchmark. But we remind again that now the OOD detector works in
an oracle situation because all OOD labels are added to the negative labels as known information.

Table 19: The performance comparison about Fort et al. (2021) on ImageNet-1k benchmark.

Method τ
iNaturalist SUN Places Textures Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

NegLabel 0.01 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
Fort et al. (2021) 1 98.48 7.73 85.41 75.54 76.42 86.14 79.33 87.39 84.91 64.20
Fort et al. (2021) 0.01 99.57 1.47 98.37 7.11 94.28 25.32 95.30 24.88 96.88 14.69

B FURTHER ANALYSIS

B.1 ANALYSIS OF THE PERFORMANCE ON INATURALIST

We think that the performance differences between iNaturalist and other OOD datasets mainly stem
from the characteristics of the OOD datasets themselves. In Fig. 4 and Fig. 5, we provide a few
sample images from the ID and OOD datasets for reference. The ID dataset ImageNet-1k contains a
large number of categories related to animals and food, while iNaturalist consists of images of natural
plants. SUN and Places datasets contain images of natural landscapes. Therefore, compared to other
OOD datasets, iNaturalist has the largest differences in category terms compared to ImageNet, such
as animals vs. plants. Therefore, introducing negative labels can significantly improve the OOD
detection performance. On the other hand, SUN and Places datasets often contain multiple elements
from the natural world beyond their annotated ground truth, making them more prone to confusion
with the ID data.

B.2 DISCUSSION ABOUT ZOC.

ZOC (Esmaeilpour et al., 2022) employs a captioner that has been pretrained on the COCO dataset
(Lin et al., 2014) to generate multiple candidate labels for each image. These labels are then merged
with the existing ID labels to calculate OOD scores. Consequently, the generated labels by ZOC are
all derived from the COCO dataset, which poses a disadvantage when applying ZOC to large-scale
datasets.

To address this limitation, we try to reproduce an upgraded version of ZOC on ImageNet-1k bench-
mark. We leveraged the capabilities of the multimodal model LLaVA (Liu et al., 2023) and ChatGPT
to migrate ZOC to large-scale data sets. The idea comes from MCM’s discussion and reproduction of
ZOC.

We first used LLaVA to describe each sample and extract the entities contained in the description.
Then we encountered a difficulty. LLaVA’s descriptions of a large number of ID samples were slightly
different from their corresponding ImageNet-1k labels, such as dog v.s. Alaskan Malamute. As a
result, the ID label filtering policy cannot take effect. In order to overcome this problem, we collected
all entities generated by LLaVA and used ChatGPT to filter words similar to the ImageNet-1k label.
The remaining words are treated as candidate OOD labels of ZOC. The results shown in Table 20
demonstrate that our method NegLabel significantly outperforms ZOC.

There are several reasons for this phenomenon: Firstly, ZOC generates candidate out-of-distribution
(OOD) labels for both in-distribution (ID) and OOD data. However, for ID data, the captioner may
produce synonyms or closely related words to the ID labels, which can have high similarity with the
image. This can lead to ID images being incorrectly classified as OOD. Secondly, the performance of
ZOC heavily relies on the dataset used for pretraining the captioner. If the OOD data is not part of
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Table 20: Performance comparison with ZOC.

Method
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ZOC 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
NegLabel 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

the captioner’s pretrained categories, the generated candidate labels will be inaccurate, resulting in
inaccurate scores for OOD data.

Compared to ZOC, our method, NegLabel, does not require additional complex pretraining processes
and additional images. NegLabel is simpler to use and can easily generalize to different data and
models. NegLabel also offers more stable and powerful performance of zero-shot OOD detection.

B.3 DISCUSSION ABOUT CLIPN.

CLIPN utilizes additional datasets to train a text encoder that can understand negative prompts. It
discriminates OOD data by comparing the similarity differences between the outputs of two text
encoders and the image encoder. On the other hand, our method does not require additional data or
training. It only introduces negative labels from the corpus to accomplish zero-shot OOD detection
tasks. Therefore, in terms of the idea, both methods aim to introduce negative semantics of the ID
category to reject inputs unrelated to the ID category. In terms of computational complexity, our
method is slightly higher than CLIPN, but it is almost negligible compared to the computational
complexity of CLIP itself. In terms of specific performance, our method has a higher average
performance on the ImageNet-1k benchmark. Moreover, compared to CLIPN and NegLabel on
CLIP-B/16 and CLIP-B/32, our method NegLabel is more robust to model architectures.

Table 21: Performance comparison with CLIPN.

Method
OOD Dataset AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CLIPN (CLIP-B/32) 94.67 28.75 92.85 31.87 86.93 50.17 87.68 49.49 90.53 40.07
CLIPN (CLIP-B/16) 95.27 23.94 93.93 26.17 90.93 40.83 92.28 33.45 93.10 31.10

NegLabel (CLIP-B/32) 99.11 3.73 95.27 22.48 91.72 34.94 88.57 50.51 93.67 27.92
NegLabel (CLIP-B/16) 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

B.4 CASE ANALYSIS

To better illustrate the effectiveness of NegLabel, we provide some visualization results of ID and
OOD images, as shown in Fig. 4 and Fig. 5. All the images are picked from the datasets in ImageNet-
1k OOD detection benchmark. Each subfigure shows the original image and the top-5 affinities
between the image and ID (blue) and negative (green) labels given by CLIP. The affinities are defined
as softmax-normalized cosine similarities with temperature coefficient τ = 0.01.

In Fig. 4, it is obvious that ID images have higher affinities on ID labels, and usually have low
affinities on negative labels because of our proposed NegMining algorithm. For example, the first
subfigure (row 1, column 1, ILSVRC2012_val_00000965) gets high affinity on its ground-truth ID
label and gets low affinities on other labels, which is a good case of CLIP classifier, demonstrating a
typical working scenario of NegLabel. However, CLIP does not always accurately determine which
label an image belongs to. The image in row 4, column 1 (ILSVRC2012_val_00006059) shows a
bad case of CLIP that the image is misclassified as "great white shark" and even confused between
Alaskan and Husky. In fact, the image contains a husky wearing a shark coat, but suffers severe
inter-class confusion, resulting in poor performances in MCM (Ming et al., 2022a), Energy (Liu et al.,
2020), and etc. Fortunately, NegLabel with the sum-softmax score checks the affinities between
the image and the whole ID label space, thus maintaining stable OOD detection performances even
when the zero-shot classifier performs poorly. The same results can also be seen in row 2, column 1
(ILSVRC2012_val_00001764) and row 3, column 1 (ILSVRC2012_val_00004842).
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In Fig. 5, OOD images usually have higher affinities on negative labels, because the negative labels
contain various concepts and entities different from ID labels. As a zero-shot classifier, CLIP-like
VLMs may not be good at fine-grained classification, making the affinities between OOD images
and negative labels away from the one-hot distribution. As a result, the classification results for
OOD images may be confused (like row 1, column 2, 01c1bc5fcfd8878585691c4e2585ec3c) or even
incorrect (like row 2, column 1, ef450918017b94a38a8620c95682ae6e). But these negative labels tell
us how "unlike" the image is from the ID data. Benefiting from the extensiveness of the large-scale
corpus, almost all OOD images can have reasonable negative labels corresponding to them. This
shows that NegLabel utilizes more knowledge from the text domain of VLMs and provides new clues
for detecting OOD samples.

Some readers may be concerned about whether it is fair that the corpus contains a wide range of
concepts, and may even directly cover the semantic labels of OOD samples. We think this is fair
when the corpus is large enough, just as VLMs are reasonable for evaluation on zero-shot tasks, even
though they may have seen this task-relevant data when they were trained. Besides, if developers
have prior knowledge of potential OOD labels, they can manually include them in the negative label
space to achieve better OOD detection performance.

B.5 DETAILED DERIVATIONS

About FPRλ. We use FPRλ as the performance metric of an OOD detector to show the separability
between the ID and OOD samples, which is defined as

FPRλ = Fout

(
F−1
in (λ)

)
, (12)

where λ ∈ [0, 1] represents the true positive rate (TPR), which indicates the proportion of samples that
are correctly classified as ID. The cumulative distribution functions (CDFs) Fin and Fout correspond
to the scores obtained by the ID and OOD samples, respectively. The metric FPRλ quantifies the
degree of overlap between the scores assigned by the OOD detector to the ID and OOD samples, with
lower values indicating better performance. Therefore, the FPRλ metric, specifically in relation to
the toy function S̃, can be defined as follows:

FPRλ = Φ
[
Φ−1

[
λ;Mp1,

√
Mp1(1− p1)

]
;Mp2,

√
Mp2(1− p2)

]
=

1

2
+

1

2
· erf

Φ−1
[
λ;Mp1,

√
Mp1(1− p1)

]
−Mp2√

2Mp2(1− p2)


=

1

2
+

1

2
· erf

(√
p1 (1− p1)
p2 (1− p2)

erf−1(2λ− 1) +

√
M (p1 − p2)√
2p2 (1− p2)

)
,

(13)

where

Φ−1
[
λ;Mp1,

√
Mp1(1− p1)

]
=
√
2Mp1(1− p1) erf−1(2λ− 1) +Mp1. (14)

About the deviation of FPRλ. We target on investigating the relationship between the FPRλ metric
and the number of negative labels M . Therefore, we calculate the partial derivative with respect to

M and use z =
√

p1(1−p1)
p2(1−p2) erf

−1(2λ− 1) +
√
M(p1−p2)√
2p2(1−p2)

to simplify the expression:

∂FPRλ
∂M

=
1

2
· ∂ erf(z)

∂z
· ∂z
∂M

=
1

2
· 2e

−z2

√
π
· p1 − p2
2
√

2Mp2 (1− p2)

=
e−z

2

2
√
2π
· p1 − p2√

Mp2 (1− p2)
< 0.

(15)
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B.6 MORE THEORETICAL ANALYSIS

In this section, we will consider a more general case for our analysis, where the probability that
the label of x is ỹi is pi, instead of p used in Section 3.3. Thus, the positive count c =

∑
i s

∗
i will

follow a Poisson binomial distribution instead of a binomial distribution. In the following, we find
that Poisson binomial distribution can also be approximated by a Normal distribution based on the
Lyapunov central limit theorem where the identical-distribution assumption made in the traditional
central limit theorem is related.

Formally, let Si be a Bernoulli random variable with parameter pi, which means that the probability
of Si = 1 is pi and the probability of Si = 0 is 1 − pi. Here, we assume that, for any i ∈ Z+,
pi ∈ [pmin, pmax], where pmin > 0 and pmax < 1.6 Then, we let C = S1+S2+ · · ·+SM . Thus, we
know E[Si] = pi, Var[Si] = pi(1− pi), E[C] =

∑M
i=1 pi, and Var[C] =

∑M
i=1 pi(1− pi). Based

on the above expectation and variance values, we want to verify the Lyapunov condition: for some
δ > 0,

lim
M→∞

1

(Var[C])3/2

M∑
i=1

E
[
|Si − E[Si]|2+δ

]
= 0. (16)

We first analyze the term E[|Si − E[Si]|2+δ] based on Si and E[Si].

E
[
|Si − E[Si]|2+δ

]
= |1− E[Si]|2+δPr(Si = 1) + |0− E[Si]|2+δPr(Si = 0)

= |1− pi|2+δpi + |0− pi|2+δ(1− pi)
= (1− pi)2+δpi + p2+δi (1− pi)
= (1− pi)pi[(1− pi)1+δ + p1+δi ] (17)

Thus, we know 0 < E[|Si − E[Si]|2+δ] < 2. Then, we analyze (Var[C])3/2.

(Var[C])3/2 =

(
M∑
i=1

pi(1− pi)

)3/2

≥

(
M∑
i=1

c1

)3/2

= c
3/2
1 M3/2, (18)

where c1 = min{pmin − p2min, pmax − p2max} > 0. Based on Eq. (17) and Eq. (18), we have

0 <
1

(Var[C])3/2

M∑
i=1

E
[
|Si − E[Si]|2+δ

]
<

2M

c
3/2
1 M3/2

=
2

c
3/2
1

√
M
. (19)

Thus, as M →∞,

0 <
1

(Var[C])3/2

M∑
i=1

E
[
|Si − E[Si]|2+δ

]
→ 0, (20)

meaning that

lim
M→∞

1

(Var[C])3/2

M∑
i=1

E
[
|Si − E[Si]|2+δ

]
= 0. (21)

Hence, we verify the Lyapunov condition for C and Si. Based on the Lyapunov central limit theorem,
we know that, as M goes to infinity,

1√
Var[C]

M∑
i=1

(
Si − E[Si]

)
d−→ N (0, 1), (22)

where d−→ means “converges in distribution”. Thus, C =
∑M
i=1 Si, a Poisson binomial random

variable, approximately follows N (
∑M
i=1 E[Si],Var[C]) = N (E[C],Var[C]), for a sufficiently

large M . Then, following Section B.5, we can obtain the same result.
6It means that we only consider random variables with real randomness, i.e., these random variables have positive
probabilities to at least take two values as their outputs. If pi = 0 (or pi = 1) for some i, then we know Si can
only take the value of 0 (or 1) and has no probability to make Si = 1 (or Si = 0).
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C ALGORITHMS

Here we give detailed implementations of the proposed algorithms. The central concept behind the
NegMining algorithm (see Algorithm 2) is as follows: firstly, it calculates the 100η-th percentile
nearest distance between a negative candidate and the entire ID label space. Next, it selects the top-k
candidates that have the greatest distances from the ID labels as the negative labels. This strategy
guarantees that for every y ∈ Y , there exists a substantial margin between the negative label and the
ID label.

Algorithm 2: NegMining (Detailed Version)
Input :Candidate labels Yc, ID labels Y , Text encoder f text
Output :Negative labels Y−

// Calculate text embeddings
1 for yi ∈ Y do
2 ei = f text(prompt(yi));
3 for ỹi ∈ Yc do
4 ẽi = f text(prompt(ỹi));

// Measure the distance from ID labels for each candidate
label.

5 negsimi = {− cos(ẽ i, ek)}Kk=1;

6 negsim
′

i ← reverse_sort(negsimi);

7 di ← the 100η-th element in negsim
′

i ;

// Pick M negative labels with respect to the top-k
distances.

8

[
d

′

1, d
′

2, · · · , d
′

C

]
= reverse_sort([d1, d2, · · · , dC ]);

9 According to the rank of
[
d

′

1, d
′

2, · · · , d
′

C

]
, reorganize Yc to Y ′c;

10 Y− ← first M elements in Y ′c.

The NegLabel score in a sum-softmax form is shown in Algorithm 3 and the NegLabel score with the
grouping strategy is shown in Algorithm 4.

Algorithm 3: NegLabel Score
Input : Model input x, ID labels Y , Negative labels Y−, Text encoder f text, Image encoder

f img

Output : NegLabel score S(x)
// Preprocess: calculate text embeddings.

1 for yi ∈ Y do
2 ei = f text(prompt(yi));

3 for ỹi ∈ Y− do
4 ẽi = f text(prompt(ỹi));
// Inference time.

5 h = f img(x);

6 S(x) =

K∑
i=1

ecos(h,ei )/τ

K∑
i=1

ecos(h,ei )/τ+
M∑
j=1

ecos(h,ẽj)/τ
.
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Algorithm 4: NegLabel Score with the Grouping Strategy
Input : Model input x, ID labels Y , Negative labels Y−, Text encoder f text, Image encoder

f img, Number of grouping ng
Output : NegLabel score S(x)
// Preprocess: calculate text embeddings.

1 for yi ∈ Y do
2 ei = f text(prompt(yi));

3 for ỹi ∈ Y− do
4 ẽi = f text(prompt(ỹi));
5 Divide the text embeddings of negative labels into ng groups.
// Inference time.

6 h = f img(x);
7 for each group l do

8 sl =

K∑
i=1

ecos(h,ei )/τ

K∑
i=1

ecos(h,ei )/τ+
⌊M/ng⌋∑

j=1
ecos(h,ẽj)/τ

.

9 S(x) = 1
ng

∑ng

l=1 sl
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