Interpreting Learned Feedback Patterns
in Large Language Models

Luke Marks*' Amir Abdullah * ¢ Clement Neo' Rauno Arike'

David Krueger® Philip Torr? Fazl Barez*'!

t Apart Research ¢ Cynch.ai © University of Cambridge

iDepartment of Engineering Sciences, University of Oxford

Abstract

Reinforcement learning from human feedback (RLHF) is widely used to train
large language models (LLMs). However, it is unclear whether LLMs accurately
learn the underlying preferences in human feedback data. We coin the term
Learned Feedback Pattern (LFP) for patterns in an LLM’s activations learned during
RLHEF that improve its performance on the fine-tuning task. We hypothesize that
LLMs with LFPs accurately aligned to the fine-tuning feedback exhibit consistent
activation patterns for outputs that would have received similar feedback during
RLHEF. To test this, we train probes to estimate the feedback signal implicit in
the activations of a fine-tuned LLM. We then compare these estimates to the
true feedback, measuring how accurate the LFPs are to the fine-tuning feedback.
Our probes are trained on a condensed, sparse and interpretable representation
of LLM activations, making it easier to correlate features of the input with our
probe’s predictions. We validate our probes by comparing the neural features they
correlate with positive feedback inputs against the features GPT-4 describes and
classifies as related to LFPs. Understanding LFPs can help minimize discrepancies
between LLM behavior and training objectives, which is essential for the safety
and alignment of LLMs.

1 Introduction

Large language models (LLMs) are often fine-tuned using reinforcement learning from human
feedback (RLHF), but it is not understood whether RLHF results in LLMs accurately learning the
preferences that underlie human feedback data. We refer to patterns in an LLM’s activations learned
during RLHF that enable it to perform well on the task it was fine-tuned for as the LLM’s Learned
Feedback Patterns (LFPs). Formally, for an input X and activations H(X, #) from a fine-tuned LLM
parameterized by 6, we describe its LFPs as the differences in H(X, €) caused by training 6, that
result in the outputs performing better under the fine-tuning loss. LFPs are a major component of
what an LLM has learned about the fine-tuning feedback.

For example, consider a sentiment analysis task where the ground truth dataset labels the word
“precious” as having positive sentiment. However, the fine-tuned LLM’s activations, when probed,
predict negative sentiment. This discrepancy, where the LLM’s output would receive negative
feedback according to the true preferences, is an example of divergence between LFPs and the
preferences underlying the human feedback data used in fine-tuning.

* Equal Contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Our objective is to study and measure this divergence. However, obstacles like feature superposition
[12] in dense, high dimensional activation spaces, and limited model interpretability obscure the
relationship between human-interpretable features and model outputs. In this paper we ask: Can we
measure and interpret the divergences between LFPs and human preferences?

Continued deployment of LLMs fine-tuned using RLHF with greater capabilities could amplify the
impact of LFPs divergent from the preferences that underlie human feedback data. Possible risks
include manipulation of user preferences [1] and catastrophic outcomes when models approach human
capabilities [10]. The ability to measure and explain the divergences of LFPs in human-interpretable
ways could help minimize those risks and inform developers of when intervention is necessary. To
achieve this, we extend existing research that uses probes to uncover characteristics of larger, deep
neural networks [2, 5, 27]. Our probes are trained on condensed representations of LLM activations.
The trained probes predict the feedback implicit in condensed LLM activations. We validate our
probes by comparing the features they identify as active in activations with implicit positive feedback
signals against the features GPT-4 describes and classifies as being related to the LFPs.

The decoders of autoencoders trained on LLM activations with a sparsity constraint on the hidden
layer activations have been shown to be more interpretable than the raw LLM weights, partially miti-
gating feature superposition [29, 9, 11]. The outputs of these autoencoders comprise the condensed
representations of LLM activations. By training our probes on sparse autoencoder outputs, we make
it easier to understand which features in the activation space correlate with implicit feedback signals.

We hypothesize that consistent patterns in the activations of fine-tuned LLMs correlate with the
fine-tuning feedback, allowing the prediction of the feedback signal implicit in these activations. In
validation of this hypothesis, we make the following contributions:

* We use synthetic datasets to elicit activation patterns in fine-tuned LLMs related to their
LFPs. We make these datasets publicly available for reproducibility and further research.

* We train probes to estimate the feedback signal implicit in a fine-tuned LLMs activations
(83.3).

* We quantify the accuracy of the LFPs to the fine-tuning feedback by contrasting the probe’s
predictions and the true feedback (§3.3).

* We use GPT-4 to identify features in the fine-tuned LLM’s activation space relevant to
the LFPs. We validate our probes against these feature descriptions, showing that the two
methods attribute similar features to the generation of outputs that receive a positive feedback
signal. (§3.4).

Code for all of our experiments is available at https://github.com/apartresearch/Interpreting-Learned-
Feedback-Patterns.

2 Background and related work

We study LLMs based on the Transformer architecture [37]. Transformers operate on a sequence of
input tokens represented by the matrix X € R%*?, where L is the sequence length and d is the token
dimension. For each token a query Q, key K and value V is formed using the parameter matrices
W, W, W, € R giving Q = W, X, K = W; X, and V = W,X. The attention scores,

-
A = softmax (%) , measure the relevance of each token to every other token. The final output is

obtained by weighting the values by the attention scores, resulting in the output matrix O = AV. O
is then passed through a multi-layer perceptron (MLP) and combined with the original input via a
residual connection, forming the final output of the layer and the input for the next layer.

There is a significant body of evidence that deep neural networks such as Transformers learn
human-interpretable features of the input, providing a strong motivation for interpretability research
[26, 28, 21, 7]. However, there is often not a one-to-one correspondence of neurons and features.
When multiple features in a single neuron are represented near-orthogonally, this phenomenon is
known as ‘superposition’ [12], allowing models to represent more features than dimensions in their
activation space. This can be practical when those features are sparsely present in training data.
Superposition poses a major obstacle to neural network interpretability, and this is expected to extend
to the study of LFPs learned during RLHF. A promising approach to disentangling superposed

https://github.com/apartresearch/Interpreting-Learned-Feedback-Patterns
https://github.com/apartresearch/Interpreting-Learned-Feedback-Patterns

features in neural networks is to train autoencoders on neuron activations from those networks. Given
encoder weights Wg € R™*"_ decoder weights Wp € RM*" 3 bias vector bg € R”, and an input

X € R™*™ the output X is computed as:

X = Wp(ReLU(W X + bg)) (1)

The sparse autoencoder loss function is typically:
LX) = - x - x| ReLU(WgpX +b 2
()lX%;H X[+ o [ReLU(WEX +)], @

Where the first term penalizes the Euclidean distance between X and X, and the ¢; term encourages
the output X to be a sparse linear combination of features in W p, providing an interpretable overview

of the superposed features that were active in the autoencoder’s input. X is then a condensed
representation of X.

Early results suggest sparse autoencoders can recover features of the input even when those features
are represented in a superposed manner [9, 11]. Sharkey et al. [34] train two sparse autoencoders
with different hidden sizes, and find similar features in both. Because the features learned by an
autoencoder are sensitive to its hidden size, finding similar features in both autoencoders increases
the likelihood that they are actually features of the input. Other works exploring related techniques
include Yun et al. [41], who apply sparse dictionary learning to visualize the residual streams of
Transformer models, and Gurnee et al. [16], who find human-interpretable features in LLMs using
sparse linear probes.

Even when features are interpretable by humans, it can be laborious for a human labeller to identify
plausible descriptions of what a neuron represents. Recent work has shown that this can be automated

at scale [13, 7]. Bills et al. [7] provide GPT-4 with a set of activations discretized and normalized

to a range of 0 and 10 for a set of tokens passed to the model as a prompt. GPT-4 then predicts
an explanation for what the neuron represents based on those activations, and predicts discretized
activations for tokens as if that description were true. The efficacy of a neuron explanation is judged
by the Pearson correlation coefficient of the predicted and true activations.

To our knowledge, no general methods have been proposed for finding human-interpretable rep-
resentations of LFPs learned via RLHF. Previous literature on reward model interpretability has
focused on more conventional RL methods. For example, Jenner and Gleave [20] provide a frame-
work for preprocessing reward functions learned by RL agents into simpler but equivalent reward
functions, which makes visualizations of these functions more human-understandable. Michaud
et al. [25] explain the reward functions learned by Gridworld and Atari agents using saliency maps
and counterfactual examples, and find that learned reward functions tend to implement surprising
algorithms relying on contingent aspects of the environment. Gleave et al. [14] and Wolf et al. [40]
present methods for comparing and evaluating reward functions learned through RL training without
requiring these functions to be human-interpretable. Probing deep neural networks using linear
classifiers is well-established [2, 5, 27], but the architecture of prior probes varies considerably to our
approach, mostly in the objective of the probe. We specifically analyze the implicit representation of
feedback in activations over contrastive inputs.

3 Experiments and methodology

Here, we detail each stage of our experimental pipeline. The major steps are as follows:

1. Fine-tune pre-trained LLMs using RLHF (§3.1).
2. Obtain a condensed representation of MLP activations using sparse autoencoders (§3.2).

3. Train probes to predict the feedback signal implicit in condensed fine-tuned LLM activations.
(§3.3). This allows us to measure the divergence of LFPs from the human preferences
behind an LLM’s fine-tuning distribution.

1. Fine-tune pre-trained LLM using RLHF 2. Obtain condensed representation of MLPs
using sparse autoencoders

00000
00000

T— PPO / DPO

3. Train probes to predict feedback signal 4. Validate probes by inspecting autoencoder
implicit in condensed MLP activations features relevant to fine-tuning task

0

H

8

A g [Regression]_,?- Implicit
Probe i reward A

o

-8

8

Figure 1: Our experimental pipeline. We train and validate probes to understand LFPs.

“Relevant to
SFT task?”

Check if feature
is correlated
with probe

relevant

[e]e]e) Q00 [e]e]e)
Ol

4. Validate our probes by comparing the features they identify as active in activations with

implicit positive feedback signals against the features GPT-4 describes and classifies as
related to LFPs (§3.4).

3.1 Fine-tuning with RLHF

This section describes our RLHF pipeline. Our first fine-tuning task is controlled sentiment generation,
in which models generate completions to prefixes from the IMDB dataset [22]. Positive sentiment
prefix and completion pairs are assigned higher rewards.

Our reward function for this task comprises of sentiment assignments from the VADER lexicon [19],
which were initially labelled by a group of human annotators. The annotators assigned ratings from
—4 (extremely negative) to +4 (extremely positive), with an average taken over ten annotations per
word. This gives a function V : W — R, where W is a set of words.

Given a prefix and completion, we tokenize the concatenated text using the Spacy [17] tokenizer for
their en_core_web_md model. Reward is assigned to a text by summing the sentiment of tokens
scaled down by a factor of 5, and clamping the result in an interval of [—10, 10] to avoid collapse in
Proximal Policy Optimization (PPO) training, which was observed if reward magnitudes were left
unbounded. The reward function for this task is given as:

Reward(s) = clip <; Z V (token), —10, +10> 3)

token€ s
Where s is a sequence of tokens.

We train a policy model Mgy pr to maximize reward while minimizing the Kullback-Leibler diver-
gence of generations from the base model Mg,s.. We use PPO, adhering to Ouyang et al. [30]. We
use the Transformer Reinforcement Learning (TRL) framework [39]. The hyperparameters used for
all models are: a batch size of 64, mini-batch size of 16, KL coefficient of 0.5, max grad norm of 1,
and learning rate of 105, with the remaining parameters set to the library defaults. See Appendix A
for an overview of our PPO pipeline.

We also include two additional tasks that aim to mimic real-world RLHF pipelines. In the first, Mgy yr
is fine-tuned using DPO with responses from the Anthropic HH-RLHF dataset [4]. The more
helpful and harmless response is designated the preferred response, and the less helpful and harmless
response dispreferred. The aim of this task is for Mrygr to behave more like a helpful assistant. The
second task uses DPO to optimize My yr for toxicity using the toxic-dpo dataset [36], in which

the preferred response is more toxic than the dispreferred response. We fine-tuned Pythia-70m,

Pythia-160m [6], GPT-Neo-125m [8] and Gemma-2b-it [23] for both of the DPO tasks. We
used the following hyperparameters, with the rest following TRL defaults: we train for 5000 steps
using the AdamW optimizer with an Adam-Epsilon of 1le—8, a batch size of 8 for Pythia-70m,

Pythia-160m and GPT-Neo-125m, and an effective batch size of 16 for Gemma-2b-it . The
learning rate was 3e—5 for Pythia-70m, Pythia-160m and GPT-Neo-125m, and 5e—5 for

Gemma-2b-it . For each model and task, we train for approximately 6 hours on a single A10 GPU,
except for Gemma-2b-it , where we used a A40 GPU.

3.2 Autoencoder training

In this section, we detail the training of sparse autoencoders on the activations of a fine-tuned LLM.
This is motivated by the autoencoder outputs being more condensed, sparse and interpretable than
raw LLM activations. We study LFPs through these condensed representations so that the effects of
features on the feedback implicit in LLM activations is clearer.

Having obtained the fine-tuned model Mgy gr, we compute the parameter divergence between Mp,se
and Mg gr for each layer under the {5 norm, and choose the five highest divergence MLP layers
Lrinr = {l1,...,15} to train autoencoders on the activations of. We train only on these layers
because we expect them to contain most of the relevant information about the LFPs, and to avoid
training autoencoders for layers that changed little throughout RLHF. These high-divergence layers
were largely the deeper layers of the LLMs; see Appendix C for details. For each layer [€ Lrpur,
we sample activations a; € R™*"™ from the MLP of that layer, forming a dataset of activations for
each layer. We then train two autoencoders on each dataset, written A} and AE; with hidden sizes
n and 2n respectively. The subscript [denotes that they were trained on activations from the layer /.
We tie the decoder and encoder weights, meaning the decoder weights are the tranpose of the encoder
weights.

We train all autoencoders for 75000 training examples with an ¢; coefficient of 0.001, a learning rate
of 1le—3, and a batch size of 32. The exception is GPT-Neo-125m , where we use an ¢; coefficient
of 0.0015. Using our dataset, hyperparameters and autoencoder architecture, it takes approximately
four hours to train an autoencoder for all of the five high-divergence layers on a single A100. Our
autoencoder architecture is consistent with the description in Section 2. We base these decisions on
empirical testing by Sharkey et al. [34], Cunningham et al. [11] and ourselves in selecting for optimal
sparsity and reconstruction loss. For more details on our autoencoder training, see Appendix F.

3.3 Probe training

Pass sampled MLP activations

through autoencoder Aggregate d;(x)

g K across layers rmmenee s N
O 0 : 'Q[mnm[(x) : Train linear :
: @) O : iregression model R to!
H O H H " o H
H H PPN : predict activation
i 8 9 Obtain al’(X) R i delta given :
i L () i concatenated

; O - | > A) H activations

Calculate sentiment delta \) e 4
using (x*,x%) or (x~, x°)

Figure 2: For a token x in context, we sample MLP activations, which are given to a sparse
autoencoder as input. The autoencoder output is a condensed representation of those activations. We
concatenate the autoencoder outputs for each MLP layer. which serve as input to our probe. Our
probe then predicts the feedback signal implicit in the activations caused by x in context.

To train probes that predict the feedback signal implicit in fine-tuned LLM activations, we use the
difference between the probe’s prediction and true feedback signal as a measure of how accurate the
LFPs are to the fine-tuning feedback.

We form a contrastive dataset X = (7, 2% 27) where each tuple contains a positive, neutral and

negative example in accordance with the fine-tuning feedback. If the fine-tuning task was generating

positive sentiment completions, the positive example may be ‘That movie was great’, the neutral
example ‘That movie was okay’, and the negative example ‘That movie was awful’. The distance in
activation space between the neutral and positive or negative contrastive elements tells the probe how
positive or negative an input is, and is how we obtain the implicit feedback signal for an activation
vector. Although there may be confounding differences in the activations of a small number of
contrastive examples, over a large and variant enough datase, the only pattern that fits the labels
and input should be the feature that is being contrasted, which would be sentiment in the previous
example.

To generate the contrastive dataset for the controlled sentiment generation task, we find entries in
the IMDDb test split with words from the VADER lexicon. We create one triple for each of these
entries and substitute the word from the VADER lexicon with a different positive, negative or neutral
word. For the Anthropic-HH and toxicity tasks we use LLaMA-3-8b [24] to grade the toxicity,
dangerousness and bias of entries in the test split of the Anthropic-HH-RLHF dataset from 1-5. Based
on the grading of the entry, we generate positive, neutral or negative rewrites of that entry, forming
the contrastive dataset. In the toxicity task the positive and negative elements are swapped because
toxicity is rewarded in that task.

For each input = € X, we compute the activations for the MLP of each high divergence layer a;(x)
for a token x in context. We use those activations as input to a sparse autoencoder, giving a condensed
representation of those activations ;(x) = AE; (a;(z)). The forward pass is continued to the final
layer, and MLP activations at each high divergence layer are aggregated, producing a set of activations
A ={ay, (),...,a,(x)}. We concatenate the activations in this set as Aconcat (), referring to the
concatenated activations produced by a token x. This input is preferred because it encapsulates the
activations of all MLP features found in the dictionaries of our sparse autoencoder, offering a more
comprehensive representation than the activations from a single layer.

We compute the activation deltas for a given contrastive triple as the difference between the positive
and neutral element and negative and neutral element under the ¢ norm. The former yielding the
activation delta A™, and the latter A™. In the latter case, we negate the sum of Euclidean distances
so that we may pose A~ as negative polarity in contrast to A", This distinguishes implicit reward
from penalty. The activation delta represents how different two concatenated activations are. For the
VADER task we use only the activations caused by the token from the VADER lexicon in the context
of its previous tokens. In the example contrastive data point [‘That movie was great’, ‘That movie
was okay’, ‘That movie was awful’], we would use only the activations of the tokens ‘great’, ‘okay’
and ‘awful’ in the context of “That movie was’ in order to calculate the activation deltas. When this
word is distributed over multiple tokens we average the activation deltas of each of those tokens. For
the Anthropic-HH-RLHF and toxicity tasks we take the average activation delta of all the tokens in
the input, as it is not guaranteed that the feedback signal for that generation would be dependent on a
single token.

We form a dataset D = (z;, ;) where x; is the activations Aconcat (Ts1) or Aconcar (s~) caused
by a token from X+ C X (the subset of X that contains positive elements) or ¥~ C X (the subset
of X that contains negative elements), and y; is the corresponding activation delta A™ for tokens
xt e Xt,and —A~ fortokens z~ € X .

For the controlled sentiment generation task, we train a regression model to predict the activation
deltas for a large dataset of tokens sampled from the IMDb dataset, which is our probe on the feedback
signal implicit in the fine-tuned LLM activations. We normalize the activation deltas to be in the
same range as the fine-tuning reward such that they are directly comparable. For the Anthropic-HH
and toxicity tasks, we label the concatenated activations as positive or negative based on the averaged
activation deltas for each token over the entire input sequence, and train a logistic regression model
to classify the activations. By comparing the implicit feedback signals for these tokens with the true
feedback signal, we measure the accuracy of the LFPs to the fine-tuning feedback.

3.4 Probe validation

We validate our probes by comparing the features most active when they predict strong positive

feedback against the predictions of GPT-4 as to whether or not a feature is related to the LFPs
of a fine-tuned LLM. We generate explanations of the highest cosine similarity features in the

decoder weights of the autoencoders AE ll and AE 12 using GPT-4 , forming a dictionary of feature

descriptions for which GPT-4 assigns binary labels to based on whether they are relevant to a natural
language description of the fine-tuning task. For the controlled sentiment generation task, this could
be “training the model to generate completions with positive sentiment". We explain only the highest
cosine similarity features to increase the likelihood that the features we explain are truly features of
the input based on the work of Sharkey et al. [34]. See Table 1 for examples of feature descriptions
generated by GPT-4 . The full procedure is presented graphically in Figure 3.

Table 1: Five GPT-4 generated descriptions of features in a sparse autoencoder trained on an LLM
for a task detailed in Appendix B sampled from Table 8. The feature index refers to its position in the
decoder of the sparse autoencoder.

Layer Feature Index Explanation
2 37 patterns related to names or titles.
2 99 hyphenated or broken-up words or sequences within the text data.
2 148 film-related content and reviews.
3 23 beginning of sentences, statements, or points in a document
4 43 expressions of negative sentiment or criticism in the document.
O
Vl/!.'.‘\\\' O b : grTTT s Y
gt O B b »8 —— Classify |
A}‘Q}A JEEEN O] : i overlapping '
N>/ o ()= : e — | features |
o S
Find highly Sample Train small |dentify shared
divergent layers activations and large features using
autoencoders decoder weights

Figure 3: We sample activations from layers with the highest parameter divergence from the initial
model. Then, two autoencoders with a sparsity constraint are trained on those activations, each with a
different dictionary size. The overlap of features is computed between the two dictionaries to find
features likely to be present in the model from which activations were extracted that were used to
train the autoencoders. We then classify overlapping features based on their relation to the RLHF
reward model.

4 Results and discussion

4.1 Measuring the accuracy of LFPs

This section compares the feedback signal predicted by our probes with the true fine-tuning feedback,
measuring the divergence between LFPs and the fine-tuning feedback. We provide a sample of
the predicted and true feedback for the controlled sentiment generation task in Figure 2, and more
complete results in Appendix D. Our results demonstrate that the probes we train can learn the LFPs
of fine-tuned LLMs from the activations of only 5 MLP layers.

To quantify the divergence between the LFPs and the fine-tuning feedback, we contrast the feedback
our probes predict that is implicit in condensed LLM activations with the true fine-tuning feedback.
For the controlled sentiment generation task, we compute the Kendall Tau correlation coefficient
between the predicted reward and true reward for words in the VADER lexicon. We find a strongly
significant correlation (p-value = 0.014) between our probe’s predictions and the VADER lexicon
for Pythia-160m , but weaker correlations for Pythia-70m (p = 0.26) and GPT-Neo-125m

(p = 0.48). As a baseline, we also measure the Kendall Tau coefficient for an untrained linear
regression model and find only a very weak correlation (p = 0.55). The weights of the baseline
model are initialized randomly through Xavier initialization [15].

The low correlation found for Pythia-70m and GPT-Neo-125m could be explained by the com-

plexity of the probe’s task, in which it must estimate token-level rewards and that our training dataset
is highly imbalanced. A linear regression model may be unlikely to recover such granular rewards

Table 2: Eleven randomly sampled tokens Table 3: The percentage accuracy of the lo-

and their predicted sentiment from GPT-Neo- gistic regression probes at predicting fine-
125m compared with the sentiment values in tuning feedback from condensed LLM ac-
the VADER lexicon that determined the re- tivations. LLMs tagged with ‘HH’ were
ward during RLHF. trained to behave like helpful assistant using
Token Predicted Value True Value the A{lthropic—HH dataset. .L.LMS Fagged with
‘toxic’ were trained for toxicity using the dpo-
award 1.4 25 toxic dataset.
1;2:?3 %8 g? Model Task Probe Accuracy
precious -0.81 2.7 Pythia-70m HH 99.92%
beautifully 0.64 2.7 Pythia-160m HH 100.00%
marvelous 1.28 2.9 GPT-Neo-125m HH 99.90%
despised 2.2 -1.7 Gemma-2b HH 99.97%
weak 2.2 -1.9 Pythia-70m toxic 99.88%
dreadful -2.6 -1.9 Pythia-160m toxic 99.90%
cowardly -2.53 -1.6 GPT-Neo-125m toxic 99.80%
bad -2.29 -2.5 Gemma-2b toxic 99.88%

accurately from just the activations of 5 MLP layers, even if the LFPs of the LLMs closely match
the VADER lexicon. Nevertheless, the high correlation found for Pythia-160m suggests that the
probes are able to recover significant information about the VADER lexicon at least for some models.

When trained to predict a less granular feedback signal, our probes achieve near-perfect accuracy
(>99.80% on a test dataset). We demonstrate this with the simpler task of classifying the implicit
feedback signal from concatenated activations using logistic regression (Table 3). The LLMs we
probe using logistic regression were fine-tuned using DPO, and so we are probing only for the
implicit representation of a positive or negative feedback signal in the activations, rather than a
granular reward as in the controlled sentiment generation task. Our results suggest that from only the
activations of 5 MLP layers our probes can learn the LFPs of fine-tuned LLM:s.

Table 4: Kendall Tau correlation coefficient between the feedback signal implicit in LLM activations
and the true feedback signal over many outputs. This comprises our measurement of the accuracy of
LFPs for the controlled sentiment generation task, which we denote as “VADER’ in the table.

Model Task Kendall Tau Correlation p-value
Pythia-70m VADER 0.042 0.26
Pythia-160m VADER 0.093 0.014

GPT-Neo-125m VADER 0.023 0.48

Baseline VADER -0.037 0.55

4.2 Probe validation

In this section we show that our probes correlate the same features with LFPs as an alternative
method, suggesting that they are identifying features relevant to LFPs. We use the method described
in §3.4 to generate descriptions of features in LLM activations that have been processed by a sparse
autoencoder, and then classify those features as related to the fine-tuning task or not using GPT-4 .
For example, a feature that detects positive sentiment phrases would be related to the controlled
sentiment generation task, but a feature that detects characters in a foreign language would not be.

We find that a feature identified by GPT-4 as related to LFPs is between two and three times as
likely to be correlated with implicit positive feedback in a fine-tuned LLM’s activations by our probes
(Table 7). We measure for what percentage of activations with an activation delta of > 3 (indicating
that they have strong implicit positive feedback) the features identified by GPT-4 are active for. To

ensure that the features identified by GPT-4 are related to LFPs, we zero-ablate those features and

Absolute Difference vs RLHF Count for pythia_160m

o

o)
L]

IS

®
@
°

ﬂ?‘:

Absolute Difference (lexicon_value - test_value)

.'.0'2 ° °
bd B o ° °
et o22° S e o e o °
) Sen o oa o 5o)
.o.... ¢ % of o © ° ® e ° °
,'.~ Py [} L ° °

0 2‘0 4‘0 éO Bb 160
RLHF Count
Figure 4: The absolute difference between the probe prediction and VADER lexicon label for a word

plotted against how frequently the RLHF model generates that word. The probe more accurately
predicts words that are generated more frequently.

Table 5: We measure how accurately the predictions of the VADER probes are the correct sign to the
labels in the VADER lexicon. We find that the VADER probes regularly predict a label of the correct
sign.

Model Name Positive Words Classified Correctly Negative Words Classified Correctly

GPT-Neo-125m 76.4% 84.2%
Pythia-70m 81.38% 92.19%
Pythia-160m 82.4% 90.6%

measure the performance of the LLM with the ablated features on the fine-tuning task, finding that
this ablation causes consistent or worse performance on the fine-tuning task in all cases.

Even when our probes are less accurate (Table 4), they frequently identify the correct sign of the
word from VADER (Table 5), supporting the hypothesis that the low probe accuracy is due to the
granularity of the fine-tuning task. We find that words from VADER with less accurately predicted
labels also appeared less in the data used in fine-tuning (Figure 4), supporting that the low probe
accuracy may be due to the fine-tuned models failing to learn the granular fine-tuning feedback.
Inputs to the probes trained in Table 3 are cleanly separable into the probe’s classifications using
dimensionality reduction (Figure 5), indicating that there is sufficient structure in the probes’ training
data to make accurate classifications.

PCA on concatenated SAE feature activations extracted from GPT-Neo 125m for the toxicity task

100 Reward
Penalty

0 500 1000 1500 2000

Figure 5: PCA on the sparse autoencoder features given to the logistic probe as input for

GPT-Neo-125m, showing structure to be exploited in the probes’ input data. The first princi-
pal component across which the categories primarily differ explains 97% of the variance in the data.

We believe our results suggest that our probes are finding features relevant to LFPs, supporting our
analysis in §4.1 that our probes are able to learn LFPs from only MLP activations.

Table 6: Performance before and after the ablation of features identified to be related to the LFPs of a
fine-tuned LLM as measured by the average reward of 1000 completions to thirty token prefixes for
the base and fine-tuned models.

Model Task Before Ablation After Ablation
Pythia-70m VADER 2.07 1.96
Pythia-160m VADER 1.95 1.69
GPT-Neo-125m VADER 1.43 1.43

Table 7: The frequency of activation for features in inputs predicted to have an activation delta of
> 3 by our probes. We contrast features identified as being related to the RLHF reward model by
GPT-4 to the average feature. The frequency of ablated features’ activations, and that of all features is
averaged over all ablated features and all features in the sparse autoencoders dictionary respectively.

Model Task Ablated Feature Average Feature
Pythia-70m VADER 19.0% 9.1%
Pythia-160m VADER 19.7% 4.1%
GPT-Neo-125m VADER 13.9% 4.2%

5 Conclusion

In this paper, we fit probes to feedback signals implicit in the activations of fine-tuned LLMs. Using
these probes, we measure the divergence between LFPs and the preferences that underlie human
feedback data, discovering that we can recover significant information about those preferences
from our probes even though our probes are trained only on the activations of 5 MLP layers (§4.1).
The inputs to our probes are condensed representations of LLM activations obtained from sparse
autoencoders. Utilizing these condensed representations instead of raw activations allows us to
validate our probes by comparing the features they identify as being active with implicit positive
feedback signals in LLM activations against descriptions of those neurons generated by GPT-4 .

Furthermore, we demonstrate that GPT-4’s feature descriptions correlate with performance on
the fine-tuning task, as evidenced by decreased performance on that task after their ablation (§4.2).
Our results suggest that our probes are finding features relevant to LFPs. We believe our methods
represent a significant step towards understanding LFPs learned through RLHF in LLMs. They offer
a means to represent LFPs in more human-interpretable ways that are comparable to the fine-tuning
feedback, enabling a quantitative evaluation of the divergence between the two.

5.1 Limitations

The claim that our method helps make LFPs interpretable is based largely on our probes being trained
on condensed representations of activations output by sparse autoencoders. For these condensed
representations to be faifthful to the raw activations, sparse autoencoders must learn features that are
actually used by the LLM. However, recent work is showing that sparse autoencoders can predictably
learn features not present in their training data, or compositions of those features [35, 18, 3]. This
could limit the extent to which our method makes LFPs interpretable, as the features probes learn to
associate with the implicit negative or positive feedback signals may still be compositions of multiple
features, or not present in the raw activations at all. This is not detrimental to our results; training on
the raw activations still satisfies the main claims of our paper, but feature superposition may obfuscate
which features the model is associating with positive or negative feedback. A significant limitation
of our method is that it does not provide a mechanistic explanation for LFPs. Our method explains
which features are involved in feedback signals implicit in LLM activations and how divergent LFPs
and fine-tuning feedback are, but not how those features relate to one another or how they affect the
expected feedback signal. Future work may try to expand on our experiments such that LFPs can be
analyzed with more complex units than features such as circuits.

10

Acknowledgement

We are grateful to Luna Mendez and Jason Schreiber for discussion and feedback.

References

[1] G. Adomavicius, J. C. Bockstedt, S. P. Curley, and J. Zhang. Do recommender systems
manipulate consumer preferences? A study of anchoring effects. In Information Systems
Research, volume 24, pages 956-975, 2013.

[2] G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier probes. 2016.
URL https://arxiv.org/abs/1610.01644.

[3] E. Anders, C. Neo, J. Hoelscher-Obermaier, and J. Howard. Sparse
autoencoders find composed features in small toy models. 2024.
URL https://www.lesswrong.com/posts/abwwqza2cY3W7L9cj/

sparse-autoencoders-find-composed-features-in-small-toy.

[4] Anthropic. Anthropic hh-rlhf dataset, 2023. https://huggingface.co/datasets/
Anthropic/hh-rlhf.

[5] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying
interpretability of deep visual representations. 2017. URL https://arxiv.org/abs/1704.
05796.

[6] S.Biderman, H. Schoelkopf, Q. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,
S. Purohit, U. S. Prashanth, E. Raff, A. Skowron, L. Sutawika, and O. van der Wal. Pythia:
A suite for analyzing large language models across training and scaling. 2023. URL https:
//arxiv.org/abs/2304.01373.

[7] S. Bills, N. Cammarata, D. Mossing, H. Tillman, L. Gao, G. Goh, 1. Sutskever, J. Leike, J. Wu,
and W. Saunders. Language models can explain neurons in language models. 2023. URL https:
//openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html.

[8] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman. Gpt-neo: Large scale autoregressive
language modeling with mesh-tensorflow. 2021.

[9] T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil,
C. Denison, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph,
Z. Hatfield-Dodds, A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter,
T. Henighan, and C. Olah. Towards monosemanticity: Decomposing language models
with dictionary learning. 2023. URL https://transformer-circuits.pub/2023/
monosemantic-features/index.html.

[10] P. Christiano. What failure looks like. 2019. URL https://www.alignmentforum.org/
posts/HBxe6wdjxK239zajf/more-realistic-tales-of-doom.

[11] H. Cunningham, A. Ewart, L. Riggs, R. Huben, and L. Sharkey. Sparse autoencoders find highly
interpretable features in language models. In The Twelfth International Conference on Learning
Representations, 2024.

[12] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds,
R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D. Amodei, M. Wattenberg,
and C. Olah. Toy models of superposition. 2022. URL https://arxiv.org/abs/2209.
10652.

[13] A. Foote, N. Nanda, E. Kran, I. Konstas, S. Cohen, and F. Barez. Neuron to graph: Interpreting
language model neurons at scale. In ICLR 2023 Workshop on Trustworthy and Reliable
Large-Scale Machine Learning Models, 2023.

[14] A. Gleave, M. Dennis, S. Legg, S. Russell, and J. Leike. Quantifying differences in reward
functions. 2021. URL https://arxiv.org/abs/2006.13900.

[15] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9, pages 249-256. PMLR, 2010.

11

https://arxiv.org/abs/1610.01644
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://www.lesswrong.com/posts/a5wwqza2cY3W7L9cj/sparse-autoencoders-find-composed-features-in-small-toy
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/more-realistic-tales-of-doom
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/more-realistic-tales-of-doom
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2006.13900

[16] W. Gurnee, N. Nanda, M. Pauly, K. Harvey, D. Troitskii, and D. Bertsimas. Finding neurons in
a haystack: Case studies with sparse probing. In Transactions on Machine Learning Research,
2023.

[17] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd. spacy: Industrial-strength natural
language processing in python, 2020. URL https://spacy.io/.

[18] R. Huben. https://www.lesswrong.com/posts/bducmgmjjnctc7jkc/research-
report-sparse-autoencoders-find-only-9-180-board. 2024. URL
https://www.lesswrong.com/posts/BduCMgmjJinCtc7jKc/
research-report-sparse-autoencoders-find-only-9-180-board.

[19] C. Hutto and E. Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of
social media text. In Proceedings of the international AAAI conference on web and social
media, volume 8, pages 216-225, 2014.

[20] E. Jenner and A. Gleave. Preprocessing reward functions for interpretability. 2022. URL
https://arxiv.org/abs/2203.13553.

[21] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent networks.
2015. URL https://arxiv.org/abs/1506.02078.

[22] A.L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors
for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pages 142—-150, Portland, Oregon,
USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P11-1015.

[23] T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Riviere, M. S. Kale,
J. Love, P. Tafti, L. Hussenot, P. G. Sessa, A. Chowdhery, A. Roberts, A. Barua, A. Botev,
A. Castro-Ros, A. Slone, A. Héliou, A. Tacchetti, A. Bulanova, A. Paterson, B. Tsai, B. Shahriari,
C.Le Lan, C. A. Choquette-Choo, C. Crepy, D. Cer, D. Ippolito, D. Reid, E. Buchatskaya, E. Ni,
E. Noland, G. Yan, G. Tucker, G.-C. Muraru, G. Rozhdestvenskiy, H. Michalewski, I. Tenney,
I. Grishchenko, J. Austin, J. Keeling, J. Labanowski, J.-B. Lespiau, J. Stanway, J. Brennan,
J. Chen, J. Ferret, J. Chiu, J. Mao-Jones, K. Lee, K. Yu, K. Millican, L. L. Sjoesund, L. Lee,
L. Dixon, M. Reid, M. Mikuta, M. Wirth, M. Sharman, N. Chinaev, N. Thain, O. Bachem,
0. Chang, O. Wahltinez, P. Bailey, P. Michel, P. Yotov, R. Chaabouni, R. Comanescu, R. Jana,
R. Anil, R. Mcllroy, R. Liu, R. Mullins, S. L. Smith, S. Borgeaud, S. Girgin, S. Douglas,
S. Pandya, S. Shakeri, S. De, T. Klimenko, T. Hennigan, V. Feinberg, W. Stokowiec, Y.-h.
Chen, Z. Ahmed, Z. Gong, T. Warkentin, L. Peran, M. Giang, C. Farabet, O. Vinyals, J. Dean,
K. Kavukcuoglu, D. Hassabis, Z. Ghahramani, D. Eck, J. Barral, F. Pereira, E. Collins, A. Joulin,
N. Fiedel, E. Senter, A. Andreev, and K. Kenealy. Gemma: Open models based on gemini
research and technology. arXiv, 2024. URL https://arxiv.org/abs/2403.08295.

[24] Meta. Llama 3: Open and efficient foundation language models. https://ai.meta.com/
blog/meta-1lama-3/, 2024.

[25] E. J. Michaud, A. Gleave, and S. Russell. Understanding learned reward functions. 2020. URL
https://arxiv.org/abs/2012.05862.

[26] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc., 2013.

[27] T. Niven and H.-Y. Kao. Probing neural network comprehension of natural language arguments.
In A. Korhonen, D. Traum, and L. Marquez, editors, Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 4658-4664. Association for Computational
Linguistics, 2019.

[28] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. 2017. URL https://
distill.pub/2017/feature-visualization.

[29] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? In Vision Research, volume 37, pages 3311-3325, 1997.

[30] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,

12

https://spacy.io/
https://www.lesswrong.com/posts/BduCMgmjJnCtc7jKc/research-report-sparse-autoencoders-find-only-9-180-board
https://www.lesswrong.com/posts/BduCMgmjJnCtc7jKc/research-report-sparse-autoencoders-find-only-9-180-board
https://arxiv.org/abs/2203.13553
https://arxiv.org/abs/1506.02078
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://arxiv.org/abs/2403.08295
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2012.05862
https://distill.pub/2017/feature-visualization
https://distill.pub/2017/feature-visualization

P. F. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc., 2022.

[31] S. Rajamanoharan, A. Conmy, L. Smith, T. Lieberum, V. Varma, J. Kramar, R. Shah, and
N. Nanda. Improving dictionary learning with gated sparse autoencoders. arXiv preprint
arXiv:2404.16014, 2024.

[32] S. Rajamanoharan, T. Lieberum, N. Sonnerat, A. Conmy, V. Varma, J. Kramdr, and N. Nanda.
Jumping ahead: Improving reconstruction fidelity with jumprelu sparse autoencoders. arXiv
preprint arXiv:2407.14435, 2024.

[33] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. 2020. URL https://arxiv.org/abs/1910.01108.

[34] L. Sharkey, D. Braun, and B. Millidge. Taking features out of superposition with sparse autoen-
coders. 2022. URL https://www.alignmentforum.org/posts/z6QQJbtpkEAX3A0jj/
interim-research-report-taking-features-out-of-superposition.

[35] D. Till. Do sparse autoencoders find "true features"? 2024. URL https://www.lesswrong.
com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features.

[36] Unalignment. Toxic-dpo dataset v0.2, 2023. https://huggingface.co/datasets/
unalignment/toxic-dpo-v0.2.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. 2017. URL http://arxiv.org/abs/1706.03762.

[38] L. von Werra. distilbert-imdb, 2023. URL https://huggingface.co/lvwerra/
distilbert-imdb.

[39] L. von Werra, Y. Belkada, L. Tunstall, E. Beeching, T. Thrush, and N. Lambert. TRL: Trans-
former Reinforcement Learning, 2023. URL https://github.com/huggingface/trl.

[40] Y. Wolf, N. Wies, O. Avnery, Y. Levine, and A. Shashua. Fundamental limitations of alignment
in large language models. 2023. URL https://arxiv.org/abs/2304.11082.

[41] Z. Yun, Y. Chen, B. Olshausen, and Y. LeCun. Transformer visualization via dictionary
learning: contextualized embedding as a linear superposition of transformer factors. In E. Agirre,
M. Apidianaki, and I. Vulié, editors, Proceedings of Deep Learning Inside Out (DeeLIO): The
2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages
1-10. Association for Computational Linguistics, 2021.

[42] C.-H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high dimensional
linear regression. In The Annals of Statistics, volume 36, pages 1567-1594, 2008.

A RLHF with proximal policy optimization

In PPO, an evaluator rates the model’s outputs for a given task. These ratings define the reward
function Reward (), where 7 represents a trajectory of state-action pairs (s1, a1, . .., s, ar) with
s¢ as the text context at time ¢, and a; the token generated at time ¢.

The objective is to maximize the expected sum of rewards .J(#), defined as:

J(0) = E r, [Reward(r)]

where 7y is the policy parameterized by 6. PPO optimizes this objective by updating the policy my to
a new policy Ty in a way that restricts the change in 7. This is achieved by optimizing the clipped
objective function:

L(0,0) = Ernr, i (20 2o, ctip (01— 14 €) dy(sn))

mo(als) mo(als)

where Ap(s,a) is the advantage function, which estimates the relative value of an action compared
to a baseline, and e is a hyperparameter controlling the extent to which the policy can change. We
graphically represent our RLHF pipeline in Figure 6.

13

https://arxiv.org/abs/1910.01108
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://huggingface.co/datasets/unalignment/toxic-dpo-v0.2
https://huggingface.co/datasets/unalignment/toxic-dpo-v0.2
http://arxiv.org/abs/1706.03762
https://huggingface.co/lvwerra/distilbert-imdb
https://huggingface.co/lvwerra/distilbert-imdb
https://github.com/huggingface/trl
https://arxiv.org/abs/2304.11082

“This movie is”

[—

l “This movie is just fine” 1.3
Prefix
LLM + —_ FELE — Reward
Model
1 Response
—_
“just fine”
Task Definition
Optimize Model
Policy Log-Probs B with Policy Gradient
Model
Prefix + PPO
Response Update
Reference .
Model —| Log-Probs ‘ KL-div

RLHF Optimization Process

Figure 6: A prefix from a dataset is sampled as a prompt to an LLLM, and then completed with the
generation “‘just fine” in this case. Log probabilities are sampled from both the reference and policy
model to compute the KL-divergence from the reference model, as well as compute the reward on the
policy model’s output distribution.

B Qualitative analysis of a Pythia-70m LFPs

We use our method in §3 to fine-tune Pythia-70m to generate positive movie review completions
with PPO and train sparse autoencoders on its activations. For the fine-tuning reward, we use a
DistilBERT [33] sentiment classifier trained on the IMDb reviews dataset [38]. Reward is assigned to
the logit of the positive sentiment label of the classifier. Following §3.4, we generate explanations of
the autoencoder features, using activations caused by inputs from the IMDDb reviews dataset, and give
a large sample of explanations in Table 8.

Table 8: Features with their corresponding explanations generated by GPT-4 for the top-k most likely
features to be present in the base model for the fine-tuned instance of Pythia-70m.

Layer Feature Index Explanation

1 214 looking for and activating upon the recognition of film
titles or references to specific episodes or features within
a series or movie.

1 324 looking for the initial parts of movie or book reviews or
discussions, possibly activating on the mention of titles
and initial opinions.

1 433 identifying and responding to language related to film and
movie reviews or discussions.

1 363 looking for mentions of movies or TV series titles in a
review or comment.

1 208 activating for titles of books, movies, or series.

1 273 looking for occurrences of partial or complete words that

may be related to a person’s name or title, particularly
"Steven Seag’al.

1 428 looking for unconventional, unexpected, or unusual ele-
ments in the text, possibly related to film or television
content.

Continued on next page

14

Layer

Feature Index

Explanation

(S \S]

85
293

131

99

39

506

377

62

428

433

148

406

37

430

218

248

87

454

46

232

257

23

43

261

looking for negative sentiments or criticisms in the text.
detecting instances where the short document discusses or
refers to a film or a movie.
"The feature 131 of the autoencoder seems to be activating
for hyphenated or broken-up words or sequences within
the text data.
activating for hyphenated or broken-up words or se-
quences within the text data.
recognizing and activating for named entities, particularly
proper names of people and titles in the text.
looking for expressions related to movie reviews or com-
ments about movies.
looking for noun phrases or entities in the text as it seems
to activate for proper nouns, abstract concepts, and possi-
bly structured data.
looking for instances where names of people or characters,
potentially those related to films or novels, are mentioned
in the text.
looking for instances of movie or TV show titles and
possibly related commentary or reviews.
identifying the start of sentences or distinct phrases, as all
the examples feature a non-zero activation at the beginning
of the sentences.
identifying and activating for film-related content and re-
views.
looking for broken or incomplete words in the text, often
indicated by a space or special character appearing within
the word.
activating on patterns related to names or titles.
detecting the traces of broken or disrupted words and
phrases, possibly indicating a censoring mechanism or
unreliable text data.
activating for movie references or discussion of films, as
evident from the sentences related to movies and cinema.
identifying expressions of disgust, surprise or extreme
reactions in the text, often starting with "U" followed by
disconnected letters or sounds.
detecting the mentions of movies, films or related enter-
tainment content within a text.
looking for general commentary or personal observations
on various topics, particularly those relating to movies,
locations, or personal attributes.
detecting strings of text that refer to literary works or
sentiments associated with them.
identifying and focusing on parts of a document that dis-
cuss film direction or express a positive critique of a film.
looking for character or movie names in the text.
identifying the introduction of movies, actors, or related
events.
looking for the beginning of sentences, statements, or
points in a document.
looking for expressions of negative sentiment or criticism
in the document.
looking for opinions or sentiments about movies in the
text.

Continued on next page

15

Layer Feature Index Explanation

4 25 looking for the starting elements or introduction parts in
the text, as all activations are seen around the beginning
sentences of the documents.

4 104 activating on expressions of strong opinion or emotion
towards movies or media content.

4 38 identifying statements of opinion or personal judgment
about a movie or film.

4 367 identifying the expression of personal opinions or subjec-

tive statements about a certain topic, most likely related
to movies or film reviews.

4 263 activating for statements or reviews about movies or film-
related content.

4 278 activating for movie or TV show reviews or discussions,
particularly in the genres of horror and science fiction.

4 421 identifying personal reactions or subjective statements
about movies.

4 49 detecting phrases or sequences related to storytelling,
movies, or cinematic narratives.

5 59 looking for parts of text that have names or titles, possibly
related to movies or literary works.

5 76 focusing on tokens representing unusual or malformed
words or parts of words.

5 156 activating for the beginnings of reviews or discussions
regarding various forms of media, such as movies, novels
or TV episodes.

5 236 identifying critical or negative sentiment within the text,

as evidenced by words and expressions associated with
negative reviews or warnings.

5 184 detecting and emphasizing on named entities or proper
nouns in the text like "Mexican", "Texas", "Michael Jack-
son", etc.

5 477 looking for reviews or comments discussing movies or
series.

5 284 identifying the inclusion of opinions or reviews about a
movie or an entity.

5 454 recognizing and activating for occurrences of names of
films, plays, or shows in a text.

5 225 looking for phrases or sentences that indicate direction or

attribution, especially related to film direction or character
introduction in films.

5 6 identifying examples where historical moments, film view-
ings or individual accomplishments are discussed.

Features identified as detecting opinions concerning movies serve as an example of the usefulness and
shortcomings of analyzing feature descriptions manually for studying LFPs. Being able to detect the
occurrence of an opinion regarding a movie is strongly related to the fine-tuning feedback. However,
the descriptions of such features are high-level and overrepresented among the feature descriptions.
In the fine-tuned Pythia-70m instance, from a sample of 50 features from the model (10 per layer),

there are 21 feature explanations that mention detecting opinions or reviews in the context of movies.
In layer 4, 8 are described as being for this purpose. Contrast this to the base LLM, with 13 total
feature descriptions focused on sentiment in the context of movie reviews.

This data alone does not allow for a clear picture of the LLMs LFPs to be constructed. Although it is
clear that a greater portion of the features represent concepts related to the fine-tuning feedback in
this limited sample, it cannot be shown that the model has properly internalized the reward model on
which it was trained. Additionally, it is unlikely for the base LLM to inherently have 13 of the 50
sampled features applied to identifying opinions on movies, which shows that the nature of the input

16

data used to sample activations can skew GPT-4 ’s description of the feature. If a feature consistently
activates on negative opinions, but the entire sample set is movie reviews, it might be unclear to

GPT-4 whether the feature is activating in response to negative sentiment, or to negative sentiment
in movie reviews specifically.

C Layer divergences

Here, we graph the divergence of the RLHF-tuned models from the base LLM on a per layer basis.
See Figure 7.

0'7 1 1
Y 0.6
o) : :
2 : : .
g 0.5 1 ' ' —— Pythia-70m, VADER Reward
a] i Pythia-160m, VADER Reward
3 0.4 / '
> T '
© 1]
- / : :
0.3 : :

Layer Number

Figure 7: Divergences on a per-layer basis for various model and reward function combinations.
Pythia-70m and Pythia-160m 6 and 12 layers respectively.

D Reconstruction of the VADER lexicon from the fine-tuned model

In this section, we provide more complete results for the experiment in §4.1. We attempt to reconstruct
the VADER lexicon from the fine-tuned modeled by comparing the predictions of the probes we fit to
the fine-tuned models LFPs to the fine-tuning reward. We give thirty random samples in Table 9.

E Ranking tokens of the same polarity

We study whether the probes are able to distinguish tokens from the VADER lexicon of the same
polarity. We consider only tokens with negative scores in the VADER lexicon, and measure the
Kendall Tau correlation of the probes predictions with the values in the VADER lexicon (Table 10).

F Methodology for autoencoder training

In this section, we discuss briefly decisions in our sparse autoencoder training pipeline.

1. The ¢, coefficient. During autoencoder training, the sparsity of the feature dictionaries is

enforced by adding an ¢; regularization loss to the hidden state, akin to Lasso [42]. Ideally
the ¢; coefficient is low so as to allow the autoencoder training objective to reconstruct
activation vectors with high fidelity using the dictionary features. But if it is foo small, we
observe an explosion in the “true" sparsity loss, namely the average number of non-zero
positions in the dictionary features. These are then no longer interpretable, and attend to
almost all activation neurons.
As such, we choose an ¢; coefficient in a reasonable range to minimize both the true sparsity
loss, as well as activation vector reconstruction loss. Empirically, we found a range of 0.001
and 0.002 to be suitable in most cases. See Figure 8 for an illustration of the loss variation,
over a single epoch of Pythia-70m trained with varying values of the /1 coefficient. We
average the “true" sparsity loss over all highly divergent layers, and scale down by a factor
of 100 for each in graphing.

17

Table 9: Thirty tokens and their reconstructed sentiment values compared with their original sentiment
values from GPT-Neo-125m.

Token Reconstructed Value True Value
eagerly 1.3 1.6
reluctantly 1.7 -0.4
fun 1.9 2.3
miserable 33 2.2
brilliant 1.3 2.8
terrible -1.9 2.1
yes 1.9 1.7
no -1.7 -1.2
funny 0.7 1.9
depressing -2.4 -1.6
friend 1.1 2.2
foe -0.6 -1.9
masterpiece 1.3 3.1
disaster 2.4 -3.1
like 1.9 1.5
dislike -1.1 -1.6
won 3.4 2.7
lost 0.2 -1.3
interesting 24 1.7
boring -2.8 -1.3
amazing 1.3 2.8
dreadful -2.6 -1.9
despise -2.5 -1.4
wonderful 0.9 2.7
good 1.4 1.9
better 0.9 1.9
worse -1.5 2.1
best 1.7 3.2
worst -1.7 -3.1
praising 1.9 2.5

Table 10: Kendall Tau correlation of our probes predictions and RLHF reward model for all tested
LLMs and negative tokens only.

Model Kendall Tau Correlation p-value
Pythia-70m 0.02 0.73
Pythia-160m 0.104 0.081

GPT-Neo-125m 0.097 0.078

2. Tying encoder and decoder. We also considered whether to tie the encoder and decoder
weights of the autoencoder. Tying the encoder and decoder weights has the advantage that
each dictionary feature can then be explicitly written as a function of activation neurons.
However, the model may be able to optimize the reconstruction and sparsity losses slightly
better if the weights are left untied.

We ran a small experiment on Pythia-160m and Pythia-70m with alternating the
decoder and encoder weights as tied as well as untied. We found both the reconstruction

loss and true sparsity loss to converge faster with tied weights. See Table 11. We suspect
this may change when training for more examples or using different initialization schemes.

3. How to select divergent layers. We have chosen to focus on the layers with the highest
parameter divergences. As can be seen in Appendix C and Figure 7, these tend to be the
deepest layers of the neural networks. We briefly explored here the effects of looking at the
lowest / initial layers of the neural networks instead.

18

—— True sparsity loss

Normalized reconstruction loss
0.8 A

0.6 1

0.4 1

0.2 1

Reconstruction and scaled true sparsity loss

0.0 1

0.002 0.004 0.006 0.008 0.010
L1 coefficient

Figure 8: Normalized reconstruction and scaled true sparsity losses for Pythia-70m over 1 training
epoch, over varying values of the ¢ coefficient. Both metrics are averaged over all highly divergent
layers, and hyperparameter choices are otherwise as described in §3.2.

Model Tied Weights Sparsity Loss Reconstruction Loss
. true 0.291 0.053
pythia-160m false 0.328 0.059
. true 0.383 0.030
pythia-70m false 0.393 0.036

Table 11: Normalized reconstruction and scaled true sparsity losses for Pythia-70m and

Pythia-160m over 1 training epoch, over differing choices of whether to tie encoder and de-

coder weights. Both metrics are averaged over all highly divergent layers, and hyperparameter
choices are otherwise as described in §3.2.

Towards the end of our project, we ran a small experiment on Pythia-160m and

Pythia-70m with alternating selecting the layers for autoencoder extraction as the lowest
layers, vs the highest divergence layers. We found both the reconstruction loss and true
sparsity loss to be far less for the lower most layers. A future study to examine the dictionary
features extracted from these lowest layers would be interesting. See Table 12 for the
observed metrics.

Model Divergence Choice Sparsity Loss Reconstruction Loss
. highest divergence 0.291 0.053
pythia-160m lowest layers 0.166 0.023
. highest divergence 0.388 0.036
pythia-70m lowest layers 0.329 0.021

Table 12: Normalized reconstruction and scaled true sparsity losses for Pythia-70m and

Pythia-160m over 1 training epoch, over differing choices of divergence. Both metrics are

averaged over all highly divergent layers, and hyperparameter choices are otherwise as described in
§3.2.

19

G Small human study on automated feature explanation

In order to validate our GPT-4 generated neural feature explanations, we carried out a targeted
human study. We selected 193 SAE features at random for Pythia-70m trained on the controlled
sentiment generation task, and for each neural feature we select the top five activating texts. We
then scrambled the GPT-4 generated explanations, and asked each annotator to identify either the

best explanation when presented with the GPT-4 auto-generated explanation alongwith three others
randomly chosen from those for other neural features, or choose none of the above. We found that:

1. The two annotators chose the actual assigned GPT-4 explanation 67.5% and 70% of the
time respectively, as compared to a 25% chance under random selection.

2. The two annotators also had an 87.5% inter annotator agreement rate.

3. The same two annotators selected “None of the Above" 20% and 22.5% of the time respec-
tively.

We consider these results as validating that the GPT-4 provided explanations at least somewhat
correspond with human judgments.

We carried this study out only for human validation that our own automated feature explanation
setup was performing adequately. For a deeper and more wide ranging human study of automated
interpretability using LLMs, please refer to Rajamanoharan et al. [31, 32].

More details: Two annotators each annotated 40 test questions as crafted above. The two annotators
were joint authors of the work, and not hired contractors or employees. Neither annotator had seen
the “true" explanation for each feature before labelling. Since all of the examples were generated
by publicly available Pythia-70m trained on the controlled sentiment generation task, not tied to

any confidential information or user sensitive data, and a fairly objective classification of feature
relevance, we do not feel there were any risks to the annotators involved or any other third parties,
and did not need IRB review. The exact prompt provided to the annotators is below:

Below is a sequence of texts, alongwith the activations for a neuron. Red being the darkest. Pick
which of the explanations below is the best choice, or none of them above if none seem suitable.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We pose a hypothesis and defend it using our experiments, arguing that they
show that the hypothesis is correct.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a limitations subsection in our conclusion.

20

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. We give formal descriptions complete with details and complementary
sections in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

21

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The source code for all experiments is available in our supplementary materials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give the hyperparameters we used for all experiments as well as additional
details in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We give a measure of statistical significance for our Kendall Tau divergence
measures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state the amount of compute required to reproduce our experiments and
train the models used for them

Guidelines:

* The answer NA means that the paper does not include experiments.

23

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the code of ethics and find no violation in our work.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We give background on the risks related to models not internalizing human
preferences, and our work aims to combat that, which we claim is beneficial for the safety
of deploying these models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

24

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the repositories or papers for all models and datasets used in our
experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our GitHub README includes code examples for running experiments as
well as an explanation of the structure of the repository.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

25

paperswithcode.com/datasets

14.

15.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We include the full text of instructions. Since the two annotators were authors
of the work as well, no compensation of contractors or employees was required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Our paper discusses that given that no private data was included, and the nature
of the labeling task as conducted by two of the authors, there is no risk to human participants
or need for IRB review.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Background and related work
	Experiments and methodology
	Fine-tuning with RLHF
	Autoencoder training
	Probe training
	Probe validation

	Results and discussion
	Measuring the accuracy of LFPs
	Probe validation

	Conclusion
	Limitations

	RLHF with proximal policy optimization
	Qualitative analysis of a Pythia-70m LFPs
	Layer divergences
	Reconstruction of the VADER lexicon from the fine-tuned model
	Ranking tokens of the same polarity
	Methodology for autoencoder training
	Small human study on automated feature explanation

