
Under review as a conference paper at ICLR 2024

GATEDMTL: LEARNING TO SHARE, SPECIALIZE, AND
PRUNE REPRESENTATIONS FOR MULTI-TASK LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Jointly learning multiple tasks with a unified network can improve accuracy and
data efficiency while simultaneously reducing computational and memory costs.
However, in practice, Multi-task Learning (MTL) is challenging, as optimizing
one task objective may inadvertently compromise the performance of another:
This is known as task interference. A promising direction to mitigate such con-
flicts between tasks is to allocate task-specific parameters, free from interference,
on top of shared features, allowing for positive information transfer across tasks,
albeit at the cost of higher computational demands. In this work, we propose a
novel MTL framework, GatedMTL, to address the fundamental challenges of
task interference and computational constraints in MTL. GatedMTL learns the
optimal balance between shared and specialized representations under a desired
computational constraint. We leverage a learnable gating mechanism allowing
each individual task to select and combine channels from its own task-specific
features and a shared memory bank of features. Moreover, we regularize the gates
to learn the optimal balance between allocating additional task-specific parameters
and the model’s computational costs. Through extensive empirical evaluations, we
demonstrate SoTA results on three MTL benchmarks using convolutional as well
as transformer-based backbones on CelebA, NYUD-v2, and PASCAL-Context.

1 INTRODUCTION

Multi-task learning (MTL) involves a joint optimization process wherein multiple tasks are learned
concurrently with a unified architecture. By leveraging the shared information among related tasks,
MTL has the potential to improve accuracy and data efficiency. In addition, learning a joint repre-
sentation reduces the computational and memory costs of the model at inference as visual features
relevant to all tasks are computed only once: This is crucial for many real-life applications where
a single device is expected to solve multiple tasks simultaneously (e.g. mobile phones, self-driving
cars, etc.). Despite these potential benefits, in practice, MTL training is often met with a key chal-
lenge known as negative transfer or task interference Zhao et al. (2018), which refers to the phe-
nomenon where learning of one task negatively impacts the learning of another task in the same
unified architecture. While characterizing and solving task interference is an open issue Wang et al.
(2019); Royer et al. (2023), there exist two major lines of work to mitigate this problem: (i) Multi-
task Optimization (MTO) techniques aim to balance the training process of each task, while (ii)
architectural designs carefully allocate shared and task-specific parameters to reduce interference.

MTO approaches aim to balance the losses/gradients of each task to mitigate the extent of the con-
flicts in the optimization process of shared features. However, the results may still be compromised
if the tasks rely on inherently different visual cues, making sharing parameters difficult: For in-
stance, text detection and face recognition require learning very different texture information and
object scales. An alternative and orthogonal research direction is to allocate additional task-specific
parameters, on top of shared generic features, to bypass task interference. In particular, recent state-
of-the-art methods have proposed task-dependent selection and adaptation of shared features Sun
et al. (2020); Guo et al. (2020); Bragman et al. (2019) or to leverage a taskonomy of tasks for archi-
tecture design Standley et al. (2020); Zamir et al. (2018). In the former approaches, the dynamic
allocation of task-specific features is usually performed one task at a time and solving all tasks still

1



Under review as a conference paper at ICLR 2024

requires multiple forward passes. Consequently, these methods are often as costly as running a
single task model for each task and only save on memory costs.

In contrast, we learn to balance shared and specific features jointly for all tasks, which allows us
to predict all task outputs in a single forward pass. As for the architecture design methods, they
define entirely separate encoders for tasks which are far from one another in a given precomputed
taskonomy of tasks: This rigid sharing pattern prevents task interference between these tasks, but
also prohibits any potential beneficial sharing. In comparison, we aim to learn a more fine-grained
parameter sharing pattern by jointly learning the task features and how to share parts of their rep-
resentations. Finally, in practice many MTL solutions focus on accuracy more than computational
efficiency: For instance, Vandenhende et al. (2020) propose powerful decoders for dense prediction
tasks that dominate the computation cost of the shared encoder backbone. In this work, we jointly
optimize for accuracy and computational efficiency by introducing a budget-aware regularization
constraint on the learned gate.

To mitigate task interference while controlling computational cost, we propose GatedMTL, which
learns the optimal balance between sharing and specializing representations for a given computa-
tional budget. In particular, we leverage a shared network branch which is used as a shared memory
bank of features for task-specific branches to communicate between each other. This communi-
cation is enabled through a learnable gating mechanism which lets each individual task to select
channels from either the shared branch representations or their own task-specific ones, in each layer.
In this way, GatedMTL enables a more flexible asymmetric sharing scheme among the tasks: While
a task may highly benefit and contribute to the shared generic representations, it does not have to use
the information provided by other tasks to build its own task-specific features. Finally, given that
the gating mechanism is only task-conditional (as compared to input-conditional), the learned gat-
ing patterns can be used to prune the unselected channels in the shared and task-specific branches:
As a result, GatedMTL collapses to a simpler static architecture at inference time. To further con-
trol the computational cost of the resulting inference computational graph, we train the gate with
a sparsity objective to match a given computational budget, thus regulating the trade-off between
computational cost and multi-task performance. In summary, our contributions are as follows:

• We propose a novel method that learns a multi-task parameter sharing pattern for all tasks
jointly, alongside the model features.

• We enable a training mechanism to control the balance between accuracy and inference
compute cost: During training, the gates dynamically learn to assign features to either a
task-specific or shared branch, until reaching an adjustable target computational budget.
This results in a unified architecture that can predict all tasks in a single forward pass while
providing a mechanism to approach a desired target computational cost.

• Through extensive empirical evaluations, we report SoTA results consistently on three
multi-tasking benchmarks with various convolutional as well as transformer-based back-
bones. We then further investigate the proposed framework through ablation experiments.

2 RELATED WORK

Multi-task optimization (MTO) methods aim to automatically balance the different tasks when op-
timizing shared parameters to maximize average performance. Loss-based methods Kendall et al.
(2018); Liu et al. (2022) are usually scalable and adaptively scale task losses based on certain statis-
tics (e.g. task output variance); Gradient-based methods Chen et al. (2018b); Liu et al. (2021); Sener
& Koltun (2018); Javaloy & Valera (2021); Chen et al. (2020) are more costly in practice as they
require storing a gradient per task, but usually yield higher performance.

MTL Architectures. Orthogonal to these optimization methods, several works investigate how to
design architectures with optimal parameter sharing across tasks to minimize task interference. For
instance Standley et al. (2020); Fifty et al. (2021) identify “task affinities” as a guide to isolate pa-
rameters of tasks most likely to interfere with one another. Similarly, Guo et al. (2020) apply neural
architecture search techniques to design MTL architectures. However, exploring these architecture
search spaces is often a costly process. In contrast, works such as Cross-Stitch Misra et al. (2016),
MTAN Liu et al. (2019), Adashare Sun et al. (2020) or MuIT Bhattacharjee et al. (2022) propose to
learn the task parameter sharing design alongside the model features. However, most of these works

2



Under review as a conference paper at ICLR 2024

mainly focus on improving the accuracy of the model while neglecting the computational cost: For
instance, Misra et al. (2016); Gao et al. (2020) require a full network per task and improve MTL
performance through lightweight adapters across task branches. Liu et al. (2019); Bhattacharjee
et al. (2022) use task-specific attention module on top of a shared feature encoder, but the cost of
the task-specific decoder heads often dominates the final architecture. Finally, Sun et al. (2020);
Wallingford et al. (2022) learns a task-specific gating of model parameters. However, due to the
dynamic nature of these works, obtaining all task predictions is computationally inefficient as it
requires one forward pass through the model per task. Mixture-of-Experts (MoE) Hazimeh et al.
(2021); Fan et al. (2022); Chen et al. (2023); Ma et al. (2018) leverage sparse gating to select a
subset of the experts for each input example. Similar to prior dynamic gating methods, MoEs are
constrained to solving a single task per forward pass. GatedMTL, in contrast, is designed to solve
all tasks simultaneously, a requirement in many real-world practical scenarios. Closest to our work
is Bragman et al. (2019), which proposes a probabilistic allocation of convolutional filters as task-
specific or shared. However, this design only allows for the shared features to send information to
the task-specific branches. In contrast, our gating mechanism allows for information to flow in any
direction between the shared and task-specific features, thereby enabling cross-task transfer in every
layer.

Task/Domain-specific Adapters. Our work also shares similarities with a line of continual learning
works which learn lightweight adapters to specialize a set of pretrained shared features to a new
task: Mallya et al. (2018) adapts a pretrained deep neural network to multiple tasks by learning a
set of per-task sparse masks for the network parameters. Similarly, Berriel et al. (2019) select the
most relevant feature channels using learnable gates. Unlike these methods our proposed framework
predicts all tasks in a single forward pass, allowing for reduced computational costs.

3 METHOD

Given T tasks we aim to learn a flexible allocation of shared and task-specific parameters, while
optimizing the trade-off between accuracy and efficiency. Specifically, a GatedMTL model is char-
acterized by task-specific parameters Φt and shared parameters Ψ. In addition, discrete gates (with
parameters α) are trained to only select a subset of the most relevant features in both the shared and
task-specific branches, thereby reducing the model’s computational cost. Under this formalism, the
model and gate parameters are trained end-to-end by minimizing the classical MTL objective:

L({Φt}Tt=1,Ψ, α) =

T∑
t=1

ωt Lt(X,Yt; Φt,Ψ, α), (1)

whereX and Yt are the input data and corresponding labels for task t, Lt represents the loss function
associated to task t, and ωt are hyperparameter coefficients which allow for balancing the importance
of each task in the overall objective. In the rest of the section, we describe how we learn and
implement the feature-level routing mechanism characterized by α. We focus on convolutional
architectures in Section 3.1, and discuss the case of transformer-based models in Appendix E.

3.1 LEARNING TO SHARE, SPECIALIZE AND PRUNE

Figure 1 presents an overview of the proposed GatedMTL. Formally, let ψℓ ∈ RCℓ×W ℓ×Hℓ

and
φℓ
t ∈ RCℓ×W ℓ×Hℓ

represent the shared and task-specific features at layer ℓ of our multi-task net-
work, respectively. In each layer ℓ, the gating module Gℓ

t of task t selects relevant channels from
either ψℓ and φℓ

t . The output of this hard routing operation yields features φ′ℓ
t :

φ′ℓ
t = Gℓ

t(α
ℓ
t)⊙ φℓ

t + (1−Gℓ
t(α

ℓ
t))⊙ ψℓ, (2)

where ⊙ is the Hadamard product and αℓ
t ∈ RCℓ

denotes the learnable gate parameters for task t
at layer ℓ and the gating module Gℓ

t outputs a vector in {0, 1}Cℓ

, encoding the binary selection for
each channel. These intermediate features are then fed to the next task-specific layer to form the
features φℓ+1

t = F (φ′ℓ
t ; Φ

ℓ
t).

Similarly, we construct the shared features of the next layer ℓ+1 by mixing the previous layer’s task-
specific feature maps. However, how to best combine these T feature maps is a harder problem than

3



Under review as a conference paper at ICLR 2024

Fixed 
fusion

A gated MTL Layer

Gated MTL at Inference

Encoder

Decoder

Training

Inference

Figure 1: Overview of the proposed GatedMTL framework: The original encoder layers are
substituted with gated MTL layers. The input to the layer is t+1 feature maps, one shared represen-
tation and t task-specific representations. To decide between shared ψℓ or task-specific φℓ

t features,
each task relies on its own gating module Gℓ

t . The resulting channel-mixed feature-map φ′ℓ
t is then

fed to the next task-specific layer. The input to the shared branch for the next layer is constructed
by linearly combining the task-specific features of all tasks using the learned parameter βℓ

t . During
inference, the features (shared or task-specific) that are not chosen by the gates are removed from
the model, resulting in a plain neural network architecture.

the pairwise selection described in (2). Therefore, we let the model learn its own soft combination
weights and the resulting mixing operation for the shared features is defined as follows:

ψ′ℓ =

T∑
t=1

softmax
t=1...T

(βℓ
t )⊙ φ′ℓ

t , (3)

where βℓ ∈ RCℓ×T denotes the learnable parameters used to linearly combine the task-specific
features and form the shared feature map of the next layer. Similar to the task-specific branch, these
intermediate features are then fed to a convolutional block to form the features ψℓ+1 = F (ψ′ℓ; Ψℓ).
Finally, note that there is no direct information flow between the shared features of one layer to the
next, i.e., ψℓ and ψℓ+1: Intuitively, the shared feature branch can be interpreted as a memory bank
through which the task-specific branch can communicate.

Implementing the discrete routing mechanism. During training, the model features and gates
are trained jointly and end-to-end. In (2), the gating modules make a discrete routing decision for
each channel: 0 denotes choosing the shared feature, and 1 choosing the specialized feature. In
practice, we simply implement G as a sigmoid operation applied to the learnable parameter α, fol-
lowed by a thresholding operation at 0.5. Due to the non-differentiable nature of this operation, we
adopt the straight-through estimation (STE) during training Bengio et al. (2013): In the backward
pass, STE approximates the gradient flowing through the thresholding operation as the identity func-
tion. At inference, since the gate modules do not depend on the input data, our proposed GatedMTL
method converts to a static neural network architecture, where feature maps are pruned following the
learned gating patterns: To be more specific, for a given layer ℓ and task t, we first collect all chan-
nels for which the gate Gℓ

t(α
ℓ
t) outputs 0; Then, we simply prune the corresponding task-specific

weights in Φℓ
t . Similarly, we can prune away weights from the shared branch Ψℓ if the correspond-

ing channels are never chosen by any of the tasks in the mixing operation of (2). The pseudo-code
for the complete unified encoder forward-pass is detailed in Appendix D.

Sparsity regularization. During training, we additionally control the proportion of shared versus
task-specific features usage by regularizing the gating module G. This allows us to reduce the
computational cost, as more of the task-specific weights can be pruned away at inference. We
implement the regularizer term as a hinge loss over the gating activations for task-specific features:

4



Under review as a conference paper at ICLR 2024

Lsparsity(α) =
1

T

T∑
t=1

max

(
0,

1

L

L∑
ℓ=1

σ(αℓ
t)− τt

)
, (4)

where σ is the sigmoid function and τt is a task-specific hinge target. The parameter τ allows to
control the proportion of active gates at each specific layer by setting a soft upper limit for active
task-specific parameters. A lower hinge target value encourages more sharing of features while a
higher value gives the model the flexibility to select task-specific features albeit at the cost of higher
computational costs.

Our final training objective is a combination of the multi-task objective and sparsity regularizer:
L = L({Φt}Tt=1,Ψ, α, β) + λsLsparsity(α), (5)

where λs is a hyperparameter balancing the two losses.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Backbones. We evaluate the performance of GatedMTL on three popular datasets:
CelebA Liu et al. (2015), NYUD-v2 Silberman et al. (2012), and PASCAL-Context Chen et al.
(2014). CelebA is a large-scale face attributes dataset, consisting of more than 200k celebrity im-
ages, each labeled with 40 attribute annotations. We consider the age, gender, and clothes attributes
to form three output classification tasks for our MTL setup and use binary cross-entropy to train the
model. The NYUD-v2 dataset is designed for semantic segmentation and depth estimation tasks.
It comprises 795 train and 654 test images taken from various indoor scenes in New York City.
The dataset provides pixel-wise labels for 40 semantic categories. Following recent works Xu et al.
(2018); Zhang et al. (2019); Maninis et al. (2019), we also incorporate the surface normal prediction
task, obtaining annotations directly from the depth ground truth. We use the mean intersection over
union (mIoU) and root mean square error (rmse) to evaluate the semantic segmentation and depth
estimation tasks, respectively. We use the mean error (mErr) in the predicted angles to evaluate
the surface normals. The PASCAL-Context dataset is an extension of the PASCAL VOC dataset
Everingham et al. (2010) and provides a comprehensive scene understanding benchmark by label-
ing images for semantic segmentation, human parts segmentation, semantic edge detection, surface
normal estimation, and saliency detection. The dataset consists of 4,998 train images and 5,105 test
images. The semantic segmentation, saliency estimation, and human part segmentation tasks are
evaluated using mean intersection over union (mIoU). Similar to NYUD, mErr is used to evaluate
the surface normal predictions.

We use ResNet-20 He et al. (2016) as the backbone in our CelebA experiments, with simple linear
heads for the task-specific predictions. For the NYUD-v2 dataset, we use ResNet-50 with dilated
convolutions and HRNet-18 following Vandenhende et al. (2021). We also present results using
a dense prediction transformer (DPT) Ranftl et al. (2021), with a ViT-base and -small backbone.
Finally, on PASCAL-Context, we use a ResNet-18 backbone. For both NYUD and PASCAL, we
use dense prediction decoders to output the task predictions, as described in Appendix A.

SotA baselines and Metrics. We compare GatedMTL to encoder-based methods including Cross-
stitch Misra et al. (2016) and MTAN Liu et al. (2019), as well as MTO approaches such as uncer-
tainty weighting Kendall et al. (2018), DWA Liu et al. (2019), and Auto-λ Liu et al. (2022), PCGrad
Yu et al. (2020), CAGrad Liu et al. (2021), MGDA-UB Sener & Koltun (2018), and RDW Lin et al.
(2022). Following Maninis et al. (2019), our main metric is the multi-task performance ∆MTL of a
model m as the averaged normalized drop in performance w.r.t. the single-task baselines b:

∆MTL =
1

T

T∑
i=1

(−1)li (Mm,i −Mb,i) /Mb,i (6)

where li = 1 if a lower value means better performance for metric Mi of task i, and 0 otherwise.
Furthermore, similar to Navon et al. (2022), we compute the mean rank (MR) as the average rank of
each method across the different tasks, where a lower MR indicates better performance. All reported
results for GatedMTL and baselines are averaged across 3 random seeds.

5



Under review as a conference paper at ICLR 2024

Finally, to generate the trade-off curve between MTL performance and compute cost of GatedMTL
in Figure 2 and all the tables, we sweep over the gate sparsity regularizer weight, λs, in the range of
{1, 3, 5, 7, 10} · 10−2. The task-specific targets τ in (4) also impact the computation cost: In prac-
tice, we use two cues to set the appropriate target values for each task. The first is the gap between
the single task performance and the uniform MTL baseline: Intuitively, tasks with significant per-
formance degradation benefit from more task-specific parameters (higher τt). Secondly, by studying
the distribution of the gating patterns wrt. contribution to the shared branch we can observe which
tasks overly share their features at the cost of lower accuracy for themselves. We will analyze the
gating patterns for sharing and specialization in section 4.3.2. We further discuss the impact of the
sparsity targets {τt}Tt=1 in our ablation experiments in Appendix C.

Training pipeline. For initialization, we use pretrained ImageNet weights for the single-task and
multi-task baseline. For GatedMTL, the shared branch is initialized with ImageNet weights while
the task-specific branches are with their corresponding single-task weights. Finally, we discover that
employing a distinct optimizer for the gates improves the convergence of the model. We use SGD
with a learning rate of 0.1 for the gates’ parameters. We further describe training hyperparameters
in Appendix A. All experiments were conducted on a single NVIDIA V100 GPU and we use the
same training setup and hyperparameters across all MTL approaches included in our comparison.

4.2 RESULTS

In this section, we present the results of GatedMTL, single-task (STL), multi-task baselines, and the
competing MTL approaches, on the CelebA, NYUD-v2, and PASCAL-Context datasets. We then
present ablation studies on sharing/specialization patterns, the effect of representation capacity of
the backbone model on MTL performance, and the application and characterization of the sparsity
regularization loss in section 4.3. As mentioned earlier, we also present an ablation on the impact of
the sparsity targets {τt}Tt=1 in Appendix C.

4.2.1 CELEBA

(a) (b) (c)

Figure 2: Accuracy vs. floating-point operations (FLOP) trade-off curves for the GatedMTL and
SoTA MTL methods. (a) Results on CelebA using ResNet-20 backbone at three different widths
(Original, Half, and Quarter). (b) Results on NYUD-v2 using DPT with ViT-small backbone, and
(c) Results using ResNet-18 on PASCAL-Context.

Figure 2a shows the trade-off between MTL performance and computational costs (FLOPs) for
GatedMTL, MTL uniform, and STL baselines on the CelebA dataset, for 3 different widths for the
ResNet-20 backbone: quarter, half, and original capacity. We report the detailed results in Table
8 in the appendix. GatedMTL outperforms MTL uniform and STL baselines with higher overall
accuracy at much lower computational costs. Most notably, the performance of GatedMTL with
ResNet-20 half width at only 14.8 MFlops matches the performance of STL with 174 MFlops.
Finally, we further discuss the behavior of GatedMTL and MTL baselines across different model
capacities in the ablation experiment in section 4.3.3.

4.2.2 NYUD-V2

Table 1 and 2 present the results on the NYUD-v2 dataset, using the HRNet-18 and ResNet-50 back-
bones, respectively. As can be seen, most MTL methods improve the accuracy on the segmentation

6



Under review as a conference paper at ICLR 2024

and depth estimation tasks, while surface normal prediction significantly drops. While MTL uniform
and MTO strategies, including DWA, Uncertainty, and Auto-λ, operate at the lowest computational
cost by sharing the full backbone, they fail to compensate for this drop in performance. In contrast,
among the encoder-based methods, Cross-stitch largely retains performance on normal estimation
and achieves a positive ∆MTL score of +1.66. However, this comes at a substantial computational
cost, close to that of the STL baseline. In comparison, GatedMTL achieves an overall ∆MTL score
of +2.06 and +2.04 using HRNet-18 and ResNet-50, respectively, at a lower computational cost.

Table 3 and 4 report the performance of DPT trained models with the ViT-base and ViT-small back-
bones, and Figure 2b illustrates the trade-off between ∆MTL and computational costs of various
methods using the ViT-small backbone. The MTL uniform and MTO baselines, display reduced
computational costs, yet once again manifesting a performance drop in the normals prediction task.
Similar to the trend between HRNet-18 and ResNet-50, the performance drop is more substantial for
the smaller model, ViT-small, indicating that task interference is more prominent in small capacity
settings. In comparison, GatedMTL consistently demonstrates a more favorable balance between
the computational costs and the overall MTL accuracy across varied backbones.

Table 1: Performance comparison on NYUD-v2
using HRNet-18 backbone. Different GatedMTL
models are obtained by varying λs.

Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) Param (M) MR↓

STL 41.70 0.582 18.89 0 ± 0.12 65.1 28.9 8.0
MTL (Uni.) 41.83 0.582 22.84 -6.86 ± 0.76 24.5 9.8 11.0
DWA 41.86 0.580 22.61 -6.29 ± 0.95 24.5 9.8 8.7
Uncertainty 41.49 0.575 22.27 -5.73 ± 0.35 24.5 9.8 8.3
Auto-λ 42.71 0.577 22.87 -5.92 ± 0.47 24.5 9.8 8.0
RDW 42.10 0.593 23.29 -8.09 ± 1.11 24.5 9.8 11.7
PCGrad 41.75 0.581 22.73 -6.70 ± 0.99 24.5 9.8 10.3
CAGrad 42.31 0.580 22.79 -6.28 ± 0.90 24.5 9.8 8.7
MGDA-UB 41.23 0.625 21.07 -6.68 ± 0.67 24.5 9.8 11.3

GatedMTL 43.58 0.559 19.32 +2.06 ± 0.13 43.2 18.8 1.3
GatedMTL 42.95 0.562 19.73 +0.68 ± 0.09 38.3 16.5 2.3
GatedMTL 42.36 0.564 20.04 -0.55 ± 0.17 36.0 15.4 4.0
GatedMTL 42.73 0.575 21.01 -2.55 ± 0.11 33.1 13.7 4.0
GatedMTL 42.35 0.575 21.70 -4.07 ± 0.38 29.2 11.9 5.7

Table 2: Performance comparison on NYUD-v2
using ResNet-50 backbone. Different GatedMTL
models are obtained by varying λs.

Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) Param (M) MR↓

STL 43.20 0.599 19.42 0 ± 0.11 1149 118.9 9.0
MTL (Uni.) 43.39 0.586 21.70 -3.04 ± 0.79 683 71.9 9.7
DWA 43.60 0.593 21.64 -3.16 ± 0.39 683 71.9 9.7
Uncertainty 43.47 0.594 21.42 -2.95 ± 0.40 683 71.9 10.0
Auto-λ 43.57 0.588 21.75 -3.10 ± 0.39 683 71.9 10.0
RDW 43.49 0.587 21.54 -2.74 ± 0.09 683 71.9 8.3
PCGrad 43.74 0.588 21.55 -2.66 ± 0.15 683 71.9 7.3
CAGrad 43.57 0.583 21.55 -2.49 ± 0.11 683 71.9 7.0
MGDA-UB 42.56 0.586 21.76 -3.83 ± 0.17 683 71.9 11.3

MTAN 44.92 0.585 21.14 -0.84 ± 0.32 683 92.4 4.0
Cross-stitch 44.19 0.577 19.62 +1.66 ± 0.09 1151 119.0 2.7

GatedMTL 44.38 0.576 19.50 +2.04 ± 0.07 916 95.4 1.7
GatedMTL 43.63 0.577 19.66 +1.16 ± 0.10 892 92.4 3.7
GatedMTL 43.05 0.589 19.95 -0.50 ± 0.05 794 83.3 9.7

Table 3: Performance comparison on NYUD-v2
using DPT with ViT-base. Different GatedMTL
models are obtained by varying λs.

Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 51.65 0.548 19.04 0 759 5.0
MTL (Uni.) 51.38 0.539 20.73 -2.57 294 7.3
DWA 51.66 0.536 20.98 -2.66 294 6.0
Uncertainty 51.87 0.5352 20.72 -2.02 294 4.0

GatedMTL 51.98 0.528 19.10 +1.32 626 1.3
GatedMTL 51.46 0.536 19.34 +0.08 483 5.0
GatedMTL 51.66 0.534 20.16 -1.10 387 3.7
GatedMTL 51.71 0.535 20.38 -1.51 324 3.7

Table 4: Performance comparison on NYUD-v2
using DPT with ViT-small. Different GatedMTL
models are obtained by varying λs.

Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 46.58 0.583 21.22 0 248 4.0
MTL (Uni.) 45.32 0.576 22.86 -3.04 118 7.3
DWA 45.74 0.5721 22.94 -2.68 118 5.7
Uncertainty 45.67 0.5737 22.80 -2.60 118 5.7

GatedMTL 45.96 0.5648 20.77 +1.30 229 1.7
GatedMTL 45.34 0.5671 20.96 +0.43 183 4.0
GatedMTL 45.57 0.5666 21.36 +0.00 168 4.0
GatedMTL 45.99 0.5713 22.02 -1.01 132 3.7

4.2.3 PASCAL-CONTEXT

Table 5 summarizes the results of our experiments on the PASCAL-context dataset encompassing
five tasks. Note that following previous work, we use the task losses’ weights ωt from Maninis et al.
(2019) for all MTL methods, but also report MTL uniform results as reference. Figure 2c illustrates
the trade-off between ∆MTL and the computational cost of all models. The STL baseline outperforms
most methods on the semantic segmentation and normals prediction tasks with a score of 14.70 and
66.1, while incurring a computational cost of 670 GFlops. Among the baseline MTL and MTO
approaches, there is a notable degradation in surface normal prediction. Finally, as witnessed in
prior works Maninis et al. (2019); Vandenhende et al. (2020); Brüggemann et al. (2021), we observe
that most MTL and MTO baselines struggle to reach STL performance. Among competing methods,
MTAN and MTL yield the best MTL performance versus computational cost trade-off, however,
both suffer from a notable decline in normals prediction performance.

At its highest compute budget (no sparsity loss and negligible computational savings), GatedMTL
outperforms the STL baseline, notably in Saliency and Human parts prediction tasks, and achieves
an overall ∆MTL of +0.56. As we reduce the computational cost by increasing the sparsity loss

7



Under review as a conference paper at ICLR 2024

Table 5: Performance comparison on PASCAL-Context. Different GatedMTL models are obtained
by varying λs.

Model Semseg ↑ Normals ↓ Saliency ↑ Human ↑ Edge ↓ ∆MTL(%) ↑ Flops (G) MR↓

STL 66.1 14.70 0.661 0.598 0.0175 0 670 5.8
MTL (uniform) 65.8 17.03 0.641 0.594 0.0176 -4.14 284 11.6
MTL (Scalar) 64.3 15.93 0.656 0.586 0.0172 -2.48 284 10.0
DWA 65.6 16.99 0.648 0.594 0.0180 -3.91 284 11.4
Uncertainty 65.5 17.03 0.651 0.596 0.0174 -3.68 284 9.8
PCGrad 62.6 15.35 0.645 0.596 0.0174 -2.58 284 11.4
CAGrad 62.3 15.30 0.648 0.604 0.0174 -2.03 284 9.6
MGDA-UB 63.0 15.34 0.646 0.604 0.0174 -1.94 284 9.6
Cross-stitch 66.3 15.13 0.663 0.602 0.0171 +0.14 670 3.8
MTAN 65.1 15.76 0.659 0.590 0.0170 -1.78 319 8.4

GatedMTL 65.7 14.71 0.663 0.606 0.0172 +0.56 664 3.0
GatedMTL 65.1 14.64 0.663 0.604 0.0172 +0.42 577 4.4
GatedMTL 65.2 14.75 0.663 0.600 0.0172 +0.12 435 5.0
GatedMTL 64.9 14.72 0.658 0.596 0.0172 -0.28 377 7.0
GatedMTL 65.1 15.02 0.655 0.592 0.0172 -0.85 334 8.2

Table 6: Comparing the MTL performance using the L1 Hinge loss and the standard L1 loss on
PASCAL-Context. Different GatedMTL models are obtained by varying λs.

Model Lsparsity Semseg ↑ Normals ↓ Saliency ↑ Human ↑ Edge ↓ ∆MTL(%) ↑ Flops (G) MR↓

GatedMTL None 65.7 14.71 0.663 0.606 0.0172 +0.56 664 1.8

GatedMTL L1 63.9 14.74 0.664 0.600 0.0172 -0.27 623 2.8
GatedMTL L1 61.1 15.07 0.663 0.582 0.0172 -2.20 518 4.0

GatedMTL Hinge 65.1 14.64 0.648 0.604 0.0171 +0.28 557 2.2
GatedMTL Hinge 65.2 14.75 0.644 0.600 0.0172 -0.13 433 3.4

weight λs, we observe a graceful decline in the multi-task performance that outperforms competing
methods; This emphasizes our model’s ability to maintain a favorable balance between compute
costs and multi-task performance across computational budgets.

4.3 ABLATION STUDIES

4.3.1 SPARSITY LOSS

To study the effect of the sparsity loss defined in Equation 4, we conduct the following two exper-
iments: First, we omit the sparsity regularization loss (λs = 0): As can be seen in the first row
of Table 6, GatedMTL is on par with a single task, but the computational savings are very limited.
In the second ablation experiment, we compare the use of the L1 hinge loss with a standard L1

loss function as the sparsity regularizer: The results of Table 6 show that the hinge loss formulation
consistently yields better trade-offs.

4.3.2 LEARNED SHARING AND SPECIALIZATION PATTERNS

We now investigate the gating patterns that the model converges to. Specifically, we want to observe
how much each task contributes to and benefits from the shared representations. To that aim, we
monitor (i) the percentage of task-specific representations selected by each task (captured by the
gates Gt(αt)), as well as (ii) how much the features specific to each task contribute to the formation
of the shared feature bank (captured by the learned combination weights β); We visualize both of
these metrics for the five tasks of the Pascal-Context dataset in Figure 3, for a subset of layers and
for different sparsity regularizers: with hinge loss (left), with L1 loss at medium (middle) and high
pruning levels (right). We also report these results for all layers in Figure 4 in the Appendix.

In all settings, the semantic segmentation task makes the largest contribution to the shared branch,
followed by the normals prediction tasks. It is worth noting that the amount of feature contribution
to the shared branch can also be largely influenced by other tasks’ loss functions. In this situation,
we observe that if the normal task lacks enough task-specific features (as seen in the middle and
right models), its performance deteriorates significantly. In contrast, when it acquires sufficient
task-specific features, it maintains a high accuracy (left). Intriguingly, the features of the normal
task become less interesting to other tasks in this scenario possibly due to increased specialization.

8



Under review as a conference paper at ICLR 2024

t

Figure 3: The task-specific representation selection ratio (top) versus proportions of maximum con-
tributions to the shared branch (bottom) for GatedMTL with hinge loss (left), L1 loss with medium
pruning (middle) and L1 loss with high pruning (right).

4.3.3 IMPACT OF MODEL CAPACITY

In this section, we conduct an ablation study to analyze the relationship between model capacity
and multi-task performance. We progressively reduce the width of ResNet-50 and ResNet-20 to
half and a quarter of the original sizes for NYUD-v2 and CelebA datasets, respectively. Shrinking
the model size, as observed in Table 7, incurs progressively more harmful effect on multi-task per-
formance compared to the single task baseline. In comparison, our proposed GatedMTL approach
consistently finds a favorable trade-off between capacity and performance and improves over single
task performances, across all capacity ranges.

Table 7: Performance across various model capacities using the ResNet-20 and ResNet-50 back-
bones on the CelebA (left) and NYUD-v2 (right) tasks.

Model Gender ↑ Age ↑ Clothes ↑ Overall ↑ Flops (M) MR↓

STL 97.50 86.02 93.00 92.17 174 2.0
MTL 97.28 86.70 92.35 92.11 58 2.7
GatedMTL 97.60 87.44 92.40 92.48 59 1.3

STL 96.99 85.60 92.72 91.77 44.4 2.3
MTL 97.02 86.41 92.11 91.85 14.8 2.0
GatedMTL 97.33 86.75 92.05 92.05 15.5 1.7

STL 96.64 85.22 92.19 91.35 11.6 2.0
MTL 96.46 85.46 91.59 91.17 3.9 2.3
GatedMTL 96.81 86.05 91.48 91.45 4.7 1.7

O
ri

gi
na

l
H

al
f

Q
ua

rt
er

Model Semseg ↑ Depth ↓ Normals ↓ ∆MTL (%) ↑ Flops (G) MR↓

STL 43.20 0.599 19.42 0 1149 2.3
MTL 43.39 0.586 21.70 -3.02 683 2.3
GatedMTL 43.63 0.577 19.66 +1.16 892 1.3

STL 39.72 0.613 20.06 0 415 2.3
MTL 40.20 0.610 22.78 -3.98 296 2.0
GatedMTL 39.78 0.591 20.41 +0.63 348 1.7

STL 35.44 0.654 21.21 0 177 2.3
MTL 35.68 0.632 24.57 -4.06 147 2.3
GatedMTL 35.71 0.624 21.75 +0.94 164 1.3

O
ri

gi
na

l
H

al
f

Q
ua

rt
er

5 DISCUSSION AND CONCLUSION

In this paper, we proposed GatedMTL, a novel framework to address the fundamental challenges
of task interference and computational constraints in MTL. GatedMTL leverages a learnable gating
mechanism that facilitates individual tasks to select and combine channels from both specialized
and shared feature sets. This framework promotes an asymmetric flow of information, facilitating
varied contributions from individual tasks to the shared branch’s representations. By regularizing
the learnable gates, we can strike a balance between task-specific resource allocation and overar-
ching computational costs. GatedMTL demonstrates state-of-the-art performance across various
architectures and on notable benchmarks such as CelebA, NYUD-v2, and Pascal-Context. The gat-
ing mechanism in GatedMTL operates over the channel dimension, or the embedding dimension in
the case of ViTs, which in its current form does not support structured pruning for attention ma-
trix computations. Future explorations might integrate approaches like patch-token gating to further
optimize computational efficiency.

Limitations. In this work, we primarily focused on enhancing the trade-off between accuracy and
efficiency during inference. However, GatedMTL comes with a moderate increase in training time,
along with the prerequisite of having pre-trained models for individual tasks. Additionally, our
method is not particularly designed to scale to an extremely large number of tasks. Furthermore,
although both λs and τt can control the trade-off between performance and computational cost, ef-
fectively approximating the desired FLOPs, we still cannot guarantee a specific target FLOP. Lastly,
we mainly explored the parameter-sharing mechanisms in the model encoder, deferring the explo-
ration of sharing strategies in the decoder to future research.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Rodrigo Berriel, Stéphane Lathuilière, Moin Nabi, Tassilo Klein, Thiago Oliveira-Santos, N. Sebe,
and Elisa Ricci. Budget-aware adapters for multi-domain learning. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 382–391, 2019.

Deblina Bhattacharjee, Tong Zhang, Sabine Süsstrunk, and Mathieu Salzmann. Mult: An end-to-
end multitask learning transformer. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 12031–12041, 2022.

Felix JS Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C Alexander, and Jorge Cardoso.
Stochastic filter groups for multi-task cnns: Learning specialist and generalist convolution kernels.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1385–
1394, 2019.

David Brüggemann, Menelaos Kanakis, Anton Obukhov, Stamatios Georgoulis, and Luc Van Gool.
Exploring relational context for multi-task dense prediction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 15869–15878, 2021.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 801–818, 2018a.

Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan Yuille. De-
tect what you can: Detecting and representing objects using holistic models and body parts. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1971–1978, 2014.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning (ICML), pp. 794–803. PMLR, 2018b.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Zitian Chen, Yikang Shen, Mingyu Ding, Zhenfang Chen, Hengshuang Zhao, Erik G Learned-
Miller, and Chuang Gan. Mod-squad: Designing mixtures of experts as modular multi-task learn-
ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11828–11837, 2023.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88:
303–338, 2010.

Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang
Wang, et al. M3vit: Mixture-of-experts vision transformer for efficient multi-task learning with
model-accelerator co-design. Advances in Neural Information Processing Systems, 35:28441–
28457, 2022.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identify-
ing task groupings for multi-task learning. Advances in Neural Information Processing Systems,
34:27503–27516, 2021.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic neural
architecture search towards general-purpose multi-task learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11543–11552, 2020.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
International conference on machine learning, pp. 3854–3863. PMLR, 2020.

10



Under review as a conference paper at ICLR 2024

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen,
Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-k: Differentiable selection in the mixture
of experts with applications to multi-task learning. Advances in Neural Information Processing
Systems, 34:29335–29347, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. In
International Conference on Learning Representations (ICLR), 2021.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7482–7491, 2018.

Baijiong Lin, YE Feiyang, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. Transactions on Machine Learning Research, 2022.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1871–1880, 2019.

Shikun Liu, Stephen James, Andrew Davison, and Edward Johns. Auto-lambda: Disentangling
dynamic task relationships. Transactions on Machine Learning Research, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
Proceedings of the IEEE international Conference on Computer Vision (ICCV), pp. 3730–3738,
2015.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts. Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 1930–1939, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. Proceedings of the European Conference on Computer
Vision (ECCV), pp. 67–82, 2018.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multi-
ple tasks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1851–1860, 2019.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3994–4003, 2016.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. International Conference on Machine
Learning, pp. 16428–16446, 2022.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12179–
12188, 2021.

Amelie Royer, Tijmen Blankevoort, and Babak Ehteshami Bejnordi. Scalarization for multi-task
and multi-domain learning at scale. Advances in Neural Information Processing Systems, 2023.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
Neural Information Processing Systems, 31, 2018.

11



Under review as a conference paper at ICLR 2024

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. Proceedings of the European Conference on Computer Vision
(ECCV), pp. 746–760, 2012.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, pp. 9120–9132. PMLR, 2020.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. Advances in Neural Information Processing Systems, 33:
8728–8740, 2020.

Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool. Mti-net: Multi-scale task interaction
networks for multi-task learning. Proceedings of the European Conference on Computer Vision
(ECCV), pp. 527–543, 2020.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE transactions
on pattern analysis and machine intelligence, 44(7):3614–3633, 2021.

Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul
Bhotika, and Stefano Soatto. Task adaptive parameter sharing for multi-task learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7561–7570, 2022.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learn-
ing for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 43
(10):3349–3364, 2020.

Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding neg-
ative transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11293–11302, 2019.

Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 675–684, 2018.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 3712–3722, 2018.

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe, and Jian Yang. Pattern-affinitive prop-
agation across depth, surface normal and semantic segmentation. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4106–4115, 2019.

Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang, and Ying Wu. A modulation mod-
ule for multi-task learning with applications in image retrieval. Proceedings of the European
Conference on Computer Vision (ECCV), pp. 401–416, 2018.

12



Under review as a conference paper at ICLR 2024

APPENDIX

A IMPLEMENTATION DETAILS

A.1 CELEBA

On the CelebA dataset, we use ResNet-20 as our backbone with three task-specific linear classifier
heads, one for each attribute. We resize the input images to 32x32 and remove the initial pooling
in the stem of ResNet to accommodate the small image resolution. For training, we use the Adam
optimizer with a learning rate of 1e-3, weight decay of 1e-4, and a batch size of 128. For learning
rate decay, we use a step learning rate scheduler with step size 20 and a multiplicative factor of 1/3.

A.2 NYUD AND PASCAL-CONTEXT

For both NYUD-v2 and PASCAL-Context with ResNet-18 and ResNet-50 backbones, we use the
Atrous Spatial Pyramid Pooling (ASPP) module introduced by Chen et al. (2018a) as task-specific
decoders. For the HRNet-18 backbone, we follow the methodology of the original paper Wang et al.
(2020): HRNet combines the output representations at four different resolutions and fuses them
using 1x1 convolutions to output dense prediction.

We train all convolution-based encoders on the NYUD-v2 dataset for 100 epochs with a batch size
of 4 and on the PASCAL-Context dataset for 60 epochs with a batch size of 8. We use the Adam
optimizer to train all of the models, with a learning rate of 1e-4 and weight decay of 1e-4. We use the
same data augmentation strategies for both NYUD-v2 and PASCAL-Context datasets as described
in Vandenhende et al. (2020).

In terms of task objectives, we use the cross-entropy loss for semantic segmentation and human
parts, L1 loss for depth and normals, and binary-cross entropy loss for edge and saliency detection
tasks, similar to Vandenhende et al. (2020). For learning rate decay, we adopt a polynomial learning
rate decay scheme with a power of 0.9.

The Choice of ωt. The hyper-parameter ωt denotes the scalarization weights. We use the weights
suggested in prior work but also report numbers of uniform scalarization. For NYUD-v2, we use
uniform scalarization as suggested in Maninis et al. (2019); Vandenhende et al. (2021), and for
PASCAL-Context, we similarly use the weights suggested in Maninis et al. (2019) and Vandenhende
et al. (2021).

A.3 DPT TRAINING

For DPT training, we follow the same training procedure as described by the authors, which employs
the Adam optimizer, with a learning rate of 1e-5 for the encoder and 1e-4 for the decoder, and a batch
size of 8.

The ViT backbones were pre-trained on ImageNet-21k at resolution 224×224, and fine-tuned on
ImageNet 2012 at resolution 384×384. The feature dimension for DPT’s decoder was reduced from
256 to 64. We conducted a sweep over a set of weight decay values and chose 1e-6 as the optimal
value for our DPT experiments.

B ADDITIONAL EXPERIMENTS

B.1 FULL RESULTS ON CELEBA

In Table 8 we report results on the CelebA dataset for different model capacities: Here, GatedMTL
is compared to the STL and standard MTL methods with different model width: at original, half and
quarter of the original model width.

13



Under review as a conference paper at ICLR 2024

Table 8: Performance comparison of various MTL models on the CelebA dataset with different
model capacities. Different GatedMTL models are obtained by varying λs.

Model Gender ↑ Age ↑ Clothes ↑ Overall ↑ Flops (M) MR↓

STL 97.50 86.02 93.00 92.17 174 3.3
MTL 97.28 86.70 92.35 92.11 58 4.7
GatedMTL 97.60 87.44 92.40 92.48 59 2.7
GatedMTL 97.77 87.39 92.56 92.57 11 2.3
GatedMTL 97.95 87.24 92.85 92.68 162 2.0

STL 96.99 85.60 92.72 91.77 44.4 3.7
MTL 97.02 86.41 92.11 91.85 14.8 4.0
GatedMTL 97.33 86.75 92.05 92.05 15.5 3.7
GatedMTL 97.33 87.05 92.12 92.17 17.4 2.3
GatedMTL 97.46 86.97 92.47 92.23 24.5 1.7

STL 96.64 85.22 92.19 91.35 11.6 3.3
MTL 96.46 85.46 91.59 91.17 3.9 4.3
GatedMTL 96.81 86.05 91.48 91.45 4.7 3.7
GatedMTL 96.92 86.10 91.64 91.56 5.5 2.0
GatedMTL 96.81 86.61 91.74 91.72 6.4 2.0

O
ri

gi
na

l
H

al
f

Q
ua

rt
er

B.2 SHARING/SPECIALIZATION PATTERNS

Figure 4 illustrates the distribution of the gating patterns across all layers of the ResNet-18 backbone
for the PASCAL-Context dataset for 3 models using (a) a Hinge loss, (b) a medium-level pruning
using uniform L1 loss and (c) a high-level pruning with uniform L1 loss.

C ABLATION: SPARSITY TARGETS

By tuning the sparsity targets τ in Equation 4, we can achieve specific compute budgets of the final
network at inference. However, there are multiple choices of {τt}Tt=1 that can achieve the same
budget. In this section, we further investigate the impact of which task we allocate more or less of
the compute budget on the final accuracy/efficiency trade-off.

We perform an experiment sweep for different combination of sparsity targets, where each τt is
chosen from {0, 0.25, 0.75, 1.0}. Each experiment is run for two different random seeds and two
different sparsity loss weights λs. Due to the large number of experiments, we perform the ablation
experiments for shorter training runs (75% of the training epochs for each setup)

Our take-away conclusions are that (i) we clearly observe that some tasks require more task-specific
parameters (hence a higher sparsity target) and (ii) this dichotomy often correlates with the per-task
performance gap observed between the STL and MTL baselines, which can thus be used as a guide
to set the hyperparameter values for τ .

In the results of NYUD-v2 in Figure 5, we observe a clear hierarchy in terms of task importance:
When looking at the points on the Pareto curve, they prefer high values of τnormals, followed by
τsegmentation: In other words, these two tasks, and in particular normals prediction, requires more
task-specific parameters than the depth prediction task to obtain the best MTL performance versus
compute cost trade-offs.

Then, we conduct a similar analysis for the five tasks of PASCAL-Context in Figure 6. Here we
see a clear split in tasks: The graph for the edges prediction and saliency task are very similar to
one another and tend to prefer high τ values, i.e. more task-specific parameters, at higher compute
budget. But when focusing on a lower compute budget, it is more beneficial to the overall objective
for these tasks to use the shared branch. Similarly, the tasks of segmentation and human parts exhibit
similar behavior under variations of τ and are more robust to using shared representations (lower
values of τ ). Finally, the task of normals prediction (b) differ from the other four, and in particular
exhibit a variance of behavior across different compute budget. In particular, when targetting the
intermediate range (350B-450B FLOPs), setting higher τnormals helps the overall objective.

14



Under review as a conference paper at ICLR 2024

0.0
0.2
0.4
0.6
0.8
1.0

Ta
sk

-s
pe

cif
ic

fe
at

ur
e 

us
ag

e semseg
normals
saliency
human_pars
edge

Lay
er 

0

Lay
er 

1

Lay
er 

2

Lay
er 

3

Lay
er 

4

Lay
er 

5

Lay
er 

6

Lay
er 

7

Lay
er 

8

Lay
er 

9

Lay
er 

10

Lay
er 

11

Lay
er 

12

Lay
er 

13

Lay
er 

14

Lay
er 

15

Lay
er 

16

Lay
er 

17

Lay
er 

18

Lay
er 

19

0.1

0.2

0.3

Fe
at

ur
e 

co
nt

rib
ut

io
n

to
 th

e 
sh

ar
ed

 b
ra

nc
h

(a) With Hinge sparsity loss

0.0
0.2
0.4
0.6
0.8
1.0

Ta
sk

-s
pe

cif
ic

fe
at

ur
e 

us
ag

e semseg
normals
saliency
human_pars
edge

Lay
er 

0

Lay
er 

1

Lay
er 

2

Lay
er 

3

Lay
er 

4

Lay
er 

5

Lay
er 

6

Lay
er 

7

Lay
er 

8

Lay
er 

9

Lay
er 

10

Lay
er 

11

Lay
er 

12

Lay
er 

13

Lay
er 

14

Lay
er 

15

Lay
er 

16

Lay
er 

17

Lay
er 

18

Lay
er 

19

0.1

0.2

0.3

Fe
at

ur
e 

co
nt

rib
ut

io
n

to
 th

e 
sh

ar
ed

 b
ra

nc
h

(b) With uniform L1 loss (medium pruning)

0.0
0.2
0.4
0.6
0.8
1.0

Ta
sk

-s
pe

cif
ic

fe
at

ur
e 

us
ag

e semseg
normals
saliency
human_pars
edge

Lay
er 

0

Lay
er 

1

Lay
er 

2

Lay
er 

3

Lay
er 

4

Lay
er 

5

Lay
er 

6

Lay
er 

7

Lay
er 

8

Lay
er 

9

Lay
er 

10

Lay
er 

11

Lay
er 

12

Lay
er 

13

Lay
er 

14

Lay
er 

15

Lay
er 

16

Lay
er 

17

Lay
er 

18

Lay
er 

19

0.1

0.2

0.3

Fe
at

ur
e 

co
nt

rib
ut

io
n

to
 th

e 
sh

ar
ed

 b
ra

nc
h

(c) With uniform L1 loss (high pruning)

Figure 4: sharing and specialization patterns on pascal context dataset with ResNet-18 backbone.

15



Under review as a conference paper at ICLR 2024

(a) Color by τsegmentation (b) Color by τdepth

(c) Color by τnormals

Figure 5: Sweeping over different {τt} on the NYUD-v2 experiments with HRNet-18 backbone.
We plot the MTL performance ∆MTL against the total number of FLOPs, then color each scatter
point by the value of τt when the task t is (a) segmentation, (b) depth and (c) normals.

D FORWARD-PASS PSEUDO-CODE

Algorithm 1 illustrates the steps in the forward pass of the algorithm

Algorithm 1 Pseudo-code for unified representation encoder

Given:
• x ∈ R3×W×H ▷ Input image
• T, L ∈ R ▷ Number of tasks and encoder layers
• Ψ, Φt ▷ shared and t-th task-specific layer parameters
• β, αt ▷ shared and t-th task-specific gating parameters

Return: [φL
1 , ..., φ

L
T ] ▷ the task-specific encoder representations

ψ0, φ0
1, ..., φ

0
T ← x ▷ Set initial shared and task-specific features

for ℓ = 1 to L do
for t = 1 to T do

φ′ℓ
t ← Gℓ

t(α
ℓ
t)⊙ φℓ

t + (1−Gℓ
t(α

ℓ
t))⊙ ψℓ (2) ▷ Choose shared and task-specific features

φℓ+1
t ← F (φ′ℓ

t ; Φ
ℓ
t) ▷ Compute task-specific features

end for
ψ′ℓ =

∑T
t=1 softmax

t=1...T
(βℓ

t )⊙ φ′ℓ
t (3) ▷ Combine task-specific features to form shared ones

ψℓ+1 ← F (ψ′ℓ; Ψℓ) ▷ Compute shared features
end for

16



Under review as a conference paper at ICLR 2024

(a) Color by τedges (b) Color by τnormals

(c) Color by τhuman parts (d) Color by τsaliency

(e) Color by τsegmentation

Figure 6: Sweeping over different {τt} on the PASCAL-Context. We plot the MTL performance
∆MTL against the total number of FLOPs, then color each scatter point by the value of τt when the
task t is (a) edges, (b) normals (c) human parts, (d) saliency and (e) segmentation.

E GENERALIZATION TO VISION TRANSFORMERS

As transformers are becoming widely used in the vision literature, and to show the generality of
our proposed MTL framework, we also apply GatedMTL to vision transformers: We again denote
φℓ
t ∈ RNℓ×Cℓ

and ψℓ ∈ RNℓ×Cℓ

as the t-th task-specific and shared representations in layer ℓ,
where N ℓ and Cℓ are the number of tokens and embedding dimensions, respectively. We first apply
our feature selection to the key, query and value linear projections in each self-attention block:

ql+1
t = Gℓ

t(α
ℓ
q,t)⊙ f ℓq,t(φℓ

t; Φ
ℓ
t) + (1−Gℓ

t(α
ℓ
q,t))⊙ f ℓq (ψℓ; Ψℓ), (7)

kl+1
t = Gℓ

t(α
ℓ
k,t)⊙ f ℓk,t(φℓ

t; Φ
ℓ
t) + (1−Gℓ

t(α
ℓ
k,t))⊙ f ℓk(ψℓ; Ψℓ), (8)

vl+1
t = Gℓ

t(α
ℓ
v,t)⊙ f ℓv,t(φℓ

t; Φ
ℓ
t) + (1−Gℓ

t(α
ℓ
v,t))⊙ f ℓv(ψℓ; Ψℓ), (9)

17



Under review as a conference paper at ICLR 2024

Table 9: Training time comparison of various MTL methods

Method Forward (ms) Backward (ms) Training time (h) ∆MTL

Standard MTL 60 299 7.5 -4.14
MTAN 73 330 8.5 -1.78
Cross-stitch 132 454 12.3 +0.14
MGDA-UB 60 568 13.2 -1.94
CAGrad 60 473 11.1 -2.03
PCGrad 60 495 11.6 -2.58

GatedMTL 76 324 8.4 -1.35
GatedMTL 102 376 10.1 +0.12
GatedMTL 119 426 11.5 +0.42

where αℓ
q,t, α

ℓ
k,t, α

ℓ
v,t are the learnable gating parameters mixing the task-specific and shared pro-

jections for queries, keys and values, respectively. f lq,t, f
l
k,t, f

l
v,t are the linear projections for query,

key and value for the task t, while f lq , f lk, f lv are the corresponding shared projections. Once the
task-specific representations are formed, the shared embeddings for the next block are computed by
a learned mixing of the task-specific feature followed by a linear projection, as described in (3). Sim-
ilarly, we apply this gating mechanism to the final linear projection of the multi-head self-attention,
as well as the linear layers in the feed-forward networks in-between each self-attention block.

F TRAINING TIME COMPARISONS

While our method is mainly aiming at improving the inference cost efficiency, we also measure and
compare training times between our method and the existing literature, on the PASCAL-Context
Chen et al. (2014). The results are shown on Table 9. The forward and backward iterations are
averaged over 1000 iterations, after 10 warmup iterations, on a single NvidiaV100 GPU, with a
batch size of 4.

18


	Introduction
	Related Work
	Method
	Learning to share, specialize and prune

	Experiments
	Experimental Setup
	Results
	CelebA
	NYUD-v2
	PASCAL-Context

	Ablation studies
	Sparsity Loss
	Learned Sharing and Specialization Patterns
	Impact of Model Capacity


	Discussion and Conclusion
	Implementation Details
	CelebA
	NYUD and PASCAL-Context
	DPT training

	Additional Experiments
	Full Results on CelebA
	Sharing/Specialization Patterns

	Ablation: Sparsity targets
	Forward-pass pseudo-code
	Generalization to vision transformers
	Training time comparisons

