
Published as a conference paper at ICLR 2024

PRIVACY AMPLIFICATION FOR MATRIX MECHANISMS

Christopher A. Choquette-Choo∗ Arun Ganesh† Thomas Steinke‡
Abhradeep Thakurta§

ABSTRACT

Privacy amplification exploits randomness in data selection to provide tighter differential
privacy (DP) guarantees. This analysis is key to DP-SGD’s success in machine learn-
ing (ML), but, is not readily applicable to the newer state-of-the-art (SOTA) algorithms.
This is because these algorithms, known as DP-FTRL, use the matrix mechanism to add
correlated noise instead of independent noise as in DP-SGD.

In this paper, we propose “MMCC”, the first algorithm to analyze privacy amplification via
sampling for any generic matrix mechanism. MMCC is nearly tight in that it approaches a
lower bound as ε→ 0. To analyze correlated outputs in MMCC, we prove that they can be
analyzed as if they were independent, by conditioning them on prior outputs. Our “con-
ditional composition theorem” has broad utility: we use it to show that the noise added to
binary-tree-DP-FTRL can asymptotically match the noise added to DP-SGD with amplifi-
cation. Our algorithm also has practical empirical utility. We show that amplification leads
to significant improvement in the privacy/utility trade-offs for DP-FTRL style algorithms
for standard benchmark tasks.

1 INTRODUCTION

Privacy amplification is key in differentially private (DP) machine learning (ML) as it enables tighter privacy
budgets under certain assumptions on the data processing. For example, one of the main contributions in
the DP-SGD (DP Stochastic Gradient Descent) work by Abadi et al. (2016) was the “moments accountant”,
which relies on privacy amplification (Kasiviswanathan et al., 2008; Bassily et al., 2014) for bounding the
privacy cost. Recently, privacy amplification analysis enabled Choquette-Choo et al. (2023a) to show that
a class of DP-FTRL (DP Follow-The-Regularized-Leader) algorithms (Smith & Thakurta, 2013; Kairouz
et al., 2021) was superior in privacy-utility tradeoffs to DP-SGD.1 At the heart of DP-FTRL is the construct
of matrix mechanism (McKenna et al., 2021; Denisov et al., 2022) that effectively computes the prefix
sums

∑
i≤t xi over a sequence of adaptively chosen vectors {xi : i ∈ [n]} (given by A · x, where A is

a lower triangular matrix of all ones and x = [x1| · · · |xn]> ∈ Rn×d). Matrix mechanism corresponds to
factorizing A = B ·C to minimize the error in the estimation of the prefix sums, while ensuring C · x + z
satisfies DP, where z is drawn from an isotropic normal distribution. Bringing privacy amplification to matrix
mechanisms is thus an important area of research to enable better privacy-utility tradeoffs. (In the rest of the
paper, we will refer to the matrix B as the decoder matrix, and C as the encoder matrix.)

∗Google DeepMind. cchoquette@google.com.
†Google Research. arunganesh@google.com.
‡Google DeepMind. steinke@google.com.
§Google DeepMind. athakurta@google.com.
1Precisely, they showed DP-FTRL is never worse, and often better, than DP-SGD—it “pareto-dominates”.

1

Published as a conference paper at ICLR 2024

Matrix mechanism poses a major challenge for privacy amplification analysis of DP-FTRL style algorithms.
Standard privacy amplification exploits randomness in the selection of minibatches2 but requires that the
noise added to each minibatch is independent. In the matrix mechanism, a minibatch (given by xi) con-
tributes to multiple rows of C · x + z, thus preventing direct application of amplification. This challenge
can be seen by the limitations of the amplification analysis of Choquette-Choo et al. (2023a) which only
applies to a special class of ‘b-banded’ matrix mechanisms (i.e., the first b principal diagonals of C are
non-zero), that in-turn leads to multiplicatively higher sampling probabilities preventing the full benefits of
amplification. Resulting from these limitations is a large region of epsilons where banded matrix mecha-
nisms cannot simultaneously leverage the benefits of correlated noise and privacy amplification; in other
words, they perform equivalent to, but no better than, DP-SGD3. Further, since their analysis only applies
to the special banded case, matrix mechanisms from the extant literature cannot leverage amplification and
correlated noise, e.g., Kairouz et al. (2021); Choquette-Choo et al. (2023b); Denisov et al. (2022).

In this work, we provide a generic privacy amplification machinery for adaptive matrix mechanisms for any
lower-triangular encoder matrix C that strictly generalizes the approach in (Choquette-Choo et al.,

2023a).

1.1 OUR CONTRIBUTIONS

Our main contribution is to prove a general privacy amplification analysis for any matrix mechanism, i.e.,
arbitrary encoder matrices C for non-adaptively chosen x, and for lower-triangular C’s when x is adaptively
chosen (which is the typical situation for learning tasks). We then demonstrate that our method yields both
asymptotic improvements and experimental improvements.

Conditional composition (Sec. 3, Theorem 3.1): This is our main technical tool that gracefully handles
dependence between the queries C[i,:] ·x, and C[i+1,:] ·x that arises due to multiple participation of a single
row of the data matrix x. Standard composition theorems (Dwork & Roth, 2014) only handle this via a
pessimistic worst-case privacy guarantee that holds with certainty for each query (in our application, a query
is C[i,:]·x+zi conditioned on C[1:i−1,:]·x+z1:i−1). Theorem 3.1 relaxes this to holding with high probability
(over the randomness of the algorithm) leading to significantly better guarantees. This generalizes an idea
previously used in (Erlingsson et al., 2019; Balle et al., 2020) to analyze privacy amplification by shuffling.
We believe this theorem will be useful for analyzing correlated noise mechanisms beyond those studied
herein.

Matrix mechanism with uniform sampling via MMCC (Sec. 4): We prove amplified privacy guarantees for
the matrix mechanism with uniform sampling, using Theorem 3.1, that are nearly-tight in the low-epsilon
regime (as ε→ 0). We improve over Choquette-Choo et al. (2023a) because we enable “more randomness”
in sampling—instead of participating w.p. bp in n/b rounds, data records can participate w.p. p in all n
rounds.
Recall we need to analyze the privacy of outputting Cx + z, where rows of x are chosen via uniform
sampling. We use Thm. 4.3 to reduce Cx + z to a series of mixture of Gaussians (MoG) mechanisms for
which we can use privacy loss distribution (PLD) accounting (see the proof sketch of Thm. 4.3 in Sec. 4).
Our algorithm MMCC formally stating this reduction is given in Fig. 1. We plan to publicly release a library
implementing MMCC with the final manuscript. The analysis of MoG mechanisms included in this library
has other uses, such as tighter privacy guarantees for DP-SGD with group-level DP or for linear losses, see
App. F for more discussion.

2E.g., for a data set D, a row x[i,:] =
∑
d∈S ∇θ`(θi; d), where S is a randomly chosen subset of D (e.g., sampled

u.a.r. from D, or a subset from a random shuffling of D), ` is a loss function, and θi is obtained via an SGD state update
process.

3In Choquette-Choo et al. (2023a), this region surfaces empirically even for larger ε ≈ 1.

2

Published as a conference paper at ICLR 2024

Binary tree analysis (Sec. 5): Letting σε,δ be the noise required for the Gaussian mechanism to achieve
to satisfy (ε, δ)-DP, the binary tree mechanism requires noise σε,δ ·

√
log n. Owing to the versatility of

conditional composition, we show that with shuffling, the (non-adaptive) binary tree mechanism only needs
noise σε,δ · min{

√
log n,

√
log log(1/δ)}. This is optimal given current amplification by shuffling results,

which require n = Ω(log 1/δ)4. To the best of our knowledge, this is the first amplification guarantee (of
any kind) for the binary tree mechanism.

Empirical improvements (Sec. 6): First we implement and show that ε computed via MMCC for the binary
tree mechanism matches the theoretical predictions of Ω(

√
log n) from Sec. 5. Then we apply our work to

machine learning and show we can improve the privacy-utility tradeoff for binary-tree-DP-FTRL (Kairouz
et al., 2021) entirely post-hoc. Finally, we show that the “every round” sampling enabled by MMCC achieves
better amplification than the “b-min-sep” sampling of (Choquette-Choo et al., 2023a).

1.2 PROBLEM DEFINITION

Matrix mechanism (MM): Consider a workload matrix A ∈ Rn×n, and consider a data set D =

{d1, . . . , dm} ∈ Dm. Let x = [x1(D)| · · · |xn(D)]
> ∈ Rn×d be a matrix s.t. each row xi : D∗ → Rd is

a randomized function that first selects a subset of the data set D, and then maps it to a real valued vector.
Furthermore, each of the xi has the following two properties. a) Decomposability: For the subset of the data
set D that xi chooses (call it Si), we have xi(D) =

∑
d∈Si

gi(d) with gi : D → Rd is a vector valued
function, and b) bounded sensitivity: ∀d ∈ D : ‖gi(d)‖2 ≤ 1. Matrix mechanism corresponds to the class
of DP algorithms that approximates Ax with low-error. Typically, one designs a pair of matrices A = BC
(which we will call the decoder and the encoder matrices respectively) s.t. Cx + z satisfies DP5 (with z
being isotropic normal noise), and Bz is minimized in appropriately chosen norm. We will assume C is
non-negative for simplicity.

Privacy amplification for MM: In this work we study the problem of amplifying the DP guarantee of MM if
we incorporate the randomness in the selection of the subsets of D by each function xi. In particular we
consider two selection strategies: i) uniform sampling: each xi selects each entry of D independently w.p.
p, ii) shuffling: First the records of D are randomly permuted, and then each xi picks a fixed disjoint subset
(of equal size) from D.

Adaptivity: In our work we allow the choice of xi’s to be adaptive, i.e., xi can be chosen based on the first
i−1 outputs of MM. Under adaptivity, we will only consider encoder (B) decoder matrices (C) that are lower
triangular. However, for non-adaptive choices of the xi’s we allow arbitrary choice of the matrices B and
C. Unless mentioned specifically, all our results will be for the adaptive setting.

2 BACKGROUND AND RELATED WORKS

2.1 PRIVACY LOSS DISTRIBUTIONS (PLD)

Suppose we have a DP mechanismM that outputs a sample from the continuous distribution P = M(D)
when given database D, and outputs a sample from Q = M(D′) when given D′. The ε-hockey stick
divergence between two distributions P,Q is defined as:

Hε(P,Q) =

∫
x

max{P (x)− eεQ(x), 0}dx = Ex∼P
[
max

{
1− eε

eln(P (x)/Q(x))
, 0

}]
.

4We believe this requirement is fundamental and thus σε,δ ·min{
√
logn,

√
log log(1/δ)} is optimal, but if it were

removed, our result would improve to O(1) · σε,δ .
5We use the zero-out adjacency (Ponomareva et al., 2023) to define DP in this paper.

3

Published as a conference paper at ICLR 2024

A mechanism M satisfies (ε, δ)-DP if and only if for all adjacent databases D,D′ we have
Hε(M(D),M(D′)) ≤ δ. From the definition, we see that to obtain the ε-hockey stick divergence between
P and Q, it suffices to know their privacy loss distribution (PLD):

Definition 2.1. The privacy loss random variable for P and Q is given by sampling x ∼ P , and computing
ln(P (x)/Q(x)). The PLD of P and Q is the distribution of this random variable.

We frequently use the notion of dominating PLDs:

Definition 2.2 (Definition 7 in (Zhu et al., 2022)). The PLD of P,Q dominates the PLD of P ′, Q′ if for any
ε,Hε(P,Q) ≥ Hε(P

′, Q′). We will also say random variable L dominates random variable L′ if for any
ε,Hε(L) ≥ Hε(L

′), where Hε(L) = E`∼L
[
max

{
1− eε−`, 0

}]
.

Informally, a PLD dominates another PLD if any privacy guarantee satisfied by mechanisms with the domi-
nating PLD is also satisfied by mechanisms with the dominated PLD. In particular, if the PLD of some pair of
distributions P,Q dominates the PLDs of all pairsM(D),M(D′) for adjacentD,D′, then ifHε(P,Q) ≤ δ,
M satisfies (ε, δ)-DP.

2.2 PRIVACY AMPLIFICATION

Privacy amplification via sampling analyzes the improvement in privacy given by randomly sampling a
minibatch of examples instead of choosing it deterministically. Roughly, a (ε, δ)-DP mechanism run on a
batch where each example participates with probability p satisfies (log(1 − p + peε), δ)-DP. The relative
improvement from ε to log(1 − p + peε) gets better as ε gets smaller: log(1 − p + peε) ≈ pε for ε < 1,
but log(1 − p + peε) ≈ ε − log(1/p) for large ε. The benefits of privacy amplification via sampling in
the independent noise setting of DP-SGD, i.e., the decoder matrix C = I, are extremely well-studied (Song
et al., 2013; Bassily et al., 2014; Abadi et al., 2016; Mironov et al., 2019; Steinke, 2022; Koskela et al.,
2020) with tight analyses. In particular, one round of DP-SGD is dominated by the PLD of N(0, σ2) and
(1−p) ·N(0, σ2) +p ·N(1, σ2) and since each round of DP-SGD has independent randomness, composing
this PLD with itself n times gives a tight dominating PLD, i.e. tight (ε, δ) curve, for DP-SGD.

3 CONDITIONAL COMPOSITION

We first show a conditional composition theorem, which allows us to analyze a sequence of adaptive mech-
anisms using high-probability instead of worst-case privacy guarantees for each mechanism. We state con-
ditional composition formally as Theorem C.2. This is a generalization of an idea used in (Erlingsson et al.,
2019; Balle et al., 2020) to analyze amplification by shuffling.

Theorem 3.1 (Informal version of Theorem C.2). LetM1,M2, . . . be a sequence of adaptive mechanisms,
where eachMi takes D and the previous mechanisms’ output as input. Suppose there is some “bad” event
E that happens with probability at most δbad over the randomness ofM1,M2, . . . for any input D. If the
composition of the worst-case privacy guarantees of M1,M2, . . . each conditioned on E not happening
satisfies (ε, δ)-DP, then the composition ofM1,M2, . . . satisfies (ε, δ + δbad)-DP.

The proof is given in App. C. To apply Theorem 3.1 to correlated noise mechanisms, we observe that they
can be viewed as a sequence of adaptive independent-noise mechanisms:

Observation 3.2. LetM : D → X1 × X2 × . . . × Xn be a mechanism that takes a dataset D and outputs
the tuple x = (x1, x2, . . . , xn) drawn from the distribution M(D). Let Mi : X1 × X2 × . . . × Xi−1 ×
D → Xi be the mechanism that takes x′1, x

′
2, . . . , x

′
i−1 and a dataset D and outputs x′i with probability (or

likelihood) Prx∼M(D)

[
xi = x′i|x1 = x′1, x2 = x′2, . . . , xi−1 = x′i−1

]
. The output distributions ofM and

the composition ofM1,M2, . . . are the same.

4

Published as a conference paper at ICLR 2024

Algorithm 1 Matrix Mechanism Conditional Composition algorithm, MMCC(C, p, σ, δ1, δ2)

1: Input: Matrix C, sampling probability p, noise standard deviation σ, probabilities δ1, δ2.
2: {p̃i,j}i,j∈[n] ←ProbabilityTailBounds(C, p, σ, δ1).
. p̃i,j is a high-probability upper bound on the probability that an example participated in round j,
conditioned on output in rounds 1 to i− 1.

3: for i ∈ [n] do
4: PLDi ← PLD ofMPMoG({p̃i,j}j∈[n], {Ci,j}j∈[n]).

5: PLD ← convolution of {PLDi}i∈[n].
6: return min ({ε : PLD satisfies (ε, δ2)-DP}).

Figure 1: Algorithm MMCC for computing amplified privacy guarantees of the matrix mechanism. The
subroutine ProbabilityTailBounds is given in Fig. 5 in App. C.

4 PRIVACY ANALYSIS FOR MATRIX MECHANISMS

In this section, we give an algorithm for computing an upper bound on the privacy guarantees of the matrix
mechanism, and prove its correctness.

4.1 MIXTURE OF GAUSSIANS MECHANISMS

The key tool in our privacy analysis is a mixture of Gaussians mechanism, a generalization of the Gaussian
mechanism with sampling. Here we define these mechanisms under the add adjacency, i.e. D′ contains an
example zeroed out in D.
Definition 4.1. A mixture of Gaussians (MoG) mechanism is defined by two lists, a list of probabilities
{p1, p2, . . . , pk}, with

∑
i pi = 1, pi ∈ [0, 1], a list of sensitivities {c1, c2, . . . ck} and a noise level σ.

For simplicity, we will assume ci ≥ 0. Given D, the mechanismMMoG({p1, p2, . . . , pk}, {c1, c2, . . . ck})
outputs z ∼ N(0, σ2). Given D′, it samples s from the distribution with support {ci}i∈[k] and associated
probabilities {pi}i∈[k], and outputs z ∼ N(s, σ2). In other words, it is a Gaussian mechanism where the
sensitivity s is a random variable distributed according to {pi}i∈[k], {ci}i∈[k].

A vector mixture of Gaussians (VMoG) mechanismMVMoG is the same as a MoG mechanism, except the
sensitivities ci are allowed to be vectors ci instead of scalars, and our output is sampled from a multivariate
Gaussian z ∼ N(0, σ2 · I) or z ∼ N(s, σ2 · I).

For our proofs, we will need to prove a few properties of MoG mechanisms. We give these properties and
their proofs in App. B. It will be easier for us to work with a special case of MoG mechanisms, where the
probabilities and sensitivities arise from a product distribution:
Definition 4.2. A product mixture of Gaussians (PMoG) mechanism is defined by two lists {p1, . . . , pk}
and {c1, . . . ck} and a noise level σ. The mechanismMPMoG({p1, . . . , pk}, {c1, . . . , ck}) is defined equiv-
alently asMMoG({

∏
i∈S pi ·

∏
i 6∈S(1− pi)|S ∈ 2[k]}, {

∑
i∈S ci|S ∈ 2[k]}).

4.2 MATRIX MECHANISM CONDITIONAL COMPOSITION

The high-level idea of our algorithm, MMCC (short for matrix mechanism conditional composition), for
analyzing the matrix mechanism with amplification is the following: The output of each round conditioned
on the previous rounds’ output is a MoG mechanism. For each round, we specify a MoG mechanism that
dominates this MoG mechanism with high probability. Then by Theorem 3.1, it suffices to compute the

5

Published as a conference paper at ICLR 2024

privacy loss distribution of each of the dominating MoGs, and then use composition to get our final privacy
guarantee. MMCC is given in Fig. 1. In App. C, we prove that MMCC computes a valid DP guarantee:

Theorem 4.3. Let ε be the output of MMCC(C, p, σ, δ1, δ2). The matrix mechanism with matrix C, uniform
sampling probability p, and noise level σ satisfies (ε, δ1 + δ2)-DP.

We give a high-level overview of the proof. The proof proceeds in three steps. First, we show the ma-
trix mechanism is dominated by a sequence of adaptively chosen scalar MoG mechanisms, by analyzing
the distribution for each round conditioned on previous rounds and applying a vector-to-scalar reduction
(Lem. B.4). Second, we simplify these MoG mechanisms by showing that each is dominated by a PMoG
mechanism with probabilities pi,j depending on the outputs from previous rounds. Third, we show that with
high probability pi,j ≤ p̃i,j for all i, j, i.e., the upper bounds generated by ProbabilityTailBounds
hold. We then apply Theorem 3.1.

Tightness: To get a sense for how tight MMCC is, if in MMCC we instead set p̃i,j = p for all i, j, this is
equivalent to analyzing the matrix mechanism as if each row were independent. Since the rows are actually
correlated, we expect this analysis to give a lower bound on the true value of ε. So we can use maxi,j p̃i,j/p
as roughly an upper bound on the ratio of the ε reported by MMCC and the true ε value. In particular, as
σ →∞, for p̃i,j computed by ProbabilityTailBounds this ratio approaches 1, i.e. MMCC gives tight
ε guarantees in the limit as σ →∞.

Sampling scheme of (Choquette-Choo et al., 2023a): The techniques used in MMCC are complementary
to those in (Choquette-Choo et al., 2023a): In App. D, we give a generalization of MMCC that analyzes the
matrix mechanism under their “b-min-sep sampling.” For b = 1, this is the same as i.i.d. sampling every
round so this generalization retrieves MMCC. For b-banded matrices this generalization retrieves exactly the
DP-SGD-like analysis of (Choquette-Choo et al., 2023a). In other words, this generalization subsumes all
existing amplification results for matrix mechanisms.

Benefits of i.i.d. sampling: MMCC is the first analysis that allows us to benefit from both correlated noise
and privacy amplification via i.i.d. (i.e., maximally random) sampling. In Sec. 6.3 we demonstrate that the
combination of benefits allows us to get better `22-error for computing all prefix sums than independent-noise
mechanisms, for much smaller ε than prior work.

5 AMPLIFICATION VIA SHUFFLING FOR NON-ADAPTIVE BINARY TREE

In this section, we show that amplification allows us to improve the privacy guarantees of the binary tree
mechanism of (Dwork et al., 2010; Chan et al., 2011). We consider the setting where first the data set D is
randomly permuted (call it Π(D)), and each function xi (in the definition of MM from Section 1.2) picks the
i-th data record in Π(D). Roughly speaking, using privacy amplification by shuffling (see Section 1.2) we
improve σ for this mechanism by Ω(

√
log n/

√
log log(1/δ)), while maintaining that each example partici-

pates once. For simplicity throughout the section we restrict to the case where n is a power of 2.

Binary tree mechanism: The binary tree computes sums of rows of x over the intervals [1 : 1], [2 :
2], . . . , [n : n], [1 : 2], [3 : 4], . . . , [n − 1 : n], [1 : 4], . . . [1 : n] with noise. That is, it outputs{∑

k·2j+1≤i≤(k+1)·2j xi + zj,k

}
0≤j≤logn,0≤k<n/2j

, where zj,k
i.i.d.∼ N(0, σ2). Equivalently, it is a (non-

square) matrix mechanism where for each j, k pair there is a row of C where the entries in the interval
[k · 2j + 1 : (k+ 1) · 2j] are 1 and the remaining entries are 0. We refer to all the noisy sums indexed by the
same j as level j. In the single-epoch setting (without shuffling), each row of xi is a sensitivity-1 function
computed on the ith example inD. The binary tree mechanism then satisfies the privacy guarantees of distin-
guishing z and Cei+z, where ei is an elementary vector. Since each row of x is included in log n+1 of the

6

Published as a conference paper at ICLR 2024

sums, we have ‖Cei‖2 =
√

log n+ 1, i.e. the binary tree mechanism satisfies
(
O

(√
log(n) log(1/δ)

σ

)
, δ

)
-

DP.

We now analyze the binary tree mechanism under shuffling. To apply Theorem 3.1, we need the following
analysis of “approximate shuffling” given in Lem. 5.1, proven in App. C.

Lemma 5.1 (Simplification of Lem. C.4 in App. C). Suppose we run n Gaussian mechanisms on n inputs,
where the order of the inputs is chosen according to a distribution such that no input appears in a certain
position with probability more than 1/n′. Then for δ ≥ 2−Ω(n′), δ0 ≥ 0, this set of mechanisms satisfies(
O

(√
ln(1/δ0) ln(1/δ)

σ
√
n′

)
, δ + n′δ0

)
-DP.

Theorem 5.2. The non-adaptive binary tree mechanism run on Π(D) satisfies(
O

(√
log(1/δ) log log(1/δ)

σ

)
, δ

)
-DP for σ = Ω(

√
log(1/δ) log log(1/δ)), δ ∈ [2−Ω(n), 1/n].

The proof of Theorem 5.2 is given in App. C. We give a summary here: For the “top” levels j ∈ [log n −
O(log log(1/δ)), log n], the number of sums per level (i.e., n′ in Lem. 5.1) is less than log(1/δ) so we cannot
apply Lem. 5.1. Instead we use the unamplified privacy analysis of the Gaussian mechanism to analyze the
privacy of the corresponding noisy sums. For the remaining levels, we combine Theorem 3.1 and Lem. 5.1 to
show level j’s privacy parameter ε is exponentially decaying in log n− j, i.e. the top O(log log(1/δ)) levels
dominate the privacy guarantee. Note that the theorem is proven in the non-adaptive case; our argument for
adaptivity in Sec. 4 implicitly requires independence of participations across examples, which does not hold
for shuffling.

6 EMPIRICAL IMPROVEMENTS

We implement MMCC by building on methods in the open-source dp accounting Python library (DP
Team, 2022), and perform empirical studies of the amplification benefits from MMCC. PLD accounting for
MoG mechanisms is currently open-sourced as part of the dp accounting library. We plan to open-
source our implementation of MMCC which builds on dp accounting. There are some challenges in the
implementation which we discuss in App. F. For simplicity we use δ1, δ2 = δ/2 in MMCC.

6.1 BINARY TREE MECHANISM AMPLIFICATION

In this section, we show how the privacy guarantee of the binary tree mechanism empirically improves if
we use sampling and MMCC. In App. E we repeat this study for a different matrix mechanism proposed by
(Fichtenberger et al., 2023).

As a baseline, we fix a constant c, and consider the binary tree mechanism under a single-participation con-
straint, with σ = c

√
log(n) + 1. By the analysis of the Gaussian mechanism, for all n that are powers of 2,

the binary tree mechanism with this choice of σ under a single-participation constraint without amplification
satisfies (ε, δ)-DP for the same ε, δ. In other words, as we increase n, the privacy guarantee of the unampli-
fied mechanism remains fixed. Then, for the same c and n that are powers of 2, we use MMCC to compute a
privacy guarantee for the binary tree mechanism with subsampling probability 1/n and the same choice of
σ. By the analyses in Section 5, we expect that with subsampling, the value of ε will decrease as Ω(

√
log n).

In Fig. 2, we observe that empirical improvement in ε due to amplification is roughly proportional to√
log(n) + 1. We also observe two improvements as c (i.e., σ) increases. First, the multiplicative im-

provement in ε increases; second, empirical improvements better match a linear fit to
√

log(n) + 1. Both

7

Published as a conference paper at ICLR 2024

2 4 6 8 10
log(n)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ra
tio

 o
f u

na
m

pl
ifi

ed
 to

 a
m

pl
ifi

ed
. H

ig
he

r i
s b

et
te

r
c = 5 (unamplified = 0.834)

y=0.2921 (log n + 1)+0.2573

2 4 6 8 10
log(n)

0.8

1.0

1.2

1.4

1.6

1.8

Ra
tio

 o
f u

na
m

pl
ifi

ed
 to

 a
m

pl
ifi

ed
. H

ig
he

r i
s b

et
te

r

c = 10 (unamplified = 0.397)
y=0.4861 (log n + 1)+0.1441

2 4 6 8 10
log(n)

1.0

1.2

1.4

1.6

1.8

2.0

Ra
tio

 o
f u

na
m

pl
ifi

ed
 to

 a
m

pl
ifi

ed
. H

ig
he

r i
s b

et
te

r

c = 20 (unamplified = 0.189)
y=0.5804 (log n + 1)+0.1172

Figure 2: Multiplicative improvement of our amplification analysis (roughly) matches
√

log(n) + 1.
A higher ratio (> 1) indicates amplification is better. We plot n = 2i, i ∈ {1, 2, . . . , 10} with σ =

c
√

log(n) + 1 so ε is fixed for unamplified single-participation. δ = 10−6.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Privacy Budget,

40

45

50

55

60

65

Te
st

 A
cc

ur
ac

y

None (Kairouz et al. 2023)
MMCC (Ours)

Figure 3: Our amplification analysis leads to sig-
nificant gains over Kairouz et al. (2021) on prac-
tical ML experiments (CIFAR-10), entirely post-
hoc.

50 100 150 200
Noise Standard Deviation,

0.2

0.4

0.6

0.8

1.0

1.2

Pr
iv

ac
y

Bu
de

t,
, @

=

10
6

Analysis Method
MMCC, (Ours)
Choquette-Choo et al. (2023)

Figure 4: MMCC gives tighter ε than the analy-
sis of (Choquette-Choo et al., 2023a) for a DP-
FTRL-TreeRestart mechanism of height 4. Ran
for n = 512 steps with p = 1

16 .

these improvements are explained by the fact that (as discussed in Sec. 4) as σ →∞, MMCC reports a tighter
ε.

6.2 LEARNING EXPERIMENTS WITH BINARY-TREE-DP-FTRL

A motivating reason for us to study matrix mechanisms is that the analysis of Kairouz et al. (2021) has a
suboptimal scaling in the amount of noise added, which manifests in their experiments with DP machine
learning. We reproduce the centralized DP training on CIFAR-10 from Choquette-Choo et al. (2023b), in-
cluding model architecture, tuning setup, hyperparameter choices, and optimizations to the tree aggregation
mechanism for ML; we use these as our baseline results.

In Fig. 3, we re-analyze the baseline using MMCC and show significant improvements in privacy-utility
tradeoffs for DP-FTRL via binary trees. In particular, we observe that these benefits become larger as ε
becomes small. Note that these improvements are entirely “post-hoc,” i.e. the algorithm is the same, but
with a better privacy analysis.

6.3 I.I.D. SAMPLING ENABLES BETTER AMPLIFICATION THAN b-MIN-SEP SAMPLING

The prior work of (Choquette-Choo et al., 2023a) gives an amplification result using a sampling scheme we
call “b-min-sep sampling” for b-banded matrices. In their sampling scheme, each example participates in

8

Published as a conference paper at ICLR 2024

n/b rounds with sampling probability bp. In contrast, MMCC enables sampling each example in all n rounds
with probability p, a “more random” form of sampling. We compare the two amplification analyses using the
DP-FTRL-TreeRestart algorithm of (Kairouz et al., 2021), which sequentially runs n/2h−1 height-h binary
tree mechanisms, each binary tree mechanism run for 2h−1 rounds. This corresponds to a matrix mechanism
that is 2h−1-banded, so we can apply the results of (Choquette-Choo et al., 2023a). In Fig. 4, we compare the
ε for DP-FTRL-TreeRestart computed as a function of σ using MMCC and the analysis of (Choquette-Choo
et al., 2023a), in the setting of n = 512, p = 1/16, h = 4, and we see that indeed the more random sampling
enabled by MMCC allows for improved privacy guarantees compared to b-min-sep sampling.

7 DISCUSSION, FUTURE DIRECTIONS, AND CONCLUSION

In this paper, we proposed MMCC, which gives tight amplification guarantees for sampling in the limit as
ε → 0. One limitation of our work is that we are not able to prove adaptivity for non-lower triangular
C, which captures important matrix mechanisms like the “fully efficient” binary tree mechanism (Honaker,
2015). It is an important future direction to fully understand what combinations of privacy amplification and
correlated noise allow the same privacy for non-adaptive and adaptive inputs. In addition, there are many
potential improvements to MMCC, as well as open problems that naturally follow from our work. Another
open problem that we make progress towards is proving DP-FTRL strictly dominates DP-SGD, i.e. for any
ε > 0 DP-FTRL achieves strictly6 better utility than DP-SGD under an appropriate definition of utility. In
particular, we conjecture that a tighter amplification analysis than that of MMCC could show that even for ε
close to 0, DP-FTRL with a matrix mechanism where C is close to but not equal to the identity has strictly
better utility than DP-SGD.

Our interest in the matrix mechanism is primarily motivated by the works of (Denisov et al., 2022;
Choquette-Choo et al., 2023b;a) which considered the problem of choosing C that optimizes (a proxy for) the
utility of DP-FTRL. The utility of DP-FTRL can be written as a function of C−1, and thus can be optimized
under a constraint of the form “the matrix mechanism defined by C satisfies a given privacy definition”.
Without amplification, this constraint can usually be easily written as e.g. C ∈ S where S is a convex set
of matrices, which makes optimizing under this constraint easy. An interesting question is whether we can
solve the same problem, except the privacy constraint accounts for amplification. This would likely require
designing a function that takes C, p, σ and approximates ε that is differentiable in C (unlike MMCC, which
is an algorithmic computation that is not easily differentiable).

In these works, DP-FTRL is always strictly better than DP-SGD without amplification, but with amplifi-
cation for small ε the optimal choice of C with amplification is the identity, i.e. the optimal DP-FTRL is
just DP-SGD (with independent noise). If we could optimize C under an amplified privacy constraint, we
conjecture the following (perhaps surprising) statement could be proven as a corollary: As long as we are not
in the full-batch setting, even with amplification by sampling, the optimal choice of C is never the identity
for ε > 0. In other words, despite its ubiquity, DP-SGD is never the optimal algorithm to use (ignoring
computational concerns).

Due to space constraints, we defer the discussion of other future directions to App. A.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 308–318, 2016.

6Note that (Choquette-Choo et al., 2023a) showed that DP-FTRL is always at least as good as DP-SGD, but in their
results for small ε DP-SGD is just as good as DP-FTRL, i.e. DP-FTRL is not strictly better.

9

Published as a conference paper at ICLR 2024

Borja Balle, Peter Kairouz, H Brendan McMahan, Om Thakkar, and Abhradeep Thakurta. Privacy amplifi-
cation via random check-ins. In NeurIPS, 2020.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algo-
rithms and tight error bounds. In Proc. of the 2014 IEEE 55th Annual Symp. on Foundations of Computer
Science (FOCS), pp. 464–473, 2014.

T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM Trans. on
Information Systems Security, 14(3):26:1–26:24, November 2011.

Christopher A Choquette-Choo, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Keith Rush,
Abhradeep Guha Thakurta, and Zheng Xu. (amplified) banded matrix factorization: A unified approach to
private training. arXiv preprint arXiv:2306.08153, 2023a. URL https://arxiv.org/abs/2306.
08153.

Christopher A. Choquette-Choo, Hugh Brendan McMahan, J Keith Rush, and Abhradeep Guha Thakurta.
Multi-epoch matrix factorization mechanisms for private machine learning. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 5924–5963. PMLR, 23–29 Jul 2023b. URL https://proceedings.mlr.
press/v202/choquette-choo23a.html.

Sergey Denisov, H. Brendan McMahan, John Rush, Adam Smith, and Abhradeep Guha Thakurta.
Improved differential privacy for sgd via optimal private linear operators on adaptive streams.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 5910–5924. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
271ec4d1a9ff5e6b81a6e21d38b1ba96-Paper-Conference.pdf.

DP Team. Google’s differential privacy libraries., 2022. https://github.com/google/
differential-privacy.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3–4):211–407, 2014.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under continual
observation. In Proceedings of the forty-second ACM symposium on Theory of computing, pp. 715–724,
2010.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2019. URL https://arxiv.org/abs/1811.
12469.

Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification by iteration.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 521–532. IEEE,
2018.

Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple and nearly optimal
analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 954–964, 2022. doi: 10.1109/FOCS52979.2021.00096.

10

https://arxiv.org/abs/2306.08153
https://arxiv.org/abs/2306.08153
https://proceedings.mlr.press/v202/choquette-choo23a.html
https://proceedings.mlr.press/v202/choquette-choo23a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/271ec4d1a9ff5e6b81a6e21d38b1ba96-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/271ec4d1a9ff5e6b81a6e21d38b1ba96-Paper-Conference.pdf
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://arxiv.org/abs/1811.12469
https://arxiv.org/abs/1811.12469

Published as a conference paper at ICLR 2024

Hendrik Fichtenberger, Monika Henzinger, and Jalaj Upadhyay. Constant matters: Fine-grained error bound
on differentially private continual observation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 10072–10092. PMLR, 2023. URL https://proceedings.mlr.press/
v202/fichtenberger23a.html.

Arun Ganesh. Tight group-level dp guarantees for dp-sgd with sampling via mixture of gaussians mecha-
nisms, 2024.

Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. A unifying framework for differentially private
sums under continual observation, 2023.

James Honaker. Efficient use of differentially private binary trees, 2015.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu. Prac-
tical and private (deep) learning without sampling or shuffling. In ICML, 2021.

Shiva Prasad Kasiviswanathan and Adam Smith. On the ’semantics’ of differential privacy: A bayesian
formulation. J. Priv. Confidentiality, 6(1), 2014. doi: 10.29012/jpc.v6i1.634. URL https://doi.
org/10.29012/jpc.v6i1.634.

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith.
What can we learn privately? In 49th Annual IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 531–540, 2008.

Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differential privacy guarantees using fft.
In International Conference on Artificial Intelligence and Statistics, pp. 2560–2569. PMLR, 2020.

Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala. Hdmm: Optimizing error of
high-dimensional statistical queries under differential privacy. arXiv preprint arXiv:2106.12118, 2021.

Ilya Mironov, Kunal Talwar, and Li Zhang. R\’enyi differential privacy of the sampled gaussian mechanism.
arXiv preprint arXiv:1908.10530, 2019. URL https://arxiv.org/abs/1908.10530.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H. Brendan McMahan,
Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to DP-fy ML: A practical guide
to machine learning with differential privacy. Journal of Artificial Intelligence Research, 77:1113–1201,
jul 2023. doi: 10.1613/jair.1.14649. URL https://doi.org/10.1613%2Fjair.1.14649.

Adam Smith and Abhradeep Thakurta. (nearly) optimal algorithms for private online learning in full-
information and bandit settings. In Advances in Neural Information Processing Systems, pp. 2733–2741,
2013.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differentially
private updates. In 2013 IEEE Global Conference on Signal and Information Processing, pp. 245–248.
IEEE, 2013.

Thomas Steinke. Composition of differential privacy & privacy amplification by subsampling. arXiv preprint
arXiv:2210.00597, 2022. URL https://arxiv.org/abs/2210.00597.

Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of Cryptography, pp.
347–450. Springer, 2017.

11

https://proceedings.mlr.press/v202/fichtenberger23a.html
https://proceedings.mlr.press/v202/fichtenberger23a.html
https://doi.org/10.29012/jpc.v6i1.634
https://doi.org/10.29012/jpc.v6i1.634
https://arxiv.org/abs/1908.10530
https://doi.org/10.1613%2Fjair.1.14649
https://arxiv.org/abs/2210.00597

Published as a conference paper at ICLR 2024

Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via char-
acteristic function. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceed-
ings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Pro-
ceedings of Machine Learning Research, pp. 4782–4817. PMLR, 28–30 Mar 2022. URL https:
//proceedings.mlr.press/v151/zhu22c.html.

12

https://proceedings.mlr.press/v151/zhu22c.html
https://proceedings.mlr.press/v151/zhu22c.html

Published as a conference paper at ICLR 2024

A MORE FUTURE DIRECTIONS

First, our tail bound on the conditional sampling probabilities p̃i,j approach p as σ → ∞. However, for
finite σ, p̃i,j can be much larger than p, i.e. the ε computed by MMCC can be much larger than the true ε. We
believe the values of p̃i,j we compute are not tight and can be improved. In particular, in computing p̃i,j , we
give a tail bound on the maximum of the dot product of a Gaussian with a set of vectors, and the values of p̃i,j
we compute effectively correspond to the case where this tail bound is attained by every dot product. This is
overly pessimistic, and it should be possible to obtain tighter ε via a more refined tail-bounding approach.

Second, while MMCC has a polynomial dependence on n (whereas computing Hε via e.g. numerical inte-
gration would require time exponential in n), empirically we found that even with many optimizations for
runtime, running MMCC for n ≈ 2000 still took several hours. In practice, we would often like to run for
larger n, or do multiple sequential runs of MMCC in order to e.g. compute the smallest σ that gives a certain
ε via binary search. In turn, it is practically interesting/important to make MMCC more efficient, or discover
another algorithm that gives ε comparable to or better than MMCC, but with a smaller runtime.

B PROPERTIES OF MOG MECHANISMS

The following lemma informally lets us show that domination for the remove adjacency (i.e., D contains an
example zeroed out in D′) is equivalent to domination for the add adjacency (i.e., D′ contains an example
zeroed out in D). Thus, we usually only need to prove statements under one of the two adjacencies, and it is
implied for the other as well.

Lemma B.1 (Lemma 29 in (Zhu et al., 2022)). The PLD of P,Q dominates the PLD of P,Q′ if and only if
the PLD of Q,P dominates the PLD of Q′, P .

B.1 MONOTONICITY OF MOG MECHANISMS

The following shows the privacy guarantees of a MoG mechanism are “monotonic” in the sensitivity random
variable ci:

Lemma B.2. Let {p1, p2, . . . pk}, {c1, c2, . . . , ck} and {c′1, c′2, . . . c′k} be such that (i) each ci is non-
negative and (ii) c′i is entry-wise greater than or equal to ci for all i, i.e. each c′i − ci is non-negative.

Then the PLD of
MVMoG({p1, p2, . . . pk}, {c1, c2, . . . , ck})

is dominated by the PLD of

MVMoG({p1, p2, . . . pk}, {c′1, c′2, . . . c′k}).

Proof. By Lem. B.1, it suffices to only consider the remove adjacency, i.e. given D we sample ci and then
sample from N(ci, σ

2I) and given D′ from N(0, σ2I). The privacy loss of outputting x is:

PL(x) := ln

(∑
i

pi exp

(
2〈ci,x〉 − ‖ci‖22

2σ2

))
.

Let S ⊆ Rd be monotonic if for any x ∈ S,y such that y−x is non-negative, y is also in S. In other words,
increasing any subset of the entries of x ∈ S gives another vector in S. Since all ci are non-negative, if
y − x is non-negative, then the privacy loss of outputting y is larger than that of outputting x. So for any

13

Published as a conference paper at ICLR 2024

VMoG mechanism and any t, the set of outputs St = {x : PL(x) ≥ t} is monotonic. By the Neyman-
Pearson lemma it suffices to consider only the sets St in the definition of (ε, δ)-DP, i.e. a mechanism satisfies
(ε, δ)-DP if and only if

∀t : Pr
x∼M(D)

[x ∈ St] ≤ eε · Pr
x∼M(D′)

[x ∈ St] + δ.

So, in order to show that to show the first VMoG mechanism is dominated by the second, it suffices to show
the probability that x ∼ N(ci, σ

2I) is in any monotonic set S is at most the probability that x ∼ N(c′i, σ
2I)

is in S. This is immediate by a coupling of the two random variables: we let the first random variable be
ci + z and the second random variable be c′i + z, where the choice of i and Gaussian noise z are the same
for both random variables. For any monotonic S, since c′i − ci is non-negative, ci + z is in S only if c′i + z
is in S, giving that the probability x ∼ N(ci, σ

2I) is in S is at most the probability x ∼ N(c′i, σ
2I) is in

S.

Since the above proof holds for any ci, c
′
i satisfying the assumptions in the lemma, it also holds if c′i are

fixed/non-adaptive but the entries in ci are chosen adaptively (while still satisfying the assumptions in the
lemma), i.e. the jth coordinate of ci is chosen only after seeing the first j − 1 coordinates of the output. In
the scalar case, we get the following corollary:

Corollary B.3. Let {p1, p2, . . . pk}, {c1, c2, . . . , ck} and {p′1, p′2, . . . p′k′}, {c′1, c′2, . . . c′k′} be such that for
all T ,

∑
i:c′i≥T

p′i ≥
∑
i:ci≥T pi. In other words, the random variable induced by {pi}i, {ci}i is stochasti-

cally dominated by the random variable induced by {p′i}i, {c′i}i. We also assume ci, c′i ≥ 0 for all i.

Then the PLD of
MMoG({p1, p2, . . . pk}, {c1, c2, . . . , ck})

is dominated by the PLD of

MMoG({p′1, p′2, . . . p′k′}, {c′1, c′2, . . . c′k′}).

Cor. B.3 follows from Lem. B.2 since by allowing duplicate ci values, we can reduce to the setting where
the probabilities are the same, and ci ≤ c′i for all ci. For example, if ci is 0 or 1 w.p. 1/2 and c′i is 0, 1, or 2
w.p. 1/3, we can use {pi} = {1/3, 1/6, 1/6, 1/3}, {ci} = {0, 0, 1, 1}, and {c′i} = {0, 1, 1, 2}.

B.2 DIMENSION REDUCTION FOR MOG MECHANISMS

We now give the following lemma, which lets us reduce the dimensions of a VMoG mechanism.

Lemma B.4. Let c1, c2, . . . , ck ∈ Rn×p. Let c′1, c
′
2, . . . , c

′
k ∈ Rn be vectors such that ‖(ci)j,:‖2 ≤ c′i(j)

for all i, j, i.e. the entries of c′i upper bound the `2-norms of the corresponding rows of ci. Then the PLD of

MVMoG({p1, p2, . . . , pk}, {c1, c2, . . . , ck})

is dominated by the PLD of

MVMoG({p1, p2, . . . , pk}, {c′1, c′2, . . . , c′k}).

Furthermore, this holds even if the rows of each ci are adaptively chosen and c′i are fixed, i.e. the jth row of
all ci is chosen by an adversary after seeing the first j − 1 rows of the output of the VMoG mechanism, as
long as the assumption ‖(ci)j,:‖2 ≤ c′i(j) holds.

We need the following lemma, which we can apply multiple times to prove Lem. B.4:

14

Published as a conference paper at ICLR 2024

Lemma B.5. Let w1, w2, . . . wk > 0 be positive scalars and let c1, c2, . . . ck ∈ Rp be arbitrary vectors.
Then for any ε and σ > 0:

Ex∼N(0,σ2Ip)

[
max

{∑
i

wi exp(〈ci,x〉)− eε, 0

}]
≤ Ex∼N(0,σ2)

[
max

{∑
i

wi exp(‖ci‖2 x)− eε, 0

}]
.

Proof.
∑
i wi exp(‖ci‖2 x) as a function of x is continuous, increasing in x, and has range R+. So, there

exists some t such that
∑
i wi exp(‖ci‖2 t) = eε. For this choice of t, let ti = wi exp(‖ci‖2 t). Then we

have for all x:

max

{∑
i

wi exp(‖ci‖2 x)− eε, 0

}
=
∑
i

max {wi exp(‖ci‖2 x)− ti, 0} .

Now, by linearity of expectation and the fact that max{
∑
i ai,

∑
i bi} ≤

∑
i max{ai, bi}:

Ex∼N(0,σ2Ip)

[
max

{∑
i

wi exp(〈ci,x〉)− eε, 0

}]
≤ Ex∼N(0,σ2Ip)

[∑
i

max {wi exp(〈ci,x〉)− ti, 0}

]
=
∑
i

Ex∼N(0,σ2Ip) [max {wi exp(〈ci,x〉)− ti, 0}]

=
∑
i

Ex∼N(0,σ2) [max {wi exp(‖ci‖2 x)− ti, 0}]

= Ex∼N(0,σ2)

[∑
i

max {wi exp(‖ci‖2 x)− ti, 0}

]

= Ex∼N(0,σ2)

[
max

{∑
i

wi exp(‖ci‖2 x)− eε, 0

}]
.

Proof of Lem. B.4. Lem. B.2 holds for adaptively chosen ci and fixed c′i (using the notation of that lemma),
so by Lem. B.2 it suffices to prove the lemma for adaptive ci and fixed c′i such that ‖(ci)j,:‖2 = c′i(j)
for all i, j. Further, by Lem. B.1, it suffices to show the lemma under the remove adjacency. That is,
P = N(ci, σ

2In×p), Q = N(0, σ2In×p), P ′ = N(c′i, σ
2In), Q′ = N(0, σ2In), and it suffices to show

Hε(P,Q) ≤ Hε(P
′, Q′) for all ε.

We have:

Hε(P,Q) = Ex∼Q

[
max

{
P (x)

Q(x)
− eε, 0

}]
= Ex∼N(0,σ2In×p)

[
max

{∑
i pi exp(‖x− ci‖22 /2σ2)

exp(‖x‖22 /2σ2)
− eε, 0

}]

= Ex∼N(0,σ2In×p)

[
max

{∑
i

pi exp

(
2〈ci,x〉 − ‖ci‖22

2σ2

)
− eε, 0

}]

15

Published as a conference paper at ICLR 2024

To reflect the fact that ci can be chosen adaptively, let ci,j(x1:j−1) denote any adversary’s adaptive choice
of the jth row of ci after observing the first j − 1 rows of x. We can then write Hε(P,Q) as:

Ex1,x2,...xn∼N(0,σ2Ip)

max

∑
i

pi
∏
j∈[n]

exp

(
2〈ci,j(x1:j−1),xj〉 − ‖ci,j(x1:j−1)‖22

2σ2

)
− eε, 0

 =

Ex1,x2,...xn−1∼N(0,σ2Ip)

Exn∼N(0,σ2Ip)

max

∑
i

pi
∏
j∈[n]

exp

(
2〈ci,j(x1:j−1),xj〉 − ‖ci,j(x1:j−1)‖22

2σ2

)
− eε, 0

 .

(1)

Note that the values of all ci,j in (1) are constants with respect to the inner expectation. So for any realization
of x1,x2, . . . ,xn−1, choosing

wi = pi exp

(
−
‖ci,n(x1:n−1)‖22

2σ2

) ∏
j∈[n−1]

exp

(
2〈ci,j(x1:j−1),xj〉 − ‖ci,j(x1:j−1)‖22

2σ2

)
and observing that by assumption ‖ci,n(x1:n−1)‖2 = c′i(n), we can apply Lem. B.5 to upper bound the
inner expectation in (1) as:

(1) ≤ Ex1,x2,...xn−1∼N(0,σ2Ip),xn∼N(0,σ2)

max

∑
i

pi
∏

j∈[n−1]

· exp

(
2〈ci,j(x1:j−1),xj〉 − ‖ci,j(x1:j−1)‖22

2σ2

)
· exp

(
2c′i(n)xn − c′i(n)2

2σ2

)
− eε, 0

}]
.

We can then iteratively repeat this argument for rows n− 1, n− 2, . . . 1 to get:

Hε(P,Q) ≤ Ex1,x2,...xn−1∼N(0,σ2Ip),xn∼N(0,σ2)

[
max

{∑
i

pi

·
∏

j∈[n−1]

exp

(
2〈ci,j(x1:j−1),xj〉 − ‖ci,j(x1:j−1)‖22

2σ2

)
· exp

(
2c′i(n)xn − c′i(n)2

2σ2

)
− eε, 0

≤ Ex1,x2,...xn−2∼N(0,σ2Ip),xn−1,xn∼N(0,σ2)

[
max

{∑
i

pi

∏
j∈[n−2]

exp

(
2〈ci,j(x1:j−1),xj〉 − ‖ci,j(x1:j−1)‖22

2σ2

)
·

∏
j∈[n]\[n−2]

exp

(
2c′i(j)xj − c′i(j)

2

2σ2

)
− eε, 0

≤ Ex1,x2,...xn−3∼N(0,σ2Ip),xn−2,xn−1,xn∼N(0,σ2)

[
max

{∑
i

pi

∏
j∈[n−3]

exp

(
2〈ci,j(x1:j−1),xj〉 − ‖ci,j(x1:j−1)‖22

2σ2

)
·

∏
j∈[n]\[n−3]

exp

(
2c′i(j)xj − c′i(j)

2

2σ2

)
− eε, 0

16

Published as a conference paper at ICLR 2024

. . .

≤ Ex1,x2,...,xn∼N(0,σ2)

max

∑
i

pi
∏
j∈[n]

exp

(
2c′i(j)xj − c′i(j)

2

2σ2

)
− eε, 0

= Ex∼N(0,σ2In)

[
max

{∑
i

pi exp

(
2〈c′i,x〉 − ‖c′i‖

2
2

2σ2

)
− eε, 0

}]
= Hε(P

′, Q′).

As a corollary to the above “matrix-to-vector reduction”, we have a “vector-to-scalar reduction” for MoG
mechanisms:

Corollary B.6. The PLD of

MVMoG({p1, p2, . . . , pk}, {c1, c2, . . . , ck})

is dominated by the PLD of

MMoG({p1, p2, . . . , pk}, {‖c1‖2 , ‖c2‖2 , . . . , ‖ck‖2}).

C DEFERRED PROOFS

C.1 PROOF OF THEOREM C.2

We will need the following lemma, which shows domination is preserved by composition:

Lemma C.1 (Theorem 10 in (Zhu et al., 2022)). LetM1, . . . ,Mk be an adaptive sequence of mechanisms,
i.e., each mechanism receives the output of all previous mechanism and the database. Suppose for all i and
joint outputs x ofM1, . . .Mi−1, the PLD ofMi(x,D) andMi(x,D

′) is dominated by the PLD of Pi, Qi.
Then lettingM be the composition of these mechanisms, the PLD ofM(D),M(D′) is dominated by the
PLD of P1 × P2 × . . . , Q1 ×Q2 ×
Similarly, if L1, L2, . . . , Lk and L′1, L

′
2, . . . , L

′
k are random variables such that Li dominates L′i for all i,

then L1 + L2 + . . .+ Lk dominates L′1 + L′2 + . . .+ L′k.

In (Zhu et al., 2022), only the first part of Lem. C.1 is stated. However, the proof allows arbitrary measures,
i.e., measures that don’t integrate to 1, which implies the second part of Lem. C.1.

Theorem C.2. LetM1 : D → X1,M2 : X1 ×D → X2,M3 : X1 ×X2 ×D → X3, . . .Mn be a sequence
of adaptive mechanisms, where eachMi takes a dataset inD and the output of mechanismsM1, . . . ,Mi−1

as input. Let M be the mechanism that outputs (x1 = M1(D), x2 = M2(x1, D), . . . , xn =
Mn(x1, . . . , xn−1, D)). Fix any two adjacent datasets D,D′.

Suppose there exists “bad events” E1 ⊆ X1, E2 ⊆ X1×X2,En−1 ⊆ X1×X2× . . .×Xn−1 such that

Pr
x∼M(D)

[∃i : (x1, x2, . . . xi) ∈ Ei] ≤ δ

and pairs of distributions (P1, Q1), (P2, Q2), . . . (Pn, Qn) such that the PLD of M1(D) and M1(D′) is
dominated by the PLD of P1, Q1 and for any i ≥ 1 and “good” output (x1, x2, . . . xi) /∈ Ei, the PLD of
Mi+1(x1, . . . , xi, D) andMi+1(x1, . . . , xi, D

′) is dominated by the PLD of Pi+1, Qi+1. Then for all ε:

Hε(M(D),M(D′)) ≤ Hε (P1 × P2 × . . .× Pn, Q1 ×Q2 × . . .×Qn) + δ.

17

Published as a conference paper at ICLR 2024

Algorithm 2 ProbabilityTailBounds(C, p, σ, δ1)

1: Input: Matrix C, sampling probability p, noise standard deviation σ, probability δ1.
2: δ′ = δ1

2·(nnz(C)−n) . nnz is the number of non-zeros.
3: z = Φ−1(1− δ′) . Tail bound on normal distribution; here, Φ is the standard normal CDF.
4: for i, j ∈ [n] do
5: if Ci,j = 0 then
6: p̃i,j = 1
7: else
8: si,j = minimum s s.t. Pr[

∑
j′≤i xj′〈C1:i−1,j ,C1:i−1,j′〉 > s] ≤ δ′, xj′

i.i.d.∼ Bern(p)
. si,j is a tail bound on the dot product of first i− 1 entries of Cx and C1:i−1,j .

9: εi,j =
z‖C1:i−1,j‖2

σ +
2si,j−‖C1:i−1,j‖22

2σ2

. εi,j is a tail bound on the privacy loss of a participation in round j after outputting first i− 1 rounds
10: p̃i,j =

p·exp(εi,j)
p·exp(εi,j)+(1−p)

11: return {p̃i,j}i,j∈[n].

Figure 5: Algorithm for computing p̃i,j , tail bound on conditional probability of participating in round j
given first i− 1 outputs.

Proof. Let L1 be the privacy loss random variable ofM, and let L2 be the privacy loss random variable of
P1 × P2 × . . .× Pn, Q1 ×Q2 × . . .×Qn. We want to show Hε(L1) ≤ Hε(L2) + δ for all δ.

Let L′1 be the random variable coupled with L1, with the coupling defined as follows: If ∃i :
(x1, x2, . . . , xi) ∈ Ei, then L′1 = −∞, otherwise L′1 = L1. Let E = {x|∃i : (x1, x2, . . . xi) ∈ Ei}.
Then for all ε:

Hε(L1) = Ex
[
max

{
1− eε−L1(x), 0

}]
= Pr

x
[x /∈ E] · Ex

[
max

{
1− eε−L1(x), 0

}∣∣∣x /∈ E]+ Pr
x

[x ∈ E] · Ex
[
max

{
1− eε−L1(x), 0

}∣∣∣x ∈ E]
= Hε(L

′
1) + Pr

x
[x ∈ E] · Ex

[
max

{
1− eε−L1(x), 0

}∣∣∣x ∈ E] ≤ Hε(L
′
1) + Pr

x
[x ∈ E] ≤ Hε(L

′
1) + δ.

So it suffices to show L′1 is dominated by L2. We consider the following process for sampling L′1: For each
i, if for any i′ < i, (x1, x2, . . . , xi′) ∈ Ei′ , then we let L1,i = −∞ deterministically. Otherwise we sample

xi ∼ Mi(x1, . . . , xi−1, D), L1,i = ln
(

Pryi∼Mi(x1,...,xi−1,D)[yi=xi]

Pryi∼Mi(x1,...,xi−1,D)[yi=xi]

)
. Then L′1 =

∑
i L
′
1,i. Similarly, let

L2,i be the privacy loss random variable for Pi, Qi, and let L2 =
∑
i L2,i. By assumption, the distribution

of L′1,i conditioned on x1, x2, . . . , xi−1 is always dominated by L2,i. So by Lem. C.1, L′1 is dominated by
L2.

C.2 PROOF OF THM. 4.3

Before stating the proof, in Fig. 5 we give ProbabilityTailBounds, the subroutine used to compute
the values of p̃i,j .

Proof of Thm. 4.3. For simplicity in the proof we only consider remove adjacency, i.e. D contains a sensitive
example zeroed out in D′. By symmetry the proof also works for add adjacency. By quasi-convexity

18

Published as a conference paper at ICLR 2024

of approximate DP, it suffices to prove the theorem assuming the participation of all examples except the
sensitive example is deterministic, i.e. we know the contribution of all examples except the sensitive example
to x, so we can assume these contributions are zero. So, let x be the matrix used in the matrix mechanism if
we were to sample the sensitive example in each round. Then, the matrix mechanism is a VMoG mechanism
with probabilities {p|S|(1− p)n−|S|}S⊆[n] and sensitivities {

∑
j∈S C:,jxj}S⊆[n].

Our proof proceeds in three high-level steps:

1. We show the matrix mechanism is dominated by a sequence of adaptively chosen MoG mecha-
nisms.

2. We show each of the adaptively chosen MoG mechanisms is further dominated by a PMoG mech-
anism.

3. We show these PMoG mechanisms are with high probability dominated by the PMoG mechanisms
in MMCC, and then apply Theorem C.2.

Step 1 (matrix mechanism dominated by sequence of MoG mechanisms): Let f be the function that
takes a matrix M and returns a vector f(M) where the ith entry of this vector is the `2-norm of the ith row
of M. Using triangle inequality, for any x such that each row of x has norm at most 1, f(

∑
j∈S C:,jxj)

is entrywise less than or equal to
∑
j∈S C:,j . So by Lem. B.4 the matrix mechanism is dominated by the

VMoG mechanism with probabilities {p|S|(1 − p)n−|S|}S⊆[n] and sensitivities {
∑
j∈S C:,j}S⊆[n]

7. Note
that this is exactly the (non-adaptive) matrix mechanism where each xi = 1 (prior to sampling), i.e. it
suffices to prove the privacy guarantee holds for this choice of x. So, for the rest of the proof we will assume
the input of the matrix mechanism (prior to sampling) is the all ones vector.

Now, let θ1:i denote the output of rounds 1 to i. By Observation 3.2, this random variable is the same as the
composition over i of outputting θi sampled from its distribution conditioned on θ1:i−1. Let Si denote the set
of rounds in [i] in which we sample the sensitive example. Abusing notation to let Pr denote a likelihood,
the likelihood of the matrix mechanismM(D) outputting θi in round i conditioned on θ1:i−1 is:∑

T⊆[i]

Pr
τ∼Θ(D)

[Si = T |τ1:i−1 = θ1:i−1] Pr
τi∼N(

∑
j∈T Ci,j ,σ2·I)

[τi = θi]

The likelihood ofM(D′) outputting θi in round i (conditioned on θ1:i−1, which doesn’t affect the likelihood
since since each coordinate of θ is independent when sampled fromM(D′)) is

Pr
τi∼N(0,σ2·I)

[τi = θi] .

In other words, the distribution of θi conditioned on θ1:i−1 underM(D),M(D′) is exactly the same as the
pairs of output distributions given by the MoG mechanism.

MMoG

{ Pr
τ∼Θ(D)

[Si = T |τ1:i−1 = θ1:i−1]

}
T⊆[i]

, {
∑
j∈T

Ci,j}T⊆[i]

 .

So the matrix mechanism with x being all ones is the same as the sequence of (adaptively chosen) MoG
mechanisms given by

7Note that since C is lower-triangular, so the choice of the distribution of the ith row of Cx by an adaptive adversary
depends only on rows 1 to i− 1 of Cx+ z. That is, an adversary who chooses the jth row of x after seeing the j − 1st
first rows of the matrix mechanism satisfies the adaptivity condition in Lem. B.4.

19

Published as a conference paper at ICLR 2024

MMoG

{ Pr
τ∼Θ(D)

[Si = T |τ1:i−1 = θ1:i−1]

}
T⊆[i]

, {
∑
j∈T

Ci,j}T⊆[i]

i∈[n]

.

Step 2 (each MoG is dominated by a PMoG): To achieve step 2, we use the following lemma:

Lemma C.3. Let

pi,j =
p exp

(
2〈θ1:i−1,C1:i−1,j〉−‖C1:i−1,j‖22

2σ2

)
p exp

(
2〈θ1:i−1,C1:i−1,j〉−‖C1:i−1,j‖22

2σ2

)
+ 1− p

.

The random variable induced by probabilities
{∏

j∈T pi,j
∏
j∈[i]\T (1− pi,j)

}
T⊆[i]

and support

{
∑
j∈T Ci,j}T⊆[i] stochastically dominates the random variable induced by probabilities {Prτ∼Θ(D)[Si =

T |τ1:i−1 = θ1:i−1]}T⊆[i] and the same support.

Proving Lem. C.3 completes the step as with this lemma and Cor. B.3, the PLD of

MMoG

{ Pr
τ∼Θ(D)

[Si = T |τ1:i−1 = θ1:i−1]

}
T⊆[i]

, {
∑
j∈T

Ci,j}T⊆[i]

 .

is dominated by the PLD of

MPMoG

(
{pi,j}j∈[n], {Ci,j}j∈[n]

)
.

Proof of Lem. C.3. Sampling T according to probabilities {Prτ∼Θ(D)[Si = T |τ1:i−1 = θ1:i−1]}T⊆[i]

is equivalent to the following process: We start with T = ∅, and for each j ∈ [i], add it to T
with probability Pr[T ∪ {j} ⊆ Si|T ⊆ Si, τ1:i−1 = θ1:i−1]. Similarly, sampling T according to{∏

j∈T pi,j
∏
j∈[i]\T (1− pi,j)

}
T⊆[i]

is equivalent to the same process, except we add j with probabil-

ity pi,j . If we show that Pr[T ∪ {j} ⊆ Si|T ⊆ Si, τ1:i−1 = θ1:i−1] ≤ pi,j for all T, j, then we can couple
these sampling processes such that with probability 1,

∑
j∈T Ci,j is at least as large for the second process

as for the first, which implies the lemma. The posterior distribution of Si satisfies:

Pr
τ∼Θ(D)

[Si = T |τ1:i−1 = θ1:i−1] ∝ Pr
τ∼Θ(D)

[Si = T] · Pr
τ∼Θ(D)

[τ1:i−1 = θ1:i−1|Si = T]

∝ p|T |(1− p)i−|T | · exp

2〈θ1:i−1,
∑
j∈T C1:i−1,j〉 −

∥∥∥∑j∈T C1:i−1,j

∥∥∥2

2

2σ2

 .

Hence:

Pr[T ∪ {j} ⊆ Si|T ⊆ Si, τ1:i−1 = θ1:i−1] =

20

Published as a conference paper at ICLR 2024

∑
T ′⊇T∪{j} p

|T ′|(1− p)i−|T ′| · exp

(
2〈θ1:i−1,

∑
j∈T ′ C1:i−1,j〉−‖∑j′∈T ′ C1:i−1,j′‖22

2σ2

)
∑
T ′⊇T p

|T ′|(1− p)i−|T ′| · exp

(
2〈θ1:i−1,

∑
j∈T ′ C1:i−1,j〉−‖∑j′∈T ′ C1:i−1,j′‖22

2σ2

) .

Fix some T ′ ⊇ T ∪ {j}. Consider the term in the numerator sum corresponding to T ′, and the two terms in
the denominator sum corresponding to T ′ and T ′ \ {j}. The ratio of the numerator term to the sum of the
two denominator terms is:

p · exp

(
2〈θ1:i−1,C1:i−1,j〉−‖∑j′∈T ′ C1:i−1,j′‖22

2σ2

)
p · exp

(
2〈θ1:i−1,C1:i−1,j〉−‖∑j′∈T ′ C1:i−1,j′‖22

2σ2

)
+ (1− p) · exp

(
−‖∑j′∈T ′\{j}C1:i−1,j′‖22

2σ2

) .

Since entries of C are non-negative, we have
∥∥∥∑j′∈T ′ C1:i−1,j′

∥∥∥2

2
≥

∥∥∥∑j′∈T ′\j C1:i−1,j′

∥∥∥2

2
+

‖C1:i−1,j′‖22, hence this ratio and thus Pr[T ∪ {j} ⊆ Si|T ⊆ Si, τ1:i−1 = θ1:i−1] are at most pi,j , which
proves the lemma.

Step 3 (replacing pi,j with p̃i,j via conditional composition): By Theorem C.2 and Cor. B.3, it now
suffices to show that w.p. 1 − δ1, pi,j ≤ p̃i,j for all i, j simultaneously. The bound trivially holds for
entries where Ci,j = 0, so we only need the bound to hold for all nnz(C) pairs i, j such that Ci,j > 0.
Furthermore, if Ci,j is the first non-zero entry of column j, then C1:i−1,j is the all zero-vector, so we get
pi,j = p̃i,j = p.

So, there are only nnz(C) − n “non-trivial” pairs we need to prove the tail bound for; by a union bound,
we can show each of these bounds individually holds w.p. δ1

nnz(C)−n . By definition of pi,j , p̃i,j , this is
equivalent to showing 〈θ1:i−1,C1:i−1,j〉 ≤ z ‖C1:i−1,j‖2 σ + si,j for each of these i, j pairs. We have:

〈θ1:i−1,C1:i−1,j〉 =
∑
j′∈Si

〈C1:i−1,j′ ,C1:i−1,j〉+ 〈z1:i−1,C1:i−1,j〉.

The first term is tail bounded by si,j with probability 1 − δ1
2(nnz(C)−n) by definition, the second term is

drawn from N(0, ‖C1:i−1,j‖22 σ
2) and thus tail bounded by z ‖C1:i−1,j‖2 σ with the same probability by

definition. A union bound over these two events gives the desired tail bound on 〈θ1:i−1,C1:i−1,j〉.

C.3 PROOF OF LEM. 5.1

Proof. Since each 0 ≤ pi ≤ 1/n′, the mechanism is the same as the following: For each example we choose
a subset S ⊆ [n] of size n′ according to some distribution that is a function of the pi, and then choose i
uniformly at random from the elements of S, and include the example in the ith subset. By quasi-convexity
of approximate DP, it suffices to prove the DP guarantee for a fixed choice of S. For any fixed choice of
S, the mechanism is equivalent to the shuffled Gaussian mechanism over n′ coordinates. Each unshuffled

Gaussian mechanism satisfies (

√
2 ln(1.25/δ0)

σ , δ0)-DP, and then the lemma follows by the amplification via
shuffling statement of Theorem 3.8 of (Feldman et al., 2022).

21

Published as a conference paper at ICLR 2024

C.4 PROOF OF THEOREM 5.2

We first analyze a simplified case where xi = 0 if i 6= i∗, and otherwise xi = 1 for D and xi = 0 for D′.
We later give a proof for the general case.

Proof of Theorem 5.2 in simplified case. Let τj,k be the value of the noisy sum
∑
k·2j+1≤i≤(k+1)·2j xi +

zj,k, τ = {τj,k}0≤j≤logn,0≤k<n/2j and let Θ(D) be the distribution of these values under dataset D. We
consider a single sensitive example; let i∗ be the (random) coordinate of xi∗ that this example contributes
to.

Now, again abusing notation to let Pr denote a likelihood, we have for any j:

Pr
τ∼Θ(D)

[
{τj,k}0≤k<n/2j = {θj′,k}j′>j,0≤k<n/2j′

∣∣∣{τj′,k}j′>j,0≤k<n/2j′ = {θj′,k}j′>j,0≤k<n/2j′

]
∝∑

0≤k∗≤n/2j

Pr
τ∼Θ(D)

[
{τj,k}0≤k<n/2j = {θj′,k}j′>j,0≤k<n/2j′

∣∣∣k∗ · 2j + 1 ≤ i∗ ≤ (k∗ + 1) · 2j
]
·

Pr
τ∼Θ(D)

[
k∗ · 2j + 1 ≤ i∗ ≤ (k∗ + 1) · 2j

∣∣∣{τj′,k}j′>j,0≤k<n/2j′ = {θj′,k}j′>j,0≤k<n/2j′

]
In other words, for any j, the distribution of the j-th level of the tree, {τj,k}0≤k≤n/2j , conditioned on
the higher levels of the tree, {τj′,k}j′>j,0≤k≤n/2j′ , is the output distribution of mechanism described
in Lem. 5.1, where the probabilities are

pj,k := Pr
τ∼Θ(D)

[
k · 2j + 1 ≤ i∗ ≤ (k + 1) · 2j

∣∣∣{τj′,k}j′>j,0≤k<n/2j′ = {θj′,k}j′>j,0≤k<n/2j′

]
.

We now show a high probability bound on each of these probabilities. We have:

Pr
τ∼Θ(D)

[
k · 2j + 1 ≤ i∗ ≤ (k + 1) · 2j

∣∣∣{τj′,k}j′>j,0≤k<n/2j′ = {θj′,k}j′>j,0≤k<n/2j′

]

=

∑(k+1)·2j

i=k·2j+1 Prτ∼Θ(D)

[
{τj′,k}j′>j,0≤k<n/2j′ = {θj′,k}j′>j,0≤k<n/2j′

∣∣∣i∗ = i
]

∑n
i=1 Prτ∼Θ(D)

[
{τj′,k}j′>j,0≤k<n/2j′ = {θj′,k}j′>j,0≤k<n/2j′

∣∣∣i∗ = i
]

=

∑(k+1)·2j

i=k·2j+1

∏
j′>j,0≤k<n/2j′ exp

(
−
(
τj′,k−1(k·2j′+1≤i∗≤(k+1)·2j′)

)2

2σ2

)
∑n
i=1

∏
j′>j,0≤k<n/2j′ exp

(
− (τj′,k−1(k·2j′+1≤i∗≤(k+1)·2j′))

2

2σ2

)

=

∑(k+1)·2j

i=k·2j+1

∏
j,k:k·2j′+1≤i≤(k+1)·2j′ exp

(
− τj′,kσ2

)∑n
i=1

∏
j,k:k·2j′+1≤i≤(k+1)·2j′ exp

(
− τj′,kσ2

)
≤ 2j

n
·

maxi∈[n]

∏
j,k:k·2j′+1≤i≤(k+1)·2j′ exp

(
− τj′,kσ2

)
mini∈[n]

∏
j,k:k·2j′+1≤i≤(k+1)·2j′ exp

(
− τj′,kσ2

)
≤ 2j

n
· exp

(
(log n− j) maxj′,k τj′,k −minj′,k τj′,k

σ2

)
.

22

Published as a conference paper at ICLR 2024

With probability 1 − δ/2, by a union bound for all 2n pairs j, k we have |τj,k| ≤
√

2 ln(4n/δ)σ, so the
above bound is at most:

2j

n
· exp

(
(log n− j)2

√
2 ln(4n/δ)

σ

)
.

If σ ≥ 4
√

2 ln(4n/δ)

ln 2 in turn this is at most:

2j

n
·
√

2
logn−j

=

√
2j

n
.

Now, by Theorem C.2 and Observation 3.2 it suffices to show that conditioned on this probability

1 − δ/2 event, the binary tree mechanism satisfies
(
O

(√
log(1/δ) log log(1/δ)

σ

)
, δ/2

)
-DP. For log n −

16e log log(16n/δ) ≤ j ≤ log n, releasing τj,k satisfies
(
O

(√
log(1/δ) log log(n/δ)

σ

)
, δ/4

)
-DP by the

analysis of the (unamplified) Gaussian mechanism. For levels 0 ≤ j < log n − 16e log log(16n/δ), our
upper bound on the conditional probabilities and Lem. 5.1 with δ0 = δ/8n′ log n shows that, conditioned
on the high-probability event, the distribution of the privacy loss of outputting {τj,k}k conditioned on levels

j′ > j satisfies
(
O

(√
ln(n′/δ) ln(1/δ)

σ
√
n′

)
, δ/4 log n

)
-DP, with n′ =

⌈√
n
2j

⌉
. By basic composition, the

overall privacy loss distribution conditioned on the 1− δ/2 probability event satisfies:

O(√log(1/δ) log log(1/δ)

σ

)
+O

 0∑
j=logn−16e log log(16n/δ)

+
2j/4 ln(1/δ)

σn1/4

 , δ/2

 -DP.

Here we use the upper bound on δ which is equivalent to log(n/δ) = O(log(1/δ)). We conclude by
bounding the sum as:

0∑
j=logn−16e log log(16n/δ)

+
2j/4 ln(1/δ)

σn1/4

≤
logn−16e log log(16n/δ)∑

l=0

+
ln(1/δ)

σ2l/4
√

ln(1/δ)
=

√
ln(1/δ)

σ

logn−16e log log(16n/δ)∑
l=0

1

2l/4
=

√
ln(1/δ)

σ(1− 2−1/4)
.

We now discuss how to extend the proof to a more general case. In other words, we choose some y with
each row having 2-norm at most 1 for D, and then set y′ for D′ to be y with the first row zeroed out. Then,
x is chosen by shuffling the rows of y or y′.

Lemma C.4. Under the above setup, for some k that divides n, consider the mechanism that chooses a
random size k equipartition of [n], P = (S1, S2, . . . Sk) of [n] according to some distribution and out-
puts (θ1, θ2, . . . , θk), θi ∼ N(

∑
j∈Si

yi, σ
2). Suppose for any two equipartitions P, P ′, the probability of

choosing P is at most c times the probability of choosing P ′, and let n′ = bk/cc.

23

Published as a conference paper at ICLR 2024

Then, for any δ ≥ 2e−
n′
16e , δ0 ≥ 0, if σ = Ω(

√
ln(1/δ0)) then this mechanism satisfies(

O

(√
ln(1/δ0) ln(1/δ)

σ
√
n′

)
, δ + n′δ0

)
-DP.

Proof. Recall that y1 is the example differing between D and D′. By post-processing and quasi-convexity,
we can instead analyze the mechanism that for each Si, also publishes all but one element in Si, and specif-
ically for the Si including 1 (the sensitive element), the element of Si not published must be 1. This is
equivalent to saying: without loss of generality we can assume n = k.

Next, the assumption on the distribution over P implies that the distribution is in the convex hull of distri-
butions over P that deterministically choose k − n′ elements of P , with 1 being one of these n′ unchosen
elements, and then uniformly shuffle the remaining n′ elements. In terms of privacy guarantees, each in-
dividual mechanism using one of these distributions is equivalent to n′ Gaussian mechanisms on shuffled
elements. Then, by quasi-convexity, the privacy guarantees of this mechanism are no worse than those of a
Gaussian mechanism over n′ shuffled elements. We conclude using the analysis of amplification by shuffling
in (Feldman et al., 2022).

Next, we use the following black-box reduction from (ε, δ)-DP guarantees to high-probability privacy loss
bounds:
Lemma C.5 ((Kasiviswanathan & Smith, 2014)). If a mechanism satisfies (ε, δ)-DP, then the probability
the privacy loss of its output exceeds 2ε is at most δ

εeε .

Now, the high-level idea is that the (ε, δ)-DP guarantee on outputting levels j′ > j implies a high-probability
bound on the privacy loss of outputting these levels via Lem. C.5, which in turn implies a bound on c in
Lem. C.4 if we use the posterior distribution over shuffles as the distribution in that lemma. Then, we can
use Lem. C.4 to get an (ε, δ)-DP guarantee for round j conditioned on the previous rounds, and as before
the resulting ε per level decays geometrically and we can use basic composition.

Proof of Theorem 5.2. By the upper bound on δ, log(poly (n) /δ) = O(log(1/δ)). So, for any con-
stant c1 and another constant c2 depending on c1, releasing levels log n − c1 log log 1/δ to log n satisfies(
c2
√

log(1/δ) log log(1/δ)

σ , δ/n2

)
-DP by analysis of the Gaussian mechanism.

Now, we will show by induction that releasing levels j to log n, j ≤ log n− c1 log log 1/δ, satisfies (εj , δj)-
DP for:

εj =
c2
√

log(1/δ) log log(1/δ)

σ
+

j∑
j′=logn−c1 log log(1/δ)

c3 log(1/δ)

σ
√

2logn−j
,

δj =
δ

n2
·

j∑
j′=logn−c1 log log(1/δ)

(1 + 1/e)logn−c1 log log(1/δ)−j .

In the inequality on εj we assume c1 is sufficiently large. The base case of j = log n − c1 log log 1/δ
holds by the aforementioned analysis of the Gaussian mechanism. Now, assuming releasing levels j + 1 to
log n satisfies (εj , δj)-DP, we will prove releasing levels j to log n satisfies (εj , δj)-DP. Consider the output
distribution of level j, conditioned on the event that the privacy loss of releasing levels j + 1 to log n is at
most 1. The privacy loss being at most 1 implies that conditioned on levels j+1 to log n’s output, no shuffle
is more than e times as likely as any other shuffle, and thus the same is true for equipartitions of the data into

24

Published as a conference paper at ICLR 2024

the sums in level j. Then by Lem. C.4, level j satisfies, say, (
c3
√

log2(1/δ)

σ
√

2log n−j
, δ/n2)-DP for some sufficiently

large constant c3, assuming c1 is sufficiently large and σ ≥ c4
√

log(1/δ) log log(1/δ) for a sufficiently large
constant c4. We have

εj+1 ≤
c2
√

log(1/δ) log log(1/δ) + 4c3
√

log(1/δ)

σ

So εj < 1/2 for all j, again assuming σ ≥ c4
√

log(1/δ) log log(1/δ) for sufficiently large c4, by Lem. C.5
this event happens with probability at least 1 − δj+1/e. Then assuming releasing levels j + 1 to log n
satisfies (εj+1, δj+1)-DP by Thm. 4.3 and basic composition, we have proven releasing levels j to log n
satisfies (εj , δj)-DP for

εj = εj+1 +
c3 log(1/δ)

σ
√

2logn−j
, δj = δj+1(1 + 1/e) + δ/n2.

The claimed non-recursively defined values for εj , δj follow by unrolling the above recursive formula and
plugging in the base case j = log n − c1 log log 1/δ. Now, the full binary tree mechanism with shuffling

satisfies (ε0, δ0)-DP for ε0 = O

(√
log(1/δ) log log(1/δ)

σ

)
, δ0 ≤ δ as desired. (Note that the between the

constants c1, c2, c3, c4 there are no circular dependencies, i.e. there does exist a set of constants satisfying
the assumptions in the proof.)

D EXTENDING MMCC TO “b-MIN-SEP SAMPLING”

(Choquette-Choo et al., 2023a) analyzed the b-banded matrix mechanism under the following scheme, which
we’ll call “b-min-sep sampling”: We partition the dataset D into b equal-size subsets, D1, D2, . . . Db. To
compute xi, we use independently include each element of Di (mod b) (where we say i (mod b) = b if b
divides i) with probability bp; here, we write the sampling probability in these rounds as bp instead of p to
reflect the fact that the average example still participates in fraction p of rounds in expectation for any choice
of b.

We give a generalization of MMCC that analyzes the matrix mechanism under b-min-sep sampling, that
matches the analysis of (Choquette-Choo et al., 2023a) when C is b-banded but can generalize to arbitrary
lower triangular matrices. In other words, this generalization of MMCC subsumes the analysis in (Choquette-
Choo et al., 2023a).

Note that if we want to analyze the privacy guarantee for an example inDi, i−1, this is the same as analyzing
the privacy guarantee for an example in D1, if we use C with the first i − 1 rows/columns cut off. Then,
without loss of generality we only need to state a privacy analysis for examples in D1 - to get a privacy
guarantee that holds for all examples simultaneously, for each Di we can compute a privacy guarantee using
the above reduction, and then take the worst of these. Further, for some classes of matrices, such as Toeplitz
matrices, the examples in D1 will have the worst privacy guarantee and thus it suffices to only analyze these
examples.

We now show Generalized-MMCC, given in Fig. 6, computes a valid privacy guarantee under b-min-sep
sampling.

Theorem D.1. Let ε be the output of Generalized-MMCC. Then the matrix mechanism with matrix C,
b-min-sep sampling, sampling probability p, noise level σ satisfies (ε, δ1 + δ2)-DP (for examples in D1).

25

Published as a conference paper at ICLR 2024

Algorithm 3 Generalized-MMCC
1: Input: Matrix C, sampling probability p, noise standard deviation σ, probabilities δ1, δ2, min-sep b.
2: Delete all columns of C except columns 1, b+ 1, 2b+ 1 . . .
3: {p̃i,j}i∈[n],j∈[dn/be ←GeneralizedProbabilityTailBounds(C, bp, σ, bδ1).
. p̃i,j is a high-probability upper bound on the probability that an example participated in round j,
conditioned on output in rounds 1 to i− 1.

4: p̃(b)
i,j = p̃(i−1)b+1,(j−1)b+1

5: C
(b)
i,j =

∥∥C(i−1)b+1:ib,(j−1)b+1

∥∥
2

6: for i ∈ [dn/be] do
7: PLDi ← PLD ofMPMoG({p̃(b)

i,j }j∈[dn/be], {C
(b)
i,j }j∈[dn/be]).

8: PLD ← convolution of {PLDi}i∈[dn/be].
9: return min ({ε : PLD satisfies (ε, δ2)-DP}).

Figure 6: Extension of MMCC to b-min-sep sampling.

Algorithm 4 GeneralizedProbabilityTailBounds(C, p, σ, δ1)

1: Input: Matrix C ∈ Rm×n, sampling probability p, noise standard deviation σ, probability δ1.
2: δ′ = δ1

2·(nnz(C)−n) . nnz is the number of non-zeros.
3: z = Φ−1(1− δ′) . Tail bound on normal distribution; here, Φ is the standard normal CDF.
4: for i ∈ [m], j ∈ [n] do
5: if Ci,j = 0 then
6: p̃i,j = 1
7: else
8: si,j = minimum s s.t. Pr[

∑
j′≤i xj′〈C1:i−1,j ,C1:i−1,j′〉 > s] ≤ δ′, xj′

i.i.d.∼ Bern(p)
. si,j is a tail bound on the dot product of first i− 1 entries of Cx and C1:i−1,j .

9: εi,j =
z‖C1:i−1,j‖2

σ +
2si,j−‖C1:i−1,j‖22

2σ2

. εi,j is a tail bound on the privacy loss of a participation in round j after outputting first i− 1 rounds
10: p̃i,j =

p·exp(εi,j)
p·exp(εi,j)+(1−p)

11: return {p̃i,j}i∈[m],j∈[n].

Figure 7: Generalization of ProbabilityTailBounds.

26

Published as a conference paper at ICLR 2024

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
sqrt(log(n)+1)

1.06

1.08

1.10

1.12

un
am

pl
ifi

ed
 e

ps
ilo

n
/ a

m
pl

ifi
ed

 e
ps

ilo
n

c = 10 (unamplified epsilon = 0.397)
y=-0.0313x+1.1625

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
sqrt(log(n)+1)

1.15

1.20

1.25

1.30

1.35

1.40

1.45

un
am

pl
ifi

ed
 e

ps
ilo

n
/ a

m
pl

ifi
ed

 e
ps

ilo
n

c = 20 (unamplified epsilon = 0.189)
y=0.2053x+0.8877

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
sqrt(log(n)+1)

1.2

1.3

1.4

1.5

1.6

1.7

un
am

pl
ifi

ed
 e

ps
ilo

n
/ a

m
pl

ifi
ed

 e
ps

ilo
n

c = 40 (unamplified epsilon = 0.0901)
y=0.3452x+0.7164

Figure 8: Plot of multiplicative improvement in ε for the optimal continual counting matrix mechanism as
a function of

√
log(n) + 1 ≈ ‖Ce1‖2. We plot n = 2i, i ∈ {1, 2, . . . , 7}. We use σ = c ‖Cei‖2, so the ε

value in the unamplified single-participation setting is fixed. All ε are for δ = 10−6.

Proof. The algorithm is almost the same as Thm. 4.3, so we just need to justify the key differences. In
particular, we need to justify (1) the deletion of columns, (2) the choice of p̃(b)

i,j , and (3) the choice of C(b).

(1) is justified by the proof of Theorem 4 in (Choquette-Choo et al., 2023a), which observes that the products
of columns j of C for which j (mod b) 6= 1 and the corresponding rows of x are independent of D1, i.e.
we can treat their products as public information. So it does not affect the privacy analysis to delete these
rows/columns from C/x, and then view the resulting x as generated by i.i.d sampling every round with
probability bp.

(2) and (3) are both justified if we use conditional composition over sequential mechanisms corresponding
to b rows of Cx + z instead of a single row. Each of these sequential mechanisms is a VMoG mech-
anism, which Cor. B.6 allows us to reduce to the scalar PMoG mechanism defined in terms of C(b) in
Generalized-MMCC. The probabilities p̃(b) are then valid to use in the conditional composition by the
same argument as in Thm. 4.3, up to the adjustment to use bδ1 instead of δ1. This adjustment is valid, since
we only use fraction 1/b of the values generated by GeneralizedProbabilityTailBounds, i.e. we
are union bounding over 1/b as many “bad” events as in the original proof, so we can increase the allowed
probability for each “bad” events by b (which is implicitly done by increasing δ1 by b).

One can verify that (i) for b = 1, Generalized-MMCC is equivalent to MMCC, and that (ii) if C is b-
banded, Generalized-MMCC is equivalent to the privacy analysis in (Choquette-Choo et al., 2023a).

E MORE EMPIRICAL ε COMPUTATIONS

(Fichtenberger et al., 2023; Henzinger et al., 2023) showed that a post-processing of the matrix mechanism
using the following lower-triangular matrix achieves 1 + o(1) times the optimal `22 error for prefix sums
(without amplification): Ci,j = f(i− j), where f is defined as

f(k) =

 0, for k < 0
1, for k = 0
f(k − 1) ·

(
1− 1

2k

)
, for k > 0

.

Similarly to the binary tree mechanism, we will consider the unamplified single-participation setting as a
baseline. In this case, the sensitivity of this matrix mechanism is ‖Ce1‖2, i.e. the `2-norm of the first
column of C. So again, setting σ = c ‖Ce1‖2 results in a fixed ε for a fixed δ. Our comparison will be
applying the same matrix mechanism with subsampling probability 1/n and the same choice of σ.

27

Published as a conference paper at ICLR 2024

In Fig. 8, we reproduce the plots in Fig. 2 but for this matrix mechanism instead of the binary tree mechanism.
The `2-norm of the columns of this matrix asymptotically are Θ(

√
log n); because of this, and to make a

direct comparison to the binary tree mechanism easier, we use
√

log(n) + 1 as the x-axis and plot the least
squares linear regression. Because the columns of this matrix are less orthogonal than those of the matrix
for the binary tree mechanism, there is less benefit from amplification in this setting than the binary tree
mechanism setting, so we use a larger range of values c ∈ {10, 20, 40} for the noise multiplier to better
demonstrate the behavior of the improvement in ε.

For sufficiently large σ, the improvement in ε due to the amplification analysis is again roughly proportional
to
√

log(n) + 1. For the same reasons as for the binary tree mechanism, the fit of the linear regression is
better as σ increases: here, because the columns of this matrix are less orthogonal on average, a larger value
of c is needed for the fit to improve. Here, the constant multiplier in the improvement is smaller; this makes
sense as these matrices improve on the error of the binary tree mechanism by a constant, and thus the amount
by which we can improve the privacy analysis of this matrix mechanism without violating lower bounds is
smaller than for the binary tree mechanism.

F IMPLEMENTATION DETAILS

To implement the MMCC algorithm, we use the open-source Python library dp accounting.pld8. We
extend the class dp accounting.pld.pld mechanism.AdditiveNoisePrivacyLoss to cre-
ate a class, MixtureGaussianPrivacyLoss that represents the privacy loss distribution of MMoG,
which can be used along with other tools in the dp accounting.pld library to implement MMCC. We
discuss our implementation and some challenges here. The dp accounting.pld library uses the con-
vention that privacy losses are decreasing; we use the same convention in the discussions in this section for
consistency. Our implementation is currently open-sourced as part of the dp accounting library, and
PLD accounting for MoG mechanisms can be done using dp accounting.pld.PLDAccountant and
dp accounting.dp event.MixtureOfGaussiansDpEvent.

F.1 EXTENDING ADDITIVENOISEPRIVACYLOSS

In order to perform all the necessary computations in MMCC, we need to implement the following methods
in MixtureGaussianPrivacyLoss:

1. A method to compute the CDF of the mixture of Gaussians distribution.
2. A method to compute the privacy loss at x.
3. An inverse privacy loss method, i.e. a method which takes ε and computes the smallest x achieving

this ε.

Given the probabilities and sensitivities {p1, p2, . . . , pk} and {c1, c2, . . . , ck}, as well as σ, the first two can
easily be done by just summing the PDFs/CDFs of the Gaussians in the mixture. This takes at most O(k)
times the runtime of the corresponding method for the (subsampled) Gaussian mechanism.

The third is more problematic. For the subsampled Gaussian mechanism with sampling probability p and
sensitivity 1, the privacy loss function (under the remove adjacency) is:

ln

(
p exp

(
−2x− 1

2σ2

)
+ 1− p

)
.

8https://github.com/google/differential-privacy/tree/main/python/dp_
accounting/dp_accounting

28

https://github.com/google/differential-privacy/tree/main/python/dp_accounting/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting/dp_accounting

Published as a conference paper at ICLR 2024

This function is easily invertible. However, if we considerMMoG({p, 1− p}, {c1, c2}), the privacy loss at
x is:

ln

(
p exp

(
−2c1x− c21

2σ2

)
+ (1− p) exp

(
−2c2x− c22

2σ2

))
.

Because this function includes the sum of two exponential functions of x, it is not easy to invert. We instead
use binary search to get the smallest multiple of ∆1 which achieves the desired privacy loss, where ∆1 is
a parameter we choose that trades off between efficiency and accuracy. That is, if L is the privacy loss
function, and we want to compute the inverse privacy loss of y, we return x = dL−1(y)/∆1e ·∆1. Note that
by overestimating x, we also overestimate the privacy loss since we assume the privacy loss is decreasing.
Hence this approximation is “pessimistic,” i.e. does not cause us to report an (ε, δ)-DP guarantee that is not
actually satisfied byMMoG.

Note that using binary search requires aO(log(1/∆1)) multiplicative dependence on ∆1, that is not incurred
for e.g. the subsampled Gaussian for which we can quickly compute the exact inverse privacy loss. Indeed,
we observed that this inverse privacy loss method is the bottleneck for our implementation.

F.2 EFFICIENTLY REPRESENTING PMOG AS MOG

As discussed in the previous section, the runtime of our implementation has a linear dependence on the
number of components in the MoG. However, in MMCC, we are actually using PMoGs, which are MoGs
with potentially 2n components. So, even just listing the components can be prohibitively expensive.

We instead choose another approximation parameter ∆2, and round each entry of C up to the nearest multi-
ple of ∆2. By Lemma B.4, this only worsens the privacy guarantee, i.e. any privacy guarantee we prove for
the rounded version of C also applies to the original C. After this rounding, the number of components in
any MoG we compute the PLD of is at most dmaxi

∥∥e>i C∥∥1
e/∆2 +n (maxi

∥∥e>i C∥∥1
is the maximum row

norm of C). Furthermore, we can compute the probabilities/sensitivities efficiently since we are working
with PMoGs. In particular, for each p̃i,j ,Ci,j pair, we can construct the probability mass function (PMF)
of the random variable that is Ci,j w.p. p̃i,j and 0 otherwise, and then take the convolution of all such
PMFs for a row to get the PMF of the discretized sensitivity for the PMoG. For each row, this can be done
in at most n − 1 convolutions, each convolution between two PMFs that have support size at most 2 and
maxid

∥∥e>i C∥∥1
/∆2e + n. So the convolutions can be done in time O(maxid

∥∥e>i C∥∥1
/∆2e + n), i.e. our

overall runtime is O(n2 maxid
∥∥e>i C∥∥1

/∆2e + n3), i.e. polynomial instead of exponential in n if e.g. all
entries of C are bounded by a constant. By doing the convolutions in a divide-and-conquer fashion, and
using FFT for the convolutions, we can further improve the runtime to Õ(nmaxid

∥∥e>i C∥∥1
/∆2e+n2), i.e.

nearly linear in the input size and 1/∆2 if the entries of C are bounded by a constant.

F.3 COMPUTING si,j

Similar to computing the probabilities and sensitivities for the PMoGs, any overestimate of si,j can be used
in place of si,j to get a valid privacy guarantee from MMCC by Lemma B.3. Since si,j only appears in a lower
order term in the definition of εi,j , a weaker tail bound will not affect the privacy guarantee as much. So, in
our implementation, we use the following simple and efficient approximation: We use the binomial CDF to
obtain an exact tail bound t on ‖x1:i‖1 =

∑
j′≤i xj′ in the definition of si,j . We then take the sum of the t

largest values of 〈C1:i−1,j ,C1:i−1,j′〉 to be our overestimate of si,j .

29

Published as a conference paper at ICLR 2024

F.4 COMPUTING ALL ROW PLDS

Putting this all together, we must compute n PLDs in MMCC, one for each row of C. Though only an
O(n) overhead in runtime over computing a single PLD, this O(n) overhead is undesirable as each PLD
computation is already quite expensive due to the aforementioned difficulties. However, this component is
embarrassingly parallel, which we leverage to massively speed up runtimes.

Note that for some special classes of matrices, we will have that multiple rows share the same PLD, which
also allows us to dramatically speed up the calculation even without parallelization. For example, this is the
case for the binary tree mechanism due to symmetry, as well for as b-banded Toeplitz C due to the fact that
rows 2b− 1 to n of p̃ and C are the same (up to an offset in indices that doesn’t affect the PLD).

F.5 APPLICATIONS BEYOND MATRIX MECHANISMS

We believe that MoG mechanisms/MixtureGaussianPrivacyLoss are useful analytic tools for pri-
vacy analysis of mechanisms beyond the matrix mechanism. We discuss two examples here.

Privacy amplification via iteration on linear losses: Consider running DP-SGD with sampled minibatches.
To get a (ε, δ)-DP guarantee, we can compute the PLD for the subsampled Gaussian mechanism, and then
compose this PLD with itself n times. For general non-convex losses, this accounting scheme is tight, even
if we only release the last iterate.

For linear losses, we can give a better privacy guarantee for releasing only the last iterate, similarly to (Feld-
man et al., 2018): Releasing the last iterate is equivalent in terms of privacy guarantees to a Gaussian mecha-
nism with random sensitivityBinom(n, p) and variance nσ2. Using MixtureGaussianPrivacyLoss
we can get tight (ε, δ)-DP guarantees for this mechanism. Empirically, we found that these can be a lot
tighter than composition of subsampled Gaussians. For example, using n = 128, p = 1/128, σ = 1 we
found that composition of subsampled Gaussians gives a proof of (.806, 10−6)-DP, whereas analyzing the
last iterate as a MoG mechanism gives a proof of (.291, 10−6)-DP. We conjecture a similar improvement is
possible for all convex losses, rather than linear losses.

Tight group privacy guarantees for DP-SGD: Consider analyzing the privacy guarantees of DP-SGD
under group privacy. That is, we want to give a privacy guarantee for pairs of databases differing in
k > 1 examples. One way of doing this is to compute a DP guarantee for k = 1, then use an example-
to-group privacy theorem such as that of (Vadhan, 2017), which shows an (ε, δ)-DP mechanism satisfies
(kε, k exp(kε)δ)-DP for groups of size k. This is overly pessimistic, since the black-box theorem doesn’t
account for the specific structure of the mechanism. We can instead get relatively tight guarantees via
MixtureGaussianPrivacyLoss: If each example is sampled independently, then the privacy loss of
a group of k examples in each round of DP-SGD is dominated by a Gaussian mechanism with sensitivity
Binom(k, p). Then, we can use MixtureGaussianPrivacyLoss to analyze the composition of n of
these MoG mechanisms. Further, note that e.g. in the case where we instead sample a random batch of size
B in each round (i.e. different examples’ participations within the same round are no longer independent),
we can still use MixtureGaussianPrivacyLoss to get a tight analysis by adjusting the sensitivity
random variable used. See the follow-up note (Ganesh, 2024) for more details.

30

	Introduction
	Our contributions
	Problem Definition

	Background and Related Works
	Privacy Loss Distributions (PLD)
	Privacy Amplification

	Conditional Composition
	Privacy Analysis for Matrix Mechanisms
	Mixture of Gaussians Mechanisms
	Matrix Mechanism Conditional Composition

	Amplification via Shuffling for Non-Adaptive Binary Tree
	Empirical Improvements
	Binary tree mechanism amplification
	Learning Experiments with Binary-Tree-DP-FTRL
	I.I.D. sampling enables better amplification than b-min-sep sampling

	Discussion, Future Directions, and Conclusion
	More Future Directions
	Properties of MoG mechanisms
	Monotonicity of MoG Mechanisms
	Dimension Reduction for MoG Mechanisms

	Deferred Proofs
	Proof of thm:conditioningtrick
	Proof of thm:conditioning
	Proof of lem:approximateshuffle
	Proof of thm:ftrl-shuffle

	Extending MMCC to ``b-min-sep Sampling''
	More Empirical Computations
	Implementation Details
	Extending AdditiveNoisePrivacyLoss
	Efficiently Representing PMoG as MoG
	Computing si,j
	Computing All Row PLDs
	Applications Beyond Matrix Mechanisms

