
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REUSING PRE-TRAINING DATA AT TEST TIME IS A
COMPUTE MULTIPLIER

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models learn from their vast pre-training corpora, gaining the
ability to solve an ever increasing variety of tasks; yet although researchers work
to improve these datasets, there is little effort to understand how efficient the pre-
training apparatus is at extracting ideas and knowledge from the data. In this work,
we use retrieval augmented generation along with test-time compute as a way to
quantify how much dataset value was left behind by the process of pre-training,
and how this changes across scale. We demonstrate that pre-training then retrieving
from standard and largely open-sourced datasets results in significant accuracy
gains in MMLU, Math-500, and SimpleQA, which persist through decontamination.
For MMLU we observe that retrieval acts as a ∼ 5x compute multiplier versus pre-
training alone. We show that these results can be further improved by leveraging
additional compute at test time to parse the retrieved context, demonstrating a 10
percentage point improvement on MMLU for the public LLaMA 3.1 8B model.
Overall, our results suggest that today’s pre-training methods do not make full use
of the information in existing pre-training datasets, leaving significant room for
progress.

1 INTRODUCTION

Large language models (LLMs) have consistently improved performance by scaling pre-training
compute (Hestness et al., 2017; Hoffmann et al., 2022; Kaplan et al., 2020). In parallel to scaling,
researchers have also made significant efforts to improve both the architectures and the datasets used
by these LLMs (Gu & Dao, 2023; Li et al., 2024; Raffel et al., 2020; Shazeer et al., 2017). While LLMs
are able to solve an incredible number of tasks, in their current form they have several limitations.
For example, they struggle with long-tail knowledge (Kandpal et al., 2023) and have limitations in
their ability to generalize, such as for the reversal curse (Berglund et al., 2023). Additionally, they
have been observed to have a log-linear scaling trend, meaning that larger amounts of compute are
necessary to make the same gains at larger scales. To understand whether these limitations come from
the quality of the datasets, it is important to explore whether further improvements can be unlocked
by using them beyond pre-training.

Taking advantage of the effort put into creating these sophisticated pre-training datasets, we explore
whether reusing them through retrieval at test-time can further improve performance. Additionally,
we test if supplementing with additional test-time compute results in further gains. Extra test-time
compute can be applied naturally to retrieval augmented generation by running multiple trials for
self-consistency while changing the retrieved documents across different trials. We apply this variety
of techniques on a set of publicly available pre-training datasets, to measure the potential impact of
the knowledge contained in them.

First, we pre-train models at various compute budgets and then use the same dataset for retrieval. We
see that retrieval further benefits our models when evaluating on MMLU, Math-500, and SimpleQA,
even though the models were pre-trained on the same data. We fit a power law to the base pre-training
models across compute budgets and compare against the gain from retrieval, showing that while on
average retrieval provides a ∼ 5x compute multiplier over pre-training when evaluating on MMLU,
the effectiveness degrades with scale.

Next, we use additional test-time compute on the pre-training data with a combination of retrieval and
self-consistency techniques. We evaluate our methods on a variety of downstream tasks that cover

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multiple domains, requiring both knowledge and reasoning abilities. With a Llama 3.1 8B reader
model, we use retrieval to achieve 74.0% on SimpleQA, as well as a 10.5 percentage point gain on
MMLU, a 15.7 percentage point gain on MATH-500, and a 6.2 percentage point gain on GPQA.

Lastly, we analyze our findings to provide suggestions for further improving these datasets. We are
able to relate performance gaps between controlled experiments back to specific stages of the dataset
creation pipeline. Altogether, our work suggests that there is room for improving both pre-training
datasets and learning methods using these datasets.

2 RELATED WORK

Classical pre-training scaling law studies established relationships for how loss falls with training
compute, data, and parameters (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022).
More recent analyses factor in deployment costs in high-inference-demand settings Sardana et al.
(2024).

Meanwhile, retrieval-augmented approaches externalize knowledge to non-parametric memory (Guu
et al., 2020; Lewis et al., 2020; Ram et al., 2023), trading additional test time compute for improved
performance on knowledge-intensive tasks. More recently, Shao et al. (2024) demonstrated that
scaling up the datastore can reliably further improve performance on knowledge-intensive tasks,
while Lyu et al. (2025) demonstrated that a compact subset of pre-training data can be used in a
practical way with a minimal retrieval setup to improve performance on reasoning benchmarks.

Recent work (Brown et al., 2024; Snell et al., 2024) has shown that scaling test-time compute can be
an efficient way of improving LLM performance. Specifically, they suggest parallelizing inference
compute across trials, and sequentially iterating on a model’s output. Results can then be aggregated
with techniques like self-consistency (Wang et al., 2022; Chen et al., 2023) or verifiers. Retrieval
is naturally suited to both as it can be parallelized across retrieved documents, while sequentially
iterating over the search query to improve the retrieved documents.

Large-scale commercial "Deep Research" systems from companies like Google, OpenAI, and Per-
plexity likely apply all of the above by abstracting retrieval behind tool-use APIs and allowing the
model direct control over the tools along with additional test-time compute.

In this paper, we first take inspiration from the classical pre-training scaling law studies, and begin
to characterize the joint scaling of pre-training and simple retrieval given a fixed and identical data
corpus. We also explore which forms of simple test-time compute allow us to most effectively leverage
the retrieval stores, and whether these conclusions generalize to settings where the pre-training corpus
differs from the retrieval datastore.

3 EXPERIMENTAL SETUP

3.1 DATASETS

We use the exact same datasets for both pre-training and retrieval. We include the standard webcrawl
based large-scale datasets DCLM-baseline and FineWeb-edu (deduplicated versions for both), fol-
lowed by more specialized sources. These include arXiv, peS2o, PubMed Central, Stack Exchange,
and Wikipedia. Lastly, we include AlgebraicStack, AutoMathText, FineMath-3+, FineMath-4+,
OpenWebMath, and StackMathQA to improve mathematics coverage. Additional information on the
datasets such as token count and pre-training mixing ratios can be found in Table 1.

3.2 RETRIEVAL PIPELINE

We use Qwen3 Embedding 0.6B and Qwen3 Reranker 0.6B (Zhang et al., 2025a) as the embedding
and reranker models. We use FAISS FlatIP (Johnson et al., 2019) for indexing to retrieve the top 100
documents per dataset (or shard of a dataset) before combining across all datasets through sorting
by similarity score. This is equivalent to having all datasets in the same index and retrieving the top
100, but is more practical due to compute constraints. Then if applicable, we rerank the top 100
documents across all datasets to achieve our final document ordering.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Pre-training datasets used. Tokens refers to the actual size of the dataset, all of which is
typically used during retrieval. Epochs refers to the number of epochs taken for the largest pre-training
run. Epochs for smaller models are scaled down proportionally.

Dataset Tokens Epochs
Web Crawl Based

DCLM-baseline (dedup) (Li et al., 2024) 764.9B 0.88
FineWeb-edu (dedup) (Penedo et al., 2024) 197.6B 0.80

Additional Sources

arXiv 28.7B 1.10
peS2o (Soldaini & Lo, 2023) 71.9B 1.31
PubMed Central 22.5B 2.72
Stack Exchange 11.8B 7.98
Wikipedia 21.7B 3.63

Math

AlgebraicStack (Azerbayev et al., 2023) 9.9B 6.38
AutoMathText (Zhang et al., 2025b) 6.0B 13.11
FineMath-3+ (Allal et al., 2025) 36.5B 1.72
FineMath-4+ (Allal et al., 2025) 10.0B 11.05
OpenWebMath (Paster et al., 2023) 13.5B 2.91
StackMathQA (Zhang, 2024) 0.7B 558.67

4 PRE-TRAINING EXPERIMENTS

1022 1023

FLOPs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
M

LU
 (5

-s
ho

t)

1022 1023

FLOPs
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
at

h5
00

 (4
-s

ho
t C

oT
)

1022 1023

FLOPs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Si
m

pl
eQ

A

Base Model Decontaminated Retrieval Subset Retrieval Full Retrieval

Figure 1: Retrieval on the pre-training dataset can substantially improve upon the performance of the
base model. However, the exact benefit depends on the type of task.

We aim to measure the knowledge contained in pre-training datasets by first pre-training on it,
then also retrieving (with reranker) on it during test time. In Figure 1 we measure performance on
MMLU (Hendrycks et al., 2020), Math-500 (Lightman et al., 2023), and SimpleQA (Wei et al., 2024)
across compute budgets, comparing the base model with retrieval on all our datasets, retrieval on a
decontaminated version of all our datasets, and retrieval on a subset approximately equivalent to the
unrepeated pre-training dataset. Overall, we find that retrieval can help on all three tasks, though to
different degrees.

Retrieving from the full dataset leads to large gains on all tasks, but the model sees more data than
the base model sees in pre-training. We account for this by retrieving from a subset similar to the
unrepeated pre-training dataset, represented by the light blue lines in Figure 1. Interestingly, this
achieves similar performance to retrieving on the full dataset for MMLU and Math-500. On the other
hand, performance on SimpleQA is a piecewise function because SimpleQA depends heavily on

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

retrieving from Wikipedia, and the smaller two models only see a fraction of Wikipedia while the
larger three models see at least one epoch of Wikipedia.

Retrieval as a compute multiplier Given the common use of MMLU as a proxy for pre-training
quality, we use it to measure the effect of retrieval as a compute multiplier for the base model. We
fit a bounded sigmoid function to the base model’s MMLU performance as a function of FLOPs,
and then measure the amount of pre-training compute needed to match each existing base model
augmented with retrieval. In Table 2 we find that the average compute multiplier across the five
models of different scales is 4.86x, and the geometric mean is 4.66x. However, this compute ratio
decreases as the model scales, with retrieval providing only a 2.88x compute multiplier at the largest
scale. While retrieval provides large compute savings, as the base model is scaled up, retrieval faces
greater diminishing returns than just the base model. It is important to notice that retrieval does not
provide a flat or strictly decreasing benefit across compute budgets. There is an initial increase in
retrieval efficiency, suggesting that it benefits from better base models.

Table 2: We fit the base model performance to a sigmoid function with bounds to get y =

0.25 +
0.6907

1 + exp
(
− 0.7968 · (log10(x)− log10(2.48× 1022))

) , where 0.25 is the random baseline

and 0.9407 is the maximum achievable accuracy (Gema et al., 2024). We use this equation to
measure retrieval as a compute multiplier for the base model. The average compute ratio is 4.86x, the
geometric mean is 4.66x, and the median is 4.74x.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.4873 0.6063 2.98× 1022 5.28x
1.90× 1022 0.6021 0.6943 1.36× 1023 7.17x
7.04× 1022 0.6623 0.7410 3.34× 1023 4.74x
1.74× 1023 0.7107 0.7775 7.35× 1023 4.23x
7.34× 1023 0.7633 0.8186 2.11× 1024 2.88x

Decontamination A common question is whether retrieval gains come from retrieving text con-
taining exact overlap with the test data. We decontaminate the retrieved documents for MMLU and
Math-500 through n-gram overlap with the questions, as detailed in Appendix B. In Figure 1, the red
decontaminated retrieval line is close to the dark blue full retrieval line for MMLU, demonstrating
that the gains are not attributable to simple contamination. Although Math-500 shows signs of
more significant contamination, retrieving against a decontaminated training set still shows a very
meaningful improvement over the baseline. We do note that our analysis shows that 14.1% of MMLU
and 32.0% of Math-500 can be found in our commonly used open-source pre-training datasets,
highlighting the importance of strictly decontaminated (or held out) evaluation sets for pre-training
science. We choose to omit n-gram overlap decontamination analysis for SimpleQA due to the nature
of the evaluation task.

4.1 LEARNING FROM PRE-TRAINING VS RETRIEVAL

In an effort to determine how retrieval can improve model performance, compared to scaling up
model size and compute budget, we analyzed the accuracy of the trained models on MMLU, broken
down into question categories. The results in Figure 2 show that across categories, the addition of
retrieval gives a comparable boost in accuracy to that of a significant increase in pre-training compute
budget.

Since retrieval involves a memory storage mechanism, we might expect it to provide most benefit for
problems requiring good recall of facts, rather than reasoning abilities. However, in Table 3 we see
that retrieval is a better compute multiplier for STEM than for humanities or social sciences, and in
Figure 2 the gap between retrieval and base accuracy is also wider for STEM than for humanities.
Such knowledge may be harder to absorb during pre-training, and in contrast to long tail facts in
SimpleQA, retrieval expanding the context may also function as additional processing rather than
just storage.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 3: Summary of pre-training vs retrieval compute ratios across MMLU categories. Values
show how many times more compute the base model would need to match retrieval performance.
Calculated using category-specific bounded sigmoids (min = 0.25; max: STEM 0.9544, Humanities
0.9377, Social 0.9575, Other 0.9114, All 0.9407).

Compute Budget STEM Humanities Social Other All

5.64× 1021 6.82x 2.69x 3.42x 9.80x 5.28x
1.90× 1022 10.23x 3.33x 4.42x 13.78x 7.17x
7.04× 1022 5.23x 2.57x 4.07x 8.77x 4.74x
1.74× 1023 5.01x 2.44x 3.43x 7.53x 4.23x
7.34× 1023 3.52x 1.55x 2.22x 6.48x 2.88x

Average 6.16x 2.52x 3.52x 9.27x 4.86x
Geometric Mean 5.78x 2.44x 3.42x 8.96x 4.66x
Median 5.23x 2.57x 3.43x 8.77x 4.74x

Figure 2: MMLU Breakdown by category of impact of retrieval addition and compute budget.
Retrieval provides a strong lift, and the difference between retrieving from a random subset of the
data store and the full set is small and diminishing with scale.

To investigate this surprising observation, we calculated the increase in MMLU accuracy provided by
full retrieval, for different subject areas, with a 6.4B model. The top ten are shown in Table 4. We
also include the corresponding accuracy increase provided by subset retrieval. Here we can see a mix
of different subject types - those that might be expected to require good knowledge recall, such as law
and medicine, along with those that might require logical reasoning, such as physics, and those that
might require more abstract reasoning, such as philosophy. A similar mixture of types of subjects
may be seen for other model sizes, suggesting no strong correlation between subject type, model size,
and the benefits of retrieval.

Table 4: Top ten categories ordered by change in MMLU accuracy after introduction of full retrieval

Subjects Impact of full retrieval Impact of subset retrieval

Medical genetics +21.1 +19.5
Miscellaneous +19.2 +17.8
World religions +18.5 +19.6
Philosophy +17.9 +17.1
US foreign policy +17.7 +16.1
International law +17.0 +17.3
High school physics +16.9 + 5.7
Virology +16.9 +15.2
College physics +16.8 +14.2
College medicine +16.6 +11.8

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We also compared the MMLU answers between the 6.4B and 12.6B models, with and without
retrieval, focusing on problems where the smaller base model gave an incorrect answer. We identified
problems where the addition of retrieval corrected the answer, but the increase in model size did not,
and vice versa. The main subjects of the former group were professional law, professional psychology,
high-school macroeconomics, philosophy, and high-school mathematics. The main subjects of the
latter group were professional law, professional psychology, moral scenarios, elementary mathematics,
and high school statistics. Both groups have a mix of recall and reasoning problems, with much
overlap. This suggests that there is not a strong bias for what kinds of problem retrieval can help with
compared to increasing model size.

In total, increasing model size changed answers for 39.7% of MMLU problems, whereas adding
retrieval changed answers for 28.1% of the problems. A similar analysis for MATH-500 showed that
increasing model size changed answers for 39.7% of the problems, whereas adding retrieval changed
answers for 28.7% of the problems. This suggests retrieval overall has less of an effect on model
behavior than increasing model size. Furthermore, it suggests that in areas where retrieval does not
help, the problem is more that the model ignores the additional context, rather than the additional
context being misleading. Future work could involve encouraging models to better utilize retrieved
context, possibly through prompt engineering or attention weighting.

5 TEST-TIME COMPUTE EXPERIMENTS

Table 5: Comparing baseline reader model performance against retrieval with a variety of test-time
compute options. All evaluations use chain-of-thought reasoning. We use Llama 3.1 8B instruct as
the reader model. MMLU results are reported as macro average over subjects. VR refers to using
variance reduction techniques such as MMR and bagging.

Method MMLU
STEM

MMLU
Humanities

MMLU
Social

MMLU
Other

MMLU
All

Baseline 67.3 71.5 76.6 73.0 71.6
w/ self-consistency 72.3 74.8 79.3 76.4 75.3
w/ retrieval 73.6 74.6 81.8 77.6 76.6
w/ reranker 73.7 76.3 83.4 79.2 77.7
w/ reranker + self-cons. 78.7 78.7 85.8 81.9 81.0
w/ reranker + self-cons. + VR 80.2 79.5 87.4 82.3 82.1

Table 6: Continuation of Table 5. GPQA, and Math-500 results are over 10 trials.

Method SimpleQA Math-500 GPQA
Bio.

GPQA
Chem.

GPQA
Phys.

GPQA
All

Baseline 1.5 48.7 46.2 26.4 28.3 30.6
w/ self-consistency N/A 55.9 46.3 28.1 28.4 31.4
w/ retrieval 65.7 56.7 45.1 27.3 34.0 33.2
w/ reranker 74.0 56.8 46.7 28.6 36.0 34.8
w/ reranker + self-cons. N/A 64.3 48.5 30.1 36.8 36.1
w/ reranker + self-cons. + VR N/A 64.4 49.7 29.6 38.3 36.8

Knowing the limitations of learning with just pre-training, we attempt to better quantify the knowledge
contained in these datasets by applying additional test-time compute on top of retrieval. If the model
is able to answer a question with retrieval and test-time compute, the knowledge required to do
so is likely in the dataset. In this section, we use Llama 3.1 8B instruct (Grattafiori et al., 2024)
as the reader model due to its performance relative to its size, making it more practical to apply
test-time compute. We then augment it with retrieval as described in Section 3, and parallel inference
with majority voting to select an answer (self-consistency). In addition to evaluating on MMLU,
SimpleQA, and Math-500, we also evaluate on GPQA (Rein et al., 2024).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 5 and Table 6 show that the effects of self-consistency and retrieval are additive across all
tasks, with the exception of SimpleQA where self-consistency does not help because it is purely a
factuality benchmark. Perhaps surprisingly, the two techniques help generally across all other tasks
and sub-tasks, with little hint of specialization. Additionally, reranking seems to give a consistent
boost on top of retrieval across tasks. Lastly, we take advantage of retrieving multiple documents and
parallelizing trials by using older techniques like MMR (Carbonell & Goldstein, 1998) to increase
diversity, and bagging (Breiman, 1996) (randomizing over a subset of documents) to reduce variance;
these techniques give a further performance boost for MMLU and GPQA.

If we view retrieval as a tool for the LLM, then our methods use test-time compute to improve the tool
itself. This contrasts with self-consistency by itself, which parallelizes the model without additional
enhancement, as well as with deep research, which in addition to parallelizing also uses test-time
compute to use the tool for longer rather than to upgrade it. Retrieval is our vehicle through which
we can put in additional compute, and do it in a data driven way.

5.1 LEARNING FROM TEST-TIME COMPUTE VS PRE-TRAINING

Table 7: Compute efficiency gains for each method relative to baseline performance. Values represent
how many times more compute the baseline model would need to achieve the same performance as
each method. Calculated using fitted sigmoid equations for each MMLU category.

Method MMLU
STEM

MMLU
Humanities

MMLU
Social

MMLU
Other

MMLU
All

Baseline 1.00× 1.00× 1.00× 1.00× 1.00×
w/ self-consistency 2.62× 1.93× 1.63× 2.21× 2.10×
w/ retrieval 3.42× 1.85× 2.70× 3.02× 2.78×
w/ reranker 3.49× 2.67× 3.87× 4.72× 3.56×
w/ reranker + self-cons. 10.74× 4.65× 7.18× 11.34× 8.14×
w/ reranker + self-cons. + VR 15.72× 5.68× 11.66× 13.15× 11.10×

We can take the MMLU sigmoid fit from Section 4 to analyze Table 5. Although Llama 3.1 8B is
trained at a much higher tokens per parameter ratio than the models in Section 4, the sigmoid fit could
still be reasonable because calculating the compute ratio between retrieval (with reranker) and base
performance is within reason for MMLU (All). Additionally, estimates using our previous sigmoid
fits would be a lower bound for compute multipliers because of diminishing returns at higher tokens
per parameter counts.

Despite the different pre-training dataset and Llama being significantly overtrained, we see that
retrieval (with reranker) still functions as a 3.56x compute multiplier, similar to what would be
expected of a model with the same MMLU base accuracy in our pre-training setup in Section 4.
Though we do not know the details of the Llama 3.1 pre-training dataset, it is likely that there is
substantial overlap with the data we are retrieving from. Table 7 shows that, altogether, our methods
provide at least an 11x compute multiplier over the pre-trained baseline.

We also see that the different test-time methods learn or utilize data differently from pre-training, as
the multipliers are different across the categories. Even the different test-time methods have different
behaviors, as both self-consistency and retrieval favor STEM and other, while the lift of reranker over
retrieval favors humanities, social sciences, and other.

5.2 A CONNECTION BETWEEN RETRIEVAL AND CONSISTENCY

While the previous results in this section demonstrate that self-consistency is a powerful tool for
improving performance, it can also be used as an analytical tool for retrieval. As displayed in
Appendix H, we can apply self-consistency on each individual document and rerank the documents
with it. In Table 8 we see that inter-document consistency selects better top-1 documents than
the reranker. However, this technique also requires a multiplicative number of additional trials, as
previously we ran a fixed number of trials on all documents combined, but now we are doing it per
document. We leave to future work ways to distill self-consistency into a more efficient reranker.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 8: Inter-document consistency can act as a stronger reranker (k=1) than standard rerankers
from Zhang et al. (2025a); however, it requires calling the reader model many more times and is not
compute efficient when compared to self-consistency on all documents at once.

Reranker MMLU
STEM

MMLU
Humanities

MMLU
Social

MMLU
Other

MMLU
All

Qwen3 Reranker 0.6B 71.2 72.9 77.7 74.1 73.7
Inter-doc consistency 75.4 75.4 82.7 78.1 77.6

6 ADDITIONAL ANALYSIS

6.1 BETTER PRE-TRAINING DATASETS ARE NOT NECESSARILY BETTER RETRIEVAL DATASETS

Table 9: While FineWeb-edu is worse than DCLM when measuring pre-training performance, it is
just as good if not slightly better for retrieval. Retrieval is on top of Llama 3.1 8B instruct with k=10.
Pre-training numbers are 8B models trained for 1T tokens, as reported by Su et al. (2024).

Dataset Pre-training
MMLU

Retrieval
MMLU

Retrieval w/ reranker
MMLU

DCLM 53.4 74.5 76.4
FineWeb-edu 42.9 75.2 76.6

Our retrieval datasets were built for the purpose of pre-training, which raises the question of whether
better pre-training datasets make for better retrieval datasets. Table 9 suggests that this is not
necessarily the case, as FineWeb-edu is worse than DCLM for pre-training, but is as good if not
slightly better for retrieval. While DCLM contains more tokens than FineWeb-edu, prior work
(Muennighoff et al., 2023b; Fang et al., 2025) would suggest that this is not the reason for the gap
in pre-training performance, while the size advantage should not be harmful for retrieval. We leave
to future work how to determine the qualities that make a dataset good for pre-training or retrieval
specifically.

6.2 IMPORTANCE OF EXTRACTION AND CRAWLING

Table 10: Text extraction and crawling are important for creating good datasets. We vary the extraction
done on top of Wikipedia, as well as how we expand the datastore. Retrieval uses reranker and is on
top of Llama 3.1 8B instruct with k=6.

Dataset SimpleQA

Wikimedia Nov. 2023 55.4
OLM June 2025 59.1
Custom June 2025 69.0
Custom + All Sources 73.7
Custom + Golden Links 85.2

We investigate the importance of earlier stages of dataset creation through a case study of retrieval
for SimpleQA. As constructed, over 70% of the answers in SimpleQA can be found on Wikipedia.
However, many works use out-of-date or pre-extracted versions of Wikipedia. This can lead to
missing data, especially when the crucial piece of information comes from specialized elements.

We compare Wikimedia (Nov. 2023) (Wikimedia-Foundation) and OLM (June 2025) (Thrush et al.,
2022), two of the most popular Wikipedia extractions on HuggingFace, against a custom extracted
Wikipedia (June 2025) described in Appendix C. Qualitatively, we find that existing extractions often
fail to extract elements like bullet points, tables, and info boxes. Table 10 quantitatively demonstrates
this with up to a 13.6 percentage point difference in SimpleQA performance by simply changing the
version of the Wikipedia dataset.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Next, we compare expanding the retrieval datastore by adding our other sources against adding
non-Wikipedia golden links provided by SimpleQA. Table 10 shows that there is an 11.5 percentage
point difference, and we find that only a small fraction of the non-Wikipedia golden links are present
in CommonCrawl. This suggests that open-source datasets could be further improved at the web
crawling stage.

6.3 ROBUSTNESS WHEN SCALING RETRIEVAL DATA

48B 96B 191B 382B 765B
DCLM Dedup Tokens in Datastore

0.4

0.5

0.6

0.7

0.8

Si
m

pl
eQ

A

Custom Wikipedia Baseline
Custom Wikipedia + DCLM

Custom Wikipedia + Golden Baseline
Custom Wikipedia + Golden + DCLM

Full DCLM Baseline

Figure 3: For SimpleQA, our retrieval system is fairly robust to scaling the retrieval datastore, even if
the new data does not contain useful information. Our custom Wikipedia contains 22B tokens, and
additional DCLM data helps a little, or when also starting with additional golden link data, hurts only
a little.

Given that most of SimpleQA can be solved with Wikipedia and the additional provided golden links,
we investigate the effect of additional web crawl data on the retrieval system. In Figure 3 we see that
the additional data has only a small distracting effect, as the accuracy on SimpleQA stays close to the
baseline. However, we acknowledge that SimpleQA measures factual knowledge, and the scaling
effect may be different for reasoning tasks.

7 FUTURE WORK

We have shown that pre-training does not fully utilize all the knowledge contained within today’s open-
source pre-training datasets. This would suggest that there are still many algorithmic improvements
left to explore. Additionally, in our process of analyzing data quality, we have also shown that there
is room for improving datasets, at the very least in terms of crawling and extraction.

Within this work, we explore a limited number of simple test-time techniques on a limited set of
evaluations. However, it is quite likely that applying advanced techniques like query rewriting,
test-time training, and reinforcement learning for retrieval will further boost the performance on the
same datasets (Hardt & Sun, 2023; Ma et al., 2023). We also believe that these findings apply to even
broader domains. Initial results in Appendix G suggest that retrieving from pre-training datasets also
benefits code generation.

Beyond improvements, we would also like to better understand how data is used during pre-training.
Our measurement of retrieval as a compute multiplier parallels that of well-tuned Mixture-of-Experts
models (Clark et al., 2022). Additional exploration in this area could uncover whether these two
methods have significant overlap in terms of data usage.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics, 2023.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288, 2023.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 335–336, 1998.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation. arXiv preprint arXiv:2311.17311, 2023.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
routed language models. In International conference on machine learning, pp. 4057–4086. PMLR,
2022.

Alex Fang, Hadi Pouransari, Matt Jordan, Alexander Toshev, Vaishaal Shankar, Ludwig Schmidt,
and Tom Gunter. Datasets, documents, and repetitions: The practicalities of unequal data quality.
arXiv preprint arXiv:2503.07879, 2025.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
et al. Are we done with mmlu? arXiv preprint arXiv:2406.04127, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training, 2020. URL https://arxiv.org/abs/2002.
08909.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. arXiv
preprint arXiv:2305.18466, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

10

https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. In International Conference on Machine Learning,
pp. 15696–15707. PMLR, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Mark Lee, Tom Gunter, Chang Lan, John Peebles, Hanzhi Zhou, Kelvin Zou, Sneha Bangalore, Chung-
Cheng Chiu, Nan Du, Xianzhi Du, Philipp Dufter, Ruixuan Hou, Haoshuo Huang, Dongseong
Hwang, Xiang Kong, Jinhao Lei, Tao Lei, Meng Li, Li Li, Jiarui Lu, Zhiyun Lu, Yiping Ma, David
Qiu, Vivek Rathod, Senyu Tong, Zhucheng Tu, Jianyu Wang, Yongqiang Wang, Zirui Wang, Floris
Weers, Sam Wiseman, Guoli Yin, Bowen Zhang, Xiyou Zhou, Danyang Zhuo, Cheng Leong, and
Ruoming Pang. Axlearn: Modular large model training on heterogeneous infrastructure, 2025.
URL https://arxiv.org/abs/2507.05411.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200–14282, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Xinxi Lyu, Michael Duan, Rulin Shao, Pang Wei Koh, and Sewon Min. Frustratingly simple retrieval
improves challenging, reasoning-intensive benchmarks. arXiv preprint arXiv:2507.01297, 2025.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting in retrieval-
augmented large language models. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 5303–5315, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
large language models. arXiv preprint arXiv:2308.07124, 2023a.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023b.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023.

11

https://arxiv.org/abs/2507.05411


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
accounting for inference in language model scaling laws. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Rulin Shao, Jacqueline He, Akari Asai, Weijia Shi, Tim Dettmers, Sewon Min, Luke Zettlemoyer,
and Pang Wei W Koh. Scaling retrieval-based language models with a trillion-token datastore.
Advances in Neural Information Processing Systems, 37:91260–91299, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Luca Soldaini and Kyle Lo. peS2o (Pretraining Efficiently on S2ORC) Dataset. Technical report,
Allen Institute for AI, 2023. ODC-By, https://github.com/allenai/pes2o.

Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa Patwary,
Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common crawl into a
refined long-horizon pretraining dataset. arXiv preprint arXiv:2412.02595, 2024.

Tristan Thrush, Helen Ngo, Nathan Lambert, and Douwe Kiela. Online language modelling data
pipeline. https://github.com/huggingface/olm-datasets, 2022.

Feng Wang, Zesheng Shi, Bo Wang, Nan Wang, and Han Xiao. Readerlm-v2: Small language model
for html to markdown and json, 2025. URL https://arxiv.org/abs/2503.01151.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models.
arXiv preprint arXiv:2411.04368, 2024.

Wikimedia. Wikipedia structured contents. Available at: https://www.kaggle.com/
datasets/wikimedia-foundation/wikipedia-structured-contents [Ac-
cessed: 2025-09-23].

Wikimedia-Foundation. Wikimedia downloads. URL https://dumps.wikimedia.org.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
ing text embedding and reranking through foundation models. arXiv preprint arXiv:2506.05176,
2025a.

12

https://github.com/allenai/pes2o
https://github.com/huggingface/olm-datasets
https://arxiv.org/abs/2503.01151
https://www.kaggle.com/datasets/wikimedia-foundation/wikipedia-structured-contents
https://www.kaggle.com/datasets/wikimedia-foundation/wikipedia-structured-contents
https://dumps.wikimedia.org


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yifan Zhang. Stackmathqa: A curated collection of 2 million mathematical questions and an-
swers sourced from stack exchange, 2024. URL https://huggingface.co/datasets/
math-ai/StackMathQA.

Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew Chi-Chih Yao. Autonomous data selection with
zero-shot generative classifiers for mathematical texts. The 63rd Annual Meeting of the Association
for Computational Linguistics (ACL 2025 Findings), 2025b.

13

https://huggingface.co/datasets/math-ai/StackMathQA
https://huggingface.co/datasets/math-ai/StackMathQA


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PRE-TRAINING DETAILS

We follow a recipe very similar to that open-sourced as the "Honeycrisp" model series in the Axlearn
training framework Lee et al. (2025).

We train each dense decoder model for around 20 tokens per parameter, and follow a cosine-with-
linear-warmup learning rate schedule with a peak learning rate of 1e-2, decaying to 0.01 of the peak lr.
As described in the "Honeycrisp" model definitions, we use a muP-style parameterization to achieve
learning rate transfer as we scale up the models. The model architecture is similar to the LLaMA
series, with Swi-GLU FFNs, RoPE positional encodings, and Grouped Query Attention (GQA) using
a key/value-to-query ratio of 1:8.

Compute Budget Paramters Tokens

5.64× 1021 6.4B 147B
1.90× 1022 12.6B 252B
7.04× 1022 23.3B 503B
1.74× 1023 36.8B 786B
7.34× 1023 77.8B 1573B

B DECONTAMINATION

We perform n-gram decontamination against our test sets using n-grams in token-space (according
to our tokenizer). We drop entire documents on collision with a single 16-gram from the MMLU
test-set or 26-gram for Math-500. Through visual examination we found that shorter n-gram overlaps
were too aggressive (noting that our tokenizer e.g. splits numbers into single digits).

C CUSTOM EXTRACTION

We implement a custom HTML extraction pipeline and apply it to all pages from the Wikipedia
domain found in our general web-crawl. Specifically, we first apply a lightweight pre-processing step
to remove script, style, unmatched meta tags, HTML comments, links, and images. We then use the
ReaderLM-v2 (Wang et al., 2025) to extract the coarsely simplified HTML into structured plain-text.

We note that this approach improves on recall (especially for tables and some information-boxes)
over publicly available Wikipedia extractions, including the one recently provided by the Wikimedia
organization Wikimedia.

D DETOKENIZE SUBSET VS RANDOM SUBSET

Table 11: In Figure 1 we show the effect of retrieving from a subset similar to that seen in pre-training
for that compute budget. Specifically, we take a random subset that is the same size of what is
seen during pre-training for each source. In this table, we compare at the smallest 5.64 × 1021

compute budget between random subset and detokenizing the exact pre-training data and using that
for retrieval. The results are fairly similar, and the larger gap in Math-500 may be attributed to
randomness or contamination. Note that this gap will shrink as the compute budget increases because
the two datasets will have increasing overlap.

Data MMLU Math-500 SimpleQA

Random subset 59.0 32.0 35.5
Exact subset 58.6 26.8 33.9

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E FITS BY MMLU CATEGORIES

Table 12: Pre-training vs. retrieval compute ratios for STEM. Sigmoid fit (min=0.25, max=0.9544):

y = 0.25+
0.7044

1 + exp
(
− 0.7351 · (log10(x)− 22.9965)

) . Average compute ratio is 6.16×, geometric

mean is 5.78×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.4247 0.5493 3.85× 1022 6.82×
1.90× 1022 0.5367 0.6399 1.94× 1023 10.23×
7.04× 1022 0.5788 0.6749 3.68× 1023 5.23×
1.74× 1023 0.6376 0.7197 8.71× 1023 5.01×
7.34× 1023 0.7056 0.7705 2.58× 1024 3.52×

Table 13: Pre-training vs. retrieval compute ratios for Humanities. Sigmoid fit (min=0.25,

max=0.9377): y = 0.25 +
0.6877

1 + exp
(
− 0.8008 · (log10(x)− 22.1259)

) . Average compute ratio

is 2.52×, geometric mean is 2.44×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.5277 0.6013 1.51× 1022 2.69×
1.90× 1022 0.6205 0.6847 6.33× 1022 3.33×
7.04× 1022 0.6961 0.7398 1.81× 1023 2.57×
1.74× 1023 0.7420 0.7788 4.24× 1023 2.44×
7.34× 1023 0.7871 0.8169 1.14× 1024 1.55×

Table 14: Pre-training vs. retrieval compute ratios for Social Sciences. Sigmoid fit (min=0.25,

max=0.9575): y = 0.25 +
0.7075

1 + exp
(
− 0.9563 · (log10(x)− 21.9772)

) . Average compute ratio is

3.51×, geometric mean is 3.42×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.5419 0.6555 1.93× 1022 3.42×
1.90× 1022 0.6770 0.7538 8.39× 1022 4.42×
7.04× 1022 0.7538 0.8192 2.86× 1023 4.07×
1.74× 1023 0.7983 0.8501 5.97× 1023 3.43×
7.34× 1023 0.8375 0.8828 1.63× 1024 2.22×

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 15: Pre-training vs. retrieval compute ratios for Other. Sigmoid fit (min=0.25, max=0.9114):

y = 0.25+
0.6614

1 + exp
(
− 0.8008 · (log10(x)− 22.2759)

) . Average compute ratio is 9.27×, geometric

mean is 8.96×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.4834 0.6418 5.53× 1022 9.80×
1.90× 1022 0.6046 0.7222 2.62× 1023 13.78×
7.04× 1022 0.6601 0.7598 6.17× 1023 8.77×
1.74× 1023 0.7006 0.7882 1.31× 1024 7.53×
7.34× 1023 0.7516 0.8271 4.76× 1024 6.48×

F MATH-500 CHECKER FOR USC

Table 16: Math-500 answers are open-ended so we use universal self-consistency (USC) (Chen et al.,
2023) in Table 6 with the reader model itself as the checker (Llama 3.1 8B). Here, we compare this
against using GPT-4.1 mini as the USC checker model.

Method Llama 3.1 8B
checker

GPT-4.1 mini
checker

Baseline 48.7 N/A
w/ self-consistency 55.9 62.2
w/ retrieval 56.7 N/A
w/ reranker 56.8 N/A
w/ reranker + self-cons. 64.3 69.7
w/ reranker + self-cons. + VR 64.4 71.8

G LIVECODEBENCH RESULTS

Table 17: Retrieving from the python portions of the Stack v2 (Lozhkov et al., 2024) and CommitPack
(Muennighoff et al., 2023a) to augment generation for LiveCodeBench Code Generation (Jain et al.,
2024).

Model Baseline Retrieval (k=3)

gpt-4o-2024-08-06 0.3793 0.4276

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H INTER-DOCUMENT CONSISTENCY

Figure 4: Inter-document consistency can be used to analyze retrieval and consistency. We apply
self-consistency on generating while retrieving from individual documents, and select the answer
from the most self-consistent document.

17


	Introduction
	Related Work
	Experimental Setup
	Datasets
	Retrieval Pipeline

	Pre-Training Experiments
	Learning from pre-training vs retrieval

	Test-Time Compute Experiments
	Learning from test-time compute vs pre-training
	A connection between retrieval and consistency

	Additional Analysis
	Better pre-training datasets are not necessarily better retrieval datasets
	Importance of extraction and crawling
	Robustness when scaling retrieval data

	Future work
	Pre-training details
	Decontamination
	Custom extraction
	Detokenize subset vs random subset
	Fits by MMLU Categories
	Math-500 checker for USC
	LiveCodeBench Results
	Inter-document consistency

