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ABSTRACT

Large language models learn from their vast pre-training corpora, gaining the
ability to solve an ever increasing variety of tasks; yet although researchers work
to improve these datasets, there is little effort to understand how efficient the pre-
training apparatus is at extracting ideas and knowledge from the data. In this work,
we use retrieval augmented generation along with test-time compute as a way to
quantify how much dataset value was left behind by the process of pre-training,
and how this changes across scale. We demonstrate that pre-training then retrieving
from standard and largely open-sourced datasets results in significant accuracy
gains in MMLU, Math-500, and SimpleQA, which persist through decontamination.
For MMLU we observe that retrieval acts as a ∼ 5x compute multiplier versus pre-
training alone. We show that these results can be further improved by leveraging
additional compute at test time to parse the retrieved context, demonstrating a 10
percentage point improvement on MMLU for the public LLaMA 3.1 8B model.
Overall, our results suggest that today’s pre-training methods do not make full use
of the information in existing pre-training datasets, leaving significant room for
progress.

1 INTRODUCTION

Large language models (LLMs) have consistently improved performance by scaling pre-training
compute (Hestness et al., 2017; Hoffmann et al., 2022; Kaplan et al., 2020). In parallel to scaling,
researchers have also made significant efforts to improve both the architectures and the datasets used
by these LLMs (Gu & Dao, 2023; Li et al., 2024; Raffel et al., 2020; Shazeer et al., 2017). While LLMs
are able to solve an incredible number of tasks, in their current form they have several limitations.
For example, they struggle with long-tail knowledge (Kandpal et al., 2023) and have limitations in
their ability to generalize, such as for the reversal curse (Berglund et al., 2023). Additionally, they
have been observed to have a log-linear scaling trend, meaning that larger amounts of compute are
necessary to make the same gains at larger scales. To understand whether these limitations come from
the quality of the datasets, it is important to explore whether further improvements can be unlocked
by using them beyond pre-training.

Taking advantage of the effort put into creating these sophisticated pre-training datasets, we explore
whether reusing them through retrieval at test-time can further improve performance. Additionally,
we test if supplementing with additional test-time compute results in further gains. Extra test-time
compute can be applied naturally to retrieval augmented generation by running multiple trials for
self-consistency while changing the retrieved documents across different trials. We apply this variety
of techniques on a set of publicly available pre-training datasets, to measure the potential impact of
the knowledge contained in them.

First, we pre-train models at various compute budgets and then use the same dataset for retrieval. We
see that retrieval further benefits our models when evaluating on MMLU, Math-500, and SimpleQA,
even though the models were pre-trained on the same data. We fit a power law to the base pre-training
models across compute budgets and compare against the gain from retrieval, showing that while on
average retrieval provides a ∼ 5x compute multiplier over pre-training when evaluating on MMLU,
the effectiveness degrades with scale.

Next, we use additional test-time compute on the pre-training data with a combination of retrieval and
self-consistency techniques. We evaluate our methods on a variety of downstream tasks that cover
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multiple domains, requiring both knowledge and reasoning abilities. With a Llama 3.1 8B reader
model, we use retrieval to achieve 74.0% on SimpleQA, as well as a 10.5 percentage point gain on
MMLU, a 15.7 percentage point gain on MATH-500, and a 6.2 percentage point gain on GPQA.

Lastly, we analyze our findings to provide suggestions for further improving these datasets. We are
able to relate performance gaps between controlled experiments back to specific stages of the dataset
creation pipeline. Altogether, our work suggests that there is room for improving both pre-training
datasets and learning methods using these datasets.

2 RELATED WORK

Classical pre-training scaling law studies established relationships for how loss falls with training
compute, data, and parameters (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022).
More recent analyses factor in deployment costs in high-inference-demand settings Sardana et al.
(2024).

Meanwhile, retrieval-augmented approaches externalize knowledge to non-parametric memory (Guu
et al., 2020; Lewis et al., 2020; Ram et al., 2023), trading additional test time compute for improved
performance on knowledge-intensive tasks. More recently, Shao et al. (2024) demonstrated that
scaling up the datastore can reliably further improve performance on knowledge-intensive tasks,
while Lyu et al. (2025) demonstrated that a compact subset of pre-training data can be used in a
practical way with a minimal retrieval setup to improve performance on reasoning benchmarks.

Recent work (Brown et al., 2024; Snell et al., 2024) has shown that scaling test-time compute can be
an efficient way of improving LLM performance. Specifically, they suggest parallelizing inference
compute across trials, and sequentially iterating on a model’s output. Results can then be aggregated
with techniques like self-consistency (Wang et al., 2022; Chen et al., 2023) or verifiers. Retrieval
is naturally suited to both as it can be parallelized across retrieved documents, while sequentially
iterating over the search query to improve the retrieved documents.

Large-scale commercial "Deep Research" systems from companies like Google, OpenAI, and Per-
plexity likely apply all of the above by abstracting retrieval behind tool-use APIs and allowing the
model direct control over the tools along with additional test-time compute.

In this paper, we first take inspiration from the classical pre-training scaling law studies, and begin
to characterize the joint scaling of pre-training and simple retrieval given a fixed and identical data
corpus. We also explore which forms of simple test-time compute allow us to most effectively leverage
the retrieval stores, and whether these conclusions generalize to settings where the pre-training corpus
differs from the retrieval datastore.

3 EXPERIMENTAL SETUP

3.1 DATASETS

We use the exact same datasets for both pre-training and retrieval. We include the standard webcrawl
based large-scale datasets DCLM-baseline and FineWeb-edu (deduplicated versions for both), fol-
lowed by more specialized sources. These include arXiv, peS2o, PubMed Central, Stack Exchange,
and Wikipedia. Lastly, we include AlgebraicStack, AutoMathText, FineMath-3+, FineMath-4+,
OpenWebMath, and StackMathQA to improve mathematics coverage. Additional information on the
datasets such as token count and pre-training mixing ratios can be found in Table 1.

3.2 RETRIEVAL PIPELINE

We use Qwen3 Embedding 0.6B and Qwen3 Reranker 0.6B (Zhang et al., 2025a) as the embedding
and reranker models. We use FAISS FlatIP (Johnson et al., 2019) for indexing to retrieve the top 100
documents per dataset (or shard of a dataset) before combining across all datasets through sorting
by similarity score. This is equivalent to having all datasets in the same index and retrieving the top
100, but is more practical due to compute constraints. Then if applicable, we rerank the top 100
documents across all datasets to achieve our final document ordering.
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Table 1: Pre-training datasets used. Tokens refers to the actual size of the dataset, all of which is
typically used during retrieval. Epochs refers to the number of epochs taken for the largest pre-training
run. Epochs for smaller models are scaled down proportionally.

Dataset Tokens Epochs
Web Crawl Based

DCLM-baseline (dedup) (Li et al., 2024) 764.9B 0.88
FineWeb-edu (dedup) (Penedo et al., 2024) 197.6B 0.80

Additional Sources

arXiv 28.7B 1.10
peS2o (Soldaini & Lo, 2023) 71.9B 1.31
PubMed Central 22.5B 2.72
Stack Exchange 11.8B 7.98
Wikipedia 21.7B 3.63

Math

AlgebraicStack (Azerbayev et al., 2023) 9.9B 6.38
AutoMathText (Zhang et al., 2025b) 6.0B 13.11
FineMath-3+ (Allal et al., 2025) 36.5B 1.72
FineMath-4+ (Allal et al., 2025) 10.0B 11.05
OpenWebMath (Paster et al., 2023) 13.5B 2.91
StackMathQA (Zhang, 2024) 0.7B 558.67

4 PRE-TRAINING EXPERIMENTS
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Figure 1: Retrieval on the pre-training dataset can substantially improve upon the performance of the
base model. However, the exact benefit depends on the type of task.

We aim to measure the knowledge contained in pre-training datasets by first pre-training on it,
then also retrieving (with reranker) on it during test time. In Figure 1 we measure performance on
MMLU (Hendrycks et al., 2020), Math-500 (Lightman et al., 2023), and SimpleQA (Wei et al., 2024)
across compute budgets, comparing the base model with retrieval on all our datasets, retrieval on a
decontaminated version of all our datasets, and retrieval on a subset approximately equivalent to the
unrepeated pre-training dataset. Overall, we find that retrieval can help on all three tasks, though to
different degrees.

Retrieving from the full dataset leads to large gains on all tasks, but the model sees more data than
the base model sees in pre-training. We account for this by retrieving from a subset similar to the
unrepeated pre-training dataset, represented by the light blue lines in Figure 1. Interestingly, this
achieves similar performance to retrieving on the full dataset for MMLU and Math-500. On the other
hand, performance on SimpleQA is a piecewise function because SimpleQA depends heavily on
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retrieving from Wikipedia, and the smaller two models only see a fraction of Wikipedia while the
larger three models see at least one epoch of Wikipedia.

Retrieval as a compute multiplier Given the common use of MMLU as a proxy for pre-training
quality, we use it to measure the effect of retrieval as a compute multiplier for the base model. We
fit a bounded sigmoid function to the base model’s MMLU performance as a function of FLOPs,
and then measure the amount of pre-training compute needed to match each existing base model
augmented with retrieval. In Table 2 we find that the average compute multiplier across the five
models of different scales is 4.86x, and the geometric mean is 4.66x. However, this compute ratio
decreases as the model scales, with retrieval providing only a 2.88x compute multiplier at the largest
scale. While retrieval provides large compute savings, as the base model is scaled up, retrieval faces
greater diminishing returns than just the base model. It is important to notice that retrieval does not
provide a flat or strictly decreasing benefit across compute budgets. There is an initial increase in
retrieval efficiency, suggesting that it benefits from better base models.

Table 2: We fit the base model performance to a sigmoid function with bounds to get y =

0.25 +
0.6907

1 + exp
(
− 0.7968 · (log10(x)− log10(2.48× 1022))

) , where 0.25 is the random baseline

and 0.9407 is the maximum achievable accuracy (Gema et al., 2024). We use this equation to
measure retrieval as a compute multiplier for the base model. The average compute ratio is 4.86x, the
geometric mean is 4.66x, and the median is 4.74x.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.4873 0.6063 2.98× 1022 5.28x
1.90× 1022 0.6021 0.6943 1.36× 1023 7.17x
7.04× 1022 0.6623 0.7410 3.34× 1023 4.74x
1.74× 1023 0.7107 0.7775 7.35× 1023 4.23x
7.34× 1023 0.7633 0.8186 2.11× 1024 2.88x

Decontamination A common question is whether retrieval gains come from retrieving text con-
taining exact overlap with the test data. We decontaminate the retrieved documents for MMLU and
Math-500 through n-gram overlap with the questions, as detailed in Appendix B. In Figure 1, the red
decontaminated retrieval line is close to the dark blue full retrieval line for MMLU, demonstrating
that the gains are not attributable to simple contamination. Although Math-500 shows signs of
more significant contamination, retrieving against a decontaminated training set still shows a very
meaningful improvement over the baseline. We do note that our analysis shows that 14.1% of MMLU
and 32.0% of Math-500 can be found in our commonly used open-source pre-training datasets,
highlighting the importance of strictly decontaminated (or held out) evaluation sets for pre-training
science. We choose to omit n-gram overlap decontamination analysis for SimpleQA due to the nature
of the evaluation task.

4.1 LEARNING FROM PRE-TRAINING VS RETRIEVAL

In an effort to determine how retrieval can improve model performance, compared to scaling up
model size and compute budget, we analyzed the accuracy of the trained models on MMLU, broken
down into question categories. The results in Figure 2 show that across categories, the addition of
retrieval gives a comparable boost in accuracy to that of a significant increase in pre-training compute
budget.

Since retrieval involves a memory storage mechanism, we might expect it to provide most benefit for
problems requiring good recall of facts, rather than reasoning abilities. However, in Table 3 we see
that retrieval is a better compute multiplier for STEM than for humanities or social sciences, and in
Figure 2 the gap between retrieval and base accuracy is also wider for STEM than for humanities.
Such knowledge may be harder to absorb during pre-training, and in contrast to long tail facts in
SimpleQA, retrieval expanding the context may also function as additional processing rather than
just storage.
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Table 3: Summary of pre-training vs retrieval compute ratios across MMLU categories. Values
show how many times more compute the base model would need to match retrieval performance.
Calculated using category-specific bounded sigmoids (min = 0.25; max: STEM 0.9544, Humanities
0.9377, Social 0.9575, Other 0.9114, All 0.9407).

Compute Budget STEM Humanities Social Other All

5.64× 1021 6.82x 2.69x 3.42x 9.80x 5.28x
1.90× 1022 10.23x 3.33x 4.42x 13.78x 7.17x
7.04× 1022 5.23x 2.57x 4.07x 8.77x 4.74x
1.74× 1023 5.01x 2.44x 3.43x 7.53x 4.23x
7.34× 1023 3.52x 1.55x 2.22x 6.48x 2.88x

Average 6.16x 2.52x 3.52x 9.27x 4.86x
Geometric Mean 5.78x 2.44x 3.42x 8.96x 4.66x
Median 5.23x 2.57x 3.43x 8.77x 4.74x

Figure 2: MMLU Breakdown by category of impact of retrieval addition and compute budget.
Retrieval provides a strong lift, and the difference between retrieving from a random subset of the
data store and the full set is small and diminishing with scale.

To investigate this surprising observation, we calculated the increase in MMLU accuracy provided by
full retrieval, for different subject areas, with a 6.4B model. The top ten are shown in Table 4. We
also include the corresponding accuracy increase provided by subset retrieval. Here we can see a mix
of different subject types - those that might be expected to require good knowledge recall, such as law
and medicine, along with those that might require logical reasoning, such as physics, and those that
might require more abstract reasoning, such as philosophy. A similar mixture of types of subjects
may be seen for other model sizes, suggesting no strong correlation between subject type, model size,
and the benefits of retrieval.

Table 4: Top ten categories ordered by change in MMLU accuracy after introduction of full retrieval

Subjects Impact of full retrieval Impact of subset retrieval

Medical genetics +21.1 +19.5
Miscellaneous +19.2 +17.8
World religions +18.5 +19.6
Philosophy +17.9 +17.1
US foreign policy +17.7 +16.1
International law +17.0 +17.3
High school physics +16.9 + 5.7
Virology +16.9 +15.2
College physics +16.8 +14.2
College medicine +16.6 +11.8
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We also compared the MMLU answers between the 6.4B and 12.6B models, with and without
retrieval, focusing on problems where the smaller base model gave an incorrect answer. We identified
problems where the addition of retrieval corrected the answer, but the increase in model size did not,
and vice versa. The main subjects of the former group were professional law, professional psychology,
high-school macroeconomics, philosophy, and high-school mathematics. The main subjects of the
latter group were professional law, professional psychology, moral scenarios, elementary mathematics,
and high school statistics. Both groups have a mix of recall and reasoning problems, with much
overlap. This suggests that there is not a strong bias for what kinds of problem retrieval can help with
compared to increasing model size.

In total, increasing model size changed answers for 39.7% of MMLU problems, whereas adding
retrieval changed answers for 28.1% of the problems. A similar analysis for MATH-500 showed that
increasing model size changed answers for 39.7% of the problems, whereas adding retrieval changed
answers for 28.7% of the problems. This suggests retrieval overall has less of an effect on model
behavior than increasing model size. Furthermore, it suggests that in areas where retrieval does not
help, the problem is more that the model ignores the additional context, rather than the additional
context being misleading. Future work could involve encouraging models to better utilize retrieved
context, possibly through prompt engineering or attention weighting.

5 TEST-TIME COMPUTE EXPERIMENTS

Table 5: Comparing baseline reader model performance against retrieval with a variety of test-time
compute options. All evaluations use chain-of-thought reasoning. We use Llama 3.1 8B instruct as
the reader model. MMLU results are reported as macro average over subjects. VR refers to using
variance reduction techniques such as MMR and bagging.

Method MMLU
STEM

MMLU
Humanities

MMLU
Social

MMLU
Other

MMLU
All

Baseline 67.3 71.5 76.6 73.0 71.6
w/ self-consistency 72.3 74.8 79.3 76.4 75.3
w/ retrieval 73.6 74.6 81.8 77.6 76.6
w/ reranker 73.7 76.3 83.4 79.2 77.7
w/ reranker + self-cons. 78.7 78.7 85.8 81.9 81.0
w/ reranker + self-cons. + VR 80.2 79.5 87.4 82.3 82.1

Table 6: Continuation of Table 5. GPQA, and Math-500 results are over 10 trials.

Method SimpleQA Math-500 GPQA
Bio.

GPQA
Chem.

GPQA
Phys.

GPQA
All

Baseline 1.5 48.7 46.2 26.4 28.3 30.6
w/ self-consistency N/A 55.9 46.3 28.1 28.4 31.4
w/ retrieval 65.7 56.7 45.1 27.3 34.0 33.2
w/ reranker 74.0 56.8 46.7 28.6 36.0 34.8
w/ reranker + self-cons. N/A 64.3 48.5 30.1 36.8 36.1
w/ reranker + self-cons. + VR N/A 64.4 49.7 29.6 38.3 36.8

Knowing the limitations of learning with just pre-training, we attempt to better quantify the knowledge
contained in these datasets by applying additional test-time compute on top of retrieval. If the model
is able to answer a question with retrieval and test-time compute, the knowledge required to do
so is likely in the dataset. In this section, we use Llama 3.1 8B instruct (Grattafiori et al., 2024)
as the reader model due to its performance relative to its size, making it more practical to apply
test-time compute. We then augment it with retrieval as described in Section 3, and parallel inference
with majority voting to select an answer (self-consistency). In addition to evaluating on MMLU,
SimpleQA, and Math-500, we also evaluate on GPQA (Rein et al., 2024).
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Table 5 and Table 6 show that the effects of self-consistency and retrieval are additive across all
tasks, with the exception of SimpleQA where self-consistency does not help because it is purely a
factuality benchmark. Perhaps surprisingly, the two techniques help generally across all other tasks
and sub-tasks, with little hint of specialization. Additionally, reranking seems to give a consistent
boost on top of retrieval across tasks. Lastly, we take advantage of retrieving multiple documents and
parallelizing trials by using older techniques like MMR (Carbonell & Goldstein, 1998) to increase
diversity, and bagging (Breiman, 1996) (randomizing over a subset of documents) to reduce variance;
these techniques give a further performance boost for MMLU and GPQA.

If we view retrieval as a tool for the LLM, then our methods use test-time compute to improve the tool
itself. This contrasts with self-consistency by itself, which parallelizes the model without additional
enhancement, as well as with deep research, which in addition to parallelizing also uses test-time
compute to use the tool for longer rather than to upgrade it. Retrieval is our vehicle through which
we can put in additional compute, and do it in a data driven way.

5.1 LEARNING FROM TEST-TIME COMPUTE VS PRE-TRAINING

Table 7: Compute efficiency gains for each method relative to baseline performance. Values represent
how many times more compute the baseline model would need to achieve the same performance as
each method. Calculated using fitted sigmoid equations for each MMLU category.

Method MMLU
STEM

MMLU
Humanities

MMLU
Social

MMLU
Other

MMLU
All

Baseline 1.00× 1.00× 1.00× 1.00× 1.00×
w/ self-consistency 2.62× 1.93× 1.63× 2.21× 2.10×
w/ retrieval 3.42× 1.85× 2.70× 3.02× 2.78×
w/ reranker 3.49× 2.67× 3.87× 4.72× 3.56×
w/ reranker + self-cons. 10.74× 4.65× 7.18× 11.34× 8.14×
w/ reranker + self-cons. + VR 15.72× 5.68× 11.66× 13.15× 11.10×

We can take the MMLU sigmoid fit from Section 4 to analyze Table 5. Although Llama 3.1 8B is
trained at a much higher tokens per parameter ratio than the models in Section 4, the sigmoid fit could
still be reasonable because calculating the compute ratio between retrieval (with reranker) and base
performance is within reason for MMLU (All). Additionally, estimates using our previous sigmoid
fits would be a lower bound for compute multipliers because of diminishing returns at higher tokens
per parameter counts.

Despite the different pre-training dataset and Llama being significantly overtrained, we see that
retrieval (with reranker) still functions as a 3.56x compute multiplier, similar to what would be
expected of a model with the same MMLU base accuracy in our pre-training setup in Section 4.
Though we do not know the details of the Llama 3.1 pre-training dataset, it is likely that there is
substantial overlap with the data we are retrieving from. Table 7 shows that, altogether, our methods
provide at least an 11x compute multiplier over the pre-trained baseline.

We also see that the different test-time methods learn or utilize data differently from pre-training, as
the multipliers are different across the categories. Even the different test-time methods have different
behaviors, as both self-consistency and retrieval favor STEM and other, while the lift of reranker over
retrieval favors humanities, social sciences, and other.

5.2 A CONNECTION BETWEEN RETRIEVAL AND CONSISTENCY

While the previous results in this section demonstrate that self-consistency is a powerful tool for
improving performance, it can also be used as an analytical tool for retrieval. As displayed in
Appendix H, we can apply self-consistency on each individual document and rerank the documents
with it. In Table 8 we see that inter-document consistency selects better top-1 documents than
the reranker. However, this technique also requires a multiplicative number of additional trials, as
previously we ran a fixed number of trials on all documents combined, but now we are doing it per
document. We leave to future work ways to distill self-consistency into a more efficient reranker.
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Table 8: Inter-document consistency can act as a stronger reranker (k=1) than standard rerankers
from Zhang et al. (2025a); however, it requires calling the reader model many more times and is not
compute efficient when compared to self-consistency on all documents at once.

Reranker MMLU
STEM

MMLU
Humanities

MMLU
Social

MMLU
Other

MMLU
All

Qwen3 Reranker 0.6B 71.2 72.9 77.7 74.1 73.7
Inter-doc consistency 75.4 75.4 82.7 78.1 77.6

6 ADDITIONAL ANALYSIS

6.1 BETTER PRE-TRAINING DATASETS ARE NOT NECESSARILY BETTER RETRIEVAL DATASETS

Table 9: While FineWeb-edu is worse than DCLM when measuring pre-training performance, it is
just as good if not slightly better for retrieval. Retrieval is on top of Llama 3.1 8B instruct with k=10.
Pre-training numbers are 8B models trained for 1T tokens, as reported by Su et al. (2024).

Dataset Pre-training
MMLU

Retrieval
MMLU

Retrieval w/ reranker
MMLU

DCLM 53.4 74.5 76.4
FineWeb-edu 42.9 75.2 76.6

Our retrieval datasets were built for the purpose of pre-training, which raises the question of whether
better pre-training datasets make for better retrieval datasets. Table 9 suggests that this is not
necessarily the case, as FineWeb-edu is worse than DCLM for pre-training, but is as good if not
slightly better for retrieval. While DCLM contains more tokens than FineWeb-edu, prior work
(Muennighoff et al., 2023b; Fang et al., 2025) would suggest that this is not the reason for the gap
in pre-training performance, while the size advantage should not be harmful for retrieval. We leave
to future work how to determine the qualities that make a dataset good for pre-training or retrieval
specifically.

6.2 IMPORTANCE OF EXTRACTION AND CRAWLING

Table 10: Text extraction and crawling are important for creating good datasets. We vary the extraction
done on top of Wikipedia, as well as how we expand the datastore. Retrieval uses reranker and is on
top of Llama 3.1 8B instruct with k=6.

Dataset SimpleQA

Wikimedia Nov. 2023 55.4
OLM June 2025 59.1
Custom June 2025 69.0
Custom + All Sources 73.7
Custom + Golden Links 85.2

We investigate the importance of earlier stages of dataset creation through a case study of retrieval
for SimpleQA. As constructed, over 70% of the answers in SimpleQA can be found on Wikipedia.
However, many works use out-of-date or pre-extracted versions of Wikipedia. This can lead to
missing data, especially when the crucial piece of information comes from specialized elements.

We compare Wikimedia (Nov. 2023) (Wikimedia-Foundation) and OLM (June 2025) (Thrush et al.,
2022), two of the most popular Wikipedia extractions on HuggingFace, against a custom extracted
Wikipedia (June 2025) described in Appendix C. Qualitatively, we find that existing extractions often
fail to extract elements like bullet points, tables, and info boxes. Table 10 quantitatively demonstrates
this with up to a 13.6 percentage point difference in SimpleQA performance by simply changing the
version of the Wikipedia dataset.
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Next, we compare expanding the retrieval datastore by adding our other sources against adding
non-Wikipedia golden links provided by SimpleQA. Table 10 shows that there is an 11.5 percentage
point difference, and we find that only a small fraction of the non-Wikipedia golden links are present
in CommonCrawl. This suggests that open-source datasets could be further improved at the web
crawling stage.

6.3 ROBUSTNESS WHEN SCALING RETRIEVAL DATA

48B 96B 191B 382B 765B
DCLM Dedup Tokens in Datastore

0.4

0.5

0.6

0.7

0.8

Si
m

pl
eQ

A

Custom Wikipedia Baseline
Custom Wikipedia + DCLM

Custom Wikipedia + Golden Baseline
Custom Wikipedia + Golden + DCLM

Full DCLM Baseline

Figure 3: For SimpleQA, our retrieval system is fairly robust to scaling the retrieval datastore, even if
the new data does not contain useful information. Our custom Wikipedia contains 22B tokens, and
additional DCLM data helps a little, or when also starting with additional golden link data, hurts only
a little.

Given that most of SimpleQA can be solved with Wikipedia and the additional provided golden links,
we investigate the effect of additional web crawl data on the retrieval system. In Figure 3 we see that
the additional data has only a small distracting effect, as the accuracy on SimpleQA stays close to the
baseline. However, we acknowledge that SimpleQA measures factual knowledge, and the scaling
effect may be different for reasoning tasks.

7 FUTURE WORK

We have shown that pre-training does not fully utilize all the knowledge contained within today’s open-
source pre-training datasets. This would suggest that there are still many algorithmic improvements
left to explore. Additionally, in our process of analyzing data quality, we have also shown that there
is room for improving datasets, at the very least in terms of crawling and extraction.

Within this work, we explore a limited number of simple test-time techniques on a limited set of
evaluations. However, it is quite likely that applying advanced techniques like query rewriting,
test-time training, and reinforcement learning for retrieval will further boost the performance on the
same datasets (Hardt & Sun, 2023; Ma et al., 2023). We also believe that these findings apply to even
broader domains. Initial results in Appendix G suggest that retrieving from pre-training datasets also
benefits code generation.

Beyond improvements, we would also like to better understand how data is used during pre-training.
Our measurement of retrieval as a compute multiplier parallels that of well-tuned Mixture-of-Experts
models (Clark et al., 2022). Additional exploration in this area could uncover whether these two
methods have significant overlap in terms of data usage.
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A PRE-TRAINING DETAILS

We follow a recipe very similar to that open-sourced as the "Honeycrisp" model series in the Axlearn
training framework Lee et al. (2025).

We train each dense decoder model for around 20 tokens per parameter, and follow a cosine-with-
linear-warmup learning rate schedule with a peak learning rate of 1e-2, decaying to 0.01 of the peak lr.
As described in the "Honeycrisp" model definitions, we use a muP-style parameterization to achieve
learning rate transfer as we scale up the models. The model architecture is similar to the LLaMA
series, with Swi-GLU FFNs, RoPE positional encodings, and Grouped Query Attention (GQA) using
a key/value-to-query ratio of 1:8.

Compute Budget Paramters Tokens

5.64× 1021 6.4B 147B
1.90× 1022 12.6B 252B
7.04× 1022 23.3B 503B
1.74× 1023 36.8B 786B
7.34× 1023 77.8B 1573B

B DECONTAMINATION

We perform n-gram decontamination against our test sets using n-grams in token-space (according
to our tokenizer). We drop entire documents on collision with a single 16-gram from the MMLU
test-set or 26-gram for Math-500. Through visual examination we found that shorter n-gram overlaps
were too aggressive (noting that our tokenizer e.g. splits numbers into single digits).

C CUSTOM EXTRACTION

We implement a custom HTML extraction pipeline and apply it to all pages from the Wikipedia
domain found in our general web-crawl. Specifically, we first apply a lightweight pre-processing step
to remove script, style, unmatched meta tags, HTML comments, links, and images. We then use the
ReaderLM-v2 (Wang et al., 2025) to extract the coarsely simplified HTML into structured plain-text.

We note that this approach improves on recall (especially for tables and some information-boxes)
over publicly available Wikipedia extractions, including the one recently provided by the Wikimedia
organization Wikimedia.

D DETOKENIZE SUBSET VS RANDOM SUBSET

Table 11: In Figure 1 we show the effect of retrieving from a subset similar to that seen in pre-training
for that compute budget. Specifically, we take a random subset that is the same size of what is
seen during pre-training for each source. In this table, we compare at the smallest 5.64 × 1021

compute budget between random subset and detokenizing the exact pre-training data and using that
for retrieval. The results are fairly similar, and the larger gap in Math-500 may be attributed to
randomness or contamination. Note that this gap will shrink as the compute budget increases because
the two datasets will have increasing overlap.

Data MMLU Math-500 SimpleQA

Random subset 59.0 32.0 35.5
Exact subset 58.6 26.8 33.9
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E FITS BY MMLU CATEGORIES

Table 12: Pre-training vs. retrieval compute ratios for STEM. Sigmoid fit (min=0.25, max=0.9544):

y = 0.25+
0.7044

1 + exp
(
− 0.7351 · (log10(x)− 22.9965)

) . Average compute ratio is 6.16×, geometric

mean is 5.78×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.4247 0.5493 3.85× 1022 6.82×
1.90× 1022 0.5367 0.6399 1.94× 1023 10.23×
7.04× 1022 0.5788 0.6749 3.68× 1023 5.23×
1.74× 1023 0.6376 0.7197 8.71× 1023 5.01×
7.34× 1023 0.7056 0.7705 2.58× 1024 3.52×

Table 13: Pre-training vs. retrieval compute ratios for Humanities. Sigmoid fit (min=0.25,

max=0.9377): y = 0.25 +
0.6877

1 + exp
(
− 0.8008 · (log10(x)− 22.1259)

) . Average compute ratio

is 2.52×, geometric mean is 2.44×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.5277 0.6013 1.51× 1022 2.69×
1.90× 1022 0.6205 0.6847 6.33× 1022 3.33×
7.04× 1022 0.6961 0.7398 1.81× 1023 2.57×
1.74× 1023 0.7420 0.7788 4.24× 1023 2.44×
7.34× 1023 0.7871 0.8169 1.14× 1024 1.55×

Table 14: Pre-training vs. retrieval compute ratios for Social Sciences. Sigmoid fit (min=0.25,

max=0.9575): y = 0.25 +
0.7075

1 + exp
(
− 0.9563 · (log10(x)− 21.9772)

) . Average compute ratio is

3.51×, geometric mean is 3.42×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.5419 0.6555 1.93× 1022 3.42×
1.90× 1022 0.6770 0.7538 8.39× 1022 4.42×
7.04× 1022 0.7538 0.8192 2.86× 1023 4.07×
1.74× 1023 0.7983 0.8501 5.97× 1023 3.43×
7.34× 1023 0.8375 0.8828 1.63× 1024 2.22×
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Table 15: Pre-training vs. retrieval compute ratios for Other. Sigmoid fit (min=0.25, max=0.9114):

y = 0.25+
0.6614

1 + exp
(
− 0.8008 · (log10(x)− 22.2759)

) . Average compute ratio is 9.27×, geometric

mean is 8.96×.

Compute Budget Baseline
MMLU

Retrieval
MMLU

Compute for base
to match retrieval Compute Ratio

5.64× 1021 0.4834 0.6418 5.53× 1022 9.80×
1.90× 1022 0.6046 0.7222 2.62× 1023 13.78×
7.04× 1022 0.6601 0.7598 6.17× 1023 8.77×
1.74× 1023 0.7006 0.7882 1.31× 1024 7.53×
7.34× 1023 0.7516 0.8271 4.76× 1024 6.48×

F MATH-500 CHECKER FOR USC

Table 16: Math-500 answers are open-ended so we use universal self-consistency (USC) (Chen et al.,
2023) in Table 6 with the reader model itself as the checker (Llama 3.1 8B). Here, we compare this
against using GPT-4.1 mini as the USC checker model.

Method Llama 3.1 8B
checker

GPT-4.1 mini
checker

Baseline 48.7 N/A
w/ self-consistency 55.9 62.2
w/ retrieval 56.7 N/A
w/ reranker 56.8 N/A
w/ reranker + self-cons. 64.3 69.7
w/ reranker + self-cons. + VR 64.4 71.8

G LIVECODEBENCH RESULTS

Table 17: Retrieving from the python portions of the Stack v2 (Lozhkov et al., 2024) and CommitPack
(Muennighoff et al., 2023a) to augment generation for LiveCodeBench Code Generation (Jain et al.,
2024).

Model Baseline Retrieval (k=3)

gpt-4o-2024-08-06 0.3793 0.4276
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H INTER-DOCUMENT CONSISTENCY

Figure 4: Inter-document consistency can be used to analyze retrieval and consistency. We apply
self-consistency on generating while retrieving from individual documents, and select the answer
from the most self-consistent document.
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