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Abstract
Predicting the solvation free energy of molecules
using graph neural networks holds significant po-
tential for advancing drug discovery and the de-
sign of novel materials. While previous methods
have demonstrated success on independent and
identically distributed (IID) datasets, their perfor-
mance in out-of-distribution (OOD) scenarios re-
mains largely unexplored. We propose a novel Re-
lational Invariant Learning framework (RILOOD)
to enhance OOD generalization in solvation free
energy prediction. RILOOD comprises three key
components: (i) a mixup-based conditional mod-
eling module that integrates diverse environments,
(ii) a novel multi-granularity refinement strategy
that extends beyond core substructures to enable
context-aware representation learning for captur-
ing multilevel interactions, and (iii) an invariant
learning mechanism that identifies robust patterns
generalizable to unseen environments. Exten-
sive experiments demonstrate that RILOOD sig-
nificantly outperforms state-of-the-art methods
across various distribution shifts, highlighting its
effectiveness in improving solvation free energy
prediction under diverse conditions.

1. Introduction
Predicting the solvation free energy of molecules is crucial,
as most chemical and pharmaceutical processes occur in
solution, making it highly significant for downstream in-
dustries (Chung et al., 2022; Varghese & Mushrif, 2019).
This task, often referred to as Solute-Solvent Interaction
in Molecular Relational Learning (MRL) (Lim & Jung,
2019; Subramanian et al., 2020; Panwar et al., 2021; Low
et al., 2022; Zhang et al., 2022; Lee et al., 2023a;b), focuses
on understanding and modeling the interactions between
solutes and solvents, conceptualizing these interactions as
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solvation properties of molecules. More importantly, it ex-
tends traditional molecular property prediction frameworks
by explicitly incorporating solvent molecules as input fea-
tures, thereby improving prediction accuracy and enhancing
chemical interpretability.

Despite significant advancements in MRL, most existing
methods operate under the assumption that training and
test data are independent and identically distributed (IID).
However, real-world molecular systems exhibit diverse char-
acteristics and uneven data distributions across solvents,
making this assumption unrealistic in practical applications.
Out-of-Distribution (OOD) scenarios arise when test data
differs substantially from training data, as illustrated by the
example in Fig. 1. This work focuses on exploring the OOD
generalization of molecular solvation properties across dif-
ferent environments within the MRL.

To address distribution shifts, several approaches have been
proposed, including invariant learning (Wu et al., 2022a),
feature disentanglement (Liu et al., 2021), and data aug-
mentation (Sui et al., 2024; Jia et al., 2024). Among these,
invariant learning for OOD generalization (Krueger et al.,
2021) has garnered significant attention due to its ability to
extract robust features that remain stable across different
environments, even under distribution shifts. In molecu-
lar modeling, molecular invariant learning is commonly
employed to address distribution shifts by identifying core
substructures that exhibit strong correlations with molecular
properties. However, existing methods encounter notable
limitations. For example, Lee et al. (2023a) leverage privi-
leged substructures as causal correlations in MRL. However,
they do not account for the solvent-dependent nature of so-
lute properties and the complex coupling effects that govern
molecular behavior (Cramer & Truhlar, 2008). Similarly,
Lee et al. (2023b) apply back-door adjustment to mitigate
spurious correlations but fails to account for solvent effects,
thereby neglecting intricate solute-solvent interactions that
are essential for accurately characterizing solute proper-
ties. As a result, these approaches lead to an incomplete
understanding of solute behavior, increased susceptibility
to spurious correlations, and poor generalization to unseen
environments.

Although atomic interactions have been extensively mod-
eled and have shown success in MRL, a precise under-
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Figure 1. Illustration of solvation free energy distribution across different solvents. (a) illustrates how the solvation properties of solute
molecules vary with changes in the solvent environment. The horizontal axis represents the dielectric constant of solvent, and the dotted
boxes indicate the distribution of solute properties in two solvents: benzyl alcohol (blue, left) and styrene (pink, right). Traditional methods
predict solute properties by identifying core substructures, but core substructures may change in different solvents. (b) presents the
distribution of solvation energy across different solvent dielectric constants (top) and various solvents (bottom), highlighting the significant
influence of the solvent on solvation energy. Highly polar solvents, or those with intermediate dielectric constants, tend to exhibit stronger
interactions with solutes, leading to a broader range of solvation energies. Relational invariance refers to molecular interactions such as
hydrogen bonding (purple) and van der Waals forces (gray). The statistical data originates from the MNSolv dataset (Marenich et al.,
2012) (top) and the QM9Solv dataset (Ward et al., 2021) (bottom).

standing of the solute-solvent interaction remains elusive.
Achieving both accuracy and explainability presents sig-
nificant challenges, particularly in the following areas: (1)
the need to accurately model solute–solvent interactions
across chemically diverse solvent environments. (2) the
inherent complexity of multilevel molecular interactions,
which hinders the extraction of invariant features and the
construction of robust, generalizable representations. To
address these issues, it is essential to develop models that
can accurately represent multilevel molecular interactions,
effectively capturing the complex one-to-many relationships
between solutes and properties.

Based on the aforementioned analysis, in this work, we
propose a novel Relational Invariant Learning framework
for Out-of-Distribution Generalization (RILOOD) in MRL.
Unlike traditional methods, our framework explicitly cap-
tures invariant relationships in molecular pairs and achieves
a more generalized representation of solute-solvent interac-
tions. Specifically, we first employ a Graph Neural Network
(GNN) to encode molecular structures, followed by a cross-
attention module to map atom-level interactions. We then
incorporate mixup-enhanced Conditional Variational Mod-
eling to facilitate cross-environment invariance, leveraging a
multi-granularity context-aware interaction mechanism and
environment diversity inference. This enables learning of
interaction invariance (Xie et al., 2024), allowing the discov-

ery of fundamental molecular relationships in a chemically
interpretable latent space. Our main contributions can be
summarized as follows:

• We formally formulate the out-of-distribution (OOD) gen-
eralization problem in Molecular Relational Learning
(MRL), establishing a rigorous foundation for studying
model robustness across diverse chemical environments.

• We propose RILOOD, a relational invariant learning
framework for solvation free energy prediction, featuring
three key components: a mixup-based conditional model-
ing module, a multi-granularity refinement strategy, and
an invariant learning mechanism.

• We conduct extensive experiments across multiple distri-
bution shifts, demonstrating that RILOOD consistently
outperforms state-of-the-art methods, significantly ad-
vancing OOD generalization in molecular property pre-
diction.

2. Related Works
2.1. Molecular Relational Learning

Molecular Relational Learning (Lim & Jung, 2019; Pathak
et al., 2020; Subramanian et al., 2020; Lee et al., 2023a;b),
which aims to study the relationship between molecules,
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can be divided into molecular interaction prediction and
Drug-Drug Interaction prediction. Molecular interaction
prediction, i.e., solvent-based molecular property prediction,
includes solvent free energy prediction, solubility predic-
tion, chromophore absorption prediction, and so on. Unlike
traditional molecular property prediction, the model need
predict the properties exhibited by the same molecule ex-
posed to multisolvent. Recent works (Ramani & Karmakar,
2024; Du et al., 2024) leverage the merged graph to encode
atomic interaction and further improve interpretability and
reducing redundancy.

2.2. Out of Distribution Generalization

Generalizing well-trained models to unseen environments
with different data distributions remains a key challenge
in machine learning. To address OOD generalization,
three main approaches are typically employed: invariant
learning (Li et al., 2022), causal inference (Dawid, 2000),
and disentangled learning (Mo et al., 2023). Invariant
learning aims to extract stable features across distribution
shifts, but ZIN (Lin et al., 2022) argues that identifying
invariance in Euclidean data is impossible without envi-
ronment labels, proposing auxiliary information as a solu-
tion. Causal inference approaches utilize Structural Causal
Models (SCM) (Chen et al., 2022; Lu et al., 2021) and In-
dependent Causal Mechanisms (ICM) (Peters et al., 2017;
Gui et al., 2024) to filter spurious correlations and enhance
robust feature discovery. Disentangled learning separates
features into invariant factors, which generalize across distri-
butions, and spurious factors, which exhibit unstable corre-
lations. While effective, it relies on strong prior assumptions
and carefully curated datasets. These diverse strategies col-
lectively tackle OOD generalization by distinguishing stable
predictive patterns from environment-dependent variations,
yet significant challenges remain in accurately identifying
and effectively leveraging invariant features.

2.3. Invariant Learning in Molecular Relational
Learning

Research on invariant learning in molecular representation
learning remains sparse. One approach identifies core sub-
structures using the graph information bottleneck to extract
minimal task-relevant information (Lee et al., 2023a). An-
other method leverages causal intervention to learn causal
substructures and mitigate distribution shifts (Lee et al.,
2023b). In OOD settings, generalization is typically eval-
uated by partitioning datasets into scenarios like “unseen
solvent” or “unseen domain”, where test sets exhibit spe-
cific biases. However, many studies remain confined to
intra-domain frameworks, failing to capture real-world com-
plexities. Despite successes in graph-based invariant learn-
ing (Wu et al., 2022a; Yang et al., 2022; Li et al., 2022), two
key challenges persist: (1) Environmental labels for graphs

are difficult to obtain, often relying on handcrafted rules
that provide insufficient causal structure. (2) Invariant pat-
terns and spurious correlations are entangled with shortcut
features, complicating the identification of stable representa-
tions. Addressing these challenges is crucial for improving
the robustness and generalization of MRL models across
diverse molecular environments.

3. Preliminaries
We define the uppercase letters (e.g., G) as random variables,
and the blackboard typefaces (e.g., G) denote the sample
spaces. Let G = (V, E) ∈ G denote a graph, where V =
{v1, v2, ..., vn} is the set of nodes and E ∈ V × V is the set
of edges.

3.1. Molecular Relational Learning.

The goal of MRL task is to predict the target label Y
given the associated input molecular pairs (G1,G2). It
can be formulated as modeling the conditional distribution
p(Y|G1,G2).

Notations. Given a dataset D = {((Gi
1,Gi

2),Yi)}Ni=1,
where G1 ∈ G1 is solute molecule, and G2 ∈ G2 is solvent
molecule, each molecular pair is associated with a target la-
bel Y . N is the total number of samples. The objective is to
train a model to predict Y based on the input (G1,G2). The
model should effectively learn the relationships between the
input features and the target variable, leveraging the infor-
mation from both G1 and G2 to accurately predict Y . The
model’s performance will be evaluated based on the RMSE
of the predicted output Ŷ in comparison to the ground truth
labels Y .

Molecular Representation. We implement our method
based on (Pathak et al., 2020), which is a message pass-
ing architecture devised for the solute and solvent molecule
interaction. Given a pair of molecules G1 = (V1, E1) and
G2 = (V2, E2). We first obtain the node representation
of each molecule as follows: h1 = GNN(V1, E1),h2 =
GNN(V2, E2). To capture inter-molecular interactions at
the atomic level, the interaction map is constructed as fol-
lowing: I = h1 · hT

2 , where · is matrix multiplication,
I ∈ RN1×N2 . Here, N1 and N2 denote the number of atoms
in molecule G1 and G2, respectively. We obtained a represen-
tation h̃1 ∈ RN1×D of the solvent’s interaction on the solute
and a representation h̃2 ∈ RN2×D of the solute’s interaction
on the solvent through a shared interaction map according
to the following equations: h̃1 = I · h2, h̃2 = IT · h1. H1 is
generated by concatenating two representations h̃1 and h1,
i.e., H1 = concat[h1, h̃1]. The overall graph representation
is obtained using a readout layer Rsolute(H1), which set the
READOUT function as Set2Set (Vinyals et al., 2015).
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3.2. OOD Generalization.

In this work, we mainly focus on OOD generalization in
graph-level prediction tasks. Our aim is to train the model
with limited labels to infer the domain distribution from
unseen data in Dte.

Problem formulation. Given a molecular pairs dataset,
D = {((Gi

1,Gi
2),Yi)N

tr+te

i=1 } collect from multiple environ-
ments E , which were considered as drawn independently
from an identical distribution pe, i.e., DID = {(G1,G2) ∈
D | G1 ∈ GID

∧
G2 ∈ GID}. The training and test

datasets are denoted as Dtr = {((Gi
1,Gi

2),Yi)}Ntr

i=1 and
Dte = {((Gi

1,Gi
2),Yi)}Nte

i=1 . Our goal is to find an opti-
mal predictor Φ: (G1,G2) −→ Y that performs well on
all environments. Formally, the learning objectives can be
formulated as:

min
Φ

max
e∈E

E((Gi
1,Gi

2),Yi)∼p((G1,G2),Y|e)
[
ℓ
(
Φ
(
Gi
1,Gi

2

)
,Yi

)]
(1)

Definition 3.1. (Data generation process) The OOD
distribution can be sampled according to DOOD =
{(G1,G2) ∈ D | (G1 ∈ GOOD

∧
G2 ∈ GOOD)

∨
(G1 ∈

GOOD

∧
G2 ∈ GID)

∨
(G1 ∈ GID

∧
G2 ∈ GOOD)}.

The data generation process is as follows: Let E de-
note all possible environments, supp(Ntr) ⊂ supp(E),
sampled train data from p((G1,G2),Y). Out of Distribu-
tion indicate that pe((G1,G2),Y) ̸= p

′

e((G1,G2),Y), i.e.,
Dtrain = {((Gi

1,Gi
2),Yi)N

tr

i=1 | e ⊂ supp(Ntr)}, Dtest =

{((Gi
1,Gi

2),Yi)N
te

i=1 | e′ ∈ supp(E)\supp(Ntr)}.

Details of the OOD dataset splitting are provided in the
Appendix B.1.

4. Methodology
In this section, we introduce a Relational Invariant Learning
framework designed to address Out-of-Distribution general-
ization (RILOOD) in solvation free energy prediction. An
overview of the proposed method is provided in Fig. 2. We
detail the motivations and technical aspects of the three key
components in RILOOD: Mixup-enhanced Conditional
Variational Modeling (Section 4.2), Multi-granularity
Context-Aware Refinement (Section 4.3), and Invariant
Relational Learning Mechanism (Section 4.4).

4.1. The Overall Framework.

In molecular relation learning, substructure identification
methods are widely employed. However, these approaches
often fail to account for the variability in a solute’s behavior
across different solvents, as solute-solvent interactions can
differ significantly.

To overcome this limitation, invariant learning aims to iden-
tify stable features or patterns that remain consistent across

diverse environments. This approach reduces prediction
errors and minimizes dependence on environmental varia-
tions. A predictor performing well across multiple, varied
environments is more likely to generalize robustly to un-
seen distributions. Our primary objective is to develop a
model that is robust to domain shifts, ensuring the mapping
from molecule pairs to labels remains stable irrespective of
environmental changes.
Assumption 4.1. Given a molecular pair (G1,G2), each pair
is associated with R surrounding environments. We assume
the existence of invariant interaction patterns that facili-
tate generalizable OOD predictions across all environments.
The optimal predictor Φ(·) should satisfy the properties of
Invariance and Sufficiency, as detailed in Appendix A.3.

Specifically, we further decompose Φ(·) into two key com-
ponents as Φ(·) = g ◦ f(G1,G2): (a) A Conditional Varia-
tional Autoencoder (CVAE) f , which models the prior dis-
tribution of the solute representation H1 ∼ pe(z|e) across
different environments. Here, z is a low-dimensional, con-
tinuous representation of the solute in the latent space. (b)
A multi-granularity context-aware learner g, which refines
relational features by mapping (H1, H2) to a context-aware
representation Hc, i.e., g : (H1, H2) −→ Hc.

Building on Eq. 1, we reformulate the OOD generalization
problem for molecular pairs as:

min
g

max
e∈E

E(Gi
1,Gi

2,Yi)∼p(G1,G2,Y|e)
[
ℓ
(
g ◦ f

(
Gi
1,Gi

2

)
,Yi

)]
(2)

where e denotes the support environments, and ℓ(·, ·) repre-
sents the loss function.

4.2. Mixup-enhanced Conditional Variational Modeling

Empirically, acquiring explicit environmental labels for so-
lute–solvent pairs is often impractical, presenting a major
obstacle to learning solute representations that generalize
across diverse solvent conditions. This challenge is further
compounded by limited data coverage, which may fail to
capture distributional shifts induced by variations in solva-
tion environments. Fundamentally, the difficulty in obtain-
ing environmental labels arises from the fact that solvation
energy is governed by complex, multi-scale interactions
between solutes and solvents, including non-covalent in-
termolecular forces and functional group–specific depen-
dencies. In the absence of explicit labels, these underly-
ing physicochemical mechanisms are difficult to accurately
model or disentangle. To address this challenge, ZIN (Lin
et al., 2022) introduces a method for inferring latent envi-
ronmental partitions using auxiliary information. Inspired
by this approach, we propose conditioning on auxiliary in-
formation to implicitly capture solute representations across
the environment.

Mixup Enhanced. To further improve generalization, we
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Figure 2. Our proposed RILOOD framework adopts an architecture that integrates mixup-enhanced conditional variational modeling and
multi-granularity context interaction mechanisms to provide an efficient way to adapt across different scenarios.

adopt mixup, which generates interpolated representations
to enhance robustness across environments. We propose
Mixup-enhanced CVAE (MCVAE), a module designed to
model molecular distributions using paired solvent infor-
mation and infer the latent distribution qϕ(z|H̃1, e) across
diverse environments. Furthermore, we introduce uncer-
tainty constraints to regularize the latent space, thereby im-
proving stability and generalization across varying solvent
conditions.

We assume that solvents belong to R discrete categories,
denoted as E = {er}Rr=1, where each solvent type er is rep-
resented as a R-dimensional one-hot vector er ∈ {0, 1}R,
with its r-th dimension set to 1. To enhance generaliza-
tion, we employ mixup augmentation to interpolate between
environmental conditions, allowing the model to learn con-
tinuous latent representations rather than relying solely on
discrete labels. This encourages better adaptation to unseen
domains.

Given the molecular representations H1 and H2 for
molecules G1 and G2, respectively, we construct enhanced
samples using the following mixup formulation:

H̃1 = λ ·H1+(1−λ) ·H2, e = λ ·e1+(1−λ) ·e2 (3)

where H̃1 denotes the mixed molecular representation and
e signifies the interpolated solvent condition. The mixing
coefficient λ, is sampled from a Beta distribution, specif-
ically λ ∼ Beta(α, α), to ensure a smooth interpolation
between different environments. This modeling strategy can
be readily extended to other contexts, such as scaffold-based
modeling. The derivations for the upper and lower bounds
of this mixed representation are detailed in Appendix A.1.

For the regression task, we incorporate an uncertainty con-
straint to mitigate noise introduced by the mixup technique.

Here, σ(·)2 is the uncertainty variance, and we constrain it.
Consequently, the regression loss can be reformulated as
follows:

Lreg =
1

N

N∑
i=1

[
1

σ(Hi
1)

2
∥yi − Φ(Gi

1,Gi
2)∥2 + log σ(Hi

1)
2

]
(4)

Variational Inference for Mixup Representations. To
model the conditional log-likelihood log p(H̃1 | e), we
introduce variational inference, reformulating the objective
as a variational lower bound by approximating the posterior
distribution q(z | H̃1, e):

max
θ,ϕ

EH̃1∼D

[
Eqϕ(z|H̃1,e)

[
log pθ(H̃1 | z, e)

]]
,

s.t. DKL

(
qϕ(z | H̃1, e) ∥ pθ(z | H̃1)

)
< δ

(5)
where δ is a threshold, and the KL divergence constraint
ensures that the approximate posterior remains close to the
prior, preventing latent space collapse and enhancing gener-
alization across diverse solvent conditions.

In practice, as the number of solvent categories grows, in-
dependent modeling becomes computationally prohibitive.
To enhance scalability, a learnable function could be em-
ployed to assign soft environment labels to solvents, rather
than modeling each solvent separately. However, given the
limited solvent diversity in our dataset (e.g., only five sol-
vents in QM9Solv dataset), we refrain from adopting this
approach to ensure a fair comparison.

Environment Inference via MCVAE Optimization. By
optimizing MCVAE, we aim to infer the solute distribu-
tion within a latent environment, offering a novel strategy
for learning environment-aware molecular representations.
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Specifically, we minimize the divergence between the ap-
proximate posterior distribution qϕ(z | H̃1, e) of the latent
variable z and the true posterior probability pϕ(H̃1 | e, z)
for a specific environment e. Leveraging the rich prior
knowledge embedded in conditional encoders, our training
objective comprises two main components: (1) Encourage
the R-group latent distribution produced by the encoder
to approximate a standard normal distribution as closely
as possible. (2) Sample z from the conditional distribution
qϕ(z | e), and ensure that the reconstructed solute molecular
features closely resemble the original features.

LMCVAE(θ, ϕ; H̃1, e) = −KL
(
qϕ(z | H̃1, e)∥pθ(z | H̃1)

)
+

1

N

N∑
i=1

[
1

σ(H̃1)2
∥z − H̃1∥2 + log σ(H̃1)

2

]
(6)

where z = gϕ

(
H̃1, e, ϵ

)
, with ϵ ∼ N (0, I), and I is the

identity matrix. Detailed proof is in Appendix A.2.

4.3. Multi-granularity Context-Aware Refinement.

Although the solvent type serves as a useful proxy for en-
vironmental context, directly relying on it can lead to pre-
dictive shortcuts. To address this, we propose a joint opti-
mization framework that simultaneously learns: (i) an envi-
ronment modeling function from auxiliary information, (ii)
an interaction-aware feature extractor, and (iii) mutual infor-
mation constraints. The goal is to encode a context-aware
molecular representation that dynamically captures solute
behavior under specific conditions while accurately model-
ing the context-dependent relevance of solute molecules.

Previous studies have predominantly focused on atomic-
level interactions within molecules (Pathak et al., 2020).
However, since solvents interact globally with solutes, a
multi-granularity interaction strategy is better suited to cap-
ture their complex effects. Notably, solute-solvent interac-
tions are non-covalent and are often neglected in conven-
tional modeling approaches. To address this limitation, we
employ a self-attention mechanism to dynamically iden-
tify intermolecular interactions, allowing representations to
adapt more effectively across diverse environments.

Multi-granularity Interactions with Context. To effec-
tively model solute–solvent interactions, we propose a Multi-
granularity Context-Aware Refinement (MCAR) strategy,
designed to capture hierarchical interaction patterns across
multiple levels. The MCAR mechanism is implemented in
two key steps: (1) Context learning: Both coarse-grained
molecular-level contexts and fine-grained feature-level con-
texts are simultaneously captured to jointly learn comprehen-
sive contextual information. (2) Pattern refinement: Invari-
ant interaction patterns are refined through matrix multipli-
cation between the coarse-grained and fine-grained feature
representations.

We begin by constructing an initial embedding E that ag-
gregates relevant molecular features: E = concat[z,H2],
where z and H2 represent specific molecular features. To
model global interactions, we project E into query (Q), key
(K), and value (V) matrices using learnable linear transfor-
mations:

Q,K,V = EWQ, EWK , EWV (7)

where WQ,WK ,WV are trainable projection matrices. A
scaled dot-product self-attention mechanism is then applied
to these matrices to capture long-range dependencies across
molecular entities:

Oc = Attention(Q,K,V)

= Wc · Softmax

(
QKT

√
dk

)
V

(8)

where Wc is learnable transformations that enhance atten-
tion expressiveness. In parallel, local intra-molecular inter-
actions are captured via a non-linear transformation:

Of = PReLU(WLE + bL) (9)

where WL and bL are learnable parameters for local fea-
ture transformation. The PReLU is activation function to
enhance the expressiveness of the local representations. Fi-
nally, the context-aware representation is obtained by per-
forming a Hadamard product between the global and local
interaction features:

Hc = Oc ◦Of (10)

where ◦ denotes the Hadamard product, enabling the inte-
gration of multi-scale contextual information into a unified
and expressive feature representation.

To improve feature extraction, we maximize mutual informa-
tion to retain essential features while reducing redundancy
and noise. Specifically, we optimize the mutual information
between the solute representation H1 and the context-aware
feature Hc. The solute feature H1, may be influenced by
spurious correlations that hinder generalization. In contrast,
the context-aware feature Hc captures invariant and mean-
ingful correlations, leading to more robust representations
across diverse environments. We therefore denote Hc as
Ĥinv to emphasize its role in learning invariant features. To
this end, we formulate the optimization objective as follows:

max
fc,w

I
(
Ĥinv;Y

)
,

s.t.Ĥinv ∈ argmax
Ĥinv=w(H1),|Ĥinv|≤H1

I
(
Ĥinv;H1 | Y

) (11)

Finally, contrastive learning provides a practical solution for
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the approximation, the learning objective is defined as:

LMI =

− 1

M

M∑
i=1

log
exp(sim(Ĥi

inv, H
i
1))

exp(sim(Ĥi
inv, H

i
1)) +

∑M
j=1,j ̸=i exp(sim(Ĥj

inv, H
j
1))

(12)

4.4. Invariant Relational Learning Mechanism

Optimization Objective. Eq. 2 clarifies the training objec-
tive of OOD generalization. However, directly optimizing
Eq. 2 is not impracticable. Instead, we formulate a joint
optimization framework:

L = Linv + αLMCVAE + βLMI (13)

where α and β are weight hyperparameters for LMCVAE and
LMI , respectively. The term Linv represents the prediction
loss, measuring the discrepancy between the model’s output
and the ground truth. For regression tasks, Eq. 4 can be used
instead of Linv.

Proposition 4.2. Given the auxiliary environment e, our
goal is to build a model pθ(H̃1 | e, z) that learns the feature
H̃1 ∈ R conditioned on e. Optimizing Eq. 6 ensures that
z exhibits sufficient predictive power, thereby allowing the
model to satisfy the Sufficient condition in Assumption 4.1.
Furthermore, minimizing Eq. 13 encourages the model to
satisfy the Invariance condition in Assumption 4.1.

5. Experiments
In this section, we conduct extensive experiments to answer
the research questions:

• RQ1: How to evaluate the effectiveness of the model in
OOD scenarios?

• RQ2: How effective is RILOOD in discovering invari-
ant features and improving generalization?

5.1. Experimental Settings

Datasets. We use six datasets to evaluate our method.
Specifically, the Minnesota Solvation Database (MN-
Solv) (Marenich et al., 2012), QM9Solv (Ward et al., 2021),
CompSolv (Moine et al., 2017), CombiSolv (Vermeire &
Green, 2021), MolMerger (Ramani & Karmakar, 2024), and
Abraham (Grubbs et al., 2010). The detailed statistics and
descriptions are given in Appendix B. More experiments
are provided in Appendix C.2.

Baselines. For a comprehensive comparison, we adopt two
types of baselines: (1) There is no interaction layer between
molecular encoders. We use three commonly used GNN
models, including GIN (Xu et al., 2018), GCN (Kipf &

Welling, 2016), GAT (Veličković et al., 2017), to obtain
molecular embedding through concatenation and then enter
the prediction layer; (2) there is an interaction layer between
molecular encoders, including ERM (Vapnik, 2013), Group-
DRO (Sagawa et al., 2019), MixUp (Zhang et al., 2017a),
MolMerger (Ramani & Karmakar, 2024), CIGIN (Pathak
et al., 2020), CGIB (Lee et al., 2023a), CMRL (Lee et al.,
2023b).

Metrics. We choose widely-used metrics in previous works,
the performance of the molecular interaction prediction task
is evaluated in terms of RMSE (Pathak et al., 2020). Lower
error indicate better prediction performance. AUROC (Lee
et al., 2023b) for DDI prediction.

5.2. Main Results (RQ1)

Real-world Dataset. To assess the generalization perfor-
mance of our method, we conducted comprehensive exper-
iments on three datasets, demonstrating the effectiveness
of the proposed approach. To further explore distribution
shifts across diverse environments, we evaluated model per-
formance under two distinct settings: Solvent and Scaffold.
The overall results, summarized in Tab. 1, lead to the fol-
lowing key observations:

Our method consistently outperforms baseline models,
achieving superior results across all datasets. Traditional
approaches exhibit limitations, as they primarily rely on
substructure-based invariance, which often introduces spu-
rious correlations in MRL. The notable improvement ob-
served in RILOOD stems from its ability to capture multi-
granularity interactions and identify invariant patterns, en-
abling the model to effectively adapt to domain shifts. Fur-
ther discussions on extending this method to the I.I.D. set-
ting are provided in Appendix C.2, with additional results
in Tab. 4.

Synthetic Dataset. To evaluate model robustness under
distribution shifts, we apply dataset-specific shift strategies,
introducing spurious features to construct synthetic datasets.
Following (Li et al., 2022; Wu et al., 2022b), spurious cor-
relations are injected by controlling the variant distribution.
Further details are provided in Appendix C.2. Specifically,
we manually introduce spurious relationships of varying
degrees between environment e and the label Y in the train-
ing set, setting degree d = {0.25, 0.33, 0.5, 0.75}. The
results, presented in Fig. 3 (a), indicate that as d increases,
performance generally improves due to a greater degree of
distribution shift. However, our proposed method exhibits
the highest stability, effectively mitigating the effects of
spurious correlations.

Generalization on Graph Classification. To evaluate the
applicability of our method to molecular pair data and classi-
fication tasks, we conducted experiments on the DDI dataset.

7



Relational Invariant Learning for Robust Solvation Free Energy Prediction

Table 1. Performance comparison with baselines on 3 out-of-distribution real-world datasets from MNSolv, CompSolv, QM9Solv in
terms of RMSE. Different dataset splits by specific shift (solvent split and scaffold split), and details can be find in Appendix B.1. The
best and the runner-up results are highlighted in bolded and underlined respectively.

Interaction Method MNSolv↓ CompSolv↓ QM9Solv↓
Solvent Scaffold Solvent Scaffold Solvent Scaffold

✗
GCN 0.8921±0.024 1.2752±0.022 0.7644±0.024 0.9598±0.018 0.9115±0.052 1.0319±0.046

GIN 0.7723±0.032 1.3685±0.049 0.5927±0.013 0.6004±0.028 1.0928±0.017 1.0762±0.052

GAT 0.7022±0.012 1.4566±0.022 0.5338±0.064 0.5526±0.027 1.0513±0.042 1.0415±0.012

✓

ERM 0.7503±0.026 1.3478±0.013 0.5360±0.002 0.6334±0.003 0.7471±0.053 0.7261±0.005

GroupDRO 0.7839±0.003 1.4322±0.031 0.5857±0.013 0.7459±0.012 0.8259±0.007 0.8503±0.021

MixUp 0.7135±0.011 1.3843±0.012 0.5772±0.026 0.5604±0.017 0.7227±0.003 0.7490±0.002

MolMerger 0.9276±0.081 1.6225±0.046 2.1115±0.097 1.2854±0.032 0.8773±0.056 1.3799±0.041

CIGIN 0.7662±0.017 1.3649±0.021 0.5574±0.002 0.6383±0.005 0.7503±0.053 0.8642±0.012

CGIB 0.8312±0.017 2.2118±0.024 0.3886±0.025 0.5476±0.026 1.4525±0.013 0.7894±0.006

CMRL 0.8063±0.012 2.1524±0.032 0.3777±0.023 0.6672±0.013 1.4425±0.016 0.7894±0.002

RILOOD 0.6784±0.007 1.0780±0.013 0.3660±0.022 0.5209±0.014 0.7001±0.001 0.6991±0.003

Solvent Scaffold Assay Sizes
(c)

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

w/ MCAR
w/o MCAR
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(b)
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0.95
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ZhangDDI
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Figure 3. (a) Performance under different spurious correlation levels, where the strength of spurious correlation is defined as d =
Number of samples with spurious features

Total number of samples . A higher d in the training set indicates stronger spurious correlations with the underlying environments. (b)
Results on three DDI datasets with domain shifts, comparing our approach against three SOTA methods. (c) The impact of different
interaction modes on the CompSolv dataset, where w/ MCAR denotes a multi-granularity interaction mode and w/o MCAR indicates a
node-level interaction mode.

As illustrated in Fig. 3(b), RILOOD consistently outper-
forms existing approaches under OOD conditions. This per-
formance gain can be attributed to RILOOD’s enhanced gen-
eralization capability, which facilitates effective knowledge
transfer from known molecular interactions to structurally
similar compounds and previously unseen scaffolds. Such
transferability improves the model’s robustness to distribu-
tional shifts, thereby ensuring adaptability across diverse
molecular structures.

5.3. In-depth Analysis (RQ2)

To assess the contribution of each module, we conduct an
ablation study by removing specific components: Multi-
granularity Context-Aware Refinement (MCAR) trained on
the downstream task (M); mutual information loss LMI (Mi);
conditional distribution modeling loss LMCVAE (MC); and
MCAR removal but all loss is used (w/o MCAR). The com-
plete model is jointly trained using Eq. 13 (Ours). The

results are summarized in Tab. 2. From Tab. 2, we observe
the following: (1) Incorporating MCAR improves baseline
performance, highlighting the importance of context-aware
interactions in enhancing model robustness. (2) While con-
ditional modeling significantly affects performance, the in-
dividual contributions of LMCVAE and LMI are smaller com-
pared to joint training. (3) Removing MCAR leads to a
performance drop; however, the model still surpasses the
baseline due to the co-optimization of all losses.

Feature Visualization. To evaluate the effectiveness of
MCAR, we used t-SNE to visualize molecular interactions
in the best performing model and compare them to base-
lines. As shown in Fig. 4, (1) The solute in the test set
originated from different distributions than the training set,
demonstrating the distribution shift; (2) MCAR enhances
feature diversity, improving molecule interaction modeling;
and (3) MCAR captures domain-invariant features, boosting
generalization to unseen domains. These results confirm our
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Table 2. Ablation study on CompSolv-∗ and MNSolv-∗ by
RMSE. We show the results of our method that performs best
among baselines on all CompSolv-∗ and MNSolv-∗ datasets, for
comparison.

Method CompSolv↓ MNSolv↓
Solvent Scaffold Solvent Scaffold

Baseline [B] 0.5215±0.007 0.6383±0.011 0.7662±0.016 1.2648±0.018

B + ERM loss [E] 0.4864±0.023 0.5919±0.012 0.7263±0.026 1.3478±0.011

B + MCAR [M] 0.4914±0.004 0.5842±0.003 0.7115±0.003 1.2191±0.012

M + LMI [Mi] 0.5196±0.003 0.5444±0.022 0.7279±0.002 1.2005±0.003

Mi + LMCVAE [MC] 0.4753±0.023 0.5351±0.027 0.7026±0.013 1.1329±0.011

w/o MCAR 0.4834±0.001 0.6641±0.013 0.7285±0.003 1.3929±0.002

Ours 0.4689±0.006 0.5209±0.014 0.6784±0.007 1.0780±0.013

(a)

Training set Test set

(b)

Original MCAR

(c)

Original MCAR

Figure 4. Visualization of the extracted features on training and
validation set when the model achieves the best performance on the
validation set. (a) The feature distribution of the training set and
the test set; (b) Effect of MCAR on solute feature distribution; (c)
Effect of MCAR on global feature (solute + solvent) distribution.

method’s robustness against distribution shifts.

6. Conclusion
In this work, we propose a Relational Invariant Learning
framework to solve out-of-distribution in solvation free en-
ergy prediction. Three tailored modules are jointly opti-
mized to train the model and learn the representation of in-
variant molecules in diverse environments. Mixup enhanced
molecular representations are used for variational model-
ing of diverse environments, further capturing invariant in-
teraction patterns through multi-granularity context-aware
refinement strategy. Extensive experiments and theoretical
analysis prove the superiority of our method.

Impact Statement
This paper presents work whose goal is to advance the field
of AI for Science. Our method may have some potential so-
cietal consequences, but we don’t believe any need specific
highlighting here.
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A. Proofs
In this section, we provides detailed proofs in Section 4.

A.1. Proof for Bound of Mixup Representations

Let H1 ∈ Rd be the representation of a solute graph G1, and H2 ∈ Rd be the representation of a solvent graph G2 under
environment e, both obtained via a GNN. We define the mixup representation as:

H̃ = λH1 + (1− λ)H2, λ ∈ [0, 1] (14)

We assume the following: The predictive model f : Rd → Y is Lipschitz continuous with constant Lf > 0, i.e., for any
H,H ′ ∈ Rd,

∥f(H)− f(H ′)∥Y ≤ Lf · ∥H −H ′∥2 (15)

The loss function ℓ : Y × Ytarget → R ≥ 0 is upper-bounded by constant B:

0 ≤ ℓ(Ypred,Ytrue) ≤ B, ∀Ypred,Ytrue (16)

Let D be the joint distribution over (H1, H2, e1, e2), where e1, e2 ∈ Ytarget. Define the expected prediction error under
mixup as:

Emixup(λ) := E(H1,H2,e1,e2)∼D

[
ℓ
(
f(H̃), e

)]
, (17)

where e = λe1 + (1 − λ)e2 denotes environment, i.e., the soft target label. According to the information-theoretic
generalization bounds based on Fano’s inequality, we obtain:

Emixup(λ) ≥ c1 ·
(
H(Ytarget)− I(H̃;Ytarget)

)
(18)

where H(Ytarget) is the entropy of the target Ytarget, and I(H̃;Ytarget) is the mutual information between the representation H̃
and the soft label. Constant c1 > 0 depends on the task structure and loss smoothness.

Generalization via Nuisance Information. From a representation learning perspective, generalization error can be
bounded by:

Emixup(λ) ≤ E∗ + c2 ·
√
I(H̃;Cnuisance), (19)

where Cnuisance denotes spurious nuisance factors, c2 > 0 depends on Lf and B, and E∗ denotes the optimal lower bound of
the achievable generalization error.

Therefore, we obtain:

c1 ·
(
H(Y )− I(H̃;Y )

)
≤ Emixup(λ) ≤ E∗ + c2 ·

√
I(H̃;Cnuisance) (20)

These derivations indicate a fundamental trade-off in mixup-based CVAE learning: while mixup reduces nuisance information
through distributional smoothing, it must preserve sufficient task-relevant information to avoid performance degradation.
This analysis provides a theoretical justification for using mixup representations in conditional generative models under
structured environments.

A.2. Proof for Equation 6

For a given mixed representation H̃1 and environment e, the loss function is defined as:

L(θ, ϕ; H̃1, e) = Eqϕ(z|H̃1,e)
[log pθ(H̃1 | z, e)]−DKL(qϕ(z | H̃1, e)∥pθ(z | H̃1)) (21)

Here, the learning objective is to find the optimal parameter set θ that maximizes the log-likelihood log pθ(H̃1 | e). Since
directly computing the true posterior pθ(z | H̃1, e) is intractable, we approximate it using an auxiliary variational distribution
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qϕ(z | H̃1, e). By minimizing the KL divergence between qϕ(z | H̃1, e) and pθ(z | e), we derive a tractable Evidence Lower
Bound (ELBO) formulation:

max
θ,ϕ

EG1∼D

[
Eqϕ(z|H̃1,e)

[
log pθ(H̃1 | z, e)

]]
s.t. DKL

(
qϕ(z | H̃1, e)∥pθ(z | H̃1)

)
< δ (22)

where δ is a threshold that ensures the learned latent representation z remains close to the true underlying data distribution.
We define qϕ(z|H̃1, e) as the recognition model and pθ(H̃1|e, z) as the generative model. By leveraging approximate
posterior inference and the reparameterization trick, the prior is able to effectively capture environmental information from
the posterior, thereby improving posterior alignment.

Using the ELBO decomposition, we express the log-likelihood as:

log pθ(H̃1 | e) = −DKL(qϕ(z | H̃1, e)∥pθ(z | H̃1)) + Eqϕ(z|H̃1,e)

[
log pθ(H̃1 | z, e)

]
(23)

where DKL(·∥·) denotes the Kullback-Leibler divergence between two distributions.

For regression-based solvation property prediction, we introduce an uncertainty constraint on RMSE, modifying the
reconstruction term as follows:

LMCVAE(θ, ϕ; H̃1, e) = −DKL

(
qϕ(z | H̃1, e)∥pθ(z | H̃1)

)
+

1

N

N∑
i=1

[
1

σ(H̃1)2
∥z − H̃1∥2 + log σ(H̃1)

2

] (24)

This term ensures that the variance of the latent variable σ(H̃1)
2 is explicitly accounted for, promoting robust representation

learning and reducing overfitting to noise in the data.

A.3. Details of Assumption 4.1

We define two key properties, invariance and sufficiency, which ensure the generalizability of molecular relational learning
across different environments. For given OOD environment e′, we define invariance and sufficiency as:

(1) Invariance Property : ∀e, e′ ∈ supp(ε), p(Ye | He, e) = p(Ye′ | He′ , e′), where Hi = Φ(Gi
1,Gi

2) denotes molecular
pairs representations, He = Φ(Ge

1 ,Ge
2), H

e′ = Φ(Ge′

1 ,Ge′

2 );

(2) Sufficiency Property : Y = Φ(Ge
1 ,Ge

2) + ϵ, where Φ is a predictor, ϵ is a random noise.

If the following conditions hold:

• Conditional Independence:
Φ(G1,G2) ⊥ (G1,G2) \ Φ(G1,G2), (25)

which ensures that the learned representation is conditionally independent of the remaining molecular graph information.

• For all environments e ∈ supp(E), there exists OOD environment e′ ∈ supp(E) satisfy:

pe′((G1,G2),Y) = pe′(Φ(G1,G2),Y)pe′((G1,G2) \ Φ(G1,G2)), (26)

which implies that the joint distribution factorizes into invariant representations and residual molecular information.

• Invariance of representation across environments:

pe′(Φ(G1,G2)) = pe(Φ(G1,G2)). (27)

This guarantees that the representation distribution remains stable across environments e and e′, reinforcing the assumption
of invariant learning.
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2

(a) (b)

Figure 5. (a) The distribution of property labels of solute molecules in five solvents (water, acetone, ethanol, ACN, and DMSO) in the
QM9Solv dataset. (b) t-SNE visualization of the representation distributions of solute molecules in the QM9Solv dataset across the
same five solvents.

B. Details on Datasets
We provide more details about the benchmark datasets that we use in our experiments. Statistics of the datasets are provided
in Table 3.

• MNSolv dataset includes 3,037 experimentally measured free energies of solvation or transfer for 790 distinct solutes
and 92 different solvents. In this work, we remove the charged ions, and we consider 2,577 combinations of 528 unique
solutes and 104 solvents, including mixed solvents.

• QM9Solv dataset includes solvation energies for 130,258 molecules from the QM9 dataset, calculated in 5 solvents
(acetone, ethanol, acetonitrile, dimethyl sulfoxide, and water) using an implicit solvent model.

• CompSolv dataset is designed to illustrate the impact of hydrogen-bonding association effects on solvation energies. It
includes 3,548 pairings of 442 distinct solutes and 259 solvents, based on prior studies. The dataset also contains the
original assay attribution of the data, which we have divided it into OOD settings.

• CombiSolv integrates all data from MNSol, FreeSolv, CompSolv, and Abraham. After we removed the outliers, there
were 1,000,000 entries, including 11,029 solutes and 284 solvents.

• MolMerger compiled a dataset of 6,975 entries from three sources: BigSolDB (Krasnov et al., 2023), BNNLabs
Solubility (Boobier et al., 2020), and ESOL (Delaney, 2004). The data obtained from BigSolDB required cleaning to
remove erroneous or unreliable entries.

• Abraham dataset, compiled by the Abraham research group at University College London, comprises 6,091 pairings
of 1,038 unique solutes and 122 solvents, building on previous studies.

• ZhangDDI (Zhang et al., 2017b), ChChMiner (Marinka Zitnik et al., 2018) and DeepDDI (Ryu et al., 2018) are
datasets focused on drug–drug interaction prediction, widely used for evaluating molecular relation learning models.

B.1. Data splitting.

To evaluate the OOD generalization performance of molecule relational learning models, we employed both random scaffold
splitting and random solvent splitting strategies.

Random Scaffold Splitting (Bemis & Murcko, 1996) is a method where the dataset is grouped and randomly split based
on molecular scaffolds. Specifically, the Bemis-Murcko was used to extract the scaffold structure of each molecule, and
molecules with the same scaffold were grouped together. These scaffold groups were then randomly shuffled and split into
training, validation, and test sets according to a predefined ratio (e.g., 8:1:1). This approach ensures that molecules with the
same scaffold appear exclusively in one set, allowing the evaluation of the model’s generalization ability to unseen scaffolds.
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Table 3. Details about the datasets used in OOD experiments.

Dataset G1 G2 Target #G1 #G2
MNSolv Solute Solvent Solvation Energy 528 104
QM9Solv Solute Solvent Solvation Energy 130625 5
CompSolv Solute Solvent Solvation Energy 442 259
CombiSolv Solute Solvent Solvation Energy 11029 284
MolMerger Solute Solvent LogS 2699 13
Abraham Solute Solvent Solvation Energy 1038 122
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Figure 6. Histograms of the molecular weight and heavy atomic distribution of solutes and solvents in the CombiSolv dataset. Based on
the solvent solute ratios in Table 5, we observe that the solutes and solvents in this dataset are mainly composed of small molecules and
exhibit a long-tail distribution in molecular weight and heavy atom number. The average molecular weight of the solvent is lower than
that of the solute and may be mainly common small molecule solvents. This distribution can pose a challenge to the generalization ability
of the model, especially when working with large molecules or complex solvents.

Random Solvent Splitting is a dataset partitioning strategy based on solvents, similar to random scaffold splitting. Solvent-
domain shift considers the scenario in which the solute distribution p(G1|G2) is shifted across solvent splits. Here, solute
molecules are grouped according to their corresponding solvents, and molecules with the same solvent are assigned to the
same group. These solvent groups are then randomly shuffled and divided into training, validation, and test sets in a fixed
ratio. Each solvent is assigned to only one set, ensuring that the solvents in the test set are entirely unseen during training.
This strategy aims to evaluate the model’s performance in predicting molecular properties in new solvent environments and
its adaptability to out-of-distribution solvents.

C. More Experiments and details

C.1. Implementation and Optimization Details.

The proposed method is implemented on a single NVIDA 3090 GPU with PyTorch. Following the CIGIN(Pathak et al.,
2020), we use the same 3-layer GCN and MPNN as feature extractor for solute molecule and solvent molecule, respectively.
More details about backbone can be found in Sec.3.1. During the training, the solute features were incorporated with node
interaction features, which is the dot-production similarity between solute node features and solvent node features. Here, we
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Figure 7. Spurious correlation from dielectric constant eps.

Table 4. Performance on molecular interaction prediction task (regression) in terms of RMSE.

Model Chromophore MNSolv QM9Solv FreeSolv CompSolv Abraham CombiSolv
Absorption Emission Lifetime

GCN 25.75±1.48 31.87±1.70 0.866±0.015 0.675±0.021 1.317±0.011 1.192±0.042 0.389±0.009 0.738±0.041 0.672±0.022

GIN 24.92±1.67 32.31±0.26 0.829±0.027 0.669±0.013 1.274±0.017 1.015±0.041 0.331±0.016 0.648±0.024 0.595±0.014

GAT 26.19±1.44 30.90±1.01 0.859±0.016 0.731±0.007 1.305±0.021 1.280±0.049 0.387±0.010 0.798±0.038 0.662±0.021

CIGIN 19.32±0.35 25.09±0.32 0.804±0.010 0.607±0.024 0.592±0.023 0.905±0.014 0.308±0.018 0.411±0.008 0.451±0.009

CGIB 18.11±0.21 23.90±0.12 0.771±0.020 0.538±0.015 0.549±0.026 0.852±0.032 0.276±0.013 0.390±0.016 0.422±0.005

CMRL 17.93±0.31 24.30±0.22 0.776±0.007 0.551±0.017 0.288±0.013 0.815±0.046 0.255±0.011 0.374±0.011 0.421±0.008

RILOOD 17.20±0.12 23.61±0.21 0.706±0.015 0.489±0.009 0.246±0.016 0.823±0.017 0.242±0.018 0.309±0.013 0.292±0.009

using graph-level solute features and solvent features as input in our method. We select 168 for the dimension (dz) of latent
variables. The learning rate was decreased on plateau by a factor of 10−3 from 10−3 to 10−5.

C.2. Synthetic data experiments.

We first consider the distribution shift caused by polarity bias w.r.t. eps. The invariant feature is Ĥinv ∈ R, where p(Y|Ĥinv)

is a constant, indicating a stable correlation between Y and Ĥinv. Our goal is to learn a model that relies solely on Ĥinv.
We use eps to control the degree of spurious correlation. Fig. 7 illustrates a spurious correlation arising from the dielectric
constant, which plays a crucial role in determining the polarity of the solvent. As shown in Fig. 7, the correlation of
molecular pairs and label Y with eps=78 is unstable, i.e., p(Y|H1) is unstable, p(Y|Ĥinv) is stable.

C.3. Generalization Analysis.

Table 4 presents the RMSE performance of various models on molecular interaction prediction tasks under IID settings.
RILOOD consistently achieves the lowest RMSE across most datasets, demonstrating superior predictive capability.
Traditional graph-based models (GCN, GIN, GAT) perform worse, particularly in QM9Solv, FreeSolv, and CombiSolv,
indicating limitations in capturing complex molecular interactions. More advanced models show notable improvements,
yet RILOOD surpasses them in nearly all cases, with significant gains in QM9Solv, CompSolv, and CombiSolv. In
Chromophore datasets, RILOOD also achieves the best results, particularly in Absorption and Emission, highlighting its
strength in modeling spectral properties. The Multi-granularity Context-Aware Refinement (MCAR) and Mixup-based CVAE
(MCVAE) mechanisms likely enhance feature extraction and generalization. Although RILOOD slightly underperforms
CGIB in FreeSolv, its overall performance validates its effectiveness in molecular representation learning, even under IID
conditions.
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Figure 8. Sensitivity analysis of the hyperparameter (a) α and (b) β on CompSolv datasets. The solid line shows the average RMSE in the
testing stage and the light blue area represents standard deviations. The dashed line represents the average RMSE of the best-performed
baseline.
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Figure 9. Sensitivity analysis of the hyperparameter (a) α and (b) β on MNSolv datasets. The solid line shows the average RMSE in the
testing stage and the light blue area represents standard deviations. The dashed line represents the average RMSE of the best-performed
baseline.

C.4. Hyperparameter Sensitivity Analysis

We perform a sensitivity analysis on the hyperparameters α and β, which govern the trade-off among the loss components in
Eq. 13. In practical settings, accurately approximating the true posterior is non-trivial, often resulting in a reconstruction loss
that dominates the supervised loss by several orders of magnitude. To mitigate this imbalance and stabilize optimization, we
systematically vary α within {10−7, 10−6, 10−5, 10−4, 10−3} and β within {10−8, 10−7, 10−6, 10−5, 10−4}. Experiments
are conducted on the MNSolv and CompSolv datasets, chosen for their diversity and representativeness.

The results, shown in Fig.8 and Fig.9, demonstrate that the choice of α and β critically affects the balance between
environmental modeling and invariant representation learning. Notably, higher values of α tend to yield significant
performance improvements. These findings underscore the importance of tuning these hyperparameters for optimal
performance. Following established practice, we report the best-performing configuration along with its standard deviation.

D. Limitations and Future Directions
While we introduce a molecular pair invariant graph learning approach based on auxiliary information for environment
partitioning, achieving strong OOD generalization, certain limitations remain. Since solvent polarity labels are difficult to
obtain, auxiliary information can serve as a proxy label for environment partitioning.

This study examines spurious correlations by considering a single spurious factor; however, in reality, multiple spurious
associations may exist, complicating the distinction between false and invariant patterns. The influence of different spurious
factors varies, impacting model performance in distinct ways.

Additionally, in the era of large-scale models, increasing data volume improves OOD generalization. However, in domain-
specific applications, prioritizing broad generalization may reduce accuracy in specialized fields. This trade-off arises

17



Relational Invariant Learning for Robust Solvation Free Energy Prediction

because narrow distributions focus on high-probability regions, often overlooking tail samples, leading to poor generalization
in rare cases. Bridging this gap between broad generalization and domain-specific precision presents an important research
challenge.
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