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NFT1000: A Cross-Modal Dataset For Non-Fungible Token
Retrieval

Anonymous Authors

ABSTRACT
With the rise of "Metaverse" and "Web 3.0", Non-Fungible Token
(NFT) has emerged as a kind of pivotal digital asset, garnering signif-
icant attention. By the end ofMarch 2024, more than 1.7 billion NFTs
have been minted across various blockchain platforms. To effec-
tively locate a desired NFT, conducting searches within a vast array
of NFTs is essential. The challenge in NFT retrieval is heightened
due to the high degree of similarity among different NFTs, regard-
ing regional and semantic aspects. In this paper, we will introduce
a benchmark dataset named “NFT Top1000 Visual-Text Dataset”
(NFT1000, as shown in Fig.1), containing 7.56 million image-text
pairs, and being collected from 1000 most famous PFP 1 NFT col-
lections2 by sales volume on the Ethereum blockchain. Based on
this dataset and leveraging the CLIP series of pre-trained models
as our foundation, we propose the dynamic masking fine-tuning
scheme. This innovative approach results in a 7.4% improvement
in the top1 accuracy rate, while utilizing merely 13% of the total
training data (0.79 million vs. 6.1 million). We also propose a robust
metric Comprehensive Variance Index (CVI) to assess the similarity
and retrieval difficulty of visual-text pairs data. Please try our demo
through the anonymous link at https://876p9s4054.vicp.fun/

CCS CONCEPTS
• Computing methodologies→ Image representations.

KEYWORDS
Cross-Modal Retrieval, Blockchain, NFT, Recommendation, CLIP

1 INTRODUCTION
With the emerging concept of the "Metaverse" [17, 27] and "Web3.0" [14],
NFT [26] has entered the public eye as a significant digital asset
within this space. The NFT, standing for Non-Fungible Token, is
a unique cryptocurrency token on blockchain [29] representing
digital assets such as images, videos, tickets, inscription, etc. NFT
is coveted for its characteristics of provenance, high liquidity, and
rarity. NFT possesses immense value; for instance, the renowned
NFT project CryptoPunks has amassed a trading volume of $2.78

1PFP is an abbreviation for “Profile Picture”, representing a category of NFTs primarily
used as avatars in social media contexts.
2An NFT collection represents an NFT project, which contains the same batch of media
files and metadata data.
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Figure 1: NFT1000 is the first NFT dataset within the field of
computer vision. The proposed dataset encompasses themost
renowned 1,000 avatar-based NFT projects on the Ethereum
mainnet, comprising 7.563 million image-text pairs.

billion since its launch3. Statistical data4 indicates that by the end
of March 2024, the cumulative number of NFT minted on different
blockchain platforms has exceeded 1.7 billion. When purchasing
NFTs, people often gravitate towards tokens that align with their
personal style or match their preferences, aiming to fulfill their de-
sire for personalized expression in virtual spaces. However, both the
academic and industrial sectors lack effective and precise methods
or toolkits for the retrieval of NFT data due to the high degree of re-
gional and semantic similarity among NFTs (Fig.2). This represents
a novel research area that requires our exploration.

Given the lack of a dedicated NFT dataset for scientific research
in the field of computer vision, we firstly construct the NFT1000. It
is composed of the top 1000 PFP NFT collections by sales volume
on the Ethereum blockchain with the ERC-721 5 standard. Each
project contains an average of 7500 image-text pairs. In total, the
dataset includes 7.56 million image-text pairs, with a data volume of
1.75TB. It is suitable for various downstream tasks such as retrieval,
generation and so on.

Under the background of NFT-type data retrieval and leveraging
the NFT1000 dataset, we introduce a task focused on large-scale,
high-similarity image-text retrieval, representing a potential ap-
proach in the intersection of AI and blockchain research. This task
aims to retrieve target images from a massive collections of highly
similar pictures by using tokens’ descriptions. Although CLIP mod-
els are pre-trained using 400 million image-text pairs from the
Internet, their performance on fine-grained classification tasks is
somewhat lacking. This indicates that CLIP’s training approach

3As of April 12, 2024, 22:00, the data is sourced from site of
https://nftgo.io/macro/market-overview
4https://www.nftscan.com/
5ERC-721 stands for Ethereum Request for Comment #721. It is a universal NFT
standard protocol that defines a series of interfaces for NFT token transactions. For
more details, please visit:https://eips.ethereum.org/EIPS/eip-721.

https://876p9s4054.vicp.fun/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://nftgo.io/macro/market-overview
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struggles to capture the local semantic information of image-text
pairs. To address the limitation, we propose a dynamic masking
fine-grained contrastive learning scheme. Through analysis of in-
put images, its dynamic masking module probabilistically masks
certain component areas of the image and the corresponding cap-
tions. This subtractive approach from the global semantics more
fully exposes the local features of the image-text pairs, allowing
the model to more specifically align the detailed information of the
visual-caption pairs. Our experimental results demonstrate that it
is possible to train a model that surpasses the total data’s top1 accu-
racy by 7.4% using only 13% of its training data. This significantly
reduces the training overhead and enhances the effectiveness of
data utilization.

To quantitatively assess the similarity between a set of images
and texts, rather than relying on subjective human judgment, we
propose the Comprehensive Variance Index(CVI). It comprehen-
sively considers the similarity within images, captions, and the
degree of match between images and texts. Our empirical evidence
demonstrates a clear correlation between this index and retrieval
accuracy.

Our main contributions are: (1) We construct the first NFT
visual-text dataset in the field of computer vision. (2) We introduce
a task of large-scale, high-similarity image-text retrieval. (3) We
design an effective training method for NFT data, using less data
but training better models. (4) We propose the Comprehensive Vari-
ance Index, a universal metric designed to measure the similarity
between images and texts.

Figure 2: Randomly selecting seven projects and choosing
seven images from each to create an average image (as shown
in the red-framed picture), we can observe that the average
image has clear contours and distinct content. This indicates
that the batch of images randomly selected from the same
project possesses a high degree of regional similarity.

2 RELATEDWORK
2.1 About NFT
NFT [26], short for Non-Fungible Token, is a kind of unique virtual
digital asset based on blockchain [29]. As a fundamental component
of the metaverse, NFT plays a significant role in various domains,
such as social interaction, finance, sports, gaming copyright verifi-
cation, etc. NFT is a broad concept encompassing a diverse array of
forms, including images, videos, text, audio, code, and more. Each
form of NFT is unique, making them distinct from more common,
interchangeable tokens like cryptocurrencies (e.g. Bitcoin [18] and

Ethereum [1]). However, the most widely accepted forms of NFT
currently are multimedia formats such as images and videos.

NFT is highly valued due to its unique combination of scarcity,
verifiability, liquidity, and the ability to fulfill people’s social sta-
tus needs. NFT is scarce because each one is unique or limited in
quantity, making it sought after in a market where people are will-
ing to pay more for rare items. Its possession is verifiable through
blockchain technology, which provides a secure, transparent record
of each NFT’s history and ownership, ensuring authenticity and
reducing the risk of fraud. Furthermore, NFT offers high liquidity
compared to physical assets; it can be easily bought, sold, or traded
on global platforms with minimal transaction costs, making it at-
tractive to investors looking for quick and efficient asset turnover.
Lastly, owning an NFT, especially those created by famous artists
or those that are particularly rare, can convey social status, as it
signifies wealth, taste, and exclusivity. This desire for social recog-
nition through unique digital assets drives demand and increases its
value. Collectively, these factors make NFT valuable in today’s dig-
ital economy, appealing to collectors, investors, and those seeking
social distinction alike. According to statistical data6, prominent
NFT projects have achieved significant trading volumes: Bored Ape
Yacht Club has sold $3.66 billion, CryptoPunks has amassed $2.78
billion, Mutant Ape Yacht Club has make $2.51 billion, etc.

As the metaverse continues to develop, NFT will increasingly
become a digital commodity for trading. As previously mentioned,
an NFT can significantly represent the taste of its holder. Therefore,
consumers often prefer those that are renowned and align with
their personal style. However, with billions of NFT entries, finding
one that suits an individual’s needs is challenging. Additionally, the
high degree of similarity among NFTs adds considerable complexity
to their retrieval. Thus, the task of retrieving an NFT is both a
critical need and highly challenging, meriting in-depth research
and exploration.

2.2 Cross-Modal Retrieval
Cross-modal Image-text Retrieval (ITR) is to retrieve the relevant
samples from one modality while the queries are expressed in an-
other modality, usually consists of two subtasks: image-to-text
(i2t) and text-to-image (t2i). ITR has been witnessed great suc-
cess in recent years [4, 12, 20] thanks to the rapid development
of deep language-vision models [3, 5, 24] and various large-scale
multi-modal pre-trained models [8–12, 20, 22]. Most ITR systems
deployed in real-world applications are built upon pre-trained mod-
els that have been fine-tuned. Generally speaking, the pre-trained
models can be divided into two categories according to the their ar-
chitectures: 1) Fusion-structure models: ALBEF [12] and BLIP [11].
2) Dual-encoder models: CLIP [20], META-CLIP [8] and ViLEM [2].
The fusion-structure models process text and image inputs simulta-
neously through a unified network architecture. In these models,
image and text data are merged at an early stage and the entire
model propagates forward through a single data stream. The draw-
back of fusion-structure models is their low-efficiency and inflexibil-
ity due to the computation of similarity between queries and whole
data of another modality during retrieval. While dual-encoder mod-
els encode image and text in parallel by independent models and

6As of April 12, 2024, https://nftgo.io/discover/top-collections

https://nftgo.io/discover/top-collections
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align them by self-supervised contrastive learning. Compared with
fusion-structure models, dual-encoder models are more flexible and
are much more efficient at zero-shot inference [20]. Dual-encoder
models align image and text semantic features into a consistent
high-dimensional feature space and the encoders are generally pre-
trained models. Besides, the computed semantic features of each
branch can be stored for fast inferring during retrieval. These ad-
vantages make dual-encoder models efficient and flexible to deploy.
In this work, we will fine-tune a series of dual-encoder models on
our NFT1000 dataset.

2.3 Image-Text Dataset
In the realm of computer vision and natural language processing,
datasets like Flickr30K [19], COCO [13] and LAION-5B [21] offer
vast amount of image-text pairs for diverse applications. Flickr30K
is an image-caption dataset widely used in computer vision and
natural language processing research. It consists of 31,000 images
sourced from the online photo-sharing platform Flickr. Each image
in the dataset is paired with five English captions, which provide
descriptive annotations written by human annotators. The COCO
dataset provides over 200,000 labeled images with detailed instance
annotations and The LAION-5B encompasses 5.85 billion CLIP-
filtered image-text pairs, making the training of large-scale multi-
modal models plausible.

However, Most of the data in the above datasets are collected
from the real world, which inherently exhibits significant distribu-
tional differences compared to NFT data. In addition to this, images
from one NFT project, although different, have fine-grained seman-
tic similarity because they are permutations and combinations of
fixed components, as we will discuss in Section3.2, this is a distinc-
tive feature that the aforementioned datasets do not possess. To
our knowledge, iCartoonFace benchmark [28] has similar situation
with NFT1000, it is a large-scale, high-quality, richly annotated car-
toon face recognition dataset, containing 389,678 images of 5,013
cartoon characters. However, this dataset lacks captions correspond-
ing to each image, making it difficult to meet the requirements for
cross-modal retrieval.

Given the absence of a dedicated NFT dataset in the computer
vision field, in this work, we construct the first benchmark dataset
consisting of NFTs, designed to support NFT retrieval and genera-
tion tasks.

3 PROPERTIES OF NFT1000
3.1 Inherent Image-Text Pair Format
Each NFT in the dataset is associated with a metadata resource
file, which typically exists in the form of a JavaScript Object Nota-
tion (JSON) format. This file uses key-value pairs to describe the
attributes of the NFT token(Fig.3).

3.2 Fixed-Components Permutation and
Combination

The essential reason for the high degree of similarity among NFT
images within a same project lies in the fact that all images are
permutations and combinations of fixed components. As shown
in Fig.4: (a) Images contain a clothing layer named “Navy striped

Figure 3: In the NFT1000 dataset, each image within every
collection naturally comes with an accompanying JSON file,
which introduces the attributes of the image in a key-value
pair format.

tee”; (b) Pictures include the same "3D glasses" layer. (c) Every im-
age features the same "Bored bubblegum mouth". (d) All photos
are adorned with a same "Commie hat". We have selected 20 NFT
projects to illustrate the comparison between the number of compo-
nents and tokens, as shown in the Fig.5. However, it is important to
note that in projects initiated after the removal of identical image
covers, no two images within a project are the same.

Figure 4: All images within the same collection are blended
from a specific set of components arranged in various combi-
nations, resulting in pixel-level uniformity in image regions.

3.3 Abstract Description
NFT can be considered a form of crypto arts, but the definition of
these artworks by artists often include subjective elements. This
leads to the abstract description issue, which can be understood as
the image itself being difficult to comprehend or the image descrip-
tion lacking clear semantic information. From Fig.6, we can observe
intuitively that the No.0 token from the Superlative Secret Society
project is particularly hard to comprehend, or rather, there is no
obvious correlation between its image and caption. It is noteworthy
that this situation is common in NFT projects.

4 CONSTRUCTING NFT1000
4.1 Clarifying the Download Targets
Among various NFT categories, PFP NFT collections account for
over 60% of the market share7. Besides, in avatar-type NFT, the
JSON file accompanying each image relatively effectively describes
7Please refer to the “Category Market Cap” entry on the Web:
https://nftgo.io/analytics/market-overview

https://nftgo.io/analytics/market-overview
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Figure 5: Illustration of the comparison between the number
of components and token in each project..

Figure 6: Show case of abstract images and their abstract
descriptions.

its own attributes. Ethereum is the birthplace of NFT and the most
flourishing blockchain for NFT crypto arts. Therefore, we select
the top 1000 PFP NFT projects on the Ethereum blockchain, based
on sales volume, as our download targets.

4.2 Downloading and Filtering
We utilize resources from the Web3.0 domain such as NFTScan8,
Alchemy 9 and IPFS 10, leveraging the basic resource links provided
in the smart contracts 11 of each NFT project. This enabled us to
piece together the complete links for the media resource and JSON
data of each token for downloading and collection. In fact, we have

8https://www.nftscan.com/
9https://www.alchemy.com/
10https://ipfs.tech/
11Smart contracts on blockchain are self-executing scripts with the terms written in
code.

downloaded resources from a total of 1250 projects for purpose of
selection.

Among all the collections that have been fully downloaded, we
exclude those with completely duplicated media data (or all images
being identical covers), projects with an insufficient total number
of tokens (set as fewer than 500), and those lacking a JSON file or
where the JSON file contains no substantive semantic information.

4.3 Standardization
Standardize File Format and Dimensions. Native NFT data, en-
compassing static image formats such as JPG, PNG, SVG and WebP,
are uniformly transformed into the PNG format (This conversion
is primarily due to PNG being the predominant format in most
NFT collections, and the choice is intended to maximally retain the
original fidelity of the data). For dynamic media formats, includ-
ing GIF and MP4, a representative frame is randomly selected and
converted into PNG format. The standardized resolution for these
images is set to a width of 512 pixels, with a proportionally adaptive
height to maintain aspect ratio integrity. Employing this method,
we have reduced the original data size from 14TB to 1.75TB.

Caption Extraction. For the original key-value pairs formatted
attribute lists, there are two methods for generating captions(Fig.7):
one is based on large language models (ChatGPT, LLAMA-13B [23]),
using prompt engineering to create descriptions according to the
attribute list corresponding to the image; the other way involves
using predefined sentence templates to concatenate attributes into
a single caption. By using large language models, we generate
30,000 descriptions for 10,000 randomly selected images, while also
creating 10,000 captions using language templates. Subsequently,
we utilize OpenAI’s CLIP-ViT-L pretrained model for zero-shot
inference and compared the retrieval accuracy of captions obtained
via the two methods (Fig. 8). The result indicates that the large
language model can generate better image descriptions, but overall,
the performance of the two methods does not differ significantly.
Lastly, considering the former method would consume considerable
time and computational resources, we ultimately opt for generating
captions using sentence templates.

Figure 7: Illustration of two methods for generating captions

Data Partitioning.Due to the presence of identical components
and descriptions in images within the same project, internal division
of training and test sets in a NFT collection may result in "data
leakage." Consequently, we adopt the project as the fundamental

https://www.nftscan.com/
https://www.alchemy.com/
https://ipfs.tech/
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Figure 8: The CLIP model’s zero-shot retrieval accuracy in
comparing captions generated by large language models vs.
those produced by sentence template.

unit for data division, allocating the entire dataset into training,
validation, and test sets in an 80:5:15 ratio.

Dataset Statistics. The NFT1000 dataset comprises 1000 out-
standing PFP NFT projects, each containing approximately 7500
image-text pairs, encompassing a total of 7.56 million image-text
pairs with a collective data volume of 1.75TB. In the dataset, the
training set includes 800 projects with 6,178,249 image-text pairs.
The validation set comprises 50 projects with 383,916 image-text
pairs, and the test set consists of 150 projects with 1,000,838 image-
text pairs. The content spans a diverse range of artistic types, in-
cluding 3D rendered images, 2D flat illustrations, pixel arts, NPC
characters, real photographs,etc. It covers a total of 356 different
content themes and 595,504 unique descriptive phrases.

5 FINE-GRAINED CONTRASTIVE LEARNING
The CLIP models gain fame for achieving state-of-the-art (SOTA)
performance through zero-shot inference on various datasets, fol-
lowing its training on a dataset of 400 million image-text pairs using
a straightforward contrastive learning strategy. We sequentially
use OpenAI’s CLIP-ViT-B-32, CLIP-ViT-L-14 pretrained models and
META’s META-CLIP-ViT-L-14 [8] for zero-shot inference and fine-
tuning. The experimental results are presented in Table 1. This table
reveals that these pretrained SOTA models have almost never en-
countered data from the NFT1000 dataset, indicating that the data
distribution in NFT1000 is unique and novel. Despite the noticeable
improvement (with an average increase in top1 accuracy of about
10%), the overall effectiveness remains suboptimal.

Table 1: Comparison of zero-shot inference and fine-tuning
inference accuracy of different models on the NFT1000 test
set.

model-type zero-shot fine-tuning
top1 top5 top10 top1 top5 top10

CLIP-VIT-B-32 0.01 0.02 0.03 10.63 20.32 25.19
META-CLIP-VIT-L-14 0.00 0.01 0.02 13.06 23.68 28.81

CLIP-VIT-L-14 0.06 0.25 0.42 15.36 27.55 33.26

As discussed in Section 3.2, all images within an NFT project are
permutations and combinations of fixed components. Besides, Fig 5
shows that the number of components is relatively small compared
to the total number of tokens. Given that the CLIP model is not
particularly adept at focusing on the local semantic information of
images, we hypothesize that the prerequisite for precise retrieval

is accurate cognition. If we could fine-tune the CLIP model at the
component level, it might address the issue of the fine-tuned model
not achieving satisfactory recall performance. To verify this hy-
pothesis, we propose a fine-grained fine-tuning strategy based on
dynamic masking.

5.1 Component Separation

Figure 9: Illustration of component separation. The results
demonstrate that, through a process of initial differentiation
followed by superposition, components can be separated into
relatively clean and complete entities, even in the presence
of overlapping among them.

Given the pixel-level consistency within the same area of images
containing the same component in an NFT project, we adopt a
strategy of differentiation followed by superposition to isolate the
various distinct components. The specific approach is as follows:

(1) Identify which images share a same component, achievable
through analysis of the NFT’s accompanying JSON file.

(2) Randomly select a set of images, using the first image as a
template, and perform image differencing operations with
the subsequent images to get the shared regions and their
mask representations.

(3) Repeat step 2 multiple times, ultimately assembling the frag-
mented components into a relatively complete component
and its mask.

Experiments show that performing differencing operations on 4
images at one time and repeating this process 8 times is a good
choice. This combination balances execution efficiency and also
results in relatively complete and clean components and masks, as
shown in Fig. 9.

5.2 Dynamic Masking
Before the model loads the training image-text pairs data, we firstly
analyze the image to identify its constituent components.With prob-
ability 𝑝 , a component’s corresponding mask is randomly selected
to perform a masking operation on the original image. Simultane-
ously, the tag of the selected component is removed from the full
caption. This process results in a new image-text pair that lacks
certain local pixels and descriptive information, thereby allowing
the detailed information of the image-text pair to emerge from
the global semantics. By subtracting from the original image-text
pairs in this manner, the model is encouraged to fully comprehend
the correspondence between components and their names, thereby
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achieving fine-grained feature alignment with NFT data. A dynamic
visualization of the masking process is shown in the Fig. 10.

Figure 10: Illustration of the generation process of dynamic
masks. Through this method, a single NFT image-text pair
can generate new pairs with varied semantic richness.

6 EXPERIMENTS ON NFT1000
In this chapter, we will conduct a series of experiments to vali-
date the effectiveness of the dynamic masking fine-tuning method
and the application potential of the NFT1000 dataset, focusing on
four aspects: the selection of the dynamic masking probability 𝑝 ,
the generalizability of the dynamic masking approach, the metric
Comprehensive Variance Index (CVI) and NFT generation.

In the classical contrastive learning framework, we introduce a
dynamic masking unit capable of analyzing the composition of sam-
pled image-text information. This unit applies masks to components
of an NFT image with a specific probability, thereby eliminating
certain semantic information from the global image-text context.
For the remaining training pipeline, we employ the same training
strategy as the original CLIP to fine-tune models. Specifically, we
utilize image and text encoders to extract features from images
and captions. Subsequently, we use contrastive loss to optimize the
parameters of the image and text encoders, aiming to progressively
align NFT images and their corresponding captions within the same
semantic space. The training pipeline is illustrated in Fig. 11.

6.1 Mask Selection Probability
During the process of generating dynamic mask, a component mask
is selected with a probability 𝑝 . The larger the value of 𝑝 , the more
areas of the original image are masked, resulting in finer semantic
granularity but also a more fragmented image; conversely, the
smaller the value of 𝑝 , the fewer areas are masked, leading to coarser
semantic granularity and a more rough correspondence between
components and captions. Therefore, selecting an appropriate 𝑝 is
a critical issue.

To swiftly determine the appropriate probability, we construct a
smaller dataset from the complete dataset, called NFT1000mini. This
subset consists of a training set with 800 projects, a bitch of 1000
image-text pairs are randomly extracted from per project, totaling
794,698 pairs; and a test set comprising 150 projects, each with 1000
random image-text pairs, totaling 147,615 pairs. The comparison of

Figure 11: Illustration of the fine-tuning pipeline. The in-
tegration of the dynamic masking unit allows for the high-
lighting of local information within NFT image-text pairs,
thereby facilitating fine-grained alignment of themodel with
NFT data.

Table 2: Comparison of data sizes between NFT1000mini and
NFT1000

NFT1000mini NFT1000
NFT project number image-text pairs NFT project number image-text pairs

training set 800 794,698 800 6,178,249
validation set 50 49, 738 50 383,916
test set 150 147,615 150 1,000,838

data sizes between NFT1000mini and NFT1000 is shown on Table
2. Subsequently, we conducted a series ablation studies by using
the pre-trained CLIP-ViT-B-32 model on the NFT1000mini training
set with the same training parameters but varying 𝑝 for model
fine-tuning. With results shown in Table 3 . From the table, we
can observe that the relationship between 𝑝 and accuracy forms
a convex function, peaking near 𝑝 = 0.5. This indirectly suggests
that the more random the mask selection, the better the training
effect of the model. Unless otherwise specified, we set 𝑝 = 0.5 in
subsequent experiments.

Table 3: The impact of different mask selection probabilities
on model retrieval performance.

probability top1 top5 top10
p=0 16.93 29.99 36.17
p=0.3 22.79 36.86 42.87
p=0.5 22.68 37.17 43.51
p=0.7 21.59 35.71 41.88

6.2 Generalizability of Dynamic Masking
To verify whether we can fine-tune the model more efficiently
under the condition of fine-grained semantic alignment, we com-
pared the inference performance on the NFT1000mini test set of
different models trained with and without dynamic masking on the
NFT1000mini training set, as well as those trained on the entire
NFT1000 training dataset. Subsequently, we obtained surprising
results, as shown in Table 4. It is evident that under the same train-
ing set conditions (NFT1000mini training set), the use of dynamic
masking leads to at least a 10% improvement in accuracy. Compared
with the CLIP-ViT-L-14 model, which achieves SOTA performance
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using the NFT1000 training set, there’s a 7.44% increase in top1
accuracy. This conclusively demonstrates the effectiveness of the
dynamic masking training method.

In addition to conducting instance-level searches across the en-
tire dataset, we also compared the search results within a specific
NFT project by zero-shot and fine-tuning inference, with data pre-
sented in Table 5. It displays the retrieval results for the top 5 and
bottom 5 NFT projects, with the data for the top 5 achieving nearly
100% in the top 10 accuracy. However, we can also directly observe
that the bottom 5 NFT projects show almost no improvement in
accuracy before and after model fine-tuning. This issue arises from
the abstract definitions discussed in section 3.3. Consequently, how
to retrieve NFT data with abstract definitions will be a focal point
of our future work.

6.3 Comprehensive Variance Index
To quantitatively measure the similarity between a set of image-
text pairs, rather than just relying on subjective human judgment
(for example: "not very similar," "somewhat similar," "very similar",
etc.), we propose the Comprehensive Variance Index. In the current
realm of deep learning, a commonly used approach [15] for image-
text retrieval involves employing pretrained visual and language
encoders to extract image and text features, known as embeddings.
Subsequently, dot product operations are conducted to obtain the
cosine similarity between the images and texts. The similarity scores
are then sorted in descending order to yield the final topk results.
For any given model, the most hard retrieval scenario occurs when
all probabilities are identical, forcing the model to make a blind
selection.

Based on this observation, we propose a concept originating
from the probability distribution of vector cosine similarities. This
concept posits that if a batch of images exhibits a more uniform
distribution of cosine similarity probabilities (in a certain sense,
the smaller the variance in the distribution of cosine similarity),
the features of these images are more similar. This similarity mani-
fests in semantic and regional aspects of the images, concurrently
increasing the difficulty of image retrieval.

Drawing from the preceding discussion, we propose the Compre-
hensive Variance Index. 𝐼 ∈ R𝑁×𝑀 represents the feature vectors
of a batch of images, in which 𝑁 represents the number of images
and 𝑀 denotes the dimensionality of the feature vectors. Then
𝑆𝐼 𝐼 ∈ R𝑁×𝑁 is given by 𝑆𝐼 𝐼 = 𝐼 · 𝐼⊤. Similarly, we can obtain the
inner product of the corresponding texts’ feature vectors, denoted
as 𝑆𝑇𝑇 ∈ R𝑁×𝑁 , and the inner product of the text-image feature
vectors, denoted as 𝑆𝑇 𝐼 ∈ R𝑁×𝑁 . Following, CVI of a batch of
image-text pairs is defined as

𝐶𝑉 𝐼 =
1
2𝑁

(
𝛼

𝑁∑︁
𝑖=1

var(𝑆𝐼 𝐼_𝑖 )

+ (1 − 𝛼)
𝑁∑︁
𝑖=1

var(𝑆𝑇𝑇 _𝑖 ) +
𝑁∑︁
𝑖=1

var(𝑆𝑇 𝐼_𝑖 )
) (1)

where 𝑖 represents a row in the matrix, 𝛼 stands for the bias index,
indicating the overall metric’s preference for the similarity between
images and the similarity between captions.

Figure 12: After L1 normalization, the trend of the JSD be-
tween the CVI distribution and the TopK distribution varies
with changes in alpha. When 𝛼 approaches 0.7, the JSD ap-
proximately reaches its lowest point and CVI can most accu-
rately serves as a measure of image-text similarity.

Jensen-Shannon divergence (JSD) [16] is a popular method for
measuring the similarity between two probability distributions. It
is a symmetrized and smoothed version of the Kullback-Leibler
divergence (KLD) [25]. Given two probability distributions 𝑃 and
𝑄 , the JSD is mathematically defined as:

𝐽𝑆𝐷 (𝑃 ∥ 𝑄) = 1
2
𝐷 (𝑃 ∥ 𝑀) + 1

2
𝐷 (𝑄 ∥ 𝑀) (2)

where𝑀 = 1
2 (𝑃 +𝑄). One of the key properties of JSD is its bound-

edness, as it ranges from 0 to 1. A value of 0 indicates that the two
distributions are identical, while a value of 1 signifies complete
dissimilarity.

Experiments show that when 𝛼 is approximately 0.7 (Fig.12),
CVI best fits the experimental data. This also suggests that the
information contained in images is more significant than that in
captions and should therefore have a greater weight in similarity
measurements. We randomly selected some projects from NFT1000
and some categories fromCOCO [13] to conduct zero-shot inference
using a pretrained CLIP model and to calculate the corresponding
CVI values. The results are shown in Table 6, we can see that the
lower CVI value, the more similar the batch of image-text pairs
is, indicating a higher retrieval difficulty; conversely, a higher CVI
value signifies easier retrieval. This also demonstrates that data
retrieval within the NFT1000 dataset is indeed a challenging task.

6.4 NFT Generation
As discussed in Section 3.1, NFT data inherently comes with a
descriptive JSON file, and most NFTs fall within the category of
artworks, making them particularly suitable for generative tasks.
Leveraging diffusion models [6] and LoRA [7], we trained a LoRA
pluginmodel using image-text pairs from theAzuki NFT project.We
then employed image-to-image and text-to-image to create images
in the style of Azuki. The results are shown in Fig. 13. Parts a and b
involve image-to-image generation based on existing images, while
part c involves text-to-image generation to create new styles of
images that do not exist in the original project.
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Table 4: Inference results of different models on the NFT1000mini test set under various training methods.

model_type zero-shot FT-NFT1000mini FT-NFT1000 FT-NFT1000mini-
with-dynamic-mask

top1 top5 top10 top1 top5 top10 top1 top5 top10 top1 top5 top10
CLIP-VIT-B-32 0.03 0.10 0.15 12.10 23.66 29.54 20.33 34.47 40.74 22.68 ↑2.35 37.17 ↑2.7 43.51 ↑2.77

META-CLIP-VIT-L-14 0.01 0.05 0.11 20.53 35.05 41.67 23.07 37.08 43.01 31.83 ↑8.76 47.29 ↑10.21 53.47 ↑10.46
CLIP-VIT-L-14 0.33 1.02 1.55 20.43 34.78 41.13 26.66 41.91 48.22 34.10 ↑7.44 50.21 ↑8.3 56.41 ↑8.19

Table 5: The recall rate within NFT project before and after
fine-tuning the CLIP-ViT-L-14 model.

collection item_num zero-shot fine-tuning
top1 top5 top10 top1 top5 top10

Stoner Ape Club 6666 1.08 2.81 4.29 91.31 98.93 99.61
Junglebayapeclub 5555 0.90 2.65 4.14 89.79 98.56 99.23
Cool Ape Club 5555 0.59 1.39 2.32 88.17 97.95 99.05
Fat Rat Mafia 7777 0.03 0.27 0.63 83.27 96.18 98.06
0xAzuki 9999 0.85 3.25 5.48 80.73 95.44 97.82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ShinseiGalverse 8889 0.01 0.16 0.35 0.19 0.75 1.31
Gazer 2100 0.00 0.24 0.43 0.05 0.19 0.43
APE DAO REMIX! 5528 0.02 0.14 0.22 0.04 0.18 0.36
J48BAFORMS 4848 0.04 0.10 0.21 0.12 0.27 0.54
Superlative Secret Society 11110 0.02 0.05 0.08 0.02 0.08 0.21
all_collections 1000838 0.06 0.25 0.42 21.04 34.40 40.16

Table 6: Comparison table of retrieval accuracy and CVI be-
tween NFT1000 and COCO datasets.

Collection/Category Top1 Top5 Top10 CVI
NFT1000 Savage Droids 0.0365 0.1823 0.3646 0.0003

Hor1zon 0.0286 0.1429 0.4858 0.0005
CyberTurtles 0.3060 0.7201 1.3141 0.0007
SpriteClub 0.4758 1.7359 2.9574 0.0009
Tasty Bones 1.4656 3.7433 5.9418 0.0011

COCO person 10.3192 25.6125 37.2309 0.0034
car 13.2463 36.3806 50.0000 0.0037
broccoli 18.0556 37.5000 56.9444 0.0038
backpack 24.8908 52.8384 68.1223 0.0042
cell phone 26.0465 50.2326 60.4651 0.0044

This illustration demonstrates that downstream models gen-
erated by pre-trained diffusion models and LoRA can accurately
capture the stylistic features of a specific NFT project. Furthermore,
images generated from the same set of prompts exhibit high coher-
ence and aesthetic appeal, which are crucial for NFT collections.

7 DISCUSSION AND FUTUREWORK
This section will discuss potential improvements methods and fu-
ture work for this study.

7.1 Efficient Utilization of Data
As demonstrated by the Table 4, by utilizing only 13% of theNFT1000
training dataset, we have successfully trained a superior model, sug-
gesting a potential redundancy within NFT-type data. This prompts
a question: What is the minimum amount of data required to main-
tain experimental accuracy? Efficient data utilization remains an
area for exploration. Moreover, the issue of effectively retrieving
NFT projects with abstract definitions, as discussed in Section 3.3,
also warrants further investigation.

7.2 Continuing to Expand the Dataset
NFT1000 is an ambitious project. In the future, we plan to broaden
our scope beyond Ethereum to include more collections of out-
standing NFTs from other public blockchains like Solana, Polygon,
BNB Chain, Klaytn, etc. We aim to scale the data to the level of
hundreds of millions, striving to build an ImageNet equivalent in
the NFT domain, thereby making a significant contribution to both
the academic and industrial communities.

7.3 Exploring Further Potential of NFT1000
NFT holds significant untapped potential for development. In the
future, we plan to explore the use of generative models to create a
wider array of NFT artworks.

8 CONCLUSION
In this work, we construct the first NFT visual-text dataset in the
field of computer vision. and introduce a task for large-scale, high-
similarity image-text retrieval. Furthermore, we propose an effec-
tive training method for NFT-type data, called dynamic masking
fine-tuning scheme, and have trained several models as our baseline.
To quantify image-text similarity, we introduce the Comprehensive
Variance Index, which accounts for the similarities within images
and texts, as well as the degree of image-text matching. Finally, we
also explore the application of NFT data in the image generation
field, paving a feasible path for future AI-generated content creation
(AIGC) for NFTs.

Figure 13: Effect of NFT generation based on diffusion mod-
els.
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