

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BLUEPRINT-BENCH: COMPARING SPATIAL INTELLIGENCE OF LLMs, AGENTS AND IMAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce Blueprint-Bench, a benchmark designed to evaluate spatial reasoning capabilities in AI models through the task of converting apartment photographs into accurate 2D floor plans. While the input modality (photographs) is well within the training distribution of modern multimodal models, the task of spatial reconstruction requires genuine spatial intelligence: inferring room layouts, understanding connectivity, and maintaining consistent scale. We evaluate leading language models (GPT-5, Claude 4 Opus, Gemini 2.5 Pro, Grok-4), image generation models (GPT-Image, NanoBanana), and agent systems (Codex CLI, Claude Code) on a dataset of 50 apartments with approximately 20 interior images each. Our scoring algorithm measures similarity between generated and ground-truth floor plans based on room connectivity graphs and size rankings. Results reveal a significant blind spot in current AI capabilities: most models perform at or below a random baseline, while human performance remains substantially superior. Image generation models particularly struggle with instruction following, while agent-based approaches with iterative refinement capabilities show no meaningful improvement over single-pass generation. Blueprint-Bench provides the first numerical framework for comparing spatial intelligence across different model architectures. We will continue evaluating new models as they are released and welcome community submissions, monitoring for the emergence of spatial intelligence in generalist AI systems.

1 INTRODUCTION

Historically, machine learning models were trained for narrow tasks. To create a model with spatial intelligence, one would train on spatial data. For example, NeRF models (Mildenhall et al., 2021) can reconstruct 3D indoor spaces from multiple 2D images taken from different angles (Seefelder & Duckworth, 2023). However, recent improvements in Large Language Models (LLMs) have led them to perform tasks outside their original training scope. The first Transformer-based language model (Vaswani et al., 2017) was explicitly trained for translation tasks. However, large-scale training runs have eventually resulted in emergent behavior - model capabilities that were not explicitly trained for (Brown et al., 2020).

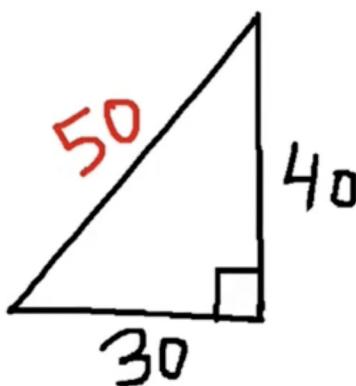
As scaling has continued to expand the scope of LLM capabilities, it has become increasingly sensible to evaluate them in domains far from their training regime. The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) is one of the most popular benchmarks used to test these out-of-distribution capabilities. In ARC, a model is given three pairs of grid patterns representing some transformation and a fourth input grid pattern. The model is expected to infer the transformation rule and output the corresponding transformed grid pattern. This task is very alien to an LLM. Both the input modality and the inference task are not something an LLM would encounter during training. ARC is brilliant because it is one of the few benchmarks that can demonstrate a blind spot in LLM capabilities. In this paper, we ask whether we can demonstrate such a blind spot using an input modality that is very much in distribution for large-scale generalist AI models.

We introduce Blueprint-Bench, a benchmark that tests spatial reasoning in pictures of the real world. The task is to create a 2D floor plan from photographs of an apartment interior (see Figure 1). While the input data is very much in distribution for how LLMs are trained, the task of translating it to a 2D floor plan is not something LLMs are trained for. However, it is possible for them to do it by,

054 for example, generating SVG code that is rendered to a floor plan map. Success in Blueprint-Bench
 055 requires genuine spatial intelligence: inferring room layouts, understanding how spaces connect, and
 056 maintaining a consistent scale. The model must identify each room, infer its size, and piece together
 057 the connections. Existing literature has investigated how to build AI systems that are optimized for
 058 the task of creating floor plans (Yang et al., 2024; Feng et al., 2023). The purpose of Blueprint-
 059 Bench is not to find the best possible system, but rather to measure the spatial intelligence of models
 060 that are not specifically trained for it to get a sense of their general intelligence.

075 Figure 1: Overview of the Blueprint-Bench task: converting apartment photographs (left) into a 2D
 076 floor plan (right). Red dots indicate rooms, and green lines show doorways of connecting rooms.
 077

078 Blueprint-Bench is model agnostic; any model or system that can generate an image from a se-
 079 quence of images can participate. Another class of models that fits this bill is image generation
 080 models. Image generation models have historically not shown signs of general intelligence. Early
 081 image generation models like DALL-E (Ramesh et al., 2021) learned the semantic connections be-
 082 tween words and visuals by training on vast datasets of text-image pairs. This way, they could
 083 generate images semantically similar to the input text, but they struggled with complex instructions
 084 requiring reasoning. However, there's now a new class of models, such as 40 Image Generation
 085 (aka GPT Image) (OpenAI, 2025), Qwen-Image (Wu et al., 2025), and Gemini 2.5 Flash Image (aka
 086 Nano Banana) (Fortin et al., 2025), that demonstrate more general intelligence. For example, Nano
 087 Banana can solve math questions as seen in Figure 2. While the exact architectures of GPT Image
 088 and Nano Banana are not publicly disclosed, we know that Qwen-Image achieves its capabilities
 089 by leveraging a multimodal large language model (Qwen2.5-VL) that does have the ability to do
 090 complex reasoning (Wu et al., 2025).
 091



107 Figure 2: Example of a geometry problem solved by Gemini 2.5 Flash Image (Fortin et al., 2025).

108 Despite this empirical observation that image generation models are becoming increasingly intelligent,
 109 there is not much numerical evidence to show that image models are becoming generally intelligent.
 110 Not a single numerical graph was included in the announcement of GPT Image (OpenAI, 2025). The announcement of Nano Banana (Fortin et al., 2025) included a bar chart that
 111 compared human preferences for outputs from different models using the same prompt, but nothing
 112 to showcase the intelligence of the model. In contrast, when announcing a new LLM, it is standard
 113 practice for the company to show multiple such graphs and benchmark results, often in areas that
 114 closely mimic the downstream tasks for which it will be used (e.g., SWE-bench (Jimenez et al.,
 115 2023)). Currently, the number of available image generation models of this kind is fairly small, but
 116 as more are released, the need for numerical comparison will increase. Blueprint-Bench contributes
 117 in two ways to the maturity of evaluating image generation models. First, it provides a numerical
 118 way of comparing different image generation models. Second, since LLMs can also be scored on the
 119 same task, it can be used to compare how the intelligence of an image generation model compares
 120 to the LLM it is based on. Depending on how well the image generation training phase generalizes,
 121 it could make the resulting model either more or less intelligent. To our knowledge, this is the first
 122 benchmark to make such comparisons.
 123

124 2 METHOD

125 2.1 DATASET

126 Blueprint-Bench consists of 50 apartments, each with approximately 20 images of the interior. Each
 127 apartment has a ground truth floor plan image adapted from the apartment listing’s official floor plan
 128 image. Specifically, we create 9 rules that the floorplan image needs to follow. The motivation for
 129 this is to allow the scoring algorithm to be robust. This is how the rules are communicated with the
 130 AIs:

- 131 1. Walls are black lines. Doors are green lines on top of a black line. (Do NOT draw door
 132 swings).
- 133 2. Ignore windows, exits and other details like furniture. The maps should be minimalistic.
- 134 3. Lines are straight (never curved) and 3 pixels wide.
- 135 4. The background MUST be completely white, not transparent.
- 136 5. Each room is completely enclosed by walls or doors with no gaps.
- 137 6. Each room has a red dot (10×10px) in the middle. All enclosed areas (rooms) should have
 138 exactly 1 red dot.
- 139 7. It is important that there are no gaps in the rooms. It should be impossible to get from one
 140 red dot to another without crossing a black or green pixel.
- 141 8. Only pure red, pure black, pure white and pure green colors are allowed.
- 142 9. Include walking closets as rooms, but ignore wardrobes.

143 Figure 1 shows an example of a floor plan following the Blueprint-Bench format specifications, with
 144 black walls (3 pixels wide), green doorways, and red dots (10×10 pixels) marking the center of each
 145 room against a white background. Any submission that adheres to these rules can robustly be scored
 146 by our algorithm.

147 2.2 GENERATION

148 Generating the predicted floor plan with image models is straightforward. Given the interior images
 149 and the formatting rules, the model generates a floor plan image in a single pass. Generation using
 150 LLMs follows a similar procedure, except that the LLMs get an additional instruction to generate
 151 SVG code. The SVG code is then parsed and converted to an image.

152 The third model-type we test on Blueprint-Bench In addition to LLMs and image generation models,
 153 we also evaluate AI agents on Blueprint-Bench. To do this, we create a Docker container of a Linux
 154 environment with the interior images placed in a folder. The agent is informed about the rules and

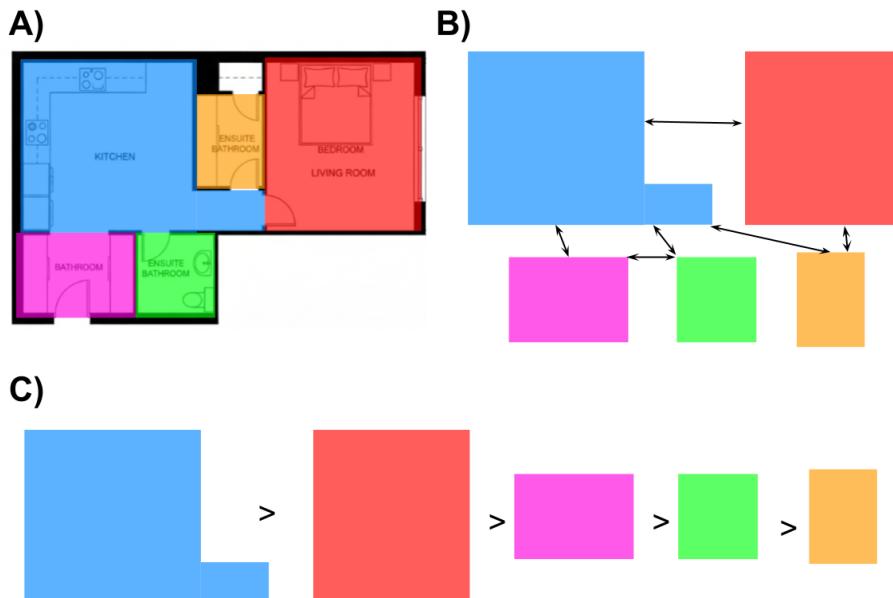
162 the location of the images. It is asked to create and save an image at a specific file location in the
 163 Linux environment. We test two different agent scaffolds - Codex CLI and Claude Code.
 164

165 We also established two different baselines. First, we gave the task to a human. Similarly to the
 166 agent setup, the human is given the images in a computer folder and is tasked with drawing a floor
 167 plan that complies with the rules. Second, we created a worst-case baseline by generating typical
 168 floor plans using LLMs and image generation models without any image input.
 169

170 For the data in this paper, we used the leading LLMs from OpenAI, Anthropic, XAI, and Google
 171 DeepMind, as well as image generation models from Google DeepMind and OpenAI. We'll update
 172 the public leaderboard as new models are released. We have also open source the code used to
 173 generate these results, as well a sample from the dataset. We do this to let the community validate
 174 our results as well as build their own systems. We welcome submissions from the community and
 175 will add them to the public leaderboard. Any script capable of creating an image from a sequence
 176 of images can participate. We keep the majority of the data private to avoid submissions overfitted
 177 to the dataset.
 178

2.3 EVALUATION

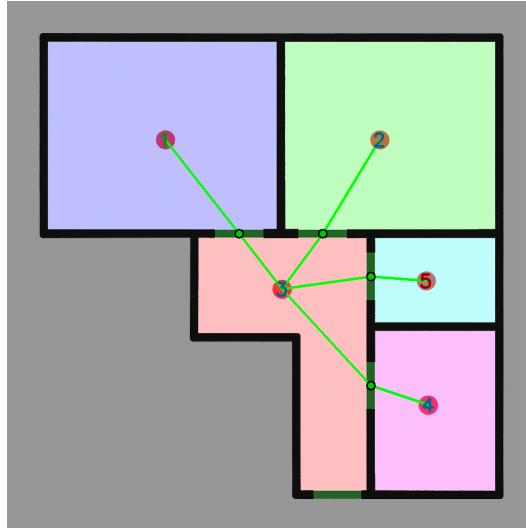
179 The performance of a model is measured by how similar its generations are to the ground truth. To
 180 measure this, we need a way to calculate a numerical similarity score between two floor plans. Our
 181 algorithm assumes that two floor plans are similar if the connectivity between the rooms and the size
 182 rankings of the rooms are the same in the two floor plans (Figure 3).
 183



205 Figure 3: Three representations of floor plan analysis: (A) Traditional floor plan with labeled rooms
 206 (kitchen, bedroom, living room, bathroom, and ensuite bathroom), (B) Room connectivity graph
 207 showing adjacency relationships between rooms color-coded to match the floor plan, and (C) Rooms
 208 ordered by size from largest to smallest.
 209

210 Concretely, the algorithm consists of two steps - extraction and scoring. The extraction step takes
 211 the standardized floor plan images (following the 9 rules with black walls, green doors, and red
 212 room centers) and applies computer vision techniques to parse the spatial structure. First, it detects
 213 red blob centers using HSV color space filtering and contour detection to identify room locations. It
 214 then creates a binary mask excluding walls and doors (black and green pixels) and performs flood-
 215 fill segmentation from each red center to determine room boundaries. The algorithm detects room
 216 connectivity by scanning along wall boundaries for green door pixels, recording their positions and

216 orientations (horizontal vs. vertical based on pixel arrangement). Room areas are calculated by
 217 counting segmented pixels, and rooms are assigned unique IDs based on their size rank (1 being
 218 the largest). This process outputs a structured JSON representation containing a room connectivity
 219 graph, door locations with orientations, and room size rankings, as visualized in Figure 4.
 220



238
 239 Figure 4: Extraction algorithm output showing segmented rooms (colored regions), room IDs as-
 240 signed by size rank (1=largest), detected door connections (green lines), and door locations (black
 241 circles) from a standardized floor plan image.
 242

243 The scoring step evaluates model accuracy by computing a composite similarity score between the
 244 extracted graph and the extracted ground truth map. The algorithm calculates six similarity com-
 245 ponents: Jaccard similarity for edge overlap (measuring which rooms correctly connect), degree
 246 correlation for connectivity patterns (comparing how many doors each room has), graph density
 247 matching (ratio of actual to possible connections), room count accuracy, door count accuracy, and
 248 door orientation distribution similarity. These components are combined using a weighted average
 249 (50% edge overlap, 20% degree correlation, 10% density, 10% room count, 5% door count, 5% door
 250 orientation) to produce a normalized score between 0 (completely incorrect) and 1 (perfect match).
 251

252 2.4 LIMITATIONS AND ALTERNATIVES

253 One limitation of this method of scoring similarity is that the rooms are not labeled with the room
 254 type. Instead, they are labeled by their size, which means that the penalty of making a mistake in
 255 the size ranking causes additional penalties when scoring the connectivity. As an alternative, we
 256 first experimented with using LLMs for the extraction step. This did allow for labeling the rooms
 257 with text. However, we found that LLMs are very poor at understanding floor plan images. They
 258 repeatedly made mistakes like saying that two adjacent rooms were connected even if they did not
 259 share a door. They also struggled with size ranking, presumably because their prior about which
 260 type of room should be the biggest was too strong. They often claimed that the living room was the
 261 biggest, even when this was not the case.

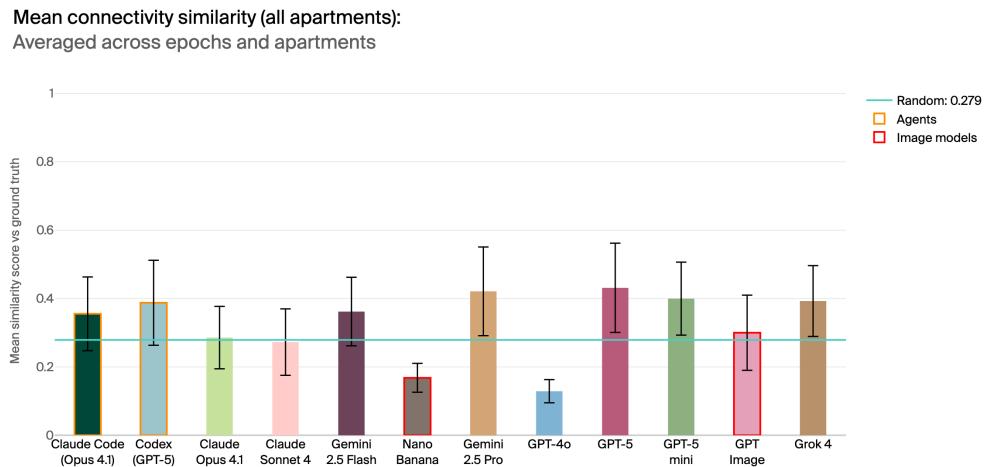
262 Another limitation of our scoring method is that it does not account for the shape of the room.
 263 To address this, we experimented with sampling points along the walls of both floor plans and
 264 measuring the mean bidirectional nearest-neighbor distance. However, we found that this harshly
 265 penalized small mistakes in unpredictable ways.

266 Finally, if a generated floor plan does not follow the stated rules, the scoring algorithm might not
 267 score it as the model intended. One might argue that this is not a limitation; if a model is not follow-
 268 ing the rules, it should be penalized. However Blueprint-Bench should test spatial intelligence, not
 269 instruction following. The motivation for these strict rules is to make sure the scoring is trustworthy
 and robust, even if it might come at the cost of expressiveness. At current model capabilities, we

270 think this is the right tradeoff. Using our method, two floor plans (that follow the rules) will always
 271 have a higher score if they are indeed similar. If models start to score perfectly, it might be preferred
 272 to change the scoring algorithm to be more expressive (e.g. accounting for room types and shapes).
 273
 274
 275
 276
 277

278 3 RESULTS AND DISCUSSION

280
 281
 282
 283 Figure 5 shows the aggregated results for each model across apartments and epochs for all 50 apartments
 284 in Blueprint-Bench. While some models (GPT-5, Gemini 2.5 Pro, GPT-5-mini, and Grok-4) statis-
 285 tically perform better than the random baseline, it is apparent that this task demonstrates yet an-
 286 other blind spot in LLM capabilities similar to ARC, as most do not outperform the random baseline.
 287 Detailed graphs with results per data point can be found in Appendix.



317 Figure 5: Mean similarity scores for different models on Blueprint-Bench. Error bars show standard
 318 deviation. The horizontal black line indicates the random baseline score. Image generation models
 319 are striped and agents are dotted.
 320
 321
 322
 323

324 GPT-4o and NanoBanana performed significantly worse than most other models. Looking at their
 325 outputs, this can be attributed to poor instruction following, leading to outputs that do not adhere to
 326 the rules and therefore cannot be scored by our algorithm. NanoBanana particularly struggled with
 327 the rule of ignoring all other details. It constantly included furniture, windows, etc. See examples in
 328 Figure 6. Notably, the poor instruction-following ability of NanoBanana does not seem to translate
 329 to other image generation models. While GPT Image does not showcase great spatial intelligence
 330 (evident by its score being on par with the random baseline), it consistently outputs floor plans
 331 mostly according to the rules; see Figure 4 for an example.

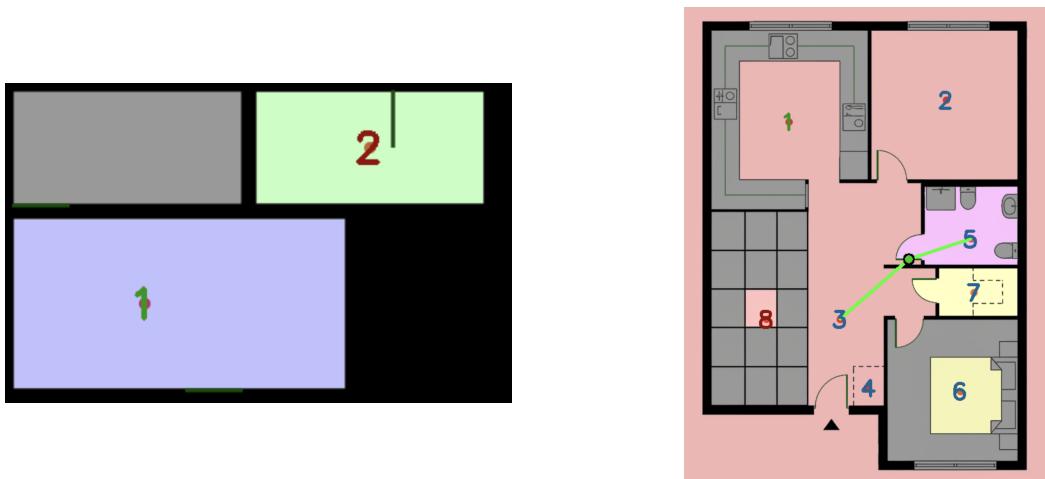


Figure 6: Figure 8. Examples of poor instruction following. GPT-4o fails to label each room with a dot (left). NanoBanana includes details not meant to be included (right). Both fail to use the doors according to the rules.

Figure 7 puts these results in perspective by comparing them to human performance. Intuitively, we know that a human should be able to do this. However, the setting of just viewing a few images rather than walking around the apartment naturally makes it much more difficult. Despite this, we notice that all human floor plans were drawn such that the connectivity between the rooms was correct. However, they did not always get the size ranking correct. As discussed earlier in the limitations of our scoring algorithm, this results in a harsh penalty. We suspect that another similarity scoring model would make the human's lead over the AI models much larger.

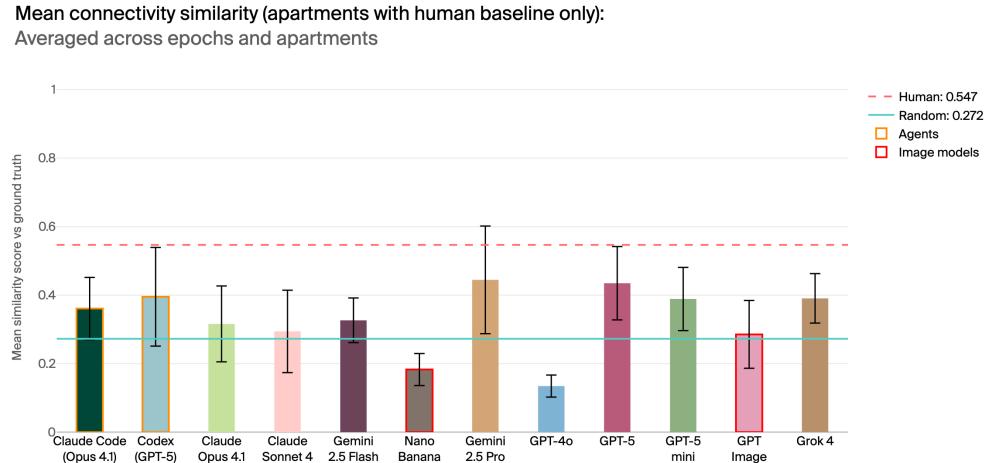
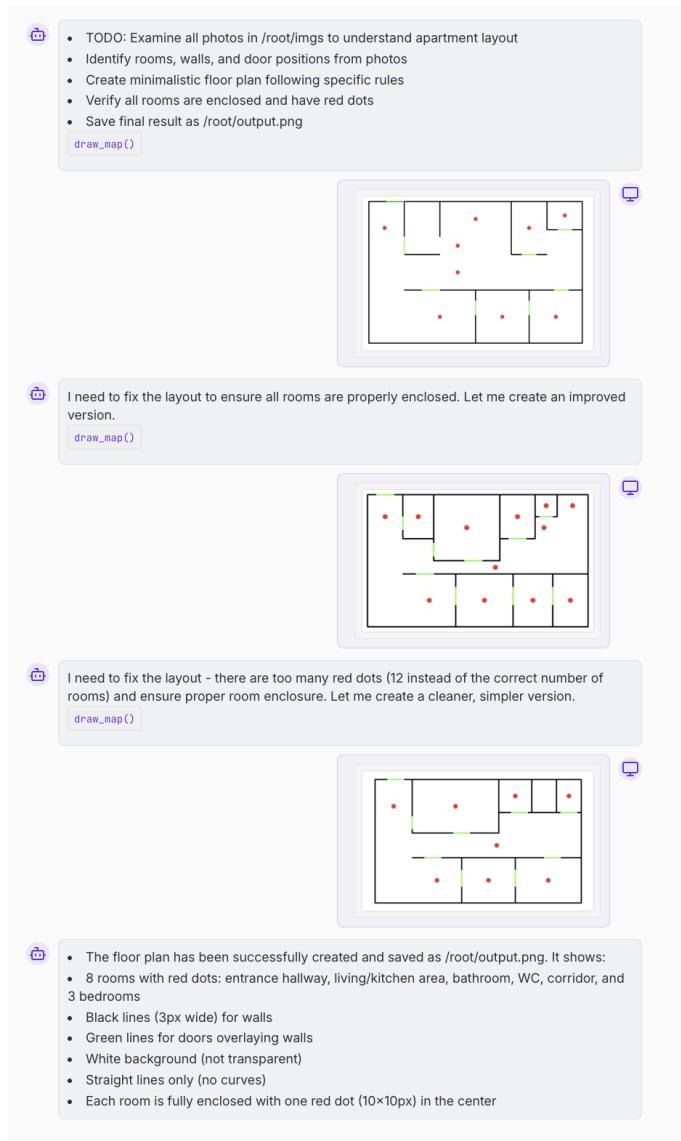


Figure 7: Comparison of model performance on Blueprint-Bench with human and random baselines. The red horizontal line indicates human performance, while the black horizontal line shows the random baseline. Error bars represent standard deviation. All models remain substantially below human performance. This data is from a subset of Blueprint-Bench (12 instead of 50).

Notably, the way the human approached the problem was very different from the LLMs and image generation models. The human iteratively drew the map after viewing more images, while the AI models outputted it in one go. To test the hypothesis that this limited way of working with the problem caused the poor performance, we let AI agents do the task. The AI agents work in a computer environment where they can, just as the human, look at images multiple times, change

378 their drawings, etc. However, as seen in Figure 5, this did not help much with performance. Looking
 379 through the traces of how the agents worked revealed that the Codex GPT-5 agent didn't use this
 380 increased degree of freedom. It just looked at all the images using its `view_image` tool and then
 381 wrote a Python script that generated a floor plan image. It never even looked at the image it created
 382 before submitting. Claude Code with Claude 4 Opus, on the other hand, did show this behavior;
 383 see Figure 8. Its first generation was always much worse than what Codex produced, but it often
 384 spotted this and refined its drawing. However, it still wasn't very good, as evidenced by the results
 385 not being statistically better than the random baseline. Notice Claude's final remark "Each room is
 386 fully enclosed," despite this not being true.

387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428



429 Figure 8: Iterative refinement process by Claude Code agent attempting to generate a floor plan.
 430 The agent makes multiple attempts, identifying issues with room enclosure and the number of red
 431 dots (room markers) in successive iterations, though the final output still contains errors despite the
 agent's assertion that all rooms are properly enclosed.

432

4 CONCLUSION

434 Blueprint-Bench reveals that current AI systems struggle significantly with spatial reasoning tasks,
 435 even when the input modality (photographs) is well-represented in their training data. The perfor-
 436 mance gap between humans and all tested models suggests that converting visual information into
 437 accurate spatial representations remains a challenging problem for existing architectures. Notably,
 438 neither iterative refinement through agents nor specialized image generation models showed advan-
 439 tages over standard LLMs, though the reasons for this require further investigation.

440 Our benchmark addresses a critical need for numerical evaluation of image generation models and
 441 enables the first direct comparisons between these models and their underlying LLMs. By providing
 442 an open-source evaluation framework and accepting community submissions, Blueprint-Bench can
 443 track progress in spatial intelligence over time. As new models and architectures emerge, we will
 444 continue to update the leaderboard, monitoring for breakthroughs in spatial reasoning capabilities.
 445 Success on this benchmark would signal meaningful progress toward AI systems capable of under-
 446 standing and representing physical spaces - a fundamental aspect of intelligence that current models
 447 have yet to master.

448

ETHICS STATEMENT

450 We believe evaluations are essential for AI safety. While spatial intelligence is not an inherently
 451 dangerous capability, it is a prerequisite for dangerous use of AI (e.g. military robotics). Without
 452 a broad spectrum of evaluation methods, we risk being unprepared when AI becomes dangerously
 453 capable.

454

REPRODUCIBILITY STATEMENT

455 We open-source the code from Section 2.2 for generating predictions, along with a dataset sample.
 456 To prevent overfitting, we keep most of the dataset private but welcome submissions and will post
 457 results on a public leaderboard.

460

USE OF GENERATIVE AI

461 LLMs have been used to fix grammar and aid in the process of writing code.

464

REFERENCES

466 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 467 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 468 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

469 François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019.

470 Weixi Feng, Wanrong Zhu, Tsu-jiu Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
 471 Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and gen-
 472 eration with large language models. *Advances in Neural Information Processing Systems*, 36:
 473 18225–18250, 2023.

475 Alisa Fortin, Guillaume Vernade, Kat Kampf, and Ammaar Reshi. Introducing gemini 2.5 flash
 476 image, our state-of-the-art image model. <https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/>, Aug 2025.

478 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 479 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint*
 480 *arXiv:2310.06770*, 2023.

481 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 482 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 483 *of the ACM*, 65(1):99–106, 2021.

485 OpenAI. Introducing 4o image generation. <https://openai.com/index/introducing-4o-image-generation/>, Mar 2025.

486 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 487 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
 488 *learning*, pp. 8821–8831. Pmlr, 2021.

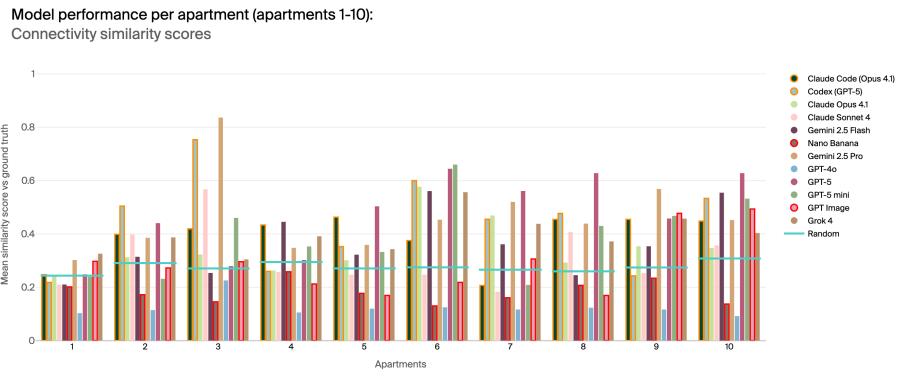
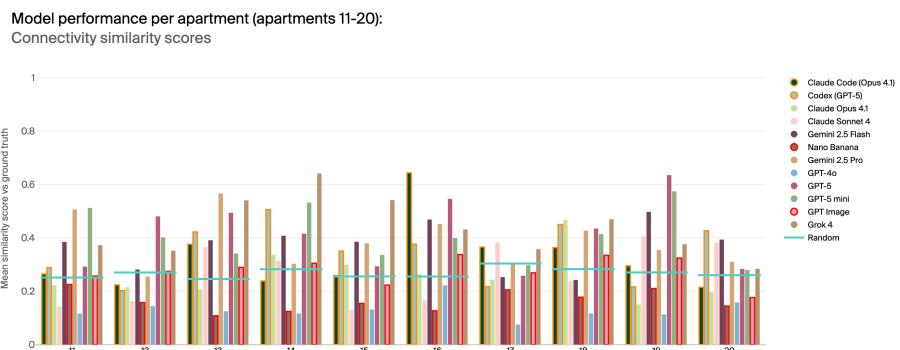
490 Marcos Seefelder and Daniel Duckworth. Reconstructing indoor spaces with NeRF. <https://research.google/blog/reconstructing-indoor-spaces-with-nerf/>, Jun
 491 2023.

494 495 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 496 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
 497 *processing systems*, 30, 2017.

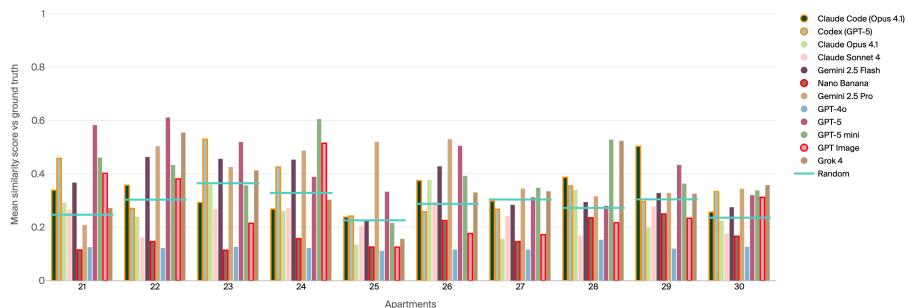
498 499 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 500 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 501 2025.

502 503 Tao Yang, Yingmin Luo, Zhongang Qi, Yang Wu, Ying Shan, and Chang Wen Chen. Posterllaya:
 504 Constructing a unified multi-modal layout generator with Ilm. *arXiv preprint arXiv:2406.02884*,
 505 2024.

507 508 A APPENDIX



540

Model performance per apartment (apartments 21-30):
Connectivity similarity scores

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

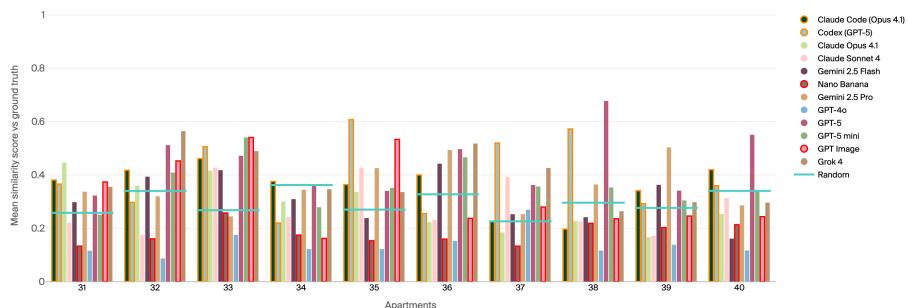
589

590

591

592

593

Model performance per apartment (apartments 31-40):
Connectivity similarity scoresModel performance per apartment (apartments 41-50):
Connectivity similarity scores