

IS THE PREDICTION SET SIZE WELL-CALIBRATED? A CLOSER LOOK AT UNCERTAINTY IN CONFORMAL PREDICTION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Given its flexibility and low computation, conformal prediction (CP) has become
 014 one of the most popular uncertainty quantification methods in recent years. In
 015 deep classifiers, CP will generate a prediction set for a test sample that satisfies
 016 the $(1 - \alpha)$ coverage guarantee. The prediction set size (PSS) is then considered
 017 a reflection of the predictive uncertainty. However, it is unknown whether the
 018 predictive uncertainty of CP is aligned with its predictive correctness, which is
 019 an imperative property for predictive uncertainty. This work answers this open
 020 question by investigating the uncertainty calibration of CP in deep classifiers. We
 021 first give a definition for the uncertainty calibration of CP by building a connection
 022 between PSS and prediction accuracy and then propose a calibration target for CP
 023 based on a theoretical analysis of the predictive distributions. Given this defined
 024 CP calibration, we present an empirical study on several classification datasets and
 025 reveal their weak calibration of CP. To strengthen the calibration of CP, we propose
 026 CP-aware calibration (CPAC), a bi-level optimization algorithm, and demonstrate
 027 the effectiveness of CPAC on several standard classification datasets by testing
 028 models including ResNet, Vision Transformer and GPT-2.

1 INTRODUCTION

031 Due to its low computational overhead and distribution-free assumption, conformal prediction (CP)
 032 Shafer & Vovk (2008); Romano et al. (2020); Angelopoulos et al. (2021) has become a dominant
 033 approach to uncertainty quantification (UQ). CP has been successfully adopted in various machine-
 034 learning applications, including object detection Timans et al. (2024), pose estimation Yang & Pavone
 035 (2023), pixel-level image understanding Brunekreef et al. (2024) and natural language understanding
 036 Quach et al. (2024); Gui et al. (2024); Mohri & Hashimoto (2024). The predictive uncertainty from
 037 CP stems from the *frequentist approach* to uncertainty, i.e., producing a confidence interval will
 038 contain the true value with a specified probability (e.g., 90% or 95%). In a classification task, CP will
 039 produce a prediction set \mathcal{S} for a test sample that is theoretically guaranteed to contain the ground-truth
 040 class label with a high probability (e.g., 90%). Although it is desirable to have a prediction set with
 041 a coverage guarantee, as a probabilistic forecast model, it is also important that the uncertainty is
 042 consistent with the decision's reliability Mincer & Zarnowitz (1969); Kochenderfer (2015), known as
 043 *calibration* Zadrozny & Elkan (2001); Gneiting et al. (2007).

044 For a multi-class classification model, the confidence score of the predicted label from a predictive
 045 distribution has traditionally been used as a measure of uncertainty. In that case, model calibration
 046 aims to reduce the gap between a model's predicted confidence score and the actual observed
 047 predictive correctness, measuring the model's ability to estimate its predictive reliability. Whilst
 048 the confidence-based calibration of modern large-scale machine learning models has been actively
 049 investigated in recent years Guo et al. (2017); Minderer et al. (2021a); Achiam et al. (2023), calibration
 050 through the lens of prediction set size (PSS), aiming for a tight coupling between PSS and expected
 051 accuracy is under-investigated. Although the coverage of PSS is guaranteed, its alignment with
 052 prediction accuracy is also essential for making risk-aware decisions and makes conformal inference
 053 more reliable. As illustrated in Figure 1, point prediction calibration has already been thoroughly
 investigated, but it outputs a single prediction for each query thus cannot guarantee the coverage
 of ground truth in its prediction. Conformal prediction, a well-established approach for achieving

coverage guarantees, conveys uncertainty through the size of the prediction set Angelopoulos et al. (2021). Yet, it remains unclear whether this set size truly aligns with prediction correctness.

Figure 1 consists of three panels. Panel (a) 'Conformal Prediction' shows a plantain image with a blue prediction box containing 'Plantain'. To the right, a green box indicates 'Coverage ✓ Calibration ?' and a blue box shows 'S={Banana, Plantain, Mango}' and 'Uncertainty: PSS=3'. Panel (b) 'Point Prediction' shows a plantain image with a blue prediction box containing 'Plantain'. To the right, an orange box indicates 'Calibration ✓ Coverage ✗' and 'Banana Uncertainty: p=0.12'. Panel (c) 'CP-Aware Calibration (CPAC)' is a green box containing a double-headed arrow between 'Uncertainty: |S|' and 'Accuracy: E[Acc(Sampler(S))]. The arrow is labeled 'f(|S|)' at the left end and 'min E[Acc(x|S) = k - f(|S|)' at the right end. A sun icon is at the top right, and a moon icon is at the bottom right.

To fill in this gap, our work investigates how to build a model calibration framework for CP in multi-classification tasks. This calibration was mentioned in Lu et al. (2023) as an auxiliary experiment to visualize the correlation between the PSS and Top-1 accuracy qualitatively without a thorough study to build the connection between the PSS and accuracy. Meanwhile, CP calibration was studied systematically on regression tasks van der Laan & Alaa (2024), but our paper is the first attempt to systematically investigate the calibration of CP on classification tasks. Note that the fundamental difference between van der Laan & Alaa (2024) and our work is that van der Laan & Alaa (2024) treats point prediction and prediction interval independently, while we aim to calibrate a classification model so that the CP's prediction set is calibrated and has valid coverage at the same time. It is important to note that calibration for PSS is *fundamentally different* from conditional coverage Gibbs et al. (2025). While conditional coverage ensures subgroup-level validity, PSS calibration evaluates whether smaller sets consistently correspond to higher per-instance reliability, a property not captured by conditional guarantees. Also note that, studying whether the uncertainty CP conveys in practice (via set size) is trustworthy does not suggest CP should replace probabilistic calibration such as entropy or confidence.

Developing calibration for conformal prediction through PSS has three key challenges. First, while CP produces a set of plausible labels, it does not directly yield a point prediction and thus accuracy. Second, the function between PSS and prediction accuracy is not straightforward, compared to the linear function in traditional confidence-based uncertainty. Third, it is unclear how to effectively calibrate a model to ensure that smaller prediction sets consistently correspond to higher accuracy. To address these challenges, we first use multinomial sampling with temperature to generate a point prediction from a prediction set, enabling us to obtain the accuracy. Then, we introduce a calibration target function based on the predictive distribution that maps PSS to expected accuracy, capturing the relationship between uncertainty and reliability in CP. An empirical study on the calibration target functions reveals weak calibrations of conformalized models, highlighting the need for correction. To this end, we propose a CP-aware calibration algorithm based on bi-level optimization as a *pre-processing* step before the quantile computation in the CP framework. Our contributions are three-fold:

- We establish a connection between the PSS and accuracy by sampling a label from the prediction set with the predictive distribution. An empirical study on the alignment of PSS and accuracy demonstrates the weak calibration of PSS.
- We propose a calibration target function motivated by both our empirical study and a theoretical analysis of the predictive distribution. It can handle prediction sampling with different temperatures and has a lower calibration error on average compared with other alternative target functions.
- We propose a CP-aware calibration algorithm as a pre-processing step of CP to improve the calibration of CP. The effectiveness in classification tasks is validated using three benchmark datasets in computer vision and natural language understanding with state-of-the-art models, including vision transformers and GPT-2.

2 RELATED WORK

Conformal Prediction and Uncertainty Quantification. Different from existing methods in the frequentist's approach to prediction uncertainty, CP is distribution-free and can be applied to any black-box machine learning model as long as the data exchangeability assumption is satisfied Vovk et al. (1999); Shafer & Vovk (2008). The original version of CP needs to train a model multiple times but is later improved by Vovk et al. (2005) as the split conformal prediction that can be used in any black-box model, leading to its popularity in many applications Romano et al. (2020); Angelopoulos et al. (2021). Existing research mainly aims to improve the coverage validity Gibbs & Candes (2021) and efficiency Angelopoulos et al. (2021); Ghosh et al. (2023a;b); Liu et al. (2024), as well as extend

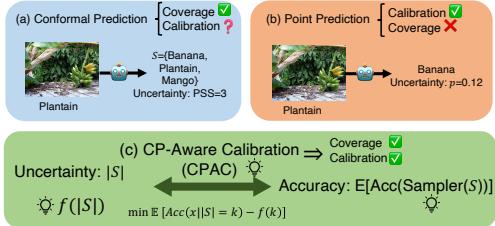


Figure 1: **(a)** and **(b)** compare CP and point prediction in coverage and calibration. **(c)** Two key contributions: *CP’s calibration target in multinomial sampling* and *CP-aware calibration*.

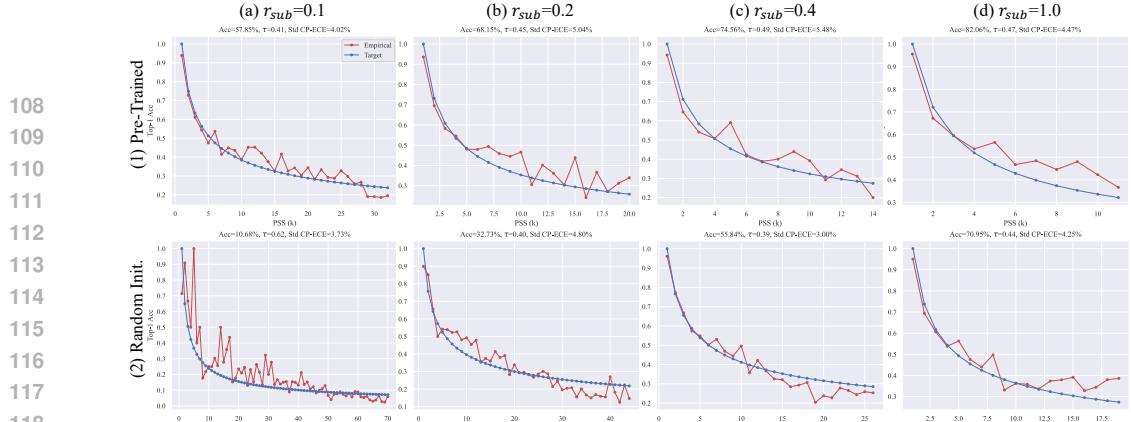


Figure 2: Reliability diagrams of ResNet50 trained on CIFAR100. The first row shows plots for varying training data sizes (r_{sub} is the subsampling ratio) with a pre-trained (on ImageNet-1k) initial model, while the second row shows plots for a randomly initialized model. The **red** curve is the observed one while the **blue** curve is the target curve.

CP to non-exchangeable data Barber et al. (2023) and achieve conditional coverage Gibbs et al. (2023). More recently, a random set method with improved calibration is proposed Manchingal et al. (2025), but it cannot be readily plugged into a pre-trained model as it is developed for Bayesian neural networks. In contrast, our work systematically investigates the calibration of quantified uncertainty by CP in classification tasks. This topic has been studied by Lu et al. (2023) and van der Laan & Alaa (2024), but Lu et al. (2023) proposes federated CP for distributed users and does not solely focus on the calibration, and van der Laan & Alaa (2024) only considers regression tasks. The proposed conformalizing Venn-Abers calibration van der Laan & Alaa (2024) for regression models cannot be applied to our classification problem as they produce the calibration multi-prediction and prediction interval separately, but we aim to calibrate the prediction interval/set directly. The effect of temperature scaling in CP is also investigated Xi et al. (2024); Dabah & Tirer (2024), but they only consider the coverage and efficiency of PSS instead of reducing the gap between PSS and its accuracy

Model Calibration. Model calibration focuses on adjusting predictive models to ensure that the predictive uncertainty accurately reflects the true likelihood Vaicenavicius et al. (2019). Model calibration is crucial in safety-critic applications Huang et al. (2020) where decision-making relies on well-calibrated probabilities. Deep neural networks have been found to be weakly calibrated can be fixed by traditional methods like Platt scaling Guo et al. (2017), which fits a temperature scalar to a classifier’s scores. Recent studies Minderer et al. (2021b) have shown that the large-scale pre-trained models are more calibrated, in particular for the convolution architecture. With the huge impact of large language models (LLMs), their calibration are also actively investigated Achiam et al. (2023); Xiong et al. (2024). However, the model calibration mainly focuses on the heuristic uncertainty such as confidence scores in classification. Our work aims to unveil the calibration of uncertainty when CP is used in state-of-art models including both vision transformer models for vision tasks and an LLM for language understanding tasks.

3 PRELIMINARIES

We introduce the necessary mathematical annotations and background in this section.

Notations. We split the dataset into three subsets, i.e., training set $\mathcal{D}_{tr} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N_{tr}}$, calibration set $\mathcal{D}_{cal} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N_{cal}}$ and test set $\mathcal{D}_{te} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N_{te}}$. A classification model is trained on \mathcal{D}_{tr} , and conformalization including Platt scaling is performed using the calibration set, and then the conformalized model is evaluated on the test set. Each data point (\mathbf{x}, y) is sampled from a distribution over the data space $\mathcal{X} \times \mathcal{Y}$. As we only investigate the classification task in this paper, the label space $\mathcal{Y} = \{1, \dots, K\}$ denoted as $[K]$ for simplicity. After training a deep classification model $f_{\theta}(\mathbf{x})$ with parameters θ , the model produces a logit vector $\mathbf{l}_i \in \mathbb{R}^K$ for a test sample \mathbf{x}_i , where the $\arg \max_j \mathbf{l}_{ij}$ is the predicted label. The predictive distribution \mathbf{p}_i is the output of the softmax function when the input is \mathbf{l}_i .

Conformal Prediction. Conformal prediction ensures population-level coverage guarantees without distributional assumptions and applies to both regression and classification. This study focuses on classification, where a conformalized classification model generates a prediction set $\mathcal{S}_i \in 2^{[K]}$ for a test sample \mathbf{x}_i so that the coverage guarantee is ensured

$$P(y \in \mathcal{S}(\mathbf{x})) \geq 1 - \alpha, \quad (1)$$

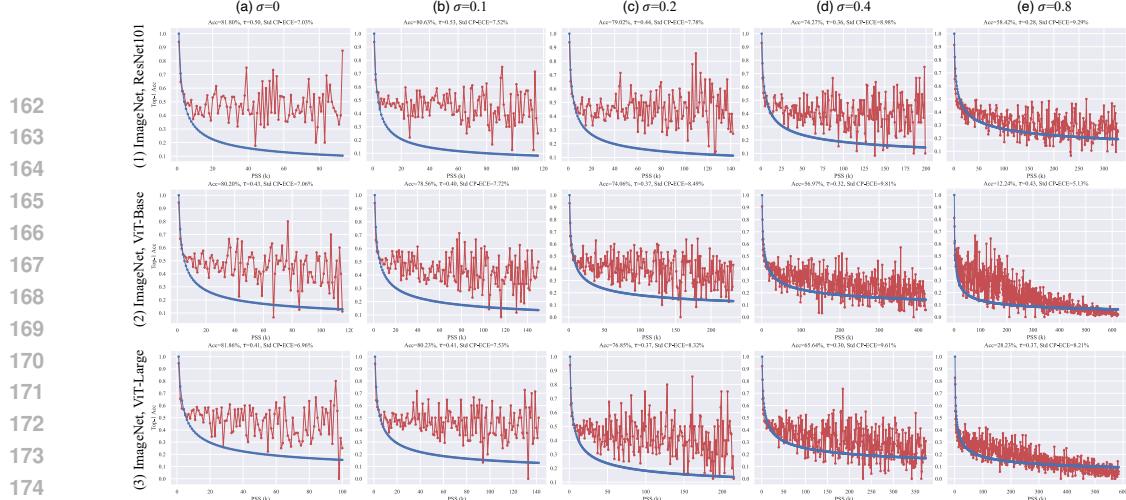


Figure 3: Reliability diagrams of three classification models on ImageNet when there is input noise sampled from Gaussian distribution with a standard deviation of σ .

where $1 - \alpha$ is a confidence level such as 90%, indicating that the prediction set will contain the ground-truth label with 90% confidence at the population level. The original CP needs to train a model multiple times to obtain such a guarantee, while our paper uses the *split conformal prediction* approach that does not need to train multiple times and can be plugged into any pre-trained black-box classifier Papadopoulos et al. (2002); Lei et al. (2018).

In this study, we use the APS (Adaptive Prediction Sets) method Romano et al. (2020) to perform the conformalization if not specified otherwise. There are two stages in APS, both done on \mathcal{D}_{cal} (a) temperature scaling Guo et al. (2017) and (b) computing the $(1 - \alpha)$ -quantile of conformity scores. The temperature scaling aims to make the confidence score more calibrated by find an optimal temperature to scale the logic vectors such that the likelihood of \mathcal{D}_{cal} is maximized. After scaling the logits, conformity scores on \mathcal{D}_{cal} are computed and their $(1 - \alpha)$ -quantile can be found. We give a description on the process of computing the conformity scores and the quantile in Appendix B.

4 CALIBRATION OF CONFORMAL PREDICTION

We now introduce a definition of CP calibration and describe how to use multinomial sampling to obtain accuracy. This is followed by a theoretical analysis on the proposed calibration target function. Moreover, we propose a calibration algorithm for CP on classification tasks (Algorithm 1).

4.1 CALIBRATION OF A CONFORMALIZED MODEL

Calibration for the uncertainty expressed by confidence scores is straightforward, as prediction accuracy with a confidence score is easily obtained. However, as the uncertainty in CP is measured by the PSS, the connection between a prediction set and its prediction quality cannot be immediately obtained. In other words, a prediction set is not directly comparable to the ground-truth class. To build a connection between a prediction set and its prediction accuracy, we propose a multinomial sampling strategy to produce a prediction from the prediction set and take the average accuracy of the sampled labels as the prediction correctness. Denote the normalized predictive probability in the prediction set \mathcal{S}_i as $\tilde{\mathbf{p}}_i = [\tilde{p}_{i1}, \dots, \tilde{p}_{i|\mathcal{S}_i|}]$ where $\sum_j \tilde{p}_{ij} = 1$, and the multinomial distribution is a function of the predictive probability

$$\mathbf{q}_i^{(t)} = [\tilde{p}_{i1}^t, \dots, \tilde{p}_{i|\mathcal{S}_i|}^t] / \sum_j \tilde{p}_{ij}^t, \quad (2)$$

where $t \in [0, +\infty)$ is the exponent for the sampling. When $t = 0$, we use uniform sampling to produce the predictive label. When t approaches $+\infty$, the sampling is equivalent to Top-1 accuracy using the maximum confidence. With the sampled accuracy, we give a definition for the CP calibration.

Definition 4.1. A classifier is conformally calibrated if the conditional expectation of accuracy using multinomial sampling with the temperature t decreases with the prediction set size k , i.e.,

$$\mathbb{E}[Acc_t(\mathbf{x})|\mathcal{S}(\mathbf{x}) = k] = f(k), \quad (3)$$

where $f(k)$ is a monotonically decreasing function and $\mathcal{S}(\cdot)$ maps an input sample into its PSS, the condition means for the expectation is computed on all \mathbf{x} with $\mathcal{S}(\mathbf{x}) = k$, and

$$Acc_t(\mathbf{x}) = \mathbb{E}_{\mathbf{q}^{(t)}(\mathbf{x})} \mathbf{1}(\hat{y} = y). \quad (4)$$

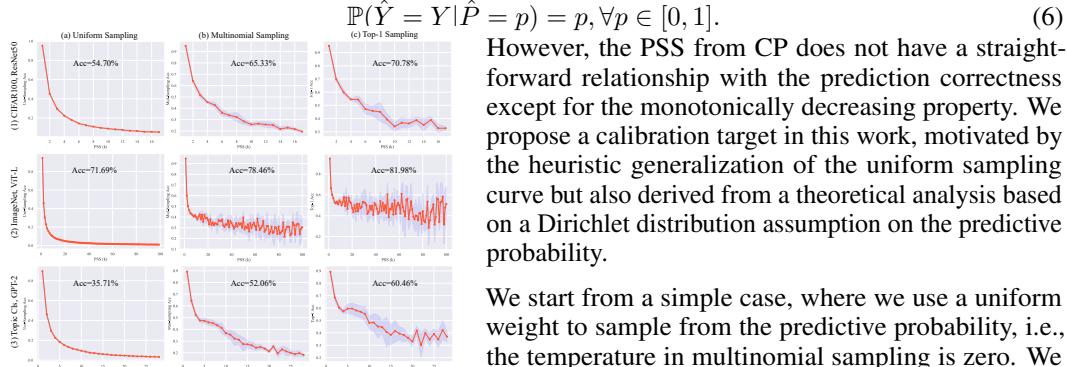
216 We define the following two metrics for the calibration error for a conformalized model.
 217

$$\text{Standard CP-ECE} = \sum_{k=1}^K \frac{N_{te}^{(k)}}{N_{te}} |Acc_t(\mathbf{x}|S(\mathbf{x}) = k) - f(k)|, \text{Uniform CP-ECE} = \sum_{k=1}^K \frac{1}{K} |Acc_t(\mathbf{x}|S(\mathbf{x}) = k) - f(k)|. \quad (5)$$

218 The standard CP Expected Calibration Error (CP-ECE) is weighted by the proportion of samples
 219 with PSS equal to k relative to the entire test set. In contrast, the uniform CP-ECE corresponds to
 220 the curve-fitting error measured by the absolute distance. We use the uniform CP-ECE since we
 221 want to measure the curve fitting performance in the reliability diagram without considering the
 222 number of samples in each bin. Moreover, we believe it is an important metric in practice as well,
 223 because it gives the same weight to different groups to prevent discrimination towards minor groups
 224 Mehrabi et al. (2021). It is also similar to the unweighted accuracy that is often used to measure the
 225 performance of a model as a complement to the standard weighted accuracy. While both our work
 226 and Huang et al. (2024) define calibration, note that they are fundamentally different, as we focus
 227 on PSS calibration within conformal prediction and propose an optimization algorithm to reduce
 228 calibration error, whereas Huang et al. (2024) neither considers conformal prediction nor minimizes
 229 calibration error.

230 4.2 CALIBRATION TARGET FUNCTION

231 Another challenge for CP calibration is the target calibration curve $f(k)$. In confidence calibration,
 232 the identity $f(c) = c$ is the target curve as the perfect calibration Guo et al. (2017) is defined by



233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 Figure 4: Sampling accuracy versus prediction set size (PSS) on three datasets. As the temperature in multinomial sampling decreases (uniform \Rightarrow multinomial \Rightarrow Top-1), accuracy increases but the calibration of PSS worsens. The shaded area shows the standard deviation over five seeds.

$$\mathbb{P}(\hat{Y} = Y | \hat{P} = p) = p, \forall p \in [0, 1]. \quad (6)$$

257 However, the PSS from CP does not have a straightforward relationship with the prediction correctness
 258 except for the monotonically decreasing property. We propose a calibration target in this work, motivated by
 259 the heuristic generalization of the uniform sampling curve but also derived from a theoretical analysis based
 260 on a Dirichlet distribution assumption on the predictive probability.

261 We start from a simple case, where we use a uniform weight to sample from the predictive probability, i.e.,
 262 the temperature in multinomial sampling is zero. We assume that the re-normalized predictive probability
 263 \tilde{p}_{ij} in the prediction set \mathcal{S}_i is the probability of j th class being the true class, then the expected accuracy
 264 of using multinomial sampling with weight q_i is

$$Acc_t(\mathbf{x}_i) = \sum_{j \in \mathcal{S}_i} q_{ij}^{(t)} \tilde{p}_{ij}, \quad (7)$$

265 where $\sum_{j=1}^{|\mathcal{S}_i|} q_{ij}^{(t)} = 1$, $\sum_{j=1}^{|\mathcal{S}_i|} \tilde{p}_{ij} = 1$. Note that the
 266 binary correctness in Equ. 4 becomes a probabilistic

267 one. It is straightforward to obtain that if $q_{ij} = 1/|\mathcal{S}_i|$ for every j , then the expected accuracy
 268 is $1/|\mathcal{S}_i|$. Fig. 4 shows that the curve of accuracy versus PSS fits well with the power function
 269 $f(k) = 1/k$, validating the assumption of the true class distribution.

270 **General cases.** Inspired by the success of the power function in the uniformly weighted sampling,
 271 we propose to use a power function $f(k) = 1/k^\tau$ as the calibration target where $\tau \in [0, 1]$, to
 272 accommodate the improvement in accuracy when using non-uniformly weighted sampling. Intuitively,
 273 when we use a low temperature in the multinomial sampling, the probability distribution gets sparse
 274 and the effective set size decreases. To account for such a set size decrease in the calibration function,
 275 we use $\tau < 1$ to decrease it from $|\mathcal{S}_i|$ to $|\mathcal{S}_i|^\tau$. Two alternative functions are the exponential decay
 276 $\exp(-\tau(k-1))$ and the logarithmic scaling function $1/(1 + \tau \log(k))$, where $\tau > 0$. However, our
 277 empirical study in Sec. 5 shows that the exponential decay function has a much faster decreasing
 278 rate than the power function, while the logarithmic scaling function cannot fit the curve of uniform
 279 sampling well.

280 We give a theorem on the relationship between the expected accuracy and the target calibration
 281 function by assuming that both \mathbf{p} and \mathbf{q} are sampled from two Dirichlet distributions with the same
 282 underlying shape.

283 **Theorem 4.2** (Expected Accuracy and Prediction Set Size). *Let $K \geq 2$ be a dimension, and let
 284 $\mathbf{a} = (a_1, \dots, a_K)$ be a vector with $a_j \geq 0$ and $\sum_{j=1}^K a_j = 1$. Suppose $\alpha_0 > 0$ and $\beta_0 > 0$ are*

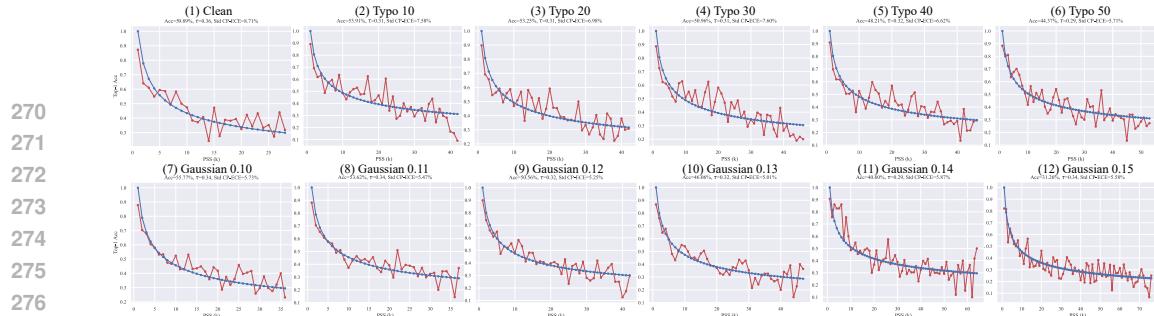


Figure 5: Reliability diagrams of GPT-2 on a topic classification dataset when there is Gaussian noise added on the embeddings or typos in textual input.

Algorithm 1 CP-Aware Calibration

Require: Calibration dataset \mathcal{D}_{cal} , logits from a pre-trained deep neural network $\{\mathbf{l}_i\}_{i=1}^{N_{cal}}$, regularization parameter λ , target calibration parameter τ , learning rate η , sampling temperature $t > 0$, batch size B , optimization round M_{opt} , mis-coverage level α

1: **for** $e \leftarrow 1 : M_{opt}$ **do**

2: Run $g(\mathbf{W}, \mathbf{b}) = \nu$, i.e., Compute conformality scores $\{E_i\}_{i=1}^{N_{cal}}$ and find the $(1 - \alpha)$ -quantile ν

3: Randomly divide \mathcal{D}_{cal} into T batches $\{\mathcal{B}_{it}\}_{it=1}^T$ with batch size B

4: **for** $it \leftarrow 1 : T$ **do**

5: Compute $\nabla_{\mathbf{W}, \mathbf{b}} \mathcal{L}_{ps} + \lambda(\|\mathbf{W} - \mathbf{I}\|_2^2 + \|\mathbf{b}\|_2^2)$ for $i \in \mathcal{B}_t$, denoted as $(\Delta\mathbf{W}, \Delta\mathbf{b})$

6: $(\mathbf{W}_{it}, \mathbf{b}_{it}) \leftarrow (\mathbf{W}_{it-1}, \mathbf{b}_{it-1}) - \eta \Delta(\mathbf{W}, \mathbf{b})$

7: **end for**

8: **end for**

9: **return** The calibration parameter (\mathbf{W}, \mathbf{b})

positive scalars, and define Dirichlet parameters

$$\alpha = (\alpha_1, \dots, \alpha_K), \quad \beta = (\beta_1, \dots, \beta_K)$$

where $\alpha_j = \alpha_0 a_j$ and $\beta_j = \beta_0 a_j$. Let $\mathbf{p} \sim \text{Dir}(\alpha)$ and $\mathbf{q} \sim \text{Dir}(\beta)$ be independent draws. We have

$$\mathbb{E}[\mathbf{q} \cdot \mathbf{p}] = \frac{1}{K^\tau}, \quad \text{where} \quad \tau = -\frac{\log(\sum_{j=1}^K a_j^2)}{\log K}.$$

Remark. This theorem assumes that \mathbf{p} and \mathbf{q} are drawn from two Dirichlet distributions with the same underlying mass distribution vector \mathbf{a} . This assumption is due to the proposed multinomial sampling, where both sampling accuracy $\mathbf{q}^{(t)}$ and correctness probability $\tilde{\mathbf{p}}$ follow the same mass distribution. The difference between $\text{Dir}(\alpha)$ and $\text{Dir}(\beta)$ is the degree of concentration, which corresponds to multinomial sampling with temperature. The exponent τ is determined by the shape of the vector \mathbf{a} . When \mathbf{a} is close to uniform, the expected accuracy is $1/K$. When \mathbf{a} is highly peaked at a single dimension, the expected accuracy will be one. We report the calibration error of more models on three datasets in Sec. 5 using this target calibration function. Note that we derived a similar decay function when the Dirichlet distribution does not hold and the prediction is sampled from a logistic-normal distribution with ordered variances, see Appendix A. Thus, both the Dirichlet and logistic-normal distributions serve as illustrative instantiations of our target behavior rather than restrictive assumptions.

4.3 CONFORMAL-PREDICTION-CALIBRATION WITH BI-LEVEL OPTIMIZATION

As the calibration error of CP is not satisfactory, particularly on challenging datasets such as ImageNet as our experiments show, we propose to post-process the model prediction so that the uncertainty from CP is better aligned with the accuracy.

Denote the logit vector of i th sample in the calibration set as \mathbf{l}_i , the model is calibrated by optimizing the weight matrix \mathbf{W} and bias \mathbf{b} similar to Platt scaling, but with our proposed calibration target. The correctness probability $\tilde{\mathbf{p}}$ and sampling probability $\mathbf{q}^{(t)}$ function is

$$\tilde{l}_{ij} = \begin{cases} [\mathbf{W}^T \mathbf{l}_i + \mathbf{b}]_j, & \text{if } j \in \mathcal{S}_i \\ -\infty, & \text{if } j \notin \mathcal{S}_i \end{cases}, \quad \tilde{\mathbf{p}}_i = \text{softmax}(\tilde{\mathbf{l}}_i), \quad \mathbf{q}_i = [\tilde{p}_{i1}^t, \dots, \tilde{p}_{ik}^t] / \sum_j \tilde{p}_{ij}^t \quad (8)$$

		Std CP-ECE	Uni CP-ECE	Acc.	Cov.	PSS		Std CP-ECE	Uni CP-ECE	Acc.	Cov.	PSS	
324	Clean	PS	6.88(0.06)	11.02(0.30)	81.98(0.08)	94.52(0.13)	18.47(0.64)	PS	7.16(0.10)	10.01(0.27)	80.35(0.09)	94.18(0.17)	18.05(0.90)
		PS-Full	6.38(0.06)	8.40(0.50)	81.98(0.08)	93.88(0.10)	13.70(0.25)	CPAC	6.65(0.07)	9.36(0.44)	80.35(0.09)	93.75(0.14)	14.44(0.54)
		CPAC	6.74(0.09)	6.74(0.47)	80.17(0.16)	92.39(0.08)	10.04(0.10)		7.45(0.11)	7.09(0.54)	77.68(0.14)	91.29(0.09)	10.43(0.53)
325	Norm-0.1	PS	7.52(0.05)	10.70(0.28)	80.39(0.11)	94.22(0.14)	20.71(0.77)	PS	7.78(0.09)	9.16(0.30)	78.67(0.06)	93.98(0.22)	20.78(1.19)
		PS-Full	6.90(0.04)	9.10(0.18)	80.39(0.11)	93.55(0.11)	15.00(0.33)	CPAC	7.21(0.10)	9.12(0.47)	78.67(0.06)	93.43(0.18)	16.19(0.58)
		CPAC	7.21(0.14)	7.39(1.12)	78.73(0.16)	91.83(0.19)	10.62(0.33)		7.72(0.11)	7.17(0.58)	75.45(0.32)	90.75(0.11)	11.37(0.26)
326	Norm-0.2	PS	8.30(0.11)	10.37(0.21)	76.98(0.07)	93.85(0.18)	27.49(1.15)	PS	8.53(0.10)	9.98(0.35)	74.13(0.05)	93.57(0.12)	31.27(0.76)
		PS-Full	7.67(0.13)	10.54(0.48)	76.98(0.07)	93.04(0.17)	20.03(0.10)	CPAC	8.46(0.16)	7.98(0.36)	70.57(0.41)	89.66(0.31)	17.11(0.40)
		CPAC	7.99(0.12)	7.99(0.84)	75.33(0.11)	91.31(0.19)	14.90(0.45)						
327	Norm-0.4	PS	9.73(0.16)	8.82(0.17)	65.69(0.03)	92.85(0.20)	58.44(1.48)	PS	7.97(0.07)	10.11(0.29)	74.13(0.05)	92.93(0.06)	24.89(0.29)
		PS-Full	9.34(0.07)	8.69(0.28)	65.69(0.03)	91.93(0.14)	48.13(1.01)	CPAC	8.67(0.10)	7.24(0.36)	87.77(0.41)	63.31(3.75)	
		CPAC	64.00(0.15)	89.72(0.15)	88.30(0.18)								
328	Norm-0.8	PS	8.09(0.10)	5.30(0.08)	28.34(0.09)	90.60(0.21)	239.18(2.99)	PS	5.06(0.12)	7.25(0.27)	12.30(0.06)	90.00(0.30)	429.42(5.39)
		PS-Full	8.29(0.20)	5.43(0.07)	28.34(0.09)	90.37(0.27)	258.33(4.55)	CPAC	5.32(0.07)	5.10(0.16)	12.30(0.06)	89.84(0.28)	469.92(5.28)
		CPAC	7.26(0.13)	4.94(0.08)	28.17(0.19)	88.95(0.16)	239.63(2.55)		4.39(0.23)	4.72(0.27)	12.50(0.21)	89.09(0.19)	437.94(3.66)
329	Blur-3	PS	7.88(0.10)	11.04(0.56)	79.03(0.07)	93.92(0.14)	23.30(0.89)	PS	8.17(0.10)	10.13(0.46)	77.06(0.10)	93.61(0.19)	24.61(0.90)
		PS-Full	7.50(0.05)	11.50(0.49)	79.03(0.07)	93.52(0.10)	19.37(0.51)	CPAC	7.79(0.09)	10.68(0.41)	77.06(0.10)	93.27(0.16)	21.24(0.78)
		CPAC	7.57(0.15)	8.38(0.56)	77.62(0.15)	92.15(0.05)	14.67(0.30)		8.02(0.07)	7.79(0.39)	75.19(0.32)	91.25(0.10)	15.18(0.47)
330	Blur-5	PS	8.40(0.07)	10.64(0.28)	77.94(0.05)	93.74(0.18)	25.92(1.19)	PS	8.76(0.05)	10.20(0.44)	75.24(0.09)	93.50(0.14)	28.73(0.70)
		PS-Full	8.01(0.09)	10.61(0.50)	77.94(0.05)	93.39(0.11)	22.50(0.58)	CPAC	8.42(0.10)	10.08(0.34)	75.24(0.09)	93.21(0.17)	25.44(0.84)
		CPAC	8.02(0.19)	8.51(0.22)	76.41(0.20)	92.05(0.09)	17.24(0.57)		8.39(0.16)	8.07(0.15)	73.09(0.10)	91.01(0.21)	18.73(0.50)
331	Blur-7	PS	8.59(0.06)	10.27(0.21)	77.51(0.05)	93.67(0.23)	27.08(1.22)	PS	8.96(0.16)	9.74(0.27)	74.39(0.06)	93.40(0.16)	31.02(0.88)
		PS-Full	8.24(0.08)	10.93(0.31)	77.51(0.05)	93.37(0.13)	23.83(0.51)	CPAC	8.67(0.12)	9.91(0.51)	74.39(0.06)	93.09(0.19)	27.65(0.97)
		CPAC	8.12(0.18)	8.96(0.44)	76.25(0.15)	92.10(0.07)	18.44(0.39)		8.54(0.14)	8.11(0.51)	72.12(0.16)	90.82(0.21)	20.55(0.56)
332	Drop-1	PS	9.69(0.06)	10.99(0.46)	74.50(0.13)	93.55(0.19)	40.62(2.10)	PS	9.76(0.15)	9.46(0.47)	71.04(0.07)	93.10(0.18)	39.13(1.03)
		PS-Full	9.00(0.10)	11.38(0.45)	74.50(0.13)	92.54(0.13)	29.33(0.82)	CPAC	9.33(0.14)	9.87(0.50)	71.04(0.07)	92.41(0.24)	31.90(0.94)
		CPAC	8.71(0.22)	9.52(0.32)	73.68(0.19)	91.32(0.18)	23.93(0.67)		9.04(0.12)	8.22(0.69)	68.26(0.14)	89.72(0.18)	25.09(0.33)
333	Drop-3	PS	11.05(0.13)	7.70(0.25)	60.83(0.11)	92.46(0.12)	93.09(1.16)	PS	10.31(0.15)	6.60(0.09)	54.91(0.11)	91.93(0.24)	93.11(2.37)
		PS-Full	11.37(0.12)	8.71(0.31)	60.83(0.11)	91.15(0.16)	79.22(1.73)	CPAC	10.62(0.16)	7.29(0.17)	54.91(0.11)	91.00(0.32)	86.53(2.79)
		CPAC	10.09(0.21)	8.28(0.24)	61.99(0.09)	91.82(0.19)	70.12(1.43)		8.09(0.46)	8.33(0.82)	50.49(1.14)	88.08(0.20)	84.83(10.46)
334	Drop-5	PS	10.29(0.03)	6.30(0.15)	44.36(0.12)	91.77(0.12)	161.52(2.21)	PS	8.75(0.08)	5.42(0.20)	35.38(0.07)	91.03(0.23)	187.77(3.32)
		PS-Full	10.77(0.10)	6.61(0.08)	44.36(0.12)	90.69(0.08)	169.74(1.20)	CPAC	9.18(0.05)	5.63(0.05)	35.38(0.07)	90.48(0.28)	211.86(3.96)
		CPAC	9.67(0.09)	6.18(0.20)	45.01(0.20)	88.98(0.13)	126.75(1.51)		6.81(0.54)	5.35(0.09)	32.77(0.53)	88.62(0.36)	215.71(6.65)
335	Drop-7	PS	6.73(0.11)	5.62(0.20)	19.69(0.05)	91.48(0.32)	306.40(4.44)	PS	5.10(0.07)	7.16(0.11)	11.97(0.09)	89.97(0.12)	423.58(2.71)
		PS-Full	7.71(0.15)	5.21(0.09)	19.69(0.05)	90.18(0.27)	392.71(6.12)	CPAC	5.84(0.10)	5.26(0.16)	11.97(0.09)	89.90(0.26)	490.89(5.01)
		CPAC	6.93(0.11)	4.86(0.16)	21.77(0.10)	88.84(0.40)	300.52(8.65)		4.78(0.17)	4.84(0.21)	12.73(0.22)	88.95(0.14)	427.64(2.94)

Table 1: Result of ViT-Large (left) and ViT-Base (right) on ImageNet-1k. *Norm- σ* means Gaussian noise with a std σ , *Blur- n* means Gaussian blur with kernel size n and *Drop- r* means randomly drop pixels with ratio r .

The optimization problem is

$$\min_{\mathbf{W}, \mathbf{b}} \sum_i \left(\sum_{j \in \mathcal{S}_i} \tilde{p}_{ij}(\mathbf{W}, \mathbf{b}, \nu) q_{ij}^{(t)}(\mathbf{W}, \mathbf{b}, \nu) - f_\tau(|\mathcal{S}_i|) \right)^2, \quad \text{s.t.} \quad \nu - g(\mathbf{W}, \mathbf{b}) = 0, \quad (9)$$

where the $f_\tau(\cdot)$ function is the target calibration curve with τ as the exponent. To optimize (\mathbf{W}, \mathbf{b}) , we need first to obtain the prediction set \mathcal{S}_i for each sample by finding the empirical $(1 - \alpha)$ -quantile of conformity scores in the calibration set. We denote the target as ν and the searching function as g . Thus, we formulate the CP calibration problem as a bi-level optimization problem, where the prediction set is produced from solving the lower-level conformity scores' $(1 - \alpha)$ -quantile. As this objective function will lead to a zero gradient for samples of PSS=1, we use the cross-entropy loss for samples with PPS=1.

To solve this bi-level optimization problem, we adopt the alternative optimization approach as shown in Alg. 1 by assuming the ν variable does not change drastically during optimization (\mathbf{W}, \mathbf{b}) . Note that we add a regularization term to constrain the distance between (\mathbf{W}, \mathbf{b}) and the initialization $(\mathbf{I}, \mathbf{0})$ to prevent overfitting on the calibration set. Note that we choose to optimize the full weight matrix instead of a temperature parameter as in Guo et al. (2017) as our pilot empirical study shows that a single scalar does not affect the calibration significantly as it fails to re-rank the class probabilities.

5 EXPERIMENTAL RESULTS

This section first describes the experimental details and then reports our empirical study on the calibration of CP on the three datasets.

5.1 EXPERIMENTAL SETTINGS

We conducted the experiment on three datasets using seven models, including two for image classification and one for topic classification. The experimental details are reported below.

CIFAR100 Krizhevsky et al. (2009). The dataset comprises 100 categories, each containing 600 images where 500 of them are used for training and 100 are used for test. We use 20% of the original test data as the calibration set and the rest 80% as the test set. The model we use is ResNet50 He et al. (2016), pre-trained on ImageNet Deng et al. (2009) or randomly initialized He et al. (2015). We train the model for 60 epochs and decay the learning rate by dividing it by 10 at 30th and 50th epoch. The initial learning rate is 0.1 in all the CIFAR100 training trials.

ImageNet-1k Deng et al. (2009). The dataset consists of approximately 1.28 million training images and 50,000 validation images, categorized into 1,000 classes. We utilize three models—ResNet101 He et al. (2016), ViT-B, and ViT-L Dosovitskiy et al. (2021)—with parameter sizes of 44.5M, 86M, and 307M, respectively. All images are resized to 224×224 , and the patch sizes in ViT-B and ViT-L are 16×16 . These pre-trained models, officially released and trained on ImageNet-1K, are used without further modifications. We evaluate the models under three types of image perturbations: Gaussian noise, Gaussian blur, and pixel dropout. **(1) Gaussian Noise:** We apply Gaussian noise with four different sigma values (σ , the square root of variance): 0.1, 0.2, 0.4, and 0.8. Each sigma value is uniformly applied across all test images. Additionally, we test a range of sigma values (0

378 to 0.8), where a random sigma is sampled to each image individually. **(2)** Gaussian Blur: Images
 379 are perturbed using Gaussian blur with kernel sizes of 3×3, 5×5, and 7×7. **(3)** Pixel Dropout: We
 380 randomly drop pixels from images at varying ratios: 0.1, 0.3, 0.5, and 0.7.

381 **Topic Classification¹.** The dataset includes 22,500
 382 pieces of text which are categorized into 120 topics.
 383 We split the dataset with 80% as the training
 384 set and 20% as the test set to fine-tune a GPT-
 385 2 Small model (137M) Radford et al. (2019) for
 386 the topic classification task. In evaluation, we test
 387 the calibration performance of different methods
 388 on the clean and two perturbed datasets. The per-
 389 turbation strategies are: **(1)** Gaussian Noise: We
 390 add a norm distribution noise $\epsilon \sim N(\mu, \sigma^2)$ on
 391 the text embeddings. We set μ to 0, and vary
 392 the perturbation strength by assigning σ values in
 393 the range [0.10, 0.15], incremented by 0.01; and **(2)** Typo:
 394 We randomly insert English
 395 keystroke typo, which is a mixture of insertion, deletion,
 396 substitution, and transposition Ku-
 397 kich (1992), to the test data to simulate the practical
 398 scenario. The perturbation rate, i.e., the
 399 portion of typo words relative to the total words, ranges
 400 from 10% to 50%, stepping by 10%.

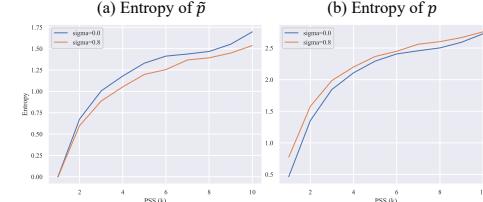
401 **CPAC details.** We use 20% of the original test
 402 set as the calibration set \mathcal{D}_{cal} in our experiment.
 403 Based on our preliminary experiment, the sam-
 404 pling temperature t is 3, the round of optimiza-
 405 tion M_{opt} is 4, the regularization hyperparam-
 406 eter $\lambda = 1e-4$ and the batch size is 1024. We use
 407 grid search to choose the optimal learning rate
 408 from {1e-4,3e-4,1e-3,3e-3,1e-2,3e-2,1e-1,3e-1}
 409 and τ from {0.1, 0.2, ..., 0.6}. The CPAC is
 410 performed on samples with low PSS (PSS<400
 411 on ImageNet and PSS<70 on Topic Cls. data)
 412 as we only need to cover $(1 - \alpha)$ of all samples
 413 in CP and we choose to optimize those low-PSS
 414 samples. We run the experiment five times in
 415 each setting by using five random seeds when
 416 splitting the original test set and report the av-
 417 erage of the CP-ECE, accuracy, coverage and
 418 PSS. We use CPAC to denote our method and
 419 PS to denote the standard confidence calibration
 420 method in APS. All experiments were run on
 421 NVIDIA GeForce RTX 3090.

422 As high-temperature sampling tends to have a
 423 good calibration error, we mainly investigate the
 424 most ill-behaved sampling strategy, i.e., Top-1 sampling, in our experiment. All figures and tables
 425 show the result of Top-1 accuracy, if not specified otherwise. During the test stage, we use grid
 426 search to find the optimal τ to compute the standard and uniform CP-ECE respectively. In reliability
 427 diagrams (Accuracy versus PSS), we only visualize the result of one random seed following the
 428 convention in Guo et al. (2017). Note that either sampling or expectation is possible to report but we
 429 use the sampling notion to approximate the real-world decision-making process in this paper. We
 430 exclude the empty PSS case in our implementation by setting the minimum PSS to be 1.

431 5.2 TARGET CALIBRATION FUNCTION

432 We compare the curve fitting error of using the proposed target function and two alternatives,
 433 exponential function $\exp(-\tau(k - 1))$ and logarithmic function $1/(1 + \tau \log(k))$ in Tab. 3. The
 434 logarithmic function is better than the power function in Multinomial and Top-1 sampling, but it fails
 435 to fit the simple curve of uniform sampling. Therefore, we still use the power function in our paper
 436 but the logarithmic function can also be used in low-temperature sampling.

437 ¹https://huggingface.co/datasets/valurank/Topic_Classification



438 Figure 6: Different behaviour of predictive
 439 distributions within the prediction set and the
 440 whole dimension when using ImageNet and
 441 ResNet101.

		Std CP-ECE	Uni CP-ECE	Acc.	Cov	PSS
Clean	PS	7.87(0.58)	6.01(0.53)	60.46(0.36)	91.08(0.00)	9.07(0.77)
	PS-Full	7.33(0.45)	6.21(0.37)	60.46(0.36)	91.58(0.98)	9.06(0.63)
	CPAC	7.02(0.55)	5.50(0.46)	60.40(0.38)	91.71(0.81)	9.18(0.59)
Norm-0.10	PS	6.36(0.81)	5.29(0.75)	56.13(0.28)	90.64(1.25)	12.00(1.47)
	PS-Full	6.48(0.56)	5.72(0.41)	56.13(0.28)	90.84(1.26)	11.88(1.37)
	CPAC	5.91(0.50)	5.08(0.63)	56.07(0.27)	91.14(0.93)	11.93(1.05)
Norm-0.11	PS	5.69(0.21)	4.96(0.42)	53.88(0.21)	90.66(0.57)	13.62(0.70)
	PS-Full	5.28(0.38)	4.59(0.43)	53.88(0.21)	90.90(0.63)	13.22(0.65)
	CPAC	5.32(0.43)	4.59(0.49)	53.88(0.25)	90.35(0.92)	12.62(0.94)
Norm-0.12	PS	5.28(0.05)	5.22(0.32)	50.90(0.29)	90.89(0.29)	17.06(0.49)
	PS-Full	5.06(0.51)	5.15(0.59)	50.90(0.29)	91.03(0.52)	16.47(1.00)
	CPAC	5.02(0.56)	4.87(0.68)	50.96(0.29)	91.07(0.92)	16.61(1.77)
Norm-0.13	PS	5.51(0.42)	5.42(0.33)	46.02(0.24)	89.72(0.17)	20.11(0.32)
	PS-Full	5.37(0.31)	5.43(0.22)	46.02(0.24)	89.77(0.33)	19.64(0.69)
	CPAC	5.24(0.18)	5.19(0.30)	46.05(0.24)	89.49(0.35)	18.98(0.54)
Norm-0.14	PS	5.31(0.43)	6.04(0.57)	39.46(0.70)	90.13(1.43)	30.86(3.72)
	PS-Full	4.95(0.42)	5.56(0.56)	39.46(0.70)	90.10(1.47)	30.45(3.77)
	CPAC	5.10(0.36)	5.87(0.62)	39.37(0.78)	89.86(1.79)	30.01(4.72)
Norm-0.15	PS	5.49(0.14)	6.18(0.32)	31.06(0.28)	89.85(0.67)	40.83(1.73)
	PS-Full	5.21(0.56)	5.01(0.62)	31.06(0.28)	89.89(0.64)	40.99(1.83)
	CPAC	4.69(0.32)	5.46(0.22)	31.10(0.35)	89.99(0.68)	41.12(2.01)
Typo-10	PS	7.69(0.46)	6.74(0.20)	54.35(0.27)	91.02(0.58)	15.17(0.75)
	PS-Full	7.01(0.37)	6.07(0.17)	54.35(0.27)	90.92(0.59)	14.42(0.71)
	CPAC	6.48(0.40)	5.40(0.24)	54.66(0.47)	91.27(0.44)	14.78(0.64)
Typo-20	PS	7.79(0.53)	6.36(0.34)	53.09(0.17)	90.37(0.53)	15.38(0.65)
	PS-Full	6.84(0.34)	5.87(0.26)	53.09(0.17)	90.42(0.57)	14.73(0.61)
	CPAC	6.48(0.48)	5.73(0.50)	53.41(0.44)	90.99(0.21)	15.65(0.31)
Typo-30	PS	7.24(0.48)	6.63(0.67)	51.54(0.40)	90.35(0.51)	17.62(0.62)
	PS-Full	6.10(0.62)	5.75(0.85)	51.54(0.40)	90.66(0.52)	17.12(0.80)
	CPAC	6.48(0.35)	6.35(0.48)	51.61(0.39)	90.95(0.33)	17.33(0.76)
Typo-40	PS	6.36(0.53)	5.94(0.49)	48.14(0.31)	90.59(0.45)	19.66(0.79)
	PS-Full	5.83(0.39)	5.67(0.34)	48.14(0.31)	90.75(0.49)	19.33(1.09)
	CPAC	5.97(0.54)	5.67(0.32)	48.10(0.47)	90.16(0.60)	18.25(1.00)
Typo-50	PS	5.34(0.43)	5.28(0.53)	44.44(0.26)	89.85(0.80)	23.55(1.85)
	PS-Full	5.08(0.63)	5.13(0.76)	44.44(0.26)	89.96(0.65)	23.31(1.60)
	CPAC	5.00(0.30)	5.14(0.39)	44.47(0.15)	90.17(0.41)	23.48(0.70)

Table 2: Result of GPT-2 on Topic Classification. Norm means adding Normal distribution noise on embedding vectors and Typo means mixing typos with original text.

432 5.3 FACTORS THAT AFFECT CP CALIBRATION
433

434 **Pre-Trained Model vs. Random Initialization.** Fig. 2.1 and 2.2 compare the reliability diagram
435 of with and without pre-trained weights on CIFAR100. In all cases, the standard CP-ECE of using
436 pre-trained weights is worse than using random initialization, despite its improved accuracy. In terms
437 of the target function, when there is sufficient data, i.e., subsampling ratio is 0.2, 0.4 or 0.8, τ of
438 pre-trained weights is larger than random initialization, meaning that the predictive distribution of
439 using pre-trained weights is more uniform than that of random initialization. However, when there
440 is only limited data, i.e., subsampling ratio is 0.1, τ is less peaked in random initialization than in
441 pre-trained weights with very low accuracy. This corroborates the effectiveness of a pre-trained
442 model in the low-data regime, but also shows its weakness in CP calibration.

443 **Subsampling.** Fig. 2.a-d show the change of reliability diagrams when more training data is used.
444 An increasing trend in accuracy from left to right is observed, but in most cases, standard CP-ECE
445 goes up. This indicates that training with more data does not necessarily improve the CP calibration.

446 **Noisy Environment.** Fig. 3 shows the CP reliability diagrams when input images are perturbed with
447 Gaussian noise. Both ViT models are not as robust to Gaussian noise as the ResNet model, but the
448 ResNet model has the worse standard CP-ECE compared with the other two. In particular, Fig. 3.1
449 shows that when there is more noise, τ will decrease, indicating that the probability shape within the
450 prediction set gets more peaked. This finding is validated by the result in Fig. 6.a, where the entropy
451 of \tilde{p} within a prediction set when $\sigma = 0.8$ is smaller than that when test images are clean. However,
452 there is an opposite trend in the entropy of the original probability p as shown in Fig. 6.b. The CP
453 reliability diagrams when Gaussian noise is added to the embeddings or there are typos in the text
454 when using GPT-2 are shown in Fig. 5. The τ of clean input is slightly higher than that when there is
455 input noise, but the change of τ 's is minor in GPT-2 compared with that in vision models.

456 5.4 PERFORMANCE OF CPAC
457

458 The previous subsection shows that calibration is an independent dimension of CP and needs to be
459 optimized. We present our empirical results on ImageNet and Topic Classification in this subsection,
as the calibration error on CIFAR100 is not high, we focus on calibrating CP.

460 Tab. 1 shows the result of testing ViT-L and ViT-B
461 when there are input noise for both calibration and
462 test set. Tab. 2 shows the result of GPT2 on the
463 topic classification task. On almost all the settings,
464 CPAC reduces the Uniform CP-ECE without sacrific-
465 ing Std CP-ECE or even improve it, and meanwhile
466 maintains the accuracy and decreases the PSS. The
467 decreased PSS can be attributed to the CPAC on samples with low PSS. We also observe that CPAC
468 mainly reduces the Uni. CP-ECE, especially when there are many classes, i.e., on ImageNet. This
469 is due to the fact that the loss of high-PSS samples in CPAC is often larger than low-PSS samples,
470 so CPAC tends to focus on high-PSS samples and leads to low curve fitting error. To compare the
471 PSS when the coverage is fixed, we select the non-conformity score threshold so that the coverage is
472 controlled to be the 90% and report the result in Appendix C. When the coverage is fixed, our method
473 enlarges the PSS compared with the baseline (split CP with Platt scaling). However, the coverage
474 control experiment is not doable in practice as the test set is unknown. The increased PSS won't
475 diminish our major contributions, i.e., the concept and method of PSS calibration, as the table still
476 shows the improvement of calibration error when using CPAC.

	Power	Exponential	Logarithmic
Uniform	0.29(0.03)	2.73(0.12)	2.04(0.07)
Multinomial	6.99(0.24)	17.23(0.20)	5.95(0.22)
Top-1	11.02(0.30)	18.40(0.37)	10.41(0.26)

477 Table 3: Curve fitting error (Uni. CP-ECE) of
478 ViT-L on ImageNet using different sampling
479 strategies.

6 CONCLUSION

480 This work presents a systematic research into the uncertainty calibration in CP for classification,
481 where the uncertainty is measured by the prediction set size. We first give a definition and metrics for
482 the calibration of CP, then propose a target calibration function for PSS which is validated by both
483 empirical results and our theoretical analysis. Finally, we propose a bi-level optimization algorithm
484 that performs CP-aware calibration, and show its effectiveness on three classification tasks with
485 state-of-the-art models. This work will inspire future research into the uncertainty calibration of CP,
486 which is largely neglected by the community. One weakness of this work is that the convergence and
487 generalization of the bi-level optimization problem are only validated empirically but not analyzed in
488 theory, which will be addressed by our future work.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jitendra Malik. Uncertainty
492 sets for image classifiers using conformal prediction. In *International Conference on Learning
493 Representations*, 2021.

494 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
495 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.

496 Joren Brunekreef, Eric Marcus, Ray Sheombarsing, Jan-Jakob Sonke, and Jonas Teuwen. Kandinsky
497 conformal prediction: Efficient calibration of image segmentation algorithms. In *Proceedings of
498 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4135–4143, 2024.

499 Lahav Dabah and Tom Tirer. On temperature scaling and conformal prediction of deep classifiers.
500 *arXiv preprint arXiv:2402.05806*, 2024.

501 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
502 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
503 pp. 248–255. Ieee, 2009.

504 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
505 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
506 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
507 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

508 Subhankar Ghosh, Taha Belkhouja, Yan Yan, and Janardhan Rao Doppa. Improving uncertainty
509 quantification of deep classifiers via neighborhood conformal prediction: Novel algorithm and
510 theoretical analysis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
511 pp. 7722–7730, 2023a.

512 Subhankar Ghosh, Yuanjie Shi, Taha Belkhouja, Yan Yan, Jana Doppa, and Brian Jones. Probabilisti-
513 cally robust conformal prediction. In *Uncertainty in Artificial Intelligence*, pp. 681–690. PMLR,
514 2023b.

515 Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. *Advances
516 in Neural Information Processing Systems*, 34:1660–1672, 2021.

517 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
518 guarantees. *arXiv preprint arXiv:2305.12616*, 2023.

519 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
520 guarantees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008,
521 2025.

522 Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts, calibration
523 and sharpness. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 69(2):
524 243–268, 2007.

525 Yu Gui, Ying Jin, and Zhimei Ren. Conformal alignment: Knowing when to trust foundation models
526 with guarantees. In *The Thirty-eighth Annual Conference on Neural Information Processing
527 Systems*, 2024. URL <https://openreview.net/forum?id=YzyCEJ1V9Z>.

528 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
529 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

530 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
531 human-level performance on imagenet classification. In *Proceedings of the IEEE international
532 conference on computer vision*, pp. 1026–1034, 2015.

540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 541 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 542 pp. 770–778, 2016.

543

544 Xinmeng Huang, Shuo Li, Mengxin Yu, Matteo Sesia, Hamed Hassani, Insup Lee, Osbert Bastani,
 545 and Edgar Dobriban. Uncertainty in language models: Assessment through rank-calibration. In
 546 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference*
 547 *on Empirical Methods in Natural Language Processing*, pp. 284–312, Miami, Florida, USA,
 548 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 549 18. URL <https://aclanthology.org/2024.emnlp-main.18/>.

550 Yingxiang Huang, Wentao Li, Fima Macheret, Rodney A Gabriel, and Lucila Ohno-Machado. A
 551 tutorial on calibration measurements and calibration models for clinical prediction models. *Journal*
 552 *of the American Medical Informatics Association*, 27(4):621–633, 2020.

553 Mykel J Kochenderfer. *Decision making under uncertainty: theory and application*. MIT press,
 554 2015.

555 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

556 Karen Kukich. Techniques for automatically correcting words in text. *ACM computing surveys*
 557 (*CSUR*), 24(4):377–439, 1992.

558

559 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
 560 predictive inference for regression. *Journal of the American Statistical Association*, 113(523):
 561 1094–1111, 2018.

562

563 Ziquan Liu, Yufei CUI, Yan Yan, Yi Xu, Xiangyang Ji, Xue Liu, and Antoni B. Chan. The pitfalls and
 564 promise of conformal inference under adversarial attacks. In *Forty-first International Conference on*
 565 *Machine Learning*, 2024. URL <https://openreview.net/forum?id=2xLyc5TkF1>.

566

567 Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael Jordan, and Ramesh Raskar. Federated
 568 conformal predictors for distributed uncertainty quantification. In *International Conference on*
 569 *Machine Learning*, pp. 22942–22964. PMLR, 2023.

570

571 Shireen Kudukkil Manchingal, Muhammad Mubashar, Kaizheng Wang, Keivan Shariatmadar, and
 572 Fabio Cuzzolin. Random-set neural networks. In *The Thirteenth International Conference on Learning*
 573 *Representations*, 2025. URL <https://openreview.net/forum?id=pdjkikvCch>.

574

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
 575 on bias and fairness in machine learning. *ACM computing surveys (CSUR)*, 54(6):1–35, 2021.

576

Jacob A Mincer and Victor Zarnowitz. The evaluation of economic forecasts. In *Economic forecasts*
 577 *and expectations: Analysis of forecasting behavior and performance*, pp. 3–46. NBER, 1969.

578

579 Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
 580 Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. In M. Ran-
 581 zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in*
 582 *Neural Information Processing Systems*, volume 34, pp. 15682–15694. Curran Associates, Inc.,
 583 2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8420d359404024567b5aefda1231af24-Paper.pdf.

584

585 Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
 586 Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. *Advances in*
 587 *Neural Information Processing Systems*, 34:15682–15694, 2021b.

588

589 Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guar-
 590 antees. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=uYISs2tpwP>.

591

592 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 593 machines for regression. In *Machine learning: ECML 2002: 13th European conference on machine*
learning Helsinki, Finland, August 19–23, 2002 proceedings 13, pp. 345–356. Springer, 2002.

594 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S Jaakkola, and Regina
 595 Barzilay. Conformal language modeling. In *The Twelfth International Conference on Learning
 596 Representations*, 2024.

597 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 598 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

600 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive coverage.
 601 *Advances in Neural Information Processing Systems*, 33:3581–3591, 2020.

602 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning
 603 Research*, 9(3), 2008.

604 Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann, and Eric Nalisnick. Adaptive
 605 bounding box uncertainties via two-step conformal prediction. In *European Conference on
 606 Computer Vision*, pp. 363–398. Springer, 2024.

607 Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, and Thomas
 608 Schön. Evaluating model calibration in classification. In *The 22nd international conference on
 609 artificial intelligence and statistics*, pp. 3459–3467. PMLR, 2019.

610 Lars van der Laan and Ahmed Alaa. Self-calibrating conformal prediction. In *The Thirty-
 611 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=BJ6HkT7qIk>.

612 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,
 613 volume 29. Springer, 2005.

614 Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of
 615 algorithmic randomness. 1999.

616 Huajun Xi, Jianguo Huang, Kangdao Liu, Lei Feng, and Hongxin Wei. Delving into temperature
 617 scaling for adaptive conformal prediction. *arXiv preprint arXiv:2402.04344*, 2024.

618 Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can
 619 LLMs express their uncertainty? an empirical evaluation of confidence elicitation in LLMs.
 620 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=gjeQKFxFpZ>.

621 Heng Yang and Marco Pavone. Object pose estimation with statistical guarantees: Conformal
 622 keypoint detection and geometric uncertainty propagation. In *Proceedings of the IEEE/CVF
 623 Conference on Computer Vision and Pattern Recognition*, pp. 8947–8958, 2023.

624 Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
 625 and naive bayesian classifiers. In *Icml*, volume 1, pp. 609–616, 2001.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PROOF
649650 *Proof of Theorem 4.2.* By the definition of the Dirichlet distribution, for each coordinate j we have
651

652
$$\mathbb{E}[p_j] = \frac{\alpha_j}{\alpha_0} = \frac{\alpha_0 a_j}{\alpha_0} = a_j, \quad \text{and similarly} \quad \mathbb{E}[q_j] = \frac{\beta_j}{\beta_0} = a_j.$$

653

654 Since p and q are independent,
655

656
$$\mathbb{E}[p_j q_j] = \mathbb{E}[p_j] \mathbb{E}[q_j] = a_j^2.$$

657 Summing over $j = 1, \dots, K$ gives
658

659
$$\mathbb{E}[p \cdot q] = \mathbb{E}\left[\sum_{j=1}^K p_j q_j\right] = \sum_{j=1}^K \mathbb{E}[p_j q_j] = \sum_{j=1}^K a_j^2,$$

660

661 proving the exact mean. The bounds follow from $\sum_{j=1}^K a_j = 1$ and the fact that $a_j \geq 0$, and the
662 power-law exponent τ is obtained by taking the negative logarithm base K :
663

664
$$\tau = -\frac{\ln\left(\sum_{j=1}^K a_j^2\right)}{\ln K} \implies \sum_{j=1}^K a_j^2 = K^{-\tau}.$$

665 Thus the theorem is established. \square
666667 **Theorem A.1** (Expected accuracy under heterogeneous logistic–normal). *Let $Z_j \sim \mathcal{N}(0, \sigma_j^2)$ be
668 independent Gaussian logits with $\sigma_1^2 \geq \sigma_2^2 \geq \dots \geq \sigma_k^2 > 0$. If the variances satisfy the Lindeberg–
669 Feller bounds*

670
$$\sigma_1^2 \leq C < \infty, \quad \sum_{j=1}^k \sigma_j^2 = O(k), \quad (\text{A.1})$$

671 then for every fixed exponent $t > 1$

672
$$Acc_t = \frac{C_{t,\text{hetero}}}{k} + O(k^{-3/2}) \quad (k \rightarrow \infty),$$

673 where

674
$$C_{t,\text{hetero}} := \frac{\frac{1}{k} \sum_{j=1}^k \mu_{t,j}}{\left(\frac{1}{k} \sum_{j=1}^k \mu_{t-1,j}\right) \left(\frac{1}{k} \sum_{j=1}^k \mu_{1,j}\right)}, \quad \mu_{r,j} = \exp\left(\frac{1}{2} r^2 \sigma_j^2\right).$$

675 The expectation of sampling accuracy with temperature t is defined, as in Equation (7) of the main
676 paper, by
677

678
$$Acc_t = \mathbb{E}\left[\frac{\sum_{j=1}^k P_j^t}{\sum_{j=1}^k P_j^{t-1}}\right], \quad P_j = \frac{T_j}{\sum_{\ell=1}^k T_\ell}, \quad T_j = e^{Z_j}.$$

679

680 **Assumptions and notations.**
681682 Latent logits: $Z_j \sim \mathcal{N}(0, \sigma_j^2), \quad 1 \leq j \leq k, \quad \sigma_1^2 \geq \sigma_2^2 \geq \dots \geq \sigma_k^2 > 0.$
683684 Log–normals: $T_j := e^{Z_j}, \quad \mu_{r,j} := \mathbb{E}[T_j^r] = \exp\left(\frac{1}{2} r^2 \sigma_j^2\right),$
685 $\varsigma_{r,j}^2 := \text{Var}(T_j^r) = (e^{r^2 \sigma_j^2} - 1) \mu_{r,j}^2.$
686687 Softmax probabilities: $P_j = \frac{T_j}{T_\Sigma}, \quad T_\Sigma := \sum_{j=1}^k T_j.$
688689 Power sums: $N_k := \sum_{j=1}^k T_j^t, \quad D_k := \sum_{j=1}^k T_j^{t-1}.$
690691 Deterministic means: $\bar{\mu}_t := \sum_{j=1}^k \mu_{t,j}, \quad \bar{\mu}_{t-1} := \sum_{j=1}^k \mu_{t-1,j}, \quad \bar{\mu}_1 := \sum_{j=1}^k \mu_{1,j}.$
692

702 **Law of Large Numbers (Lindeberg–Feller).** Fix $r \in [2, t]$. Define the centred summand $\xi_{k,j}^{(r)} :=$
 703

704 $T_j^r - \mu_{r,j}$ and total variance $V_{k,r}^2 := \sum_{j=1}^k \varsigma_{r,j}^2$. If

$$705 \max_{1 \leq j \leq k} \varsigma_{r,j}^2 = O(1) \implies V_{k,r}^2 \asymp k,$$

706 and the Lindeberg condition holds for every $\varepsilon > 0$,

$$707 \frac{1}{V_{k,r}^2} \sum_{j=1}^k \mathbb{E}[\xi_{k,j}^{(r)2} \mathbf{1}\{|\xi_{k,j}^{(r)}| > \varepsilon V_{k,r}\}] \xrightarrow{k \rightarrow \infty} 0,$$

710 then, since log-normals have super-polynomially decaying tails,

$$711 \frac{1}{\sqrt{V_{k,r}^2}} \sum_{j=1}^k \xi_{k,j}^{(r)} \Rightarrow N(0, 1) \implies \frac{1}{k} \sum_{j=1}^k \xi_{k,j}^{(r)} = O_p(k^{-1/2}).$$

714 Hence

$$715 \frac{N_k - \bar{\mu}_t}{k}, \quad \frac{D_k - \bar{\mu}_{t-1}}{k}, \quad \frac{T_\Sigma - \bar{\mu}_1}{k} = O_p(k^{-1/2}).$$

717 A sufficient explicit condition is again (A.1). For descending variances $\sigma_j^2 = \sigma_1^2 j^{-\beta}$ with any $\beta > 0$,
 718 A.1 is satisfied.

720 Fraction expansion with heterogeneous means. Let

$$721 X_k = N_k - \bar{\mu}_t, \quad Y_k = D_k - \bar{\mu}_{t-1}, \quad Z_k = T_\Sigma - \bar{\mu}_1.$$

723 Then

$$724 \frac{N_k}{D_k T_\Sigma} = \frac{\bar{\mu}_t}{\bar{\mu}_{t-1} \bar{\mu}_1} \cdot \frac{1 + X_k / \bar{\mu}_t}{(1 + Y_k / \bar{\mu}_{t-1})(1 + Z_k / \bar{\mu}_1)}.$$

725 A second-order Taylor expansion yields

$$726 \frac{N_k}{D_k T_\Sigma} = \frac{\bar{\mu}_t}{\bar{\mu}_{t-1} \bar{\mu}_1} \left[1 + O_p(k^{-1/2}) \right].$$

729 Expectation and scaling law. Taking expectations cancels linear terms:

$$730 \text{Acc}_t = \frac{\bar{\mu}_t}{\bar{\mu}_{t-1} \bar{\mu}_1} \left[1 + O(k^{-1/2}) \right].$$

733 Since $\bar{\mu}_r = \sum_{j=1}^k \mu_{r,j} = k \hat{\mu}_r$, the ratio of averages is $\Theta(1)$ and

$$734 \text{Acc}_t = \frac{k \hat{\mu}_t}{(k \hat{\mu}_{t-1})(k \hat{\mu}_1)} + O(k^{-3/2}) = \frac{C_{t,\text{hetero}}}{k} + O(k^{-3/2}),$$

736 with

$$737 C_{t,\text{hetero}} := \frac{\frac{1}{k} \sum_{j=1}^k \mu_{t,j}}{\left(\frac{1}{k} \sum_{j=1}^k \mu_{t-1,j} \right) \left(\frac{1}{k} \sum_{j=1}^k \mu_{1,j} \right)}.$$

740 B ADAPTIVE PREDICTION SETS (ROMANO ET AL., 2020)

743 Here is a description of the adaptive prediction sets (APS) method used in our paper. Suppose we
 744 have the prediction distribution $\mathbf{p}(x) = f_\theta(x)$ and order this probability vector with the descending
 745 order $p_{(1)}(x) \geq p_{(2)}(x) \geq \dots \geq p_{(K)}(x)$. The generalized conditional quantile function is defined
 746 as,

$$747 Q(x; p, \nu) = \min\{k \in \{1, \dots, K\} : p_{(1)}(x) + p_{(2)}(x) + \dots + p_{(k)}(x) \geq \nu\}, \quad (10)$$

748 which produces the class index with the generalized quantile $\nu \in [0, 1]$. The function \mathcal{S} can be
 749 defined as

$$750 \mathcal{S}(x, u; p, \nu) = \begin{cases} \text{‘y’ indices of the } Q(x; p, \nu) - 1 \text{ largest } p_y(x), & \text{if } u \leq U(x; p, \nu), \\ \text{‘y’ indices of the } Q(x; p, \nu) \text{ largest } p_y(x), & \text{otherwise,} \end{cases} \quad (11)$$

752 where

$$753 U(x; p, \nu) = \frac{1}{p_{(Q(x; p, \nu))}(x)} \left[\sum_{k=1}^{Q(x; p, \nu)} p_{(k)}(x) - \nu \right].$$

755 It has input $x, u \in [0, 1], \pi$, and ν which can be seen as a generalized inverse of Equation 10.

756 On the calibration set \mathcal{D}_{cal} , we compute a generalized inverse quantile conformity score using the
 757 following function,

$$758 \quad E(x, y, u; p) = \min \{ \nu \in [0, 1] : y \in \mathcal{S}(x, u; p, \nu) \}, \quad (12)$$

759 which is the smallest quantile to ensure that the ground-truth class is contained in the prediction set
 760 $\mathcal{S}(x, u; p, \nu)$. With the conformity scores on calibration set $\{E_i\}_{i=1}^{N_{cal}}$, we compute the $\lceil (1 - \alpha)(1 +$
 761 $N_{cal}) \rceil$ th largest value in the score set as $\hat{\nu}_{cal}$. During inference, the prediction set is generated with
 762 $\mathcal{S}(\mathbf{x}^*, u; p^*, \hat{\nu}_{cal})$ for a test sample \mathbf{x}^* .

764 C MORE EXPERIMENT

765 Fig. 7 and 8 shows the reliability diagrams of PS and CPAC on ImageNet and ViT-L when uniform
 766 CP-ECE is used as the metric. The calibration error of CPAC is qualitatively better than that of PS.
 767 Similarly, we visualize the uniform CP-ECE comparison of PS and CPAC for ViT-B on ImageNet in
 768 Fig. 11 and 12. The results of standard CP-ECE are shown in Fig. 9 and 10 for ViT-L and Fig. 13
 769 and 14 for ViT-B. Finally, we report the result of using PS and CPAC on ImageNet in Tab. 5 when
 770 ResNet101 is used, which demonstrates the strength of CPAC in reducing uniform CP-ECE.

773 D THE USE OF LLM

774 The use of LLMs is restricted to language refinement, including grammar correction, sentence rephrasing,
 775 and improving the clarity of writing. No LLMs were used to generate research ideas, design
 776 methodology, conduct experiments, or create results. All technical contributions, implementations,
 777 and analyses presented in this paper are solely the work of the authors.

		Std CP-ECE	Uni CP-ECE	Acc.	Cov.	PSS
780 Clean	PS	8.68(0.01)	7.34(0.71)	80.35(0.09)	90.00(0.01)	6.20(0.10)
	CPAC	7.93(0.14)	6.37(0.52)	77.68(0.14)	90.00(0.02)	7.81(0.29)
781 Norm-0.1	PS	9.09(0.07)	7.85(0.59)	78.67(0.06)	90.00(0.01)	7.93(0.23)
	CPAC	8.46(0.09)	6.25(0.28)	78.67(0.06)	90.00(0.01)	7.13(0.18)
782 Norm-0.2	PS	9.85(0.12)	8.85(0.37)	74.13(0.05)	89.99(0.04)	14.82(0.15)
	CPAC	8.37(0.09)	7.78(0.61)	70.58(0.41)	90.00(0.03)	18.17(0.97)
783 Norm-0.4	PS	10.74(0.09)	6.72(0.21)	57.19(0.16)	90.00(0.03)	62.37(0.49)
	CPAC	7.58(0.33)	7.68(0.44)	51.97(0.27)	89.97(0.05)	93.87(2.89)
784 Norm-0.8	PS	5.02(0.12)	7.23(0.21)	12.30(0.06)	90.01(0.02)	429.82(3.04)
	CPAC	4.37(0.12)	4.90(0.11)	12.50(0.21)	89.97(0.04)	456.89(3.74)
785 Blur-3	PS	9.27(0.13)	9.60(0.36)	77.06(0.10)	90.00(0.02)	10.52(0.13)
	CPAC	8.46(0.14)	7.24(0.68)	75.19(0.32)	90.02(0.01)	11.76(0.44)
786 Blur-5	PS	9.81(0.06)	8.91(0.45)	75.24(0.09)	90.00(0.03)	13.39(0.14)
	CPAC	8.73(0.19)	7.51(0.23)	73.09(0.10)	90.00(0.02)	15.48(0.46)
787 Blur-7	PS	9.98(0.04)	8.45(0.39)	74.39(0.06)	89.99(0.02)	15.08(0.22)
	CPAC	8.65(0.19)	7.93(0.26)	71.12(0.20)	89.98(0.03)	19.14(0.84)
788 Drop-1	PS	10.93(0.07)	8.67(0.39)	71.04(0.07)	90.00(0.05)	21.45(0.34)
	CPAC	8.96(0.11)	8.52(0.52)	68.26(0.14)	89.99(0.02)	26.39(0.70)
789 Drop-3	PS	11.42(0.04)	6.52(0.17)	54.91(0.11)	90.01(0.02)	72.49(0.24)
	CPAC	8.22(0.39)	7.60(0.47)	52.37(0.76)	90.00(0.03)	89.10(5.19)
790 Drop-5	PS	8.95(0.14)	5.00(0.10)	35.38(0.07)	90.00(0.05)	171.88(1.52)
	CPAC	6.63(0.53)	5.52(0.27)	32.77(0.53)	90.02(0.08)	241.31(10.71)
791 Drop-7	PS	5.09(0.08)	7.23(0.10)	11.97(0.09)	90.00(0.01)	424.25(0.65)
	CPAC	4.72(0.17)	5.01(0.19)	12.73(0.22)	90.02(0.06)	450.48(3.68)

805 Table 4: Performance metrics of ViT-Base on ImageNet when the coverage is controlled to be 90%.

810

811

812

813

814

815

816

817

818

819

820

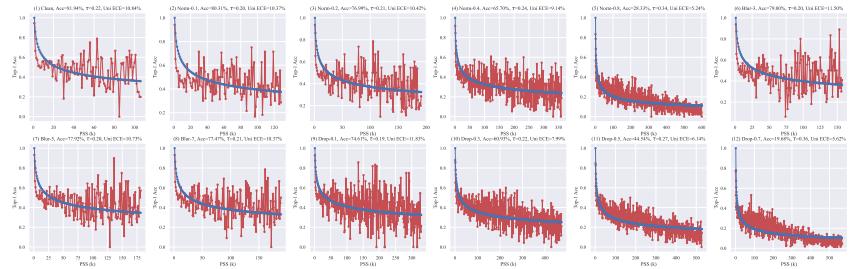


Figure 7: Reliability diagrams of ViT-L on ImageNet under different types of noise with uniform CP-ECE.

821

822

823

824

825

826

827

828

829

830

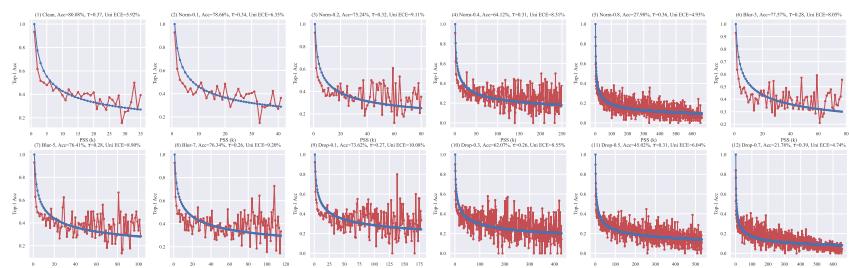
831

832

833

834

Figure 8: Reliability diagrams of ViT-L on ImageNet under different types of noise with uniform CP-ECE after CPAC.



835

836

837

838

839

840

841

842

843

844

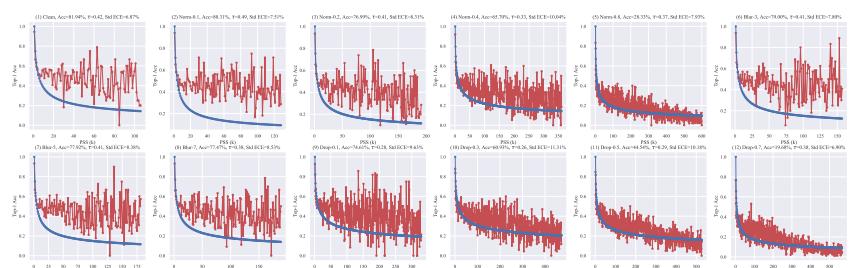
845

846

847

848

Figure 9: Reliability diagrams of ViT-L on ImageNet under different types of noise with standard CP-ECE.



849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

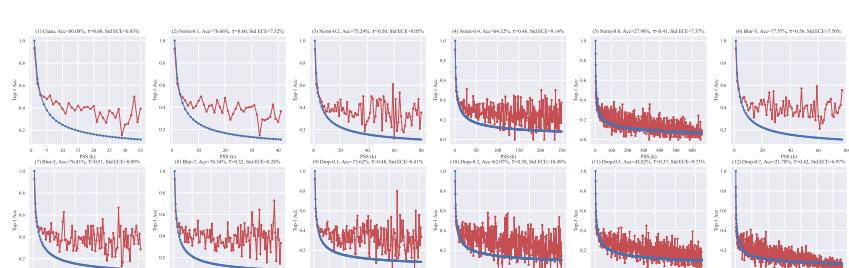


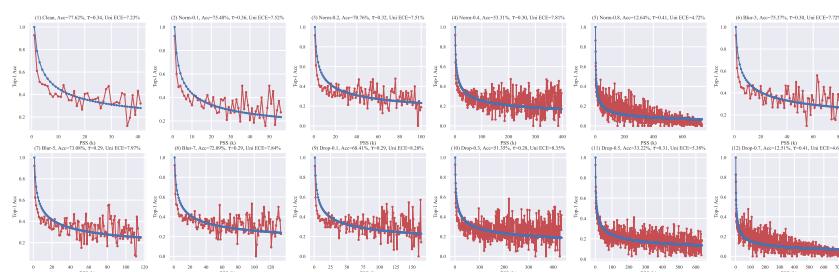
Figure 10: Reliability diagrams of ViT-L on ImageNet under different types of noise with standard CP-ECE after CPAC.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880



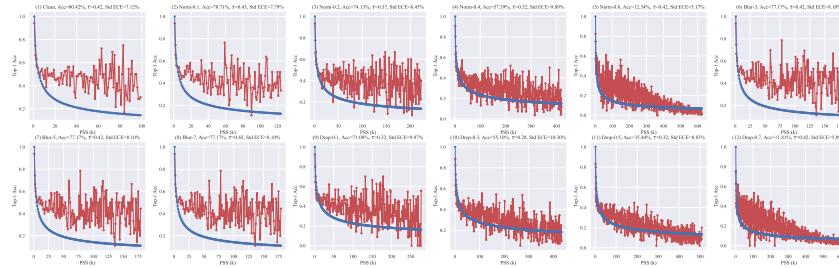
881 Figure 11: Reliability diagrams of ViT-B on ImageNet under different types of noise with uniform
882 CP-ECE.
883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908



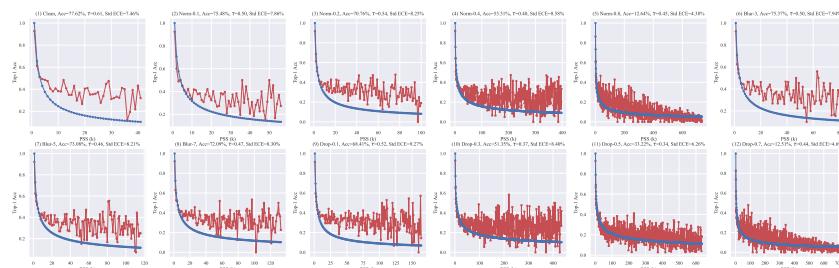
909 Figure 12: Reliability diagrams of ViT-B on ImageNet under different types of noise with uniform
910 CP-ECE after CPAC.
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934



935 Figure 13: Reliability diagrams of ViT-B on ImageNet under different types of noise with standard
936 CP-ECE.
937

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962



963 Figure 14: Reliability diagrams of ViT-B on ImageNet under different types of noise with standard
964 CP-ECE after CPAC.
965
966
967
968
969
970
971

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984

		Std CP-ECE	Uni CP-ECE	Acc.	Cov.	PSS
985 986 987	Clean	PS 9.01(0.14)	11.33(0.92)	81.93(0.13)	93.46(0.29)	16.04(1.59)
		PS-Full 9.20(0.15)	7.85(0.23)	81.93(0.13)	94.77(0.21)	29.53(1.46)
		CPAC 9.16(0.13)	7.82(0.25)	81.93(0.13)	94.75(0.18)	29.57(1.18)
988 989	Norm-0.1	PS 7.44(0.17)	10.87(1.41)	80.76(0.12)	93.36(0.33)	17.73(2.05)
		PS-Full 9.12(0.19)	8.07(0.20)	80.76(0.12)	94.65(0.26)	29.99(1.62)
		CPAC 9.11(0.15)	7.91(0.24)	80.76(0.12)	94.63(0.20)	30.18(1.38)
990 991	Norm-0.2	PS 7.90(0.14)	11.24(0.72)	79.18(0.13)	93.13(0.38)	19.89(2.27)
		PS-Full 9.47(0.13)	7.66(0.19)	79.18(0.13)	94.29(0.20)	30.22(1.33)
		CPAC 9.40(0.19)	7.67(0.44)	79.20(0.14)	94.39(0.23)	30.92(1.42)
992 993	Norm-0.4	PS 8.74(0.17)	9.58(0.38)	74.40(0.07)	92.63(0.31)	28.04(2.16)
		PS-Full 9.41(0.14)	7.31(0.21)	74.40(0.07)	93.76(0.24)	35.76(1.57)
		CPAC 9.39(0.18)	7.08(0.21)	74.40(0.07)	93.83(0.34)	36.53(2.33)
994 995	Norm-0.8	PS 9.23(0.06)	6.65(0.16)	58.57(0.11)	91.53(0.25)	67.89(2.20)
		PS-Full 8.44(0.10)	5.51(0.11)	58.57(0.11)	91.97(0.11)	63.14(0.94)
		CPAC 8.36(0.07)	5.33(0.18)	58.63(0.09)	91.94(0.20)	62.27(1.74)
996 997	Blur-3	PS 7.47(0.15)	10.71(0.36)	79.88(0.14)	93.31(0.28)	18.56(1.43)
		PS-Full 9.31(0.18)	7.99(0.13)	79.88(0.14)	94.60(0.18)	30.69(1.47)
		CPAC 9.29(0.20)	7.82(0.43)	79.88(0.16)	94.59(0.10)	30.64(0.84)
998 999	Blur-5	PS 8.04(0.18)	10.66(0.35)	78.17(0.11)	93.16(0.25)	22.38(1.51)
		PS-Full 9.41(0.14)	7.42(0.36)	78.17(0.11)	94.44(0.22)	33.23(1.57)
		CPAC 9.39(0.15)	7.42(0.40)	78.17(0.11)	94.44(0.15)	33.15(1.09)
1000 1001	Blur-7	PS 8.26(0.21)	10.23(0.38)	77.45(0.12)	93.06(0.25)	23.94(1.53)
		PS-Full 9.38(0.20)	7.40(0.28)	77.45(0.12)	94.34(0.22)	34.34(1.59)
		CPAC 9.35(0.17)	7.27(0.17)	77.45(0.12)	94.34(0.17)	34.14(1.25)
1002 1003	Drop-1	PS 10.92(0.17)	8.48(0.23)	67.03(0.13)	91.81(0.29)	55.23(2.38)
		PS-Full 10.36(0.23)	6.63(0.30)	67.03(0.13)	92.59(0.25)	55.07(1.98)
		CPAC 9.97(0.24)	6.40(0.19)	67.37(0.13)	92.79(0.24)	54.24(1.85)
1004 1005	Drop-3	PS 10.72(0.31)	6.36(0.18)	52.05(0.12)	90.64(0.34)	108.84(4.37)
		PS-Full 9.87(0.31)	5.69(0.25)	52.05(0.12)	90.88(0.35)	98.10(3.90)
		CPAC 9.10(0.23)	5.42(0.28)	53.11(0.12)	91.11(0.36)	87.01(3.53)
1006 1007	Drop-5	PS 8.25(0.20)	5.03(0.17)	37.59(0.07)	90.29(0.37)	182.23(6.52)
		PS-Full 8.02(0.12)	4.89(0.20)	37.59(0.07)	90.29(0.33)	176.38(5.28)
		CPAC 7.31(0.13)	4.71(0.09)	39.03(0.10)	90.35(0.30)	142.69(3.28)
1008 1009	Drop-7	PS 4.75(0.14)	5.55(0.07)	19.41(0.06)	89.94(0.27)	328.26(6.81)
		PS-Full 5.82(0.17)	5.48(0.08)	19.41(0.06)	90.00(0.31)	359.11(7.00)
		CPAC 4.77(0.26)	5.09(0.28)	21.14(0.21)	89.47(0.28)	300.94(5.65)

Table 5: Result of ResNet101 on ImageNet-1k.

1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025