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Abstract

We study the (Lg, L1)-smoothness condition introduced by Zhang-He-Sra-Jadbabai in 2020 in the
setting of loss functions arising in deep learning. Theoretical work on (Lg, L1)-smoothnes has
focused on convergence guarantees for functions which satisfy this condition. In this paper we
provide theoretical analysis of the condition in the setting of feedforward neural networks of depth
at least 2, with either L2 or cross-entropy loss, and find the (Lg, L; )-smoothness condition is not
satisfied.

1. Introduction

The two properties most prized in the field of optimization are convexity and smoothness'. Many
desirable convergence results have been proved for functions satisfying both of these conditions.

Meanwhile, in the past decade, deep learning has astonished experts and laypeople alike with
its power and versatility. Understanding how deep neural networks work is of great interest, and
it would be very desirable to apply the tools of optimization theory to understand the convergence
properties of deep neural networks.

At present this is usually not possible. This is because many powerful results in optimization
theory assume the function being optimized is smooth and convex, while it is well established that
the loss function of deep neural networks is neither smooth nor convex. Therefore, it would be useful
to develop weaker notions of smoothness and convexity, that both hold for deep neural networks and
for which good convergence guarantees can be proved.

This motivated Zhang-He-Sra-Jadbabai [12] to introduce the (L, L1)-smoothness condition in
2020. In this promising approach, they succeeded both to provide empirical evidence that this form
of smoothness is satisfied by deep neural networks, as well as later prove good convergence bounds
for functions that satisfy this condition.

Motivated by the expectation that deep neural networks satisfy this condition, expressed for
example in [2] and [3], a considerable amount of work has been done proving convergence bounds
under the (L, L1) condition, for several different optimizers. Groups including Wang-Zhang-Zhang-
Meng-Ma-Chen in [11] and Faw-Rout-Caramanis-Shakkottai in [4] have extended the work of
Zhang-He-Sra-Jadbabai, and succeeded in proving good convergence guarantees for functions that
satisfy this condition.

However there has been limited theoretical verification that deep neural networks satisfy the
(Lo, L1)-smoothness condition. In 2022 Patel-Zhang-Tian gave two examples of neural network

1. Smoothness is used in some communities to refer to a function that is infinitely differentiable, and in others to refer
to a function whose second derivatives are uniformly bounded. In this paper, we use the word smooth in the second
sense, as is prevalent in the optimization community. This is a perennial source of misunderstanding so we flag the
issue here and review definitions in Section A.1 to minimize confusion.
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loss functions L that are not (Lo, L1 )-smooth, in [10]. Their work showed it is not the case that all
loss functions arising in deep learning satisfy the (Lg, L1) condition, but left open the question of
whether the networks they found were exceptional, or reflected a general property of loss functions
arising in deep learning.

Building on their work, in this paper we examine the general case of deep feedforward neural
networks. We show that for deep feedforward neural networks, the failure of the (Lg, L;)-smoothness
condition that Patel-Zhang-Tian observed in their examples is not the exception but the rule.

The high level picture is the following: if a function L : RY — R satisfies the (Lo, L1)-
smoothness condition, then starting at the origin and going in any direction in the parameter space
R?, the norm of the Hessian grows at most linearly in the norm of the gradient. In this paper, in the
case of deep feedforward neural networks, we identify directions in the parameter space where the
norm of the Hessian of the loss function L grows at least quadratically in the norm of the gradient. In
this way, we show that the loss function of deep feedforward neural networks does not satisfy the
(Lo, L1)-smoothness condition.

We note that because on any compact set it is possible to choose Ly and L such that the loss
function associated to a neural network of depth > 3 satisfies the (Lo, L1)-smoothness condition
for that choice of Ly and L1, in order to prove our main results, by necessity we must analyze the
relative magnitude of the gradient and hessian over a non-compact subset of the parameter space.

We also note that if for a chosen Ly and L, the loss function fails to satisfy the (Lg, L1)-
smoothness condition at a point p in the parameter space, then by continuity of derivatives it will
also fail to satisfy that (Lg, L;)-smoothness condition on an open ball of positive radius centered at
p- In particular, it will fail to satisfy the (Lo, L1)-smoothness condition for that choice of Ly and L,
on a set of positive measure.

We now provide the statements of the main results Theorem 12 and Theorem 14 proved in
Appendices C and D.

Our first contribution is to show that for deep feedforward networks with L2 loss, the (Lo, L)
condition is not satisfied.

Theorem [Theorem 12] In the setting of a regression problem, consider any feedforward neural
network of depth £ > 2, with twice differentiable activation function o : R — R satisfying Assumption
1. The L2 loss function L of this network does not satisfy the (Lg, L1 )-smoothness condition, for any
choice of Ly and L.

Our second contribution is to show that for deep feedforward networks with cross-entropy loss,
the (Lo, L1 )condition is not satisfied.

Theorem [Theorem 14] In the setting of a classification problem with b > 2 classes, consider any
feedforward neural network of depth £ > 2, with twice differentiable activation function o : R — R
satisfying Assumption 1. The cross-entropy loss function L of this network does not satisfy the
(Lo, L1)-smoothness condition, for any choice of Ly and L.

Our third contribution is that in both cases not only do they not satisfy the (Lo, L) condition
for any choice of L and L1, but they do not satisfy the generalized /-smoothness condition of [6] for
any subquadratic function ¢. In other words, these loss functions lie exactly in the types of functions
they showed can fail to have good convergence properties.
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When there are no hidden layers, we show in Theorems 13 and 15 that for both L2 and cross-
entropy loss, not only are there constants Lg and L; such that the loss function L satisfies the
(Lo, L1)-smoothness condition, but in fact there is a constant m such that L is already m—smooth.

Thus for feedforward neural networks with any number of hidden layers other than one, we
establish whether or not L satisfies the (L, L1)-smoothness condition. The case of a feedforward
neural network with one hidden layer is more challenging because certain derivatives become more
complex in that case. Thus we restrict our analysis to the setting of feedforward architectures with
zero or at least 2 hidden layers. The case of architectures with skip connections is even more
challenging, for similar reasons. Thus we leave investigation of these cases to future work.

In the next section, we discuss related work. In Section 3 we give an overview of the strategy we
will use to analyze this problem. In Appendix A we provide background and notation, in Appendix
B we compute several derivatives essential to our analysis, and in Appendices C and D we provide
proofs of our main results.

2. Related work

To date, none of the weaker smoothness conditions discussed in Section A.1 have been successfully
verified for deep neural networks. In response, in 2020 Zhang-He-Sra-Jadbabai proposed a novel
relaxation of the classical notion of smoothness, along with reasons one may hope that this condition
is satisfied by deep neural networks, in [12] . Their innovation is to allow the local smoothness
constant to increase with the gradient norm.

Definition 1 (see [12]) Given two real numbers Lg and L1, a twice differentiable function L : RY —
R is (Lo, L1)-smooth if the Hessian of L, denoted HL, satisfies the inequality

IHL(p)|| < Lo+ L1 VL(p)| (D

for all p € RY, where the norm on the left is taken to be the operator norm of the matrix and the
norm on the right is the L? norm of the vector

Remark 2 All matrix norms are equivalent up to constants, that is, for any two matrix norms || - || o
and || - || B, there exist constants q and r such that

ql[Ml[a < [[M]|p < r|[M]|a,

for all matrices M. Therefore, one can equivalently use any matrix norm on the left hand side of
Equation 1, up to rescaling the constants Ly and Ly. In this paper, we will take the Frobenius norm
on the left side and the L? norm on the right side of Equation 1.

After introducing this condition, Zhang-He-Sra-Jadbabai went on to prove upper and lower
bounds convergence for functions L that satisfy the (Lg, L1)-smoothness condition for some choice
of Ly and Lq, for several different optimizers. They consider gradient descent, clipped gradient
descent, as well as stochastic versions of both.

They go on to provide empirical evidence that this condition is satisfied by deep neural networks.
In experiments on a variety of architectures and tasks, including image recognition and language
generation, they consider the (Lg, L1)-smoothness condition in the regions of the loss landscape
traversed during training and find evidence that it is satisfied.
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Because a condition which both allows us to prove convergence results and is satisfied by deep
neural networks has been long desired, this work is very appealing and a number of works have
expanded on this seminal work.

Following [12], several groups have gone on to provide analyses of the convergence properties
of additional optimizers, and under a wider range of assumptions, for functions that satisfy the
(Lo, L1)-smoothness condition. In [6], and [7], Li-Qian-Tian-Rakhlin-Jadbabaie proved convergence
results for additional optimizers, such as Adam, and under a wider range of assumptions, including
a generalization of the (Lo, L1)-smoothness condition. In related work, Faw-Rout-Caramanis-
Shakkottai developed new techniques allowing them to derive convergence bounds for SGD without
assuming uniform bounds on the noise support in [4].

There has been less attention on studying this new condition in the specific context of deep
neural networks. Since the (Lo, L1)-smoothness condition was introduced in [12], fewer groups
have analyzed the motivating hope that loss functions arising from deep neural networks satisfy the
(Lo, L1)-smoothness condition.

One group that did consider this question is Patel-Zhang-Tian, who gave a theoretical analysis of
the geometry of several loss functions and in doing so produced two examples of loss functions L
that do not satisfy the (Lo, L;)-smoothness condition in [10]. The first is a very simple feedforward
network with three linear layers and a single nonlinear layer, learning the simple dataset input O
output 0 with probability 1/2 and input 1 output 1 with probability 1/2.

The second is a 1-dimensional linear recurrent neural network, learning a similar dataset. In both
cases, they give a complete mathematical analysis of the smoothness of the resulting loss function
and conclude not only that the loss functions are not m-smooth for any m, but also do not satisfy the
(Lo, L1)-smoothness condition for any choice of Ly and L;.

In this paper, we show that these examples are not isolated, but in fact representative of the general
case. We prove that when the depth of the neural network is at least 3, the (Lo, L1)-smoothness
condition is not satisfied by feedforward neural networks.

2.1. Assumptions

Throughout this paper, we will assume that the activation function o is twice differentiable. We will
also often make the following assumption on the values of o and o’

Assumption 1 Assume that there is a constant ¢ such that o(c) = 0 but o’(¢) # 0.

In the remainder of this paper the constant ¢ will always denote the constant appearing in this
assumption.

In the setting of cross-entropy loss, the y-values represent probabilities. So in this case we make
the following assumption on the data.

Assumption 2
dout

Zymj =1foreverym=1,...,n.
j=1
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3. Roadmap

We provide an overview of our strategy for analyzing the (Lg, L1 )-smoothness of loss functions
arising from deep neural networks. First, we note that given any choice of Ly and L1, in order to
prove that a function L does not satisfy the (Lg, L1)-smoothness condition, it suffices to exhibit a
single point p at which the (L, L1)-smoothness condition is not satisfied.

To show that for any choice of Lo and L; there is a point p(r,, 1, at which L fails to be (Lo, L1)-
smooth for that choice of Ly and L1, we focus on a particular slice of the parameter space R?, along
which we can produce such points.

Once we restrict attention to this slice, the relevant derivatives become manageable to compute
and compare, and we complete the argument by directly computing them, and making judicious
choices in constructing our points of interest.

We now describe the family at the center of this paper. Consider any feedforward neural network
with 2 or more hidden layers. Within the parameter space R describing all possible choices of
parameters for the network, we identify a one dimensional affine linear subspace which we call k.

We define R to be the image of the following linear map p : R — R?. Given a real number
t € R, p(t) is the following choice of weights and biases.

For all but the last layer, we take the weights to be zero and the biases all equal to ¢, the constant
appearing in Assumption 1.

Mi=0,b=(c - ¢ if1<i</

In the last layer, we take M‘*! to be ¢ times a constant matrix M. We choose M carefully,
depending on the loss. Finally, we take all the biases equal to 0.

mii mig

M= - )
mp1 Mpk

M =M, V=0 3)

Once we have chosen the loss function and made our choice for M, which fixes the direction R,
we bound how fast the norm of the gradient and the norm of the Hessian grows in this direction, as
t — oo. This requires careful analysis of the derivatives of f,(x), which we carry out in Appendix B.

Once that has been completed, in Appendix C, we analyze the loss function L in the case of L2
loss. We choose the matrix M carefully, which determines a direction ‘R that we focus on for L2
loss. We show that in this direction the norm of the gradient grows at most linearly in ¢, while the
norm of the Hessian grows at least quadratically in . Hence we are able to conclude that the norm of
the Hessian grows at least quadratically in the norm of the gradient, making it impossible for the loss
function L to satisfy the (Lo, L1 )-smoothness condition for any choice of constants Ly and L.

In Appendix D we use a similar strategy to analyze the loss function L in the case of cross-entropy
loss. We make a different choice for M in this setting, which determines a different direction R
that we focus on for cross-entropy loss. We show that in this direction, as ¢ — oo, the norm of the
Hessian grows at least quadratically in the norm of the gradient, making it impossible for the loss
function L to satisfy the (Lo, L;)-smoothness condition for any choice of constants Ly and L.
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4. Conclusion

In this paper, we proved that for feedforward networks with two or more hidden layers, with either
L2 or cross-entropy loss, the (Lg, L1)-smoothness condition is not satisfied. To complement our
analysis, we looked at an example feedforward network, sampled regions of its loss landscape, and
verified that the relationship between the norms of the gradients and Hessians was consistent with
our predictions.

This shows that the convergence guarantees that have been proved for (Lg, L;)-smoothness
cannot be applied directly to the loss functions arising from deep feedforward networks. Thus there
is an opportunity to look to more sophisticated ways to relate techniques from optimization to deep
learning.

In recent work, Li-Quian-Tian-Rakhlin-Jadbabaie [6] introduce a class of conditions generalizing
the (Lg, L1 )-smoothness condition, which they call /-smoothness conditions, for any function ¢. The
(Lo, L1)-smoothness condition is recovered in the special case that / is an affine linear function.

The proofs of Theorems 12 and 14 show that under the assumptions taken, not only does the
loss function L of a deep neural network not satisfy the (Lg, Lj)-smoothness condition, that is
£-smoothness for a linear function, but that L also does not satisfy £-smoothness for any subquadratic
function £. This is worth noting because in [6], convergence guarantees proven in cases when £ is
subquadratic, and in the thorough analysis given, examples are also provided illustrating that similar
guarantees are not possible in cases when £ is quadratic or superquadratic. Our work shows that the
loss functions of deep feedforward networks lie in this more challenging setting.

Our work suggests that in order to develop similar convergence arguments that can be applied
directly to the loss functions arising in deep learning, different generalizations of the (Lo, L1)-
smoothness condition may be needed.

One could also study (Lo, L1)-smoothness with the approach used to study weak convexity in
the setting of deep networks by Liu-Zhu-Belkin [8]. It may be that while the (Lg, L1 )-smoothness
condition does not hold uniformly over the loss landscapes of deep feedforward networks, that it is
possible to identify regions of the loss landscape on which (Lg, L1 )-smoothness holds.

This work is an invitation to interesting directions for future work. The study of (Lo, L1)-
smoothness is an exciting nexus where new techniques in optimization are being developed with
inspiration from the geometries that arise in deep learning.

5. Broader Impacts

This work focuses on the mathematical understanding of a technical practice in machine learning.
While this may feel removed from the machine learning systems that are beginning to be integrated
into our daily lives, advances in this and similar papers are expected to improve the performance of
machine learning systems over time. Therefore this work may have greater societal impact than is
initially apparent.

As the authors of this work, we have a responsibility to make our technical advancements
understandable to the broadest range of people, to promote the beneficial uses of these technologies,
and to work to mitigate the risks of these technologies.
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Appendix A. Background and notation

A.1. Weak smoothness

Definition 3 Ler m > 0. A function L: R — R is m-smooth if for every a, B € R%, we have
IVL(B) = VL(e)|| < mlla — S]]

When L is twice differentiable, this can alternatively be stated as the condition that the magnitude
of the second derivative of L is uniformly bounded by m.

Because many functions that one would like to minimize are not m-smooth for any m, researchers
have long proposed weaker notions of smoothness and tried to prove convergence results under
such alternate definitions of smoothness, in an effort to expand the range of functions that we can
confidently optimize. We begin by noting a few of the popular definitions.

Definition 4 (see [5]) Let 7,¢ > 0, v € R% A function L: R? — R is (7, €, v)-locally-smooth if for
every a, B € R? such that || — || < e and || — || < €, we have

IL(8) — L(a) — (VL(B),a — B)| < —la — B]]*

Definition 5 (see [1]) Let 7,¢ > 0 and let R: R —» Rt bea regularizer. A function L: RY 5 R
satisfies restricted smoothness with respect to R with parameters (T, €) if for every a, 5 € RY, we
have

[L(8) ~ L(a) = (VL(B).a = )| < Zlla = BI” + B> (ar — B).

Definition 6 (see [9]) Let h: R? — R be a differentiable convex “reference function”, and m a
positive real number. A function L: R® — R is m-smooth relative to h if for any o, B € R% we have

L(B) < L(a) +(VL(a), B — a) + m(h(B) — h(a) — (Vh(a), B — o).
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A.2. Weak convexity

In the Introduction, we noted that there is interest both in weaker notions of smoothness and weaker
notions of convexity, and in determining whether the loss functions arising from deep neural networks
satisfy any of them.

While in this paper we will focus on smoothness conditions, here we point to work considering
these questions for convexity conditions.

In [8], Liu-Zhu-Belkin considered the PL* condition, a condition related to the classical Polyak-
Lojasiewicz condition. They showed that for the loss function of neural networks, if the network
satisfies some conditions including that they are sufficiently wide, one can construct many balls
within the parameter space R? on which the PL* condition holds.

While it is known that the loss functions arising in deep learning are not convex, this result shows
that there is a weaker type of convexity that is satisfied in some regions for some neural networks.

At this time, we do not know of analogous results for relaxed smoothness conditions. In this work,
we will give a negative result, for most neural networks, it is not the case that the (Lg, L1 )-smoothness
condition holds over the entire parameter space R?. Perhaps an analog of Liu-Zhu-Belkin’s result
for the PL* convexity condition is possible - perhaps there are regions in the parameter space R? on
which the (Lo, L )-smoothness condition holds. We leave that question to future work.

A.3. Notation
A.3.1. FULLY CONNECTED FEEDFORWARD NEURAL NETWORKS

To define a fully connected feedforward neural network, we begin by specifying the number of layers
£ of the network, and the widths diy,, c1, . . ., ¢, doyt Of the layers, ordered from “earliest” to “latest”.
For each adjacent pair of layers ¢,% 4+ 1, we will have the space of affine linear maps from R to
R¢+1. Such a map is given by the choice of a ¢; X ¢; 1 matrix we will call M, and a vector in R¢+1
we will call b’. The entries of M* we call weights, the entries of b’ we call biases, and the choice of
weights and biases for all the layers we call the choice of a parameter vector p € RP.

Figure 1: This is a diagram representing a feedforward neural network with one hidden layer, with
the input width dy, = 2, the width of the hidden layer k1 = 5, and output width dyy = 1.

Next, we choose an activation function
c:R—R. 4

In this paper, we assume that o is twice differentiable.
Given the choices above of an architecture and o, this neural network provides a way to input a
set p of weights and biases for the network and output a function f, : R%in — Rout,
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Given a vector
p=(w,b) € R? 5)

in the parameter space, we define the function

fr = fwp: R — Riout (6)

by composing the following sequence of maps specified by the neural network and the choice of the
weights and biases in all the layers w, b:

Mlx+b!

14 ¥ 14 £
R MIXED per 7, ey MIxgb? | MBADS g, 0, e, M IxABH

R%ut, 7
In this construction, the arrow R¥* —Z R¥: indicates that we apply ¢ componentwise.

Example 1 Consider a fully connected feedforward graph with layers of widths 1, 3, 1 and o =
(u + u? 4 1). The corresponding function space consists of those functions of the form

for z e wi (w2 +b7) + 1) + wiy ((wy o+ b3)* + 1) + wis((whx + b3)* + 1) + b
(®)

In our calculations we will find it useful to have the following notation for the stages of the neural
network. We define recursively
fo(x) = M'x+b' 9)

fi(x) = Mo (f)'(x)) + b, (10)

so that the previously defined function f,(x) equals fﬁ*l (x).

A.3.2. THE LOSS FUNCTION L

In deep learning, one starts with a data set, chooses an architecture for a neural network, and then
wishes to find a parameter vector, in other words a set of weights and biases for the network, such
that with that choice, the function expressed by the network predicts well on similar data.

To find such a parameter vector, a key step is to define a loss function

L:RY SR (11)

from the set of all parameters to the real numbers. This function L is constructed in such a way that
parameter vectors p on which the loss function achieves a low value are good choices for the network.
In today’s implementations, a gradient descent based algorithm is used to find such p that minimize
L.

In this paper, we consider two ways of constructing L, and we define each in this section. In both
cases, we fix

e a neural network,

10
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e a choice of activation function o,

e and a data set

D = {(xl7yl)}le{177n} C Rdin X Rdout' (12)

Definition 7 The L2 loss is defined by:

n

L(p) =Y (falxs) —ys)™. (13)

s=1

Definition 8 The cross-entropy loss is defined by:

i % 1 e[fp(IM)b (14)
ym Og .
=1 j—1 1e[fp(xn7)]k

where [v]; denotes the j*" entry of a vector v.

Appendix B. Derivatives of f, along our specialization

We begin by noting that in our direction R defined in Section 3, for any choice of ¢, for the
corresponding parameter vector p(t) the parameters of the first layer

(M*,b)
satisfies
o(M'x+b') =0,

for all inputs x. Similarly, for all layers 2 <4 < /£,

hx)| e (1)

p=p(t)

for all choices of the matrix M.
Therefore,

Lx| =o. (16)
p=p(t)

Next, we compute the first derivatives of f,, with respect to the weights w' %1, In these formulas,
we will use the notation that A’ %1, 1s the matrix with the dimensions of M, with all entries 0, except
for a 1 in the j, k entry. Similarly, A; is the vector with the same length as b;, with all entries equal
to 0, except for a 1 in the j* entry.

These matrices and vectors appear repeatedly because

0 . .
- MZ — Z~k
8w;k J

11
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and
0

o

b = Al

In this section, we consider only the case of feedforward neural networks with at least two hidden
layers, hence we will always assume that £ > 2.

Lemma 9 In our region R, all first derivatives with respect to the weight parameters vanish:

0
g -
11 —
ow ks p=p(t)

Proof

To compute these derivatives, we work layer by layer, considering the derivatives of the interme-
diate functions f’, as 7 increases.

We first prove the following:

Claim 1 Foranyi,i,

G e a7
8w§i ke P p=p(t) 0 otherwise
Proof [Proof of Claim 1] Note that if ¢; > ¢, then
o) .
fx| =

8wﬁ ke P p=p(t)

So for the remainder of this proof we consider the case that i; < i. We proceed with a proof by
induction on ¢, considering 7; to be fixed.
Base case i = 17

When ¢ = 41, we take derivatives of equations 9 and 10 to obtain

O pir() = d Baim® 9 =1 (18)
dwity " Al o(fiH(x))  otherwise.

Once we specialize to our family p(t), we obtain the simpler expression

] [F
ow'r, P p=p(t) 0 otherwise

by Equation 15 and Assumption 1.
Inductive step

For the inductive step, ¢ > ¢; and we use the chain rule and Equation 15 to see that under our
specialization,

0

i1
Owjlkl

i —d(c ) 9 1—1 X
fx| = <><M s >> o (19)

(51
6wj1k1

12
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Because in the specialization we have chosen, M* is zero when i # £+ 1, this derivative vanishes
unless ¢ = ¢ + 1. In other words,

o) i—1 s
o (50 B U,(C)tMawjlk 5 (%) ‘p:p(t) ifi=0+1
- = j1k1

Owﬁkl 7 o=p(t) 0 otherwise

By the inductive hypothesis
9 i

71 P
Owy i,

bl =0
( )‘p=p(t)
when i — 1 = ¢ > 1, completing our inductive step, showing that the Claim 1 holds. A

Finally, we evaluate Equation 17 in the case that ¢ = ¢ + 1. Because we have assumed ¢ > 2, the
first case does not arise. Hence we see that

9 41
T Jom ) p=p(t)
proving our desired result. |

Next, we compute the first derivatives of f,, with respect to the biases b;

Lemma 10
5 All ifip=0+1
%Tfp(X) p=plt) ol ()tMAG ifi=¢
I 0 otherwise

Proof Again, we work layer by layer, considering the derivatives of the intermediate functions f?,
as ¢ increases. We first prove:

Claim 2 Forany i1 <1,

5 Al ifip =i
e fo(x) ) o (MAL  ifiy+1=i=(+1 (20)
J1 0 otherwise

Proof [Proof of Claim 2] As in Claim 1, if 71 > 7, we have

O fix| =0

8b§-11 r p=p(t)

So we will restrict ourselves to the case that 7; < 7. We will again proceed with a proof by induction.
Base case ¢ = i1

First, suppose ¢; = ¢. Here, we compute the derivative to be

0
o,

fi260 =

13



A THEORETICAL STUDY OF THE (Lg, L1)-SMOOTHNESS CONDITION IN DEEP LEARNING

This is consistent with Equation 20. This leaves the case when i; < 1.
Inductive step

For the inductive step, we use the chain rule and Equation 15 to see that under our specialization,

o ) N
— = M —f*
8bﬁ Jox) p=p(t) 7 () ( (%}11 r (X)> ‘p=p(t)

Because in the specialization we have chosen, M is zero when i # £+ 1, this derivative vanishes
unless ¢ = £ + 1. In other words,

, o ()t M -2 i_lx‘ ifi=041
a (%) = © av3) " P ( )p=p(t)

i1 7P
Bbjl p=p(t) 0 otherwise

By the inductive hypothesis, we see that

o) H(x)’ Al it =i—1
8b§-11 r p=p(t) 0 otherwise,

completing our inductive step, and shows that Claim 2 holds. A
To complete the proof of the lemma, we specialize Claim 2 to the case that ¢ = £ + 1 and see that

5 Al ifip =(+1
¢ T
b pr(X) —pt) ol (JtMAG if iy ={
s 0 otherwise
proving our desired result. n

Finally, we compute the second derivatives of f,, with respect to any choice of weight and bias
variables.

Lemma 11
The only nonzero second derivatives of f, are

0 0 (x)) _ (0/(6))2tMAézk2Aéiklx ifii=1andis = =2,
6w§§k2 aw;’ilﬂ T o=t (U/(C))QtMAEszﬁklx ifio=1and i) =0 =2,
_0 9, (x)‘ _ [o AR, Al it l=i =41
8wgk2 6b;11 PR p=p(t) J/(c))QtMA;szA;ll ifir+1=1iy=10,
and
o 0

fo(x)|

'/ 7 7 P
2 1

p=p(t)

where © denotes entry-wise multiplication.

14
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Proof The second derivatives of f, are more challenging to compute than the first derivatives. One
difficulty is that we must compute both derivatives before specializing to our family p(t).

As in the case of Lemmas 9 and 10, we proceed by computing the derivatives of the intermediate
functions f}; To streamline the argument, we introduce the notation that 2! is a variable from the

jpth layer, either w kg0 OF bjl, for some j1, k1.
Note that the second derivative vanishes if any of the derivatives are with respect to weights or

biases from a layer after the i layer. That is,

0 9 il =0

@ 0zi2"F p=p(t)

if ¢ is less than either ¢; or 2. Hence for the rest of this proof, we assume that
1> 09 > 0.

We will prove the following statement by induction on ¢. Consider 2 > i1 fixed, and ¢ will be
increasing. The base case we take is when ¢ = 9.

Claim 3 All second derivatives of the intermediate function f;, vanish except for the following:

0 0

1)
owiz, dwlt, o) p=p(t)
_ [ o(@A%, AR x fin=1lig=1=2 @1)
(O'/( )) tMA;ikQA“k X lfll = 1,i2 = 2,2 = 3,€ = 2,
0 0
ow'2, b (X)’ =p(t
Wi p=p(t)
UI(C)AEkQAZl . ifiip+1=19=1 22)
a(c ))QtMAzzsz;i ifiir+l=i0=0i—1=1/,
and 5 8
7 o % i I N S .
@(%ﬁ fp(x)‘p:p(t) =0 (c)tM(Aj"; ® Aji) ifip=12 =40, i=/0+1. (23)
Proof [Proof of Claim 3]

Base case i = 5

Case 1 The variable 2! is a weight or bias and 2’2 is a bias.

This derivative vanishes, because

j”2

is a constant function, so differentiating it again with respect to either a weight or a bias variable
gives 0.

0zt

Case 2 Both variables 2/ and 22 are weights.

15
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Analogously to (18), we have

O fia) = L ™ =1
Owiy, A2 o(fizN(x)) ifiy > 2.

Further, taking ?1 on both sides, we obtain
w .
J1k1

) 0 ifio =1
0 0 i2 (x)
T T p) = 2'2 a Z‘2-1 . . > )
8w§§k2 8w;.i ky Ajzk?Z dw;l, o p (x)) ifip >2

This immediately implies the base case when io = 1. When i5 > 2, if we take the specialization, and

1

simplify as in (19), we get

0 0 io o 12 L i2—1
J (X)} =0 (C)AjZkQ (8’[1)1-1 fp (X)> ‘p:p(t)'

@2 i1 P —o(t
8wj2k2 8wj1k1 p=r(t) Jika

(24)

Substituting i2 — 1 for ¢ in Equation (17) gives:

o i A x ifiy = 1,40 =2
i I I(X)‘ = ka .
ow ks p=p(t) 0 otherwise
So we conclude that
a. 8 iQ(X)‘ = Jl(C)A;ikQA;ll/ﬂX ifip = 1,ip =2
8wgk2 (910}1,91 p p=p(t) 0 otherwise

Case 3 The variable 2! is a bias and 2’2 is a weight.
Analogously to the previous case, we prove that

0 9 pix=o,

12 i1 7P
aw]é k2 3bj1

establishing the base case when ¢35 = 1, and for i > 2, we obtain analogously to (24) that

0 o .. ; » 0 i1
, — 2 (x = od'(c) A% — f27(x
w3, O 7l )’p=p(t) (A%, ((%;11 fo )> ‘p=p(t)

Rewriting (20) in the case ¢ = 15 — 1 gives:

5 A% ifip =ip— 1
abil ;271(X)‘p:p(t) = U,(C)tMA;ll le]_ + 2 = ’L'2 =/+2
n 0 otherwise

We have only ¢ + 1 affine maps in our neural network, so i < £ 4 1. Hence the second case cannot

occur.
16
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We conclude that ‘
f” 1( )‘ _ A;ll ifil :ig—l
8b“ p=p(t) 0 otherwise

and )
90 pag| = TONRAL =i
3w3§k2 8b§-11 p p=p(t) 0 otherwise

Inductive step

Assume we have proved Claim 3 for 7 — 1. Now we prove it for i.
By applying the chain rule twice, we obtain the equality

i@i o i 0 i 0 i
Ozi2 Oz To(x) p=p(t) 0 (M Ozi2"P () © Oz P () ‘p*p(t)

/ iaazl
+a@)0w8ﬂ2 f ())Lqm.(ﬁ)

Ozh

When i < ¢ + 1, both terms vanish because M*

o = 0, and this establishes the claim in this
p=p(t
case, noting that ¢ > 45 in the inductive step. Therefore, from now on, we will assume ¢ = ¢+ 1 > 3.

We now analyze the two terms on the right hand side of Equation 25 separately. Note that in the
range i > ip > i; we are considering, by Claim 1, the first term vanishes if any of the variables 2!
and 2% is a weight. Finally, by Claim 2, noting that i — 1 < ¢ + 1, we have

" 1—1 i—1
a<c>( 00 g <>> "

o () MAY © AR) iy =iy =i—1,
0 otherwise.

It remains to analyze the second term on the right hand side of Equation 25. For this, we again
distinguish three cases.

Case 1 The variable 2! is a weight or bias and 2’2 is a bias.

In this case, the second term vanishes by the induction hypothesis, noting that i — 1 < £ + 1.
Case 2 The variable 2! is a weight and 22 is a weight.

By the induction hypothesis, noting that i — 1 < ¢ + 1, we have

/ i 0 0 i _
7 (C)M <82’i2 Oz ’P (X) ’p:p(t) =0

unless iy = 1 and i3 = @ — 1 = 2, or more explicitly, i1 = 1, i = 2,7 = 3 and £ = 2 by our
assumption ¢ = £ 4 1. In this case, the second term equals

(0 0 1
7 (M <3212 dzh f’ o )> ‘p=p(t) = (M- o'(e )AzszAlllkl
Case 3 The variable 2! is a bias and 22 is a weight.

17
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By the induction hypothesis, again noting that ¢ — 1 < £ + 1,

oy (99 i _
7(M <3zi2 9z s (X)> ‘p:p(t) -0

unless i1 + 1 = i3 = ¢ — 1. In this case, noting that ¢ — 1 = £, the second term equals

i 0 0 i i i
o ()M (3,2"2 Oz 7P I(X)> ‘p=p(t) = 0(tM - o (A%, AG

Adding together both terms on the right hand side of Equation 25 yields Claim 3. A
Finally, we specialize Claim 3 to the case that ¢ = ¢ + 1. Because we have assumed ¢ > 2, the
first case in (21) does not arise. Taking into account that Claim 3 only lists nonvanishing derivatives
for io > i1, we obtain the statement of Lemma 11.
|

Appendix C. (Lg, L;)-smoothness, L.2 loss

In this section, we study the (Lo, L) smoothness of the loss function L of a feedforward neural
network with L2 loss.

To study this case, we choose an explicit member of the family we have been studying above, by
fixing the weights of the last layer A/“*! to be multiples of the especially simple matrix

=1[: -.. :|. (26)

Theorem 12 Consider any feedforward neural network of depth £ > 2, with twice differentiable
activation function o : R — R satisfying Assumption 1. The L2 loss function L of this network does
not satisfy the (Lo, L1 )-smoothness condition, for any choice of Ly and L.

Proof
In the case of L2 loss (13), we choose M‘*! to be the matrix

t ... t

and will consider the derivatives of L as t — oc.

Armed with the calculations in Section B of the first and second derivatives of the function f,),
we consider the gradient and Hessian of L(p), the main quantities of interest for us.

As noted in Remark 2, one can consider the (Lg, L;)-condition for any matrix norm. In this
proof, we will use the Frobenius norm. Proving the failure of the (Lo, L1 )-condition for this norm
also proves the failure of the (Lo, L;)-condition for any matrix norm.

18
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We begin by calculating
VL(p)

and then evaluate it along our space R of interest.
The gradient of L is given by

VL(p) =2 ((Dfo(xe)T(foxs) = ¥s)),

where D f, is the Jacobian matrix of f,.
Along our specialization, f,) is identically zero, so this simplifies to

VL(p) (28)

= -2 Z(Dfp(XS))TyS
s=1

p=p(t) p=p(t)

In any term of this sum, the summand y,, is constant in ¢. Meanwhile, by Lemmas 9 and 10, the

entries of D f,(x;,) are polynomial of degree O or 1 in ¢. Therefore,

p=p(1)

‘ VL(p) ‘p=p(t)

is a polynomial in ¢ of degree at most 2, and

p=p(t)

Vi)

is a function that grows at most linearly in .
Next, we will show that [HL(p) ||| ,—p) grows at least quadratically in ¢. For this, it will suffice
to prove that the absolute value of at least one entry of ||HL(p)|p = p(t)|| grows quadratically in t.
We compute

HL(p) = 22 ((pr(XS))T(fp(Xs) - YS)) + 2Z(Dfp(xs))TDfp(Xs)a
s=1 s=1

where we view H f,, as a matrix-valued vector. Along our specialization, this simplfies to

n n

=2 Z(pr(XS))TYS‘p:p(t) +2 Z(Dfp(XS))TDfp(XS) ‘p:p(t)’ (29)

HL(p) |p=p(t) N
s=1 s=1

We start by considering the first term in Equation (29). The entries of

Hfy(x))|

are linear in £. Hence, it will suffice to prove that at least one entry of the second term in Equation
(29) is at least quadratic in ¢. The entry corresponding to the -derivative is given by

n
2>
s=1

p=p(t)

62
(901)?

2

9
c‘Tb{f AEOl P
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By Lemma 10, this simplifies to
n
23" |lo’ (et M AL,
s=1
I” =

The matrix M A{ is the vector of length d,, whose entries are all equal to 1. Therefore || M A‘i
dout, and we conclude that our expression reduces to

2(0' ()2 ) [MAL|? = 2(0"(€))*#* ) dowt = 2(0”(€))*#* - n - dous.
s=1 s=1

Thus, at least one of the entries of the second term in (29) grows at least quadratically in ¢. We
conclude that |HL(p)|p = p(t)|| also grows at least quadratically in .

We may then conclude the proof by noting that along our specialization p(t), if we take t — oo,
the L? norm of the gradient of L grows linearly while the norm of the Hessian grows at least
quadratically. There is no choice of scalars L0 and L1 that would uniformly for all ¢ ensure that

IHL(p)|| < Lo + L1[[VL(p)]]-
Therefore, L is not (Lg, L;)-smooth for any choice of Ly and L;. [

In Theorem 12, we saw that the feedforward networks of depth ¢ > 2, the loss function is not
(Lo, L1)-smooth for any choice of Ly and L;. In the next theorem, we see that when ¢ = 0, the
loss function not only satisfies the (Lo, L1) condition, but there exist values of m for which it is
m-smooth. This leaves the case of depth ¢ = 1 open for future work.

Theorem 13

Consider any feedforward neural network of depth ¢ = 0, in other words with no hidden layers.
Suppose the activation function o satisfies Assumption 1. Then not only does the L2 loss function L
of this network satisfy the (LO,L1) condition, but L satisfies the stronger condition that there exist
values m such that L is m-smooth.

Proof In this case, because there are no hidden layers, f, is a linear function in the weights and
biases of the single layer. The loss function L then is a quadratic function in the weights and biases.
Thus the Hessian of L is a constant matrix, with norm bounded by some constant L. Hence L is
Ly-smooth for that value of Ly, and (Lg, L) smooth for that value of Ly and any value of L;. W

Appendix D. Cross-Entropy Loss

Now we consider the case of cross-entropy loss, proving the following theorem.

Theorem 14 In the setting of a classification problem with b > 2 classes, consider any feedforward
neural network of depth £ > 2, with twice differentiable activation function o : R — R satisfying
Assumption 1. The cross-entropy loss function L of this network does not satisfy the (Lo, L1)-
smoothness condition, for any choice of Ly and L.
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Proof In this setting, we choose M/t to be the scalar matrix
M =47, (30)

where I denotes the identity matrix extended by zeros to the right or bottom, and we will consider
the derivatives of L as t — oc.
We begin by rewriting the Formula (14) for cross-entropy loss as

n dout dout dout
Lip) == > | 2 ymlilfyGem)ly = (3 _[yml;) (1o 3 elrtonle)

Because the vector y,, represents probabilities, in data for cross-entropy loss, the sum of the
entries of y,, is 1, simplifying the second term to

n dout dout
L(p):_z Z[ ] [fp xm i +Z(10g23fpxm )

m=1 \ j=1

We compute the gradient of L, in terms of the gradients of f, as

n dout n dOUt [f/)(xm)]kv f
e Xm
VL) == > Syl VI xa)ls | + 0 Z’“Zdwt e[fp<xi>’j,f L
k=1

m=1 j=1 m=1

(31
Next, we compute the Hessian of L, in terms of derivatives of f, as

n dout

dout e[fp(XM)]k X
HL() = — 5 Syl HI, o), +Z 2 Hp (tm) s

dou{ elfo(xm)lk

m=1 \ j=1

n

43 S [y o Dy ot
chft e[fp(XM)]k

(de el T £, o)) (3252 elfe b £ ()i
(Ego:u; e[fp<xm>]k)2

Now, we specialize to our space R and analyze the dependence of V L on ¢ when restricted to R.
Along our specialization, f,) is identically zero, simplifying the above expressions to

n

dou
VL(P)‘,; ot Z Z Vi Xm)]'}p:p(t)

n Zdout V[fp(xm)] ‘p:ﬂ(t)

dout

m=1
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and
n [ S H o) ],
HL(p) = — Z[Ym] H[f)(xm)]; ‘p p(t) + Z = :l t k{p_p(t)
m=1 \ j=1 m=1 "
Zdout VT[fp(Xm)] ‘p p(t)V[fp(Xm)]k‘p:p(t) 32)
dout
m=1
o (S Ul ) (S Ve )
= dout

We first consider t-dependence in VL ]p:p (1)- By Lemmas 9 and 10, the entries of V[ fo(xm)k|

are polynomials of degree O or 1 in ¢. Hence along our specialization R,

p=p(t)

2

‘ VL(p) ‘p:p(t)

is a polynomial in ¢ of degree at most 2, and

p=p(t)

‘VL(/))\

is a function that grows at most linearly in ¢.

We next show that HHLH | p= p(t) grows at least quadratically in ¢. For this, it will suffice to prove
that at least one entry grows at least quadratically in ¢. First, consider the first two of the four terms
in (32). The entries of

H[fp(xs)}k ’p:p(t)

are linear in ¢, and hence the entries of these two terms are at most linear in ¢.

We now consider the remaining two terms in (32) together. We may simplify the entry corre-

. 2 e
sponding to the (8?—[)2 derivative via Lemma 10:
1
dOLl
Z >t o (M Af]ko! ()M Af]r

dout

(S o (@t Al ) (St o' (eptMA)

dout

n
m=1
After further simplification, we may rewrite this as:
d dout l 2
o ([MAL])° ( k:l[MAl]k)

a'(¢))’nt? —
(o'(c)) - i

Given our choice of M in (30), we have

1 ifk=1;

0. _ AL, —
(MAT) = [Af]: = { ) hat
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So, we further simplify the entry to:

1 1

dOllt dout

(0/(6))271 < 2) 12 £ 0.
Thus, we have established an entry of HL|,_ ;) whose absolute value grows at least quadratically
in t.

As in the L2-loss case, we have established that along our specialization p(t), if we take ¢ — oo,
of the gradient of L grows linearly while the norm of the Hessian grows at least quadratically. There
is no choice of scalars L0 and L1 that would uniformly for all ¢ ensure that

IHL(p)|| < Lo + L1 [[VL(p)]].

Therefore, L is not (Lg, L1 )-smooth for any choice of Ly and L;.
|

In Theorem 14, we saw that the feedforward networks of depth ¢ > 2, the loss function is not
(Lo, L1)-smooth for any choice of Ly and L;. As in the case of L2 loss, we will now see that when
¢ = 0, the loss function not only satisfies the (Lo, L) condition, but there exist values of m for
which it is m-smooth. This leaves the case of depth £ = 1 open for future work.

Theorem 15 Suppose that L is the loss function for a feedforward neural network with cross-entropy
loss, with no hidden layers, and smooth (not necessarily monotonic) activation function o : R — R.
Then not only does L satisfy the (LO,L1) condition, but L is m-smooth for some m.

Proof When ¢ = 0, the functions [ f,(x,,)]; are linear in the weights and biases. Hence, H[f,(x,,)]; =
0 and V[f,(x,)]; is a constant vector. The result then follows from (31), (32) and the following

lemma. u
Lemma 16 Let {1,. .., ¢ be a collection of linear forms in n variables z1, . .., z,. Then for any
coefficients c1, . . ., Ck, the function
Sy cpetr ()
Ek eek(z)
is bounded.

Proof Since eli < > & es for any j, we know that

< ezj(z) <
VST =

for any j. Thus, the lemma follows from the triangle inequality. |
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