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ABSTRACT

Given its flexibility and low computation, conformal prediction (CP) has become
one of the most popular uncertainty quantification methods in recent years. In
deep classifiers, CP will generate a prediction set for a test sample that satisfies
the (1− α) coverage guarantee. The prediction set size (PSS) is then considered
a reflection of the predictive uncertainty. However, it is unknown whether the
predictive uncertainty of CP is aligned with its predictive correctness, which is
an imperative property for predictive uncertainty. This work answers this open
question by investigating the uncertainty calibration of CP in deep classifiers. We
first give a definition for the uncertainty calibration of CP by building a connection
between PSS and prediction accuracy and then propose a calibration target for CP
based on a theoretical analysis of the predictive distributions. Given this defined
CP calibration, we present an empirical study on several classification datasets and
reveal their weak calibration of CP. To strengthen the calibration of CP, we propose
CP-aware calibration (CPAC), a bi-level optimization algorithm, and demonstrate
the effectiveness of CPAC on several standard classification datasets by testing
models including ResNet, Vision Transformer and GPT-2.

1 INTRODUCTION

Due to its low computational overhead and distribution-free assumption, conformal prediction (CP)
Shafer & Vovk (2008); Romano et al. (2020); Angelopoulos et al. (2021) has become a dominant
approach to uncertainty quantification (UQ). CP has been successfully adopted in various machine-
learning applications, including object detection Timans et al. (2024), pose estimation Yang & Pavone
(2023), pixel-level image understanding Brunekreef et al. (2024) and natural language understanding
Quach et al. (2024); Gui et al. (2024); Mohri & Hashimoto (2024). The predictive uncertainty from
CP stems from the frequentist approach to uncertainty, i.e., producing a confidence interval will
contain the true value with a specified probability (e.g., 90% or 95%). In a classification task, CP will
produce a prediction set S for a test sample that is theoretically guaranteed to contain the ground-truth
class label with a high probability (e.g., 90%). Although it is desirable to have a prediction set with
a coverage guarantee, as a probabilistic forecast model, it is also important that the uncertainty is
consistent with the decision’s reliability Mincer & Zarnowitz (1969); Kochenderfer (2015), known as
calibration Zadrozny & Elkan (2001); Gneiting et al. (2007).

For a multi-class classification model, the confidence score of the predicted label from a predictive
distribution has traditionally been used as a measure of uncertainty. In that case, model calibration
aims to reduce the gap between a model’s predicted confidence score and the actual observed
predictive correctness, measuring the model’s ability to estimate its predictive reliability. Whilst
the confidence-based calibration of modern large-scale machine learning models has been actively
investigated in recent years Guo et al. (2017); Minderer et al. (2021a); Achiam et al. (2023), calibration
through the lens of prediction set size (PSS), aiming for a tight coupling between PSS and expected
accuracy is under-investigated. Although the coverage of PSS is guaranteed, its alignment with
prediction accuracy is also essential for making risk-aware decisions and makes conformal inference
more reliable. As illustrated in Figure 1, point prediction calibration has already been thoroughly
investigated, but it outputs a single prediction for each query thus cannot guarantee the coverage
of ground truth in its prediction. Conformal prediction, a well-established approach for achieving
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coverage guarantees, conveys uncertainty through the size of the prediction set Angelopoulos et al.
(2021). Yet, it remains unclear whether this set size truly aligns with prediction correctness.

(a) Conformal Prediction

Plantain

🤖
𝑆={Banana, 

Plantain, 
Mango}

Uncertainty: PSS=3

Coverage ✅
Calibration  (b) Point Prediction

Plantain

Banana
Uncertainty: 𝑝=0.12🤖

Calibration ✅
Coverage ❌

𝑓(|𝑆|)

Uncertainty: |𝑆|
Accuracy: E[Acc(Sampler(𝑆))] 

(c) CP-Aware Calibration
(CPAC)

min𝔼	 𝐴𝑐𝑐 𝑥| 𝑆 = 𝑘 − 𝑓 𝑘

Coverage  ✅
Calibration  ⇒ ✅

Figure 1: (a) and (b) compare CP and point pre-
diction in coverage and calibration. (c) Two key
contributions: CP’s calibration target in multino-
mial sampling and CP-aware calibration.

To fill in this gap, our work investigates how to
build a model calibration framework for CP in
multi-classification tasks. This calibration was
mentioned in Lu et al. (2023) as an auxiliary
experiment to visualize the correlation between
the PSS and Top-1 accuracy qualitatively with-
out a thorough study to build the connection
between the PSS and accuracy. Meanwhile, CP
calibration was studied systematically on regres-
sion tasks van der Laan & Alaa (2024), but our
paper is the first attempt to systematically in-
vestigate the calibration of CP on classification
tasks. Note that the fundamental difference between van der Laan & Alaa (2024) and our work is
that van der Laan & Alaa (2024) treats point prediction and prediction interval independently, while
we aim to calibrate a classification model so that the CP’s prediction set is calibrated and has valid
coverage at the same time. It is important to note that calibration for PSS is fundamentally different
from conditional coverage Gibbs et al. (2025). While conditional coverage ensures subgroup-level
validity, PSS calibration evaluates whether smaller sets consistently correspond to higher per-instance
reliability, a property not captured by conditional guarantees. Also note that, studying whether the
uncertainty CP conveys in practice (via set size) is trustworthy does not suggest CP should replace
probabilistic calibration such as entropy or confidence.

Developing calibration for conformal prediction through PSS has three key challenges. First, while
CP produces a set of plausible labels, it does not directly yield a point prediction and thus accuracy.
Second, the function between PSS and prediction accuracy is not straightforward, compared to the
linear function in traditional confidence-based uncertainty. Third, it is unclear how to effectively
calibrate a model to ensure that smaller prediction sets consistently correspond to higher accuracy.
To address these challenges, we first use multinomial sampling with temperature to generate a
point prediction from a prediction set, enabling us to obtain the accuracy. Then, we introduce a
calibration target function based on the predictive distribution that maps PSS to expected accuracy,
capturing the relationship between uncertainty and reliability in CP. An empirical study on the
calibration target functions reveals weak calibrations of conformalized models, highlighting the
need for correction. To this end, we propose a CP-aware calibration algorithm based on bi-level
optimization as a pre-processing step before the quantile computation in the CP framework. Our
contributions are three-fold:

• We establish a connection between the PSS and accuracy by sampling a label from the
prediction set with the predictive distribution. An empirical study on the alignment of PSS
and accuracy demonstrates the weak calibration of PSS.

• We propose a calibration target function motivated by both our empirical study and a
theoretical analysis of the predictive distribution. It can handle prediction sampling with
different temperatures and has a lower calibration error on average compared with other
alternative target functions.

• We propose a CP-aware calibration algorithm as a pre-processing step of CP to improve the
calibration of CP. The effectiveness in classification tasks is validated using three benchmark
datasets in computer vision and natural language understanding with state-of-the-art models,
including vision transformers and GPT-2.

2 RELATED WORK

Conformal Prediction and Uncertainty Quantification. Different from existing methods in the
frequentist’s approach to prediction uncertainty, CP is distribution-free and can be applied to any
black-box machine learning model as long as the data exchangeability assumption is satisfied Vovk
et al. (1999); Shafer & Vovk (2008). The original version of CP needs to train a model multiple times
but is later improved by Vovk et al. (2005) as the split conformal prediction that can be used in any
black-box model, leading to its popularity in many applications Romano et al. (2020); Angelopoulos
et al. (2021). Existing research mainly aims to improve the coverage validity Gibbs & Candes (2021)
and efficiency Angelopoulos et al. (2021); Ghosh et al. (2023a;b); Liu et al. (2024), as well as extend
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Figure 2: Reliability diagrams of ResNet50 trained on CIFAR100. The first row shows plots for
varying training data sizes (rsub is the subsampling ratio) with a pre-trained (on ImageNet-1k) initial
model, while the second row shows plots for a randomly initialized model. The red curve is the
observed one while the blue curve is the target curve.
CP to non-exchangeable data Barber et al. (2023) and achieve conditional coverage Gibbs et al.
(2023). More recently, a random set method with improved calibration is proposed Manchingal et al.
(2025), but it cannot be readily plugged into a pre-trained model as it is developed for Bayesian neural
networks. In contrast, our work systematically investigates the calibration of quantified uncertainty
by CP in classification tasks. This topic has been studied by Lu et al. (2023) and van der Laan &
Alaa (2024), but Lu et al. (2023) proposes federated CP for distributed users and does not solely
focus on the calibration, and van der Laan & Alaa (2024) only considers regression tasks. The
proposed conformalizing Venn-Abers calibration van der Laan & Alaa (2024) for regression models
cannot be applied to our classification problem as they produce the calibration multi-prediction and
prediction interval separately, but we aim to calibrate the prediction interval/set directly. The effect of
temperature scaling in CP is also investigated Xi et al. (2024); Dabah & Tirer (2024), but they only
consider the coverage and efficiency of PSS instead of reducing the gap between PSS and its accuracy

Model Calibration. Model calibration focuses on adjusting predictive models to ensure that the
predictive uncertainty accurately reflects the true likelihood Vaicenavicius et al. (2019). Model
calibration is crucial in safety-critic applications Huang et al. (2020) where decision-making relies on
well-calibrated probabilities. Deep neural networks have been found to be weakly calibrated can be
fixed by traditional methods like Platt scaling Guo et al. (2017), which fits a temperature scalar to a
classifier’s scores. Recent studies Minderer et al. (2021b) have shown that the large-scale pre-trained
models are more calibrated, in particular for the convolution architecture. With the huge impact of
large language models (LLMs), their calibration are also actively investigated Achiam et al. (2023);
Xiong et al. (2024). However, the model calibration mainly focuses on the heuristic uncertainty such
as confidence scores in classification. Our work aims to unveil the calibration of uncertainty when
CP is used in state-of-art models including both vision transformer models for vision tasks and an
LLM for language understanding tasks.

3 PRELIMINARIES
We introduce the necessary mathematical annotations and background in this section.

Notations. We split the dataset into three subsets, i.e., training set Dtr = {(xi, yi)}Ntr
i=1, calibration

set Dcal = {(xi, yi)}Ncal
i=1 and test set Dte = {(xi, yi)}Nte

i=1. A classification model is trained on
Dtr, and conformalization including Platt scaling is performed using the calibration set, and then the
conformalized model is evaluated on the test set. Each data point (x, y) is sampled from a distribution
over the data space X ×Y . As we only investigate the classification task in this paper, the label space
Y = {1, · · · ,K} denoted as [K] for simplicity. After training a deep classification model fθ(x) with
parameters θ, the model produces a logit vector li ∈ RK for a test sample xi, where the argmaxj lij
is the predicted label. The predictive distribution pi is the output of the softmax function when the
input is li.

Conformal Prediction. Conformal prediction ensures population-level coverage guarantees without
distributional assumptions and applies to both regression and classification. This study focuses on
classification, where a conformalized classification model generates a prediction set Si ∈ 2[K] for a
test sample xi so that the coverage guarantee is ensured

P (y ∈ S(x)) ≥ 1− α, (1)
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Figure 3: Reliability diagrams of three classification models on ImageNet when there is input noise
sampled from Gaussian distribution with a standard deviation of σ.
where 1 − α is a confidence level such as 90%, indicating that the prediction set will contain the
ground-truth label with 90% confidence at the population level. The original CP needs to train a
model multiple times to obtain such a guarantee, while our paper uses the split conformal prediction
approach that does not need to train multiple times and can be plugged into any pre-trained black-box
classifier Papadopoulos et al. (2002); Lei et al. (2018).

In this study, we use the APS (Adaptive Prediction Sets) method Romano et al. (2020) to perform
the conformalization if not specified otherwise. There are two stages in APS, both done on Dcal

(a) temperature scaling Guo et al. (2017) and (b) computing the (1 − α)-quantile of conformity
scores. The temperature scaling aims to make the confidence score more calibrated by find an optimal
temperature to scale the logic vectors such that the likelihood of Dcal is maximized. After scaling the
logits, conformity scores on Dcal are computed and their (1− α)-quantile can be found. We give a
description on the process of computing the conformity scores and the quantile in Appendix B.

4 CALIBRATION OF CONFORMAL PREDICTION

We now introduce a definition of CP calibration and describe how to use multinomial sampling to
obtain accuracy. This is followed by a theoretical analysis on the proposed calibration target function.
Moreover, we propose a calibration algorithm for CP on classification tasks (Algorithm 1).

4.1 CALIBRATION OF A CONFORMALIZED MODEL

Calibration for the uncertainty expressed by confidence scores is straightforward, as prediction
accuracy with a confidence score is easily obtained. However, as the uncertainty in CP is measured
by the PSS, the connection between a prediction set and its prediction quality cannot be immediately
obtained. In other words, a prediction set is not directly comparable to the ground-truth class. To
build a connection between a prediction set and its prediction accuracy, we propose a multinomial
sampling strategy to produce a prediction from the prediction set and take the average accuracy of
the sampled labels as the prediction correctness. Denote the normalized predictive probability in the
prediction set Si as p̃i = [p̃i1, · · · , p̃i|Si|] where

∑
j p̃ij = 1, and the multinomial distribution is a

function of the predictive probability

q
(t)
i = [p̃ti1, · · · , p̃ti|Si|]/

|Si|∑
j

p̃tij , (2)

where t ∈ [0,+∞) is the exponent for the sampling. When t = 0, we use uniform sampling
to produce the predictive label. When t approaches +∞, the sampling is equivalent to Top-1
accuracy using the maximum confidence. With the sampled accuracy, we give a definition for the CP
calibration.

Definition 4.1. A classifier is conformally calibrated if the conditional expectation of accuracy using
multinomial sampling with the temperature t decreases with the prediction set size k, i.e.,

E[Acct(x)|S(x) = k] = f(k), (3)
where f(k) is a monotonically decreasing function and S(·) maps an input sample into its PSS, the
condition means for the expectation is computed on all x with S(x) = k, and

Acct(x) = Eq(t)(x)1(ŷ = y). (4)
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We define the following two metrics for the calibration error for a conformalized model.

Standard CP-ECE =
K∑

k=1

N
(k)
te

Nte
|Acct(x|S(x) = k) − f(k)|, Uniform CP-ECE =

K∑
k=1

1

K
|Acct(x|S(x) = k) − f(k)|. (5)

The standard CP Expected Calibration Error (CP-ECE) is weighted by the proportion of samples
with PSS equal to k relative to the entire test set. In contrast, the uniform CP-ECE corresponds to
the curve-fitting error measured by the absolute distance. We use the uniform CP-ECE since we
want to measure the curve fitting performance in the reliability diagram without considering the
number of samples in each bin. Moreover, we believe it is an important metric in practice as well,
because it gives the same weight to different groups to prevent discrimination towards minor groups
Mehrabi et al. (2021). It is also similar to the unweighted accuracy that is often used to measure the
performance of a model as a complement to the standard weighted accuracy. While both our work
and Huang et al. (2024) define calibration, note that they are fundamentally different, as we focus
on PSS calibration within conformal prediction and propose an optimization algorithm to reduce
calibration error, whereas Huang et al. (2024) neither considers conformal prediction nor minimizes
calibration error.
4.2 CALIBRATION TARGET FUNCTION

Another challenge for CP calibration is the target calibration curve f(k). In confidence calibration,
the identity f(c) = c is the target curve as the perfect calibration Guo et al. (2017) is defined by

P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1]. (6)
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Acc=54.70% Acc=70.78%Acc=65.33%

(a) Uniform Sampling (b) Multinomial Sampling (c) Top-1 Sampling

Acc=71.69% Acc=81.98%Acc=78.46%

Acc=35.71% Acc=60.46%Acc=52.06%

Figure 4: Sampling accuracy versus predic-
tion set size (PSS) on three datasets. As
the temperature in multinomial sampling
decreases (uniform⇒multinomial⇒Top-1),
accuracy increases but the calibration of
PSS worsens. The shaded area shows the
standard deviation over five seeds.

However, the PSS from CP does not have a straight-
forward relationship with the prediction correctness
except for the monotonically decreasing property. We
propose a calibration target in this work, motivated by
the heuristic generalization of the uniform sampling
curve but also derived from a theoretical analysis based
on a Dirichlet distribution assumption on the predictive
probability.

We start from a simple case, where we use a uniform
weight to sample from the predictive probability, i.e.,
the temperature in multinomial sampling is zero. We
assume that the re-normalized predictive probability
p̃ij in the prediction set Si is the probability of jth
class being the true class, then the expected accuracy
of using multinomial sampling with weight qi is

Acct(xi) =
∑
j∈Si

q
(t)
ij p̃ij , (7)

where
∑|Si|

j=1 q
(t)
ij = 1,

∑|Si|
j=1 p̃ij = 1. Note that the

binary correctness in Equ. 4 becomes a probabilistic
one. It is straightforward to obtain that if qij = 1/|Si| for every j, then the expected accuracy
is 1/|Si|. Fig. 4 shows that the curve of accuracy versus PSS fits well with the power function
f(k) = 1/k, validating the assumption of the true class distribution.

General cases. Inspired by the success of the power function in the uniformly weighted sampling,
we propose to use a power function f(k) = 1/kτ as the calibration target where τ ∈ [0, 1], to
accommodate the improvement in accuracy when using non-uniformly weighted sampling. Intuitively,
when we use a low temperature in the multinomial sampling, the probability distribution gets sparse
and the effective set size decreases. To account for such a set size decrease in the calibration function,
we use τ < 1 to decrease it from |Si| to |Si|τ . Two alternative functions are the exponential decay
exp(−τ(k − 1)) and the logarithmic scaling function 1/(1 + τ log(k)), where τ > 0. However, our
empirical study in Sec. 5 shows that the exponential decay function has a much faster decreasing
rate than the power function, while the logarithmic scaling function cannot fit the curve of uniform
sampling well.

We give a theorem on the relationship between the expected accuracy and the target calibration
function by assuming that both p and q are sampled from two Dirichlet distributions with the same
underlying shape.
Theorem 4.2 (Expected Accuracy and Prediction Set Size). Let K ≥ 2 be a dimension, and let
a = (a1, . . . , aK) be a vector with aj ≥ 0 and

∑K
j=1 aj = 1. Suppose α0 > 0 and β0 > 0 are
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Figure 5: Reliability diagrams of GPT-2 on a topic classification dataset when there is Gaussian noise
added on the embeddings or typos in textual input.

Algorithm 1 CP-Aware Calibration

Require: Calibration dataset Dcal, logits from a pre-trained deep neural network {li}Ncal
i , regular-

ization parameter λ, target calibration parameter τ , learning rate η, sampling temperature t > 0,
batch size B, optimization round Mopt, mis-coverage level α

1: for e← 1 : Mopt do
2: Run g(W , b) = ν, i.e., Compute conformality scores {Ei}Ncal

i=1 and find the (1− α)-quantile
ν

3: Randomly divide Dcal into T batches {Bit}Tit=1 with batch size B
4: for it← 1 : T do
5: Compute ∇W ,bLps + λ(∥W − I∥22 + ∥b∥22) for i ∈ Bt, denoted as (∆W ,∆b)
6: (Wit, bit)← (Wit−1, bit−1)− η∆(W , b)
7: end for
8: end for
9: return The calibration parameter (W , b)

positive scalars, and define Dirichlet parameters
α = (α1, . . . , αK), β = (β1, . . . , βK)

where αj = α0 aj and βj = β0 aj . Let p ∼ Dir(α) and q ∼ Dir(β) be independent draws. We have

E[q · p] = 1

Kτ
, where τ = −

log(
∑K

j=1 a
2
j )

logK
.

Remark. This theorem assumes that p and q are drawn from two Dirichlet distributions with the same
underlying mass distribution vector a. This assumption is due to the proposed multinomial sampling,
where both sampling accuracy q(t) and correctness probability p̃ follow the same mass distribution.
The difference between Dir(α) and Dir(β) is the degree of concentration, which corresponds to
multinomial sampling with temperature. The exponent τ is determined by the shape of the vector
a. When a is close to uniform, the expected accuracy is 1/K. When a is highly peaked at a
single dimension, the expected accuracy will be one. We report the calibration error of more models
on three datasets in Sec. 5 using this target calibration function. Note that we derived a similar
decay function when the Dirichlet distribution does not hold and the prediction is sampled from a
logistic-normal distribution with ordered variances, see Appendix A. Thus, both the Dirichlet and
logistic-normal distributions serve as illustrative instantiations of our target behavior rather than
restrictive assumptions.

4.3 CONFORMAL-PREDICTION-CALIBRATION WITH BI-LEVEL OPTIMIZATION

As the calibration error of CP is not satisfactory, particularly on challenging datasets such as ImageNet
as our experiments show, we propose to post-process the model prediction so that the uncertainty
from CP is better aligned with the accuracy.

Denote the logit vector of ith sample in the calibration set as li, the model is calibrated by optimizing
the weight matrix W and bias b similar to Platt scaling, but with our proposed calibration target. The
correctness probability p̃ and sampling probability q(t) function is

l̃ij =

{
[W T li + b]j , if j ∈ Si
−∞, if j /∈ Si

, p̃i = softmax(l̃i), qi = [p̃ti1, · · · , p̃tik]/
|Si|∑
j

p̃tij (8)
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Std CP-ECE Uni CP-ECE Acc. Cov. PSS

Clean
PS 6.88(0.06) 11.02(0.30) 81.98(0.08) 94.52(0.13) 18.47(0.64)
PS-Full 6.38(0.06) 8.40(0.50) 81.98(0.08) 93.88(0.07) 13.70(0.25)
CPAC 6.74(0.09) 6.74(0.47) 80.17(0.16) 92.39(0.08) 10.04(0.10)

Norm-0.1
PS 7.52(0.05) 10.70(0.28) 80.39(0.11) 94.22(0.14) 20.71(0.77)
PS-Full 6.90(0.04) 9.10(0.18) 80.39(0.11) 93.55(0.11) 15.00(0.42)
CPAC 7.21(0.14) 7.39(1.12) 78.73(0.16) 91.83(0.19) 10.62(0.33)

Norm-0.2
PS 8.30(0.11) 10.37(0.21) 76.98(0.07) 93.85(0.18) 27.49(1.15)
PS-Full 7.67(0.13) 10.54(0.48) 76.98(0.07) 93.04(0.17) 20.03(0.55)
CPAC 7.99(0.12) 7.99(0.84) 75.33(0.11) 91.31(0.19) 14.90(0.45)

Norm-0.4
PS 9.73(0.16) 8.82(0.17) 65.69(0.03) 92.85(0.20) 58.44(1.48)
PS-Full 9.34(0.07) 8.69(0.28) 65.69(0.03) 91.93(0.14) 48.13(1.01)
CPAC 9.02(0.11) 8.30(0.64) 64.00(0.15) 89.72(0.17) 38.30(1.28)

Norm-0.8
PS 8.09(0.10) 5.30(0.08) 28.34(0.09) 90.60(0.21) 239.18(2.99)
PS-Full 8.29(0.20) 5.43(0.05) 28.34(0.09) 90.37(0.27) 258.33(4.55)
CPAC 7.26(0.13) 4.94(0.08) 28.17(0.19) 88.95(0.16) 239.63(2.55)

Blur-3
PS 7.88(0.10) 11.04(0.56) 79.03(0.07) 93.92(0.14) 23.30(0.89)
PS-Full 7.50(0.05) 11.50(0.49) 79.03(0.07) 93.52(0.10) 19.37(0.51)
CPAC 7.57(0.15) 8.38(0.56) 77.62(0.15) 92.15(0.05) 14.67(0.30)

Blur-5
PS 8.40(0.07) 10.64(0.28) 77.94(0.05) 93.74(0.18) 25.92(1.19)
PS-Full 8.01(0.09) 10.61(0.50) 77.94(0.05) 93.39(0.11) 22.50(0.58)
CPAC 8.02(0.19) 8.51(0.22) 76.41(0.20) 92.05(0.09) 17.24(0.57)

Blur-7
PS 8.59(0.06) 10.27(0.21) 77.51(0.05) 93.67(0.23) 27.08(1.22)
PS-Full 8.24(0.08) 10.93(0.31) 77.51(0.05) 93.37(0.13) 23.83(0.51)
CPAC 8.12(0.18) 8.96(0.44) 76.25(0.15) 92.10(0.07) 18.44(0.59)

Drop-1
PS 9.69(0.06) 10.99(0.46) 74.50(0.13) 93.55(0.19) 40.62(2.10)
PS-Full 9.00(0.10) 11.38(0.45) 74.50(0.13) 92.54(0.13) 29.33(0.82)
CPAC 8.71(0.22) 9.52(0.32) 73.68(0.19) 91.32(0.18) 23.93(0.67)

Drop-3
PS 11.05(0.13) 7.70(0.25) 60.83(0.11) 92.46(0.12) 93.09(1.16)
PS-Full 11.37(0.12) 8.71(0.31) 60.83(0.11) 91.15(0.16) 79.22(1.73)
CPAC 10.09(0.21) 8.28(0.24) 61.99(0.09) 91.82(0.19) 70.12(1.43)

Drop-5
PS 10.29(0.03) 6.30(0.15) 44.36(0.12) 91.77(0.12) 161.52(1.21)
PS-Full 10.77(0.10) 6.61(0.08) 44.36(0.12) 90.69(0.08) 169.74(1.20)
CPAC 9.67(0.09) 6.18(0.21) 45.01(0.20) 88.98(0.13) 126.75(1.51)

Drop-7
PS 6.73(0.11) 5.62(0.20) 19.69(0.05) 90.48(0.32) 306.40(4.44)
PS-Full 7.71(0.15) 5.21(0.09) 19.69(0.05) 90.18(0.27) 392.71(6.12)
CPAC 6.93(0.11) 4.86(0.16) 21.77(0.10) 88.84(0.40) 300.52(8.65)

Std CP-ECE Uni CP-ECE Acc. Cov. PSS

Clean
PS 7.16(0.10) 10.01(0.27) 80.35(0.09) 94.18(0.17) 18.05(0.90)
PS-Full 6.65(0.07) 9.36(0.44) 80.35(0.09) 93.75(0.14) 14.44(0.54)
CPAC 7.45(0.11) 7.09(0.54) 77.68(0.14) 91.29(0.09) 10.43(0.53)

Norm-0.1
PS 7.78(0.09) 9.16(0.30) 78.67(0.06) 93.98(0.22) 20.78(1.19)
PS-Full 7.21(0.10) 9.12(0.47) 78.67(0.06) 93.43(0.18) 16.19(0.58)
CPAC 7.72(0.11) 7.17(0.58) 75.45(0.32) 90.75(0.11) 11.37(0.26)

Norm-0.2
PS 8.53(0.10) 9.98(0.35) 74.13(0.05) 93.57(0.12) 31.27(0.76)
PS-Full 7.97(0.07) 10.11(0.29) 74.13(0.05) 92.93(0.06) 24.89(0.29)
CPAC 8.46(0.16) 7.98(0.36) 70.57(0.41) 89.66(0.31) 17.11(0.40)

Norm-0.4
PS 9.75(0.14) 7.21(0.16) 57.19(0.16) 92.05(0.07) 82.51(0.40)
PS-Full 9.59(0.10) 7.54(0.17) 57.19(0.16) 91.29(0.10) 75.44(0.78)
CPAC 8.67(0.10) 7.24(0.36) 53.43(0.28) 87.77(0.41) 63.31(3.75)

Norm-0.8
PS 5.06(0.12) 7.25(0.27) 12.30(0.06) 90.00(0.30) 429.42(5.39)
PS-Full 5.32(0.07) 5.10(0.16) 12.30(0.06) 89.84(0.28) 469.92(5.28)
CPAC 4.39(0.23) 4.72(0.27) 12.50(0.21) 89.09(0.19) 437.94(3.66)

Blur-3
PS 8.17(0.10) 10.13(0.46) 77.06(0.10) 93.61(0.19) 24.61(0.90)
PS-Full 7.79(0.09) 10.68(0.41) 77.06(0.10) 93.27(0.16) 21.24(0.78)
CPAC 8.02(0.07) 7.79(0.39) 75.19(0.32) 91.25(0.10) 15.18(0.47)

Blur-5
PS 8.76(0.05) 10.20(0.44) 75.24(0.09) 93.50(0.14) 28.73(0.70)
PS-Full 8.42(0.10) 10.08(0.34) 75.24(0.09) 93.21(0.17) 25.44(0.84)
CPAC 8.39(0.16) 8.07(0.15) 73.09(0.10) 91.01(0.21) 18.73(0.50)

Blur-7
PS 8.96(0.16) 9.74(0.27) 74.39(0.06) 93.40(0.16) 31.02(0.88)
PS-Full 8.67(0.12) 9.91(0.51) 74.39(0.06) 93.09(0.19) 27.65(0.97)
CPAC 8.54(0.14) 8.11(0.51) 72.12(0.16) 90.82(0.21) 20.55(0.56)

Drop-1
PS 9.76(0.15) 9.46(0.47) 71.04(0.07) 93.10(0.18) 39.13(1.03)
PS-Full 9.33(0.14) 9.87(0.50) 71.04(0.07) 92.41(0.24) 31.90(0.94)
CPAC 9.04(0.12) 8.22(0.69) 68.26(0.14) 89.72(0.18) 25.09(0.33)

Drop-3
PS 10.31(0.15) 6.60(0.09) 54.91(0.11) 91.93(0.24) 93.11(2.37)
PS-Full 10.62(0.16) 7.29(0.17) 54.91(0.11) 91.00(0.32) 86.53(2.79)
CPAC 8.09(0.46) 8.33(0.82) 50.49(1.14) 88.08(0.20) 84.83(10.46)

Drop-5
PS 8.75(0.08) 5.42(0.20) 35.38(0.07) 91.03(0.23) 187.77(3.32)
PS-Full 9.18(0.05) 5.63(0.05) 35.38(0.07) 90.48(0.28) 211.86(3.96)
CPAC 6.81(0.54) 5.35(0.09) 32.77(0.53) 88.62(0.36) 215.71(6.65)

Drop-7
PS 5.10(0.07) 7.16(0.11) 11.97(0.09) 89.97(0.12) 423.58(2.71)
PS-Full 5.84(0.10) 5.26(0.16) 11.97(0.09) 89.90(0.26) 490.89(5.01)
CPAC 4.78(0.17) 4.84(0.21) 12.73(0.22) 88.95(0.14) 427.64(2.94)

Table 1: Result of ViT-Large (left) and ViT-Base (right) on ImageNet-1k. Norm-σ means Gaussian
noise with a std σ, Blur-n means Gaussian blur with kernel size n and Drop-r means randomly drop
pixels with ratio r.
The optimization problem is

min
W ,b

∑
i

(
∑
j∈Si

p̃ij(W , b, ν)q
(t)
ij (W , b, ν)− fτ (|Si|))2, s.t. ν − g(W , b) = 0, (9)

where the fτ (·) function is the target calibration curve with τ as the exponent. To optimize (W , b),
we need first to obtain the prediction set Si for each sample by finding the empirical (1− α)-quantile
of conformity scores in the calibration set. We denote the target as ν and the searching function as
g. Thus, we formulate the CP calibration problem as a bi-level optimization problem, where the
prediction set is produced from solving the lower-level conformity scores’ (1− α)-quantile. As this
objective function will lead to a zero gradient for samples of PSS=1, we use the cross-entropy loss
for samples with PPS=1.

To solve this bi-level optimization problem, we adopt the alternative optimization approach as shown
in Alg. 1 by assuming the ν variable does not change drastically during optimization (W , b). Note
that we add a regularization term to constrain the distance between (W , b) and the initialization (I,0)
to prevent overfitting on the calibration set. Note that we choose to optimize the full weight matrix
instead of a temperature parameter as in Guo et al. (2017) as our pilot empirical study shows that a
single scalar does not affect the calibration significantly as it fails to re-rank the class probabilities.

5 EXPERIMENTAL RESULTS

This section first describes the experimental details and then reports our empirical study on the
calibration of CP on the three datasets.

5.1 EXPERIMENTAL SETTINGS

We conducted the experiment on three datasets using seven models, including two for image classifi-
cation and one for topic classification. The experimental details are reported below.

CIFAR100 Krizhevsky et al. (2009). The dataset comprises 100 categories, each containing 600
images where 500 of them are used for training and 100 are used for test. We use 20% of the original
test data as the calibration set and the rest 80% as the test set. The model we use is ResNet50 He et al.
(2016), pre-trained on ImageNet Deng et al. (2009) or randomly initialized He et al. (2015). We train
the model for 60 epochs and decay the learning rate by dividing it by 10 at 30th and 50th epoch. The
initial learning rate is 0.1 in all the CIFAR100 training trials.

ImageNet-1k Deng et al. (2009). The dataset consists of approximately 1.28 million training images
and 50,000 validation images, categorized into 1,000 classes. We utilize three models—ResNet101
He et al. (2016), ViT-B, and ViT-L Dosovitskiy et al. (2021)—with parameter sizes of 44.5M, 86M,
and 307M, respectively. All images are resized to 224× 224, and the patch sizes in ViT-B and ViT-L
are 16 × 16. These pre-trained models, officially released and trained on ImageNet-1K, are used
without further modifications. We evaluate the models under three types of image perturbations:
Gaussian noise, Gaussian blur, and pixel dropout. (1) Gaussian Noise: We apply Gaussian noise
with four different sigma values (σ, the square root of variance): 0.1, 0.2, 0.4, and 0.8. Each sigma
value is uniformly applied across all test images. Additionally, we test a range of sigma values (0
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to 0.8), where a random sigma is sampled to each image individually. (2) Gaussian Blur: Images
are perturbed using Gaussian blur with kernel sizes of 3×3, 5×5, and 7×7. (3) Pixel Dropout: We
randomly drop pixels from images at varying ratios: 0.1, 0.3, 0.5, and 0.7.

(a) Entropy of 𝑝" (b) Entropy of 𝑝

Figure 6: Different behaviour of predictive
distributions within the prediction set and the
whole dimension when using ImageNet and
ResNet101.

Topic Classification1. The dataset includes 22,500
pieces of text which are categorized into 120 top-
ics. We split the dataset with 80% as the train-
ing set and 20% as the test set to fine-tune a GPT-
2 Small model (137M) Radford et al. (2019) for
the topic classification task. In evaluation, we test
the calibration performance of different methods
on the clean and two perturbed datasets. The per-
turbation strategies are: (1) Gaussian Noise: We
add a norm distribution noise ϵ ∼ N(µ, σ2) on
the text embeddings. We set µ to 0, and vary
the perturbation strength by assigning σ values in
the range [0.10, 0.15], incremented by 0.01; and (2) Typo: We randomly insert English
keystroke typo, which is a mixture of insertion, deletion, substitution, and transposition Ku-
kich (1992), to the test data to simulate the practical scenario. The perturbation rate, i.e., the
portion of typo words relative to the total words, ranges from 10% to 50%, stepping by 10%.

Std CP-ECE Uni CP-ECE Acc. Cov. PSS

Clean
PS 7.87(0.58) 6.01(0.53) 60.46(0.36) 91.08(1.00) 9.07(0.77)
PS-Full 7.33(0.45) 6.21(0.37) 60.46(0.36) 91.58(0.98) 9.06(0.63)
CPAC 7.02(0.55) 5.50(0.46) 60.40(0.38) 91.71(0.81) 9.18(0.59)

Norm-0.10
PS 6.36(0.81) 5.29(0.75) 56.13(0.28) 90.64(1.25) 12.10(1.47)
PS-Full 6.48(0.56) 5.72(0.71) 56.13(0.28) 90.84(1.26) 11.88(1.37)
CPAC 5.91(0.50) 5.08(0.63) 56.07(0.27) 91.14(0.93) 11.93(1.05)

Norm-0.11
PS 5.69(0.21) 4.96(0.42) 53.88(0.21) 90.66(0.57) 13.62(0.70)
PS-Full 5.24(0.38) 4.59(0.43) 53.88(0.21) 90.90(0.63) 13.22(0.65)
CPAC 5.32(0.43) 4.59(0.49) 53.88(0.25) 90.35(0.92) 12.62(0.94)

Norm-0.12
PS 5.28(0.05) 5.22(0.32) 50.90(0.29) 90.89(0.29) 17.06(0.49)
PS-Full 5.06(0.51) 5.15(0.59) 50.90(0.29) 91.03(0.52) 16.47(1.00)
CPAC 5.02(0.56) 4.87(0.68) 50.96(0.29) 91.07(0.92) 16.61(1.77)

Norm-0.13
PS 5.51(0.42) 5.42(0.33) 46.02(0.24) 89.72(0.17) 20.11(0.32)
PS-Full 5.37(0.31) 5.43(0.22) 46.02(0.24) 89.77(0.33) 19.64(0.69)
CPAC 5.24(0.18) 5.19(0.30) 46.05(0.24) 89.49(0.35) 18.98(0.54)

Norm-0.14
PS 5.31(0.43) 6.04(0.57) 39.46(0.70) 90.13(1.43) 30.86(3.72)
PS-Full 4.95(0.42) 5.56(0.56) 39.46(0.70) 90.10(1.47) 30.45(3.77)
CPAC 5.10(0.36) 5.87(0.62) 39.37(0.78) 89.86(1.79) 30.01(4.72)

Norm-0.15
PS 5.49(0.14) 6.18(0.32) 31.06(0.28) 89.85(0.67) 40.83(1.73)
PS-Full 5.21(0.56) 6.01(0.62) 31.06(0.28) 89.89(0.64) 40.99(1.83)
CPAC 4.69(0.32) 5.46(0.22) 31.10(0.35) 89.99(0.68) 41.12(2.01)

Typo-10
PS 7.69(0.46) 6.74(0.20) 54.35(0.27) 91.02(0.58) 15.17(0.75)
PS-Full 7.01(0.37) 6.07(0.17) 54.35(0.27) 90.92(0.59) 14.42(0.71)
CPAC 6.48(0.40) 5.40(0.24) 54.66(0.47) 91.27(0.44) 14.78(0.64)

Typo-20
PS 7.79(0.53) 6.36(0.34) 53.09(0.17) 90.37(0.53) 15.38(0.65)
PS-Full 6.84(0.34) 5.87(0.26) 53.09(0.17) 90.42(0.57) 14.73(0.61)
CPAC 6.48(0.48) 5.73(0.50) 53.41(0.44) 90.99(0.21) 15.65(0.31)

Typo-30
PS 7.24(0.48) 6.63(0.67) 51.54(0.40) 90.35(0.51) 17.62(0.62)
PS-Full 6.10(0.62) 5.75(0.85) 51.54(0.40) 90.66(0.52) 17.12(0.80)
CPAC 6.48(0.35) 6.35(0.48) 51.61(0.39) 90.95(0.33) 17.33(0.76)

Typo-40
PS 6.36(0.53) 5.94(0.49) 48.14(0.31) 90.59(0.45) 19.66(0.79)
PS-Full 5.83(0.39) 5.67(0.34) 48.14(0.31) 90.75(0.49) 19.33(1.09)
CPAC 5.97(0.54) 5.67(0.32) 48.10(0.47) 90.16(0.60) 18.25(1.00)

Typo-50
PS 5.34(0.41) 5.28(0.53) 44.44(0.26) 89.85(0.80) 23.55(1.85)
PS-Full 5.08(0.63) 5.13(0.76) 44.44(0.26) 89.96(0.65) 23.31(1.60)
CPAC 5.00(0.30) 5.14(0.39) 44.47(0.15) 90.17(0.41) 23.48(0.70)

Table 2: Result of GPT-2 on Topic Classification.
Norm means adding Normal distribution noise on
embedding vectors and Typo means mixing typos
with original text.

CPAC details. We use 20% of the original test
set as the calibration set Dcal in our experiment.
Based on our preliminary experiment, the sam-
pling temperature t is 3, the round of optimiza-
tion Mopt is 4, the regularization hyperparame-
ter λ = 1e−4 and the batch size is 1024. We use
grid search to choose the optimal learning rate
from {1e-4,3e-4,1e-3,3e-3,1e-2,3e-2,1e-1,3e-1}
and τ from {0.1, 0.2, · · · , 0.6}. The CPAC is
performed on samples with low PSS (PSS<400
on ImageNet and PSS<70 on Topic Cls. data)
as we only need to cover (1− α) of all samples
in CP and we choose to optimize those low-PSS
samples. We run the experiment five times in
each setting by using five random seeds when
splitting the original test set and report the av-
erage of the CP-ECE, accuracy, coverage and
PSS. We use CPAC to denote our method and
PS to denote the standard confidence calibration
method in APS. All experiments were run on
NVIDIA GeForce RTX 3090.

As high-temperature sampling tends to have a
good calibration error, we mainly investigate the
most ill-behaved sampling strategy, i.e., Top-1 sampling, in our experiment. All figures and tables
show the result of Top-1 accuracy, if not specified otherwise. During the test stage, we use grid
search to find the optimal τ to compute the standard and uniform CP-ECE respectively. In reliability
diagrams (Accuracy versus PSS), we only visualize the result of one random seed following the
convention in Guo et al. (2017). Note that either sampling or expectation is possible to report but we
use the sampling notion to approximate the real-world decision-making process in this paper. We
exclude the empty PSS case in our implementation by setting the minimum PSS to be 1.

5.2 TARGET CALIBRATION FUNCTION

We compare the curve fitting error of using the proposed target function and two alternatives,
exponential function exp(−τ(k − 1)) and logarithmic function 1/(1 + τ log(k)) in Tab. 3. The
logarithmic function is better than the power function in Multinomial and Top-1 sampling, but it fails
to fit the simple curve of uniform sampling. Therefore, we still use the power function in our paper
but the logarithmic function can also be used in low-temperature sampling.

1https://huggingface.co/datasets/valurank/Topic_Classification
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5.3 FACTORS THAT AFFECT CP CALIBRATION

Pre-Trained Model vs. Random Initialization. Fig. 2.1 and 2.2 compare the reliability diagram
of with and without pre-trained weights on CIFAR100. In all cases, the standard CP-ECE of using
pre-trained weights is worse than using random initialization, despite its improved accuracy. In terms
of the target function, when there is sufficient data, i.e., subsampling ratio is 0.2, 0.4 or 0.8, τ of
pre-trained weights is larger than random initialization, meaning that the predictive distribution of
using pre-trained weights is more uniform than that of random initialization. However, when there
is only limited data, i.e., subsampling ratio is 0.1, τ is less peaked in random initialization than in
pre-trained weights with very low accuracy. This corroborates the effectiveness of a pre-trained
model in the low-data regime, but also shows its weakness in CP calibration.

Subsampling. Fig. 2.a-d show the change of reliability diagrams when more training data is used.
An increasing trend in accuracy from left to right is observed, but in most cases, standard CP-ECE
goes up. This indicates that training with more data does not necessarily improve the CP calibration.

Noisy Environment. Fig. 3 shows the CP reliability diagrams when input images are perturbed with
Gaussian noise. Both ViT models are not as robust to Gaussian noise as the ResNet model, but the
ResNet model has the worse standard CP-ECE compared with the other two. In particular, Fig. 3.1
shows that when there is more noise, τ will decrease, indicating that the probability shape within the
prediction set gets more peaked. This finding is validated by the result in Fig. 6.a, where the entropy
of p̃ within a prediction set when σ = 0.8 is smaller than that when test images are clean. However,
there is an opposite trend in the entropy of the original probability p as shown in Fig. 6.b. The CP
reliability diagrams when Gaussian noise is added to the embeddings or there are typos in the text
when using GPT-2 are shown in Fig. 5. The τ of clean input is slightly higher than that when there is
input noise, but the change of τ ’s is minor in GPT-2 compared with that in vision models.

5.4 PERFORMANCE OF CPAC
The previous subsection shows that calibration is an independent dimension of CP and needs to be
optimized. We present our empirical results on ImageNet and Topic Classification in this subsection,
as the calibration error on CIFAR100 is not high, we focus on calibrating CP.

Power Exponential Logarithmic
Uniform 0.29(0.03) 2.73(0.12) 2.04(0.07)
Multinomial 6.99(0.24) 17.23(0.20) 5.95(0.22)
Top-1 11.02(0.30) 18.40(0.37) 10.41(0.26)

Table 3: Curve fitting error (Uni. CP-ECE) of
ViT-L on ImageNet using different sampling
strategies.

Tab. 1 shows the result of testing ViT-L and ViT-B
when there are input noise for both calibration and
test set. Tab. 2 shows the result of GPT2 on the
topic classification task. On almost all the settings,
CPAC reduces the Uniform CP-ECE without sacrific-
ing Std CP-ECE or even improve it, and meanwhile
maintains the accuracy and decreases the PSS. The
decreased PSS can be attributed to the CPAC on samples with low PSS. We also observe that CPAC
mainly reduces the Uni. CP-ECE, especially when there are many classes, i.e., on ImageNet. This
is due to the fact that the loss of high-PSS samples in CPAC is often larger than low-PSS samples,
so CPAC tends to focus on high-PSS samples and leads to low curve fitting error. To compare the
PSS when the coverage is fixed, we select the non-conformity score threshold so that the coverage is
controlled to be the 90% and report the result in Appendix C. When the coverage is fixed, our method
enlarges the PSS compared with the baseline (split CP with Platt scaling). However, the coverage
control experiment is not doable in practice as the test set is unknown. The increased PSS won’t
diminish our major contributions, i.e., the concept and method of PSS calibration, as the table still
shows the improvement of calibration error when using CPAC.

6 CONCLUSION

This work presents a systematic research into the uncertainty calibration in CP for classification,
where the uncertainty is measured by the prediction set size. We first give a definition and metrics for
the calibration of CP, then propose a target calibration function for PSS which is validated by both
empirical results and our theoretical analysis. Finally, we propose a bi-level optimization algorithm
that performs CP-aware calibration, and show its effectiveness on three classification tasks with
state-of-the-art models. This work will inspire future research into the uncertainty calibration of CP,
which is largely neglected by the community. One weakness of this work is that the convergence and
generalization of the bi-level optimization problem are only validated empirically but not analyzed in
theory, which will be addressed by our future work.
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A PROOF

Proof of Theorem 4.2. By the definition of the Dirichlet distribution, for each coordinate j we have

E[pj ] =
αj

α0
=

α0 aj
α0

= aj , and similarly E[qj ] =
βj

β0
= aj .

Since p and q are independent,
E[ pj qj ] = E[ pj ] E[ qj ] = a2j .

Summing over j = 1, . . . ,K gives

E[p · q] = E
[ K∑
j=1

pj qj

]
=

K∑
j=1

E[ pj qj ] =

K∑
j=1

a2j ,

proving the exact mean. The bounds follow from
∑K

j=1 aj = 1 and the fact that aj ≥ 0, and the
power-law exponent τ is obtained by taking the negative logarithm base K:

τ = −
ln
(∑K

j=1 a
2
j

)
lnK

=⇒
K∑
j=1

a2j = K−τ .

Thus the theorem is established.
Theorem A.1 (Expected accuracy under heterogeneous logistic–normal). Let Zj ∼ N (0, σ2

j ) be
independent Gaussian logits with σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

k > 0. If the variances satisfy the Lindeberg–
Feller bounds

σ2
1 ≤ C <∞,

k∑
j=1

σ2
j = O(k), (A.1)

then for every fixed exponent t > 1

Acct =
Ct,hetero

k
+O

(
k−3/2

)
(k →∞),

where

Ct,hetero :=
1
k

∑k
j=1 µt,j(

1
k

∑k
j=1 µt−1,j

)(
1
k

∑k
j=1 µ1,j

) , µr,j = exp
(

1
2r

2σ2
j

)
.

The expectation of sampling accuracy with temperature t is defined, as in Equation (7) of the main
paper, by

Acct = E


k∑

j=1

P t
j

k∑
j=1

P t−1
j

 , Pj =
Tj∑k
ℓ=1 Tℓ

, Tj = eZj .

Assumptions and notations.
Latent logits: Zj ∼ N (0, σ2

j ), 1 ≤ j ≤ k, σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
k > 0.

Log–normals: Tj := eZj , µr,j := E[T r
j ] = exp

(
1
2r

2σ2
j

)
,

ς2r,j := Var(T r
j ) =

(
er

2σ2
j − 1

)
µ2
r,j .

Softmax probabilities: Pj =
Tj

TΣ
, TΣ :=

k∑
j=1

Tj .

Power sums: Nk :=

k∑
j=1

T t
j , Dk :=

k∑
j=1

T t−1
j .

Deterministic means: µ̄t :=

k∑
j=1

µt,j , µ̄t−1 :=

k∑
j=1

µt−1,j , µ̄1 :=

k∑
j=1

µ1,j .
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Law of Large Numbers (Lindeberg–Feller). Fix r ∈ [2, t]. Define the centred summand ξ
(r)
k,j :=

T r
j − µr,j and total variance V 2

k,r :=
∑k

j=1 ς
2
r,j . If

max
1≤j≤k

ς2r,j = O(1) =⇒ V 2
k,r ≍ k,

and the Lindeberg condition holds for every ε > 0,

1

V 2
k,r

k∑
j=1

E
[
ξ
(r)2
k,j 1{|ξ(r)k,j | > εVk,r}

]
−−−−→
k→∞

0,

then, since log–normals have super–polynomially decaying tails,

1√
V 2
k,r

k∑
j=1

ξ
(r)
k,j ⇒ N(0, 1) =⇒ 1

k

k∑
j=1

ξ
(r)
k,j = Op(k

−1/2).

Hence
Nk − µ̄t

k
,

Dk − µ̄t−1

k
,

TΣ − µ̄1

k
= Op

(
k−1/2

)
.

A sufficient explicit condition is again (A.1). For descending variances σ2
j = σ2

1j
−β with any β > 0,

A.1 is satisfied.

Fraction expansion with heterogeneous means. Let
Xk = Nk − µ̄t, Yk = Dk − µ̄t−1, Zk = TΣ − µ̄1.

Then
Nk

DkTΣ
=

µ̄t

µ̄t−1µ̄1
· 1 +Xk/µ̄t

(1 + Yk/µ̄t−1)(1 + Zk/µ̄1)
.

A second–order Taylor expansion yields
Nk

DkTΣ
=

µ̄t

µ̄t−1µ̄1

[
1 +Op(k

−1/2)
]
.

Expectation and scaling law. Taking expectations cancels linear terms:

Acct =
µ̄t

µ̄t−1µ̄1

[
1 +O

(
k−1/2

)]
.

Since µ̄r =
∑k

j=1 µr,j = kµ̂r, the ratio of averages is Θ(1) and

Acct =
kµ̂t

(kµ̂t−1)(kµ̂1)
+O(k−3/2) =

Ct,hetero

k
+O(k−3/2),

with

Ct,hetero :=
1
k

∑k
j=1 µt,j(

1
k

∑k
j=1 µt−1,j

)(
1
k

∑k
j=1 µ1,j

) .
B ADAPTIVE PREDICTION SETS (ROMANO ET AL., 2020)

Here is a description of the adaptive prediction sets (APS) method used in our paper. Suppose we
have the prediction distribution p(x) = fθ(x) and order this probability vector with the descending
order p(1)(x) ≥ p(2)(x) ≥ . . . ≥ p(K)(x). The generalized conditional quantile function is defined
as,

Q(x; p, ν) = min{k ∈ {1, . . . ,K} : p(1)(x) + p(2)(x) + . . .+ p(k)(x) ≥ ν}, (10)
which produces the class index with the generalized quantile ν ∈ [0, 1]. The function S can be
defined as

S(x, u; p, ν) =
{

‘y’ indices of the Q(x; p, ν)− 1 largest py(x), if u ≤ U(x; p, ν),

‘y’ indices of the Q(x; p, ν) largest py(x), otherwise,
(11)

where

U(x; p, ν) =
1

p(Q(x;p,ν))(x)

Q(x;p,ν)∑
k=1

p(k)(x)− ν

 .

It has input x, u ∈ [0, 1], π, and ν which can be seen as a generalized inverse of Equation 10.
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On the calibration set Dcal, we compute a generalized inverse quantile conformity score using the
following function,

E(x, y, u; p) = min {ν ∈ [0, 1] : y ∈ S(x, u; p, ν)} , (12)
which is the smallest quantile to ensure that the ground-truth class is contained in the prediction set
S(x, u; p, ν). With the conformity scores on calibration set {Ei}Ncal

i=1 , we compute the ⌈(1− α)(1 +
Ncal)⌉th largest value in the score set as ν̂cal. During inference, the prediction set is generated with
S(x∗, u; p∗, ν̂cal) for a test sample x∗.

C MORE EXPERIMENT

Fig. 7 and 8 shows the reliability diagrams of PS and CPAC on ImageNet and ViT-L when uniform
CP-ECE is used as the metric. The calibration error of CPAC is qualitatively better than that of PS.
Similarly, we visualize the uniform CP-ECE comparison of PS and CPAC for ViT-B on ImageNet in
Fig. 11 and 12. The results of standard CP-ECE are shown in Fig. 9 and 10 for ViT-L and Fig. 13
and 14 for ViT-B. Finally, we report the result of using PS and CPAC on ImageNet in Tab. 5 when
ResNet101 is used, which demonstrates the strength of CPAC in reducing uniform CP-ECE.

D THE USE OF LLM

The use of LLMs is restricted to language refinement, including grammar correction, sentence rephras-
ing, and improving the clarity of writing. No LLMs were used to generate research ideas, design
methodology, conduct experiments, or create results. All technical contributions, implementations,
and analyses presented in this paper are solely the work of the authors.

Std CP-ECE Uni CP-ECE Acc. Cov. PSS

Clean PS 8.68(0.01) 7.34(0.71) 80.35(0.09) 90.00(0.01) 6.20(0.10)
CPAC 7.93(0.14) 6.37(0.52) 77.68(0.14) 90.00(0.02) 7.81(0.29)

Norm-0.1 PS 9.09(0.07) 7.85(0.59) 78.67(0.06) 90.00(0.01) 7.93(0.23)
CPAC 8.46(0.09) 6.25(0.28) 78.67(0.06) 90.00(0.01) 7.13(0.18)

Norm-0.2 PS 9.85(0.12) 8.85(0.37) 74.13(0.05) 89.99(0.04) 14.82(0.15)
CPAC 8.37(0.09) 7.78(0.61) 70.58(0.41) 90.00(0.03) 18.17(0.97)

Norm-0.4 PS 10.74(0.09) 6.72(0.21) 57.19(0.16) 90.00(0.03) 62.37(0.49)
CPAC 7.58(0.33) 7.68(0.44) 51.97(0.27) 89.97(0.05) 93.87(2.89)

Norm-0.8 PS 5.02(0.12) 7.23(0.21) 12.30(0.06) 90.01(0.02) 429.82(3.04)
CPAC 4.37(0.12) 4.90(0.11) 12.50(0.21) 89.97(0.04) 456.89(3.74)

Blur-3 PS 9.27(0.13) 9.60(0.36) 77.06(0.10) 90.00(0.02) 10.52(0.13)
CPAC 8.46(0.14) 7.24(0.68) 75.19(0.32) 90.02(0.01) 11.76(0.44)

Blur-5 PS 9.81(0.06) 8.91(0.45) 75.24(0.09) 90.00(0.03) 13.39(0.14)
CPAC 8.73(0.19) 7.51(0.23) 73.09(0.10) 90.00(0.02) 15.48(0.46)

Blur-7 PS 9.98(0.04) 8.45(0.39) 74.39(0.06) 89.99(0.02) 15.08(0.22)
CPAC 8.65(0.19) 7.93(0.26) 71.12(0.20) 89.98(0.03) 19.14(0.84)

Drop-1 PS 10.93(0.07) 8.67(0.39) 71.04(0.07) 90.00(0.05) 21.45(0.34)
CPAC 8.96(0.11) 8.52(0.52) 68.26(0.14) 89.99(0.02) 26.39(0.70)

Drop-3 PS 11.42(0.04) 6.52(0.17) 54.91(0.11) 90.01(0.02) 72.49(0.24)
CPAC 8.22(0.39) 7.60(0.47) 52.37(0.76) 90.00(0.03) 89.10(5.19)

Drop-5 PS 8.95(0.14) 5.00(0.10) 35.38(0.07) 90.00(0.05) 171.88(1.52)
CPAC 6.63(0.53) 5.52(0.27) 32.77(0.53) 90.02(0.08) 241.31(10.71)

Drop-7 PS 5.09(0.08) 7.23(0.10) 11.97(0.09) 90.00(0.01) 424.25(0.65)
CPAC 4.72(0.17) 5.01(0.19) 12.73(0.22) 90.02(0.06) 450.48(3.68)

Table 4: Performance metrics of ViT-Base on ImageNet when the coverage is controlled to be 90%.
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Figure 7: Reliability diagrams of ViT-L on ImageNet under different types of noise with uniform
CP-ECE.
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Figure 8: Reliability diagrams of ViT-L on ImageNet under different types of noise with uniform
CP-ECE after CPAC.
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Figure 9: Reliability diagrams of ViT-L on ImageNet under different types of noise with standard
CP-ECE.
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Figure 10: Reliability diagrams of ViT-L on ImageNet under different types of noise with standard
CP-ECE after CPAC.
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Figure 11: Reliability diagrams of ViT-B on ImageNet under different types of noise with uniform
CP-ECE.
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Figure 12: Reliability diagrams of ViT-B on ImageNet under different types of noise with uniform
CP-ECE after CPAC.
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Figure 13: Reliability diagrams of ViT-B on ImageNet under different types of noise with standard
CP-ECE.
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(7) Blur-5, Acc=73.08%, =0.46, Std ECE=8.21%
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(8) Blur-7, Acc=72.09%, =0.47, Std ECE=8.30%
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(9) Drop-0.1, Acc=68.41%, =0.52, Std ECE=9.27%
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(10) Drop-0.3, Acc=51.35%, =0.37, Std ECE=8.40%
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(11) Drop-0.5, Acc=33.22%, =0.34, Std ECE=6.26%
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(12) Drop-0.7, Acc=12.51%, =0.44, Std ECE=4.69%

Figure 14: Reliability diagrams of ViT-B on ImageNet under different types of noise with standard
CP-ECE after CPAC.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Std CP-ECE Uni CP-ECE Acc. Cov. PSS

Clean
PS 7.01(0.14) 11.33(0.92) 81.93(0.13) 93.46(0.29) 16.04(1.59)
PS-Full 9.20(0.15) 7.85(0.23) 81.93(0.13) 94.77(0.21) 29.53(1.46)
CPAC 9.16(0.13) 7.82(0.25) 81.93(0.13) 94.75(0.18) 29.57(1.18)

Norm-0.1
PS 7.44(0.17) 10.87(1.41) 80.76(0.12) 93.36(0.33) 17.73(2.05)
PS-Full 9.12(0.19) 8.07(0.20) 80.76(0.12) 94.65(0.26) 29.99(1.62)
CPAC 9.11(0.15) 7.91(0.24) 80.76(0.12) 94.63(0.20) 30.18(1.38)

Norm-0.2
PS 7.90(0.14) 11.24(0.72) 79.18(0.13) 93.13(0.38) 19.89(2.27)
PS-Full 9.47(0.13) 7.66(0.19) 79.18(0.13) 94.29(0.20) 30.22(1.33)
CPAC 9.40(0.19) 7.67(0.44) 79.20(0.14) 94.39(0.23) 30.92(1.42)

Norm-0.4
PS 8.74(0.17) 9.58(0.38) 74.40(0.07) 92.63(0.31) 28.04(2.16)
PS-Full 9.41(0.14) 7.31(0.21) 74.40(0.07) 93.76(0.24) 35.76(1.57)
CPAC 9.39(0.18) 7.08(0.21) 74.40(0.07) 93.83(0.34) 36.53(2.33)

Norm-0.8
PS 9.23(0.06) 6.65(0.16) 58.57(0.11) 91.53(0.25) 67.89(2.20)
PS-Full 8.44(0.10) 5.51(0.11) 58.57(0.11) 91.97(0.11) 63.14(0.94)
CPAC 8.36(0.07) 5.33(0.18) 58.63(0.09) 91.94(0.20) 62.27(1.74)

Blur-3
PS 7.47(0.15) 10.71(0.36) 79.88(0.14) 93.31(0.28) 18.56(1.43)
PS-Full 9.31(0.18) 7.99(0.13) 79.88(0.14) 94.60(0.18) 30.69(1.47)
CPAC 9.29(0.20) 7.82(0.43) 79.88(0.16) 94.59(0.10) 30.64(0.84)

Blur-5
PS 8.04(0.18) 10.66(0.35) 78.17(0.11) 93.16(0.25) 22.38(1.51)
PS-Full 9.41(0.14) 7.42(0.36) 78.17(0.11) 94.44(0.22) 33.23(1.57)
CPAC 9.39(0.15) 7.42(0.40) 78.17(0.11) 94.44(0.15) 33.15(1.09)

Blur-7
PS 8.26(0.21) 10.23(0.38) 77.45(0.12) 93.06(0.25) 23.94(1.53)
PS-Full 9.38(0.20) 7.40(0.28) 77.45(0.12) 94.34(0.22) 34.34(1.59)
CPAC 9.35(0.17) 7.27(0.17) 77.45(0.12) 94.34(0.17) 34.14(1.25)

Drop-1
PS 10.92(0.17) 8.48(0.23) 67.03(0.13) 91.81(0.29) 55.23(2.38)
PS-Full 10.36(0.23) 6.63(0.30) 67.03(0.13) 92.59(0.25) 55.07(1.98)
CPAC 9.97(0.24) 6.40(0.19) 67.37(0.13) 92.79(0.24) 54.24(1.85)

Drop-3
PS 10.72(0.31) 6.36(0.18) 52.05(0.12) 90.64(0.34) 108.84(4.37)
PS-Full 9.87(0.31) 5.69(0.25) 52.05(0.12) 90.88(0.35) 98.10(3.90)
CPAC 9.10(0.23) 5.42(0.28) 53.11(0.12) 91.11(0.36) 87.01(3.53)

Drop-5
PS 8.25(0.20) 5.03(0.17) 37.59(0.07) 90.29(0.37) 182.23(6.52)
PS-Full 8.02(0.12) 4.89(0.20) 37.59(0.07) 90.29(0.33) 176.38(5.28)
CPAC 7.31(0.13) 4.71(0.09) 39.03(0.10) 90.35(0.30) 142.69(3.28)

Drop-7
PS 4.75(0.14) 5.55(0.07) 19.41(0.06) 89.94(0.27) 328.26(6.81)
PS-Full 5.82(0.17) 5.48(0.08) 19.41(0.06) 90.00(0.31) 359.11(7.00)
CPAC 4.77(0.26) 5.09(0.28) 21.14(0.21) 89.47(0.28) 300.94(5.65)

Table 5: Result of ResNet101 on ImageNet-1k.
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