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Abstract

In this paper, we investigate the convergence properties of a wide class of Adam-family meth-
ods for minimizing quadratically regularized nonsmooth nonconvex optimization problems,
especially in the context of training nonsmooth neural networks with weight decay. Moti-
vated by AdamW, we propose a novel framework for Adam-family methods with decoupled
weight decay. Within our framework, the estimators for the first-order and second-order
moments of stochastic subgradients are updated independently of the weight decay term.
Under mild assumptions and with non-diminishing stepsizes for updating the primary op-
timization variables, we establish the convergence properties of our proposed framework.
In addition, we show that our proposed framework encompasses a wide variety of well-
known Adam-family methods, hence offering convergence guarantees for these methods in
the training of nonsmooth neural networks. More importantly, compared to the existing
results on the choices of the parameters for the moment terms in Adam, we show that our
proposed framework provides more flexibility for these parameters. As a practical appli-
cation of our proposed framework, we propose a novel Adam-family method named Adam
with Decoupled Weight Decay (AdamD), and establish its convergence properties under
mild conditions. Numerical experiments demonstrate that AdamD outperforms Adam and
is comparable to AdamW, in the aspects of both generalization performance and efficiency.

1 Introduction

We consider the following unconstrained optimization problem (UOP):

min
x∈Rn

g(x) := f(x) + σ

2 ∥x∥
2

, (UOP)

where the function f : Rn → R is assumed to be locally Lipschitz continuous and possibly nonsmooth over
Rn. Moreover, the constant σ > 0 is the penalty parameter for the quadratic regularization term. Such
a regularization term is also known as the weight decay term, which is widely employed to enhance the
generalization performance in training neural networks (Bos & Chug, 1996; Krogh & Hertz, 1991).

Stochastic Gradient Descent (SGD) is one of the most fundamental methods for solving (UOP). In SGD, all
coordinates of the variable x are updated using the same stepsize (i.e., learning rate). To accelerate SGD,
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(Kingma & Ba, 2015) develops the widely used Adam method, which adjusts coordinate-wise stepsizes based
on first-order and second-order moments of the stochastic gradients. Due to its high efficiency in training
neural networks, Adam has become one of the most popular choices for various neural network optimization
tasks.

Motivated by Adam, numerous efficient Adam-family methods have been developed, such as AdaBelief
(Zhuang et al., 2020), AMSGrad (Reddi et al., 2018), Yogi (Zaheer et al., 2018), etc. From a theoretical
perspective, the majority of existing works (Barakat & Bianchi, 2021; Défossez et al., 2022; Guo et al., 2021;
Shi et al., 2021; Wang et al., 2022; Zaheer et al., 2018; Zhang et al., 2022; Zhuang et al., 2022; Zou et al.,
2019) establish convergence properties for these Adam-family methods, based on the assumption that f is
continuously differentiable over Rn. However, as emphasized in (Bolte et al., 2021; Bolte & Pauwels, 2021;
Bolte et al., 2022b), nonsmooth activation functions, including ReLU and leaky ReLU, are popular choices
in building neural networks. For any neural network built from these nonsmooth activation functions, its
loss function is usually nonsmooth and lacks Clarke regularity (e.g., differentiability, weak convexity, etc.).
Consequently, these existing works are unable to provide convergence guarantees for their analyzed methods
in the training of nonsmooth neural networks.

1.1 Existing works on training nonsmooth neural networks

In nonsmooth optimization, it has been demonstrated in (Daniilidis & Drusvyatskiy, 2020) that a general Lip-
schitz continuous function f can exhibit highly pathological properties, leading to the failure of subgradient
descent method to find a critical point of f . Moreover, the chain rule may fail for the Clarke subdifferential
(Clarke, 1990) of the loss function of a nonsmooth neural network. Specifically, when we differentiate the
loss function of a nonsmooth neural network using automatic differentiation (AD) algorithms, the outputs
may not be contained in the Clarke subdifferential of f (Bolte & Pauwels, 2020).

Consequently, most of the existing works restrict their analysis to the class of path-differentiable functions
(Bolte & Pauwels, 2021, Definition 3). For any path-differentiable function f , there exists a graph-closed
set-valued mapping Df , called conservative field for f , such that for any absolutely continuous mapping
γ : [0,∞) → Rn, it holds that f(γ(t)) − f(γ(0)) =

∫ t

0 maxd∈Df (γ(s)) ⟨γ̇(s), d⟩ds for any t ≥ 0. It is worth
mentioning that the most important choice of the conservative field Df is the Clarke subdifferential of
f . Moreover, as discussed in (Bolte & Pauwels, 2021; Castera et al., 2021; Davis et al., 2020), the class
of path-differentiable functions are general enough to cover a wide range of objective functions in neural
network training tasks, especially when the neural networks employ nonsmooth building blocks, such as
the ReLU activation function. In addition, Bolte & Pauwels (2020; 2021) show that the outputs of AD
algorithms in differentiating nonsmooth neural networks are contained in a conservative field of the loss
function. Therefore, the concept of the conservative field is capable of characterizing the outputs of AD
algorithms, which are implemented in training nonsmooth neural networks in practice.

Based on the stochastic approximation frameworks (Benaïm, 2006; Benaïm et al., 2005; Borkar, 2009; Davis
et al., 2020), several existing works have investigated the convergence properties of stochastic subgradient
methods in training nonsmooth neural networks. In particular, Bolte & Pauwels (2021); Davis et al. (2020)
study the convergence properties of SGD and proximal SGD for minimizing nonsmooth path-differentiable
functions. Moreover, (Castera et al., 2021) proposes the inertial Newton algorithm (INNA), which can be
regarded as a variant of momentum-accelerated SGD method. Additionally, Le (2023); Ruszczyński (2020);
Xiao et al. (2023b) establish the convergence properties of SGD with heavy-ball momentum, while Ding &
Toh (2024) investigates the convergence of Bregman-type methods. Furthermore, Hu et al. (2022a;b) apply
these methods to solve manifold optimization problems based on the constraint dissolving approach (Xiao
et al., 2023c). In addition, Gürbüzbalaban et al. (2022); Ruszczynski (2021) design stochastic subgradient
methods for solving multi-level nested optimization problems.
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1.1.1 Challenges from non-diminishing stepsizes in Adam

With the concept of conservative field, Adam utilizes the following framework when applied to solve (UOP):
gk = dk + ξk+1,

mk+1 = (1− θk)mk + θk(gk + σxk),
vk+1 = (1− βk)vk + βk(gk + σxk)2,

xk+1 = xk − ηk(√vk+1 + ε)−1 ⊙mk+1.

(Adam)

Here, gk is a stochastic subgradient of f at xk, in the sense that dk represents a possibly inexact evaluation
of Df (xk), ξk+1 is a random vector characterizing the evaluation noise and σxk is the weight decay term.
The operators ⊙ and (·)p denote element-wise multiplication and element-wise p-th power of a given vector,
respectively. The sequences {mk} and {vk}, referred to as momentum terms and estimators respectively, are
updated to track the first-order and second-order moments of {gk + σxk}. The sequences {ηk}, {θk}, and
{βk} represent the stepsizes for the primal variables {xk}, the parameters for the momentum terms {mk},
and the parameters for the estimators {vk}, respectively.

In the framework (Adam), the weight decay term is integrated with the function f throughout the iterations.
As a result, we can directly apply the existing convergence results on Adam to analyze the convergence
properties of the framework (Adam). In particular, when f is a nonsmooth path-differentiable function,
(Xiao et al., 2023a) investigates the convergence of a class of Adam-family methods based on the frameworks
proposed by (Benaïm et al., 2005; Bianchi et al., 2022; Davis et al., 2020). However, in the analysis of (Xiao
et al., 2023a), the stepsizes and parameters sequences are assumed to be diminishing and single-timescale,
in the sense that {ηk}, {θk} and {βk} converge to 0 at the same rate as k goes to infinity.

Beyond the single-timescale scheme, some existing works (Reddi et al., 2018; Zhang et al., 2022; Jin et al.,
2024) establish the convergence of Adam for continuously differentiable f with {θk} and {βk} fixed as
constants. In particular, (Zhang et al., 2022) proves that for any θ ∈ (0, 1) and ηk = O(1/

√
k), there exists a

sufficiently small β that forces {xk} to stabilize within a neighborhood of the critical points of g. In addition,
(Jin et al., 2024) establishes the asymptotic convergence convergence of Adam with relaxed conditions on the
smoothness of f . However, their analyses are restricted to continuously differentiable objectives. Therefore,
these results are not capable of explaining the convergence of Adam in a wide range of practical settings,
where the neural networks are built from nonsmooth blocks. It is worth noting that (Xiao et al., 2023b)
establishes the convergence of stochastic subgradient methods with two-timescale stepsizes. However, their
analysis is restricted with SGD-type methods. To the best of our knowledge, this analysis cannot be extended
to Adam-family methods.

Furthermore, in establishing convergence properties for stochastic subgradient methods, diminishing step
sizes are commonly assumed as they facilitate the almost sure convergence of the iterates {xk} to critical
points under various conditions (Benaïm et al., 2005; Bolte et al., 2022a; Bolte & Pauwels, 2021; Castera
et al., 2021; Davis et al., 2020; Le, 2023; Ruszczyński, 2020; Xiao et al., 2023a;b). However, for Adam,
the results in (Reddi et al., 2018; Zhang et al., 2022) indicate that even with diminishing step sizes, the
iterates {xk} are only guaranteed to converge to a neighborhood of critical points. Moreover, Bianchi et al.
(2022); Josz et al. (2023) show that for nonsmooth, path-differentiable objective functions and a fixed step
size, SGD converges almost surely only to a neighborhood of the Df -stationary points of f . Their analysis,
however, is limited to SGD and SGD with heavy-ball momentum and does not extend to Adam. Despite the
widespread use of diminishing step size schemes in practice, it is both theoretically and practically important
to investigate the convergence properties of Adam-family methods in the non-diminishing regime (i.e., when
lim infk→∞ηk > 0).

1.1.2 Challenges from decoupling the weight decay term in Adam

Another challenge in solving (UOP) by Adam is related to the incorporation of the weight decay term.
The conventional approach is to directly minimize g by Adam, as is implemented in various computational
frameworks. That is, the weight decay is coupled with the stochastic subgradients of f , in the sense that f
and the weight decay term σ

2 ∥x∥
2 are treated as an integrated function to be minimized. As demonstrated
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in (Loshchilov & Hutter, 2019), Adam with coupled weight decay usually exhibits worse generalization
performance than SGD. To address this issue, Loshchilov & Hutter (2019) suggests a novel method named
AdamW, which decouples the weight decay term from the stochastic subgradients of f . The update schemes
of AdamW can be summarized by the following framework:

gk = dk + ξk+1,

mk+1 = (1− θk)mk + θkgk,

vk+1 = (1− βk)vk + βk(gk)2,

xk+1 = xk − ηk(√vk+1 + ε)−1 ⊙mk+1 − ηkσxk.

(AdamW)

Here, Loshchilov & Hutter (2019) demonstrates that the weight decay is decoupled from the momentum terms
{mk} and the estimators {vk}, in the sense that the update schemes for {mk} and {vk} are independent of
the weight decay parameter σ. Moreover, unlike (Adam), the weight decay term σxk is not scaled by the
preconditioner (√vk+1 + ε)−1 in AdamW.

The AdamW, recognized for its superior generalization performance over Adam with coupled weight decay
(i.e., the method in (Adam)), has become a popular choice in the training of neural networks (Loshchilov
& Hutter, 2019), particularly in tasks such as image classification and language modeling. As shown in
(Schaipp, 2023; Zhuang et al., 2022), AdamW can be interpreted as a proximal approximation of Adam, with
regularization handled via proximal operators. However, compared with Adam, the convergence properties
of AdamW and its proximal variants (Schaipp, 2023; Zhuang et al., 2022) remain relatively unexplored. As
suggested in (Loshchilov & Hutter, 2019; Zhou et al., 2024), AdamW iterates by taking a descent step towards
a dynamically adjusted surrogate function f(x)+ σ

2
〈
x, (√vk+1 + ε)⊙ x

〉
in the k-th iteration, thereby lacking

a clearly defined objective function to minimize. As a result, only the paper by (Zhou et al., 2024) has
established the convergence properties of AdamW for continuously differentiable f . In (Zhou et al., 2024),
the stationarity of AdamW is measured by

∥∥∇f(x) + σ(√vk+1 + ε)⊙ x
∥∥. As the estimators {vk} evolves

over iterations and may not converge, the proposed stationarity measure is at best an approximation of
the standard notion of stationarity. More importantly, the analysis in (Zhou et al., 2024) relies on the
differentiability of f , and cannot be extended to analyze the convergence of AdamW for nonsmooth cases.
Consequently, the results presented in (Zhou et al., 2024) do not sufficiently explain the convergence of
AdamW in real-world training tasks, where the neural networks are typically nonsmooth.

Given that Adam-family methods with coupled weight decay usually perform less effectively than AdamW,
and considering that AdamW lacks convergence guarantees in training nonsmooth neural networks, we are
driven to raise the following question:

Can we design Adam-family methods with decoupled weight decay that have convergence
guarantees with non-diminishing stepsizes, in the context of training nonsmooth neural
networks?

1.2 Contributions

The contributions of our paper are summarized as follows.

• A novel framework with decoupled weight decay
In this paper, motivated by AdamW, we propose a novel framework for Adam-family methods with
decoupled weight decay (AFMDW),

gk = dk + ξk+1,

mk+1 = (1− θk)mk + θkgk,

Choose the estimator vk+1,

xk+1 = xk − ηkH(vk+1)⊙ (mk+1 + σxk).

(AFMDW)

Here, dk is an approximated evaluation of Df (xk), while ξk+1 is the corresponding evaluation noise
of dk. Therefore, gk represents the stochastic subgradients of f at xk. Moreover, the sequences
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{ηk} and {θk} are stepsizes for the variables {xk} and parameters for the momentum terms {mk},
respectively. Furthermore, H : Rn → Rn is the mapping that determines how we construct the
preconditioner based on vk+1. As the framework (AFMDW) is designed to minimize (UOP), both
the momentum term mk+1 and the weight decay term σxk are scaled by H(vk+1) in (AFMDW),
distinguishing it from AdamW.

• Convergence analysis

We establish the global convergence of the framework (AFMDW) under mild conditions with non-
diminishing stepsizes. When the noises {ξk} correspond to random reshuffling (RR), and the es-
timator {vk} is updated as in (AdamW) with non-diminishing {ηk} and {βk}, we prove that with
sufficiently small but non-diminishing {θk}, the sequence {xk} could stabilize within a neighborhood
of the critical points of (UOP). In addition, when we further assume {θk} → 0, we prove that the
sequence {xk} converges to the critical points of (UOP) almost surely. Moreover, by employing
single-timescale scheme in (AFMDW), we prove that with sufficiently small {ηk}, the sequence {xk}
stabilizes within a neighborhood of the critical points of (UOP).

Furthermore, we extend the convergence analysis of the framework (AFMDW) with diminishing
stepsizes and with replacement sampling (WRS), and establish the almost sure convergence to
critical points of (UOP). Table 1 presents a brief comparison of our results with existing works
on the convergence of stochastic subgradient methods.

Table 1: A brief comparison of our results and existing works on the convergence of stochastic subgradient
methods.

Result Sampling method Update scheme Stepsizes Convergence Guaranteed stability
Theorem 3.10 & 3.22 WRS Adam Diminishing Almost sure Y

Theorem 3.13 RR Adam Constant Almost sure Y
(Josz et al., 2023) RR SGD Constant Almost sure Y

(Bianchi et al., 2022) WRS SGD Constant High probability Y
(Xiao et al., 2023a) WRS Adam Diminishing Almost sure N

• Advantages in incorporating weight decay into Adam

We demonstrate that the framework (AFMDW) encompasses (see Table 2 for details) a wide range
of Adam-family methods, including SGD, Adam, AMSGrad, AdaBelief, AdaBound, Yogi. Therefore,
our analysis provides convergence guarantees for these Adam-family methods in training nonsmooth
neural networks.

Moreover, compared with the non-convergence analysis of Adam in (Reddi et al., 2018; Zhang et al.,
2022), our analysis illustrates that the incorporation of a weight decay term grants more flexibility on
the choices of the parameters {θk} and {βk} for the framework (AFMDW). These results illustrate
the great theoretical advantages of a weight decay term in the framework (AFMDW).

• Numerical experiments

Based on our proposed framework (AFMDW), we develop a novel method named Adam with Decou-
pled Weight Decay (AdamD) and establish its convergence guarantees in training nonsmooth neural
networks. We conduct numerical experiments in both image classification and language modeling
tasks to assess the performance of our proposed AdamD. The results show that in image classification
tasks, AdamD outperforms Adam and performs comparably to AdamW in both generalization and
efficiency. In language modeling tasks, it demonstrates similar effectiveness to Adam and outper-
forms AdamW, highlighting its versatility and effectiveness across different tasks. Additionally, our
numerical experiments illustrate that the sequence {∥yk − xk∥} tends to 0, where yk is an auxiliary
variable that approximates the dynamics of SGD. This validates our theoretical analysis that the
proposed AdamD asymptotically approximates the SGD method. These results further demonstrate
the promising potential of our proposed framework (AFMDW).
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1.3 Organization

The rest of this paper is organized as follows. In Section 2, we define the notations used throughout the
paper and present some basic concepts related to nonsmooth analysis and stochastic approximation. Section
3 presents the convergence properties of our proposed framework (AFMDW) with non-diminishing stepsizes
{ηk}. Moreover, we extend these convergence properties to the framework (AFMDW) with single-timescale
stepsizes. As an application of our theoretical analysis, we propose a new Adam-family method named Adam
with Decoupled Weight Decay (AdamD) and establish its convergence properties in Section 4. In Section
5, we present the results of our numerical experiments that investigate the performance of the proposed
AdamD in training nonsmooth neural networks. Some further discussions on AdamD are also presented in
Section 5. Finally, we conclude the paper in the last section.

2 Preliminaries

2.1 Notations

For any vectors x and y in Rn and δ ∈ R, we denote x⊙ y, xδ, x/y, |x|, x + δ,
√

x as the vectors whose i-th
entries are given by xiyi, xδ

i , xi/yi, |xi|, xi + δ, and √xi, respectively. We denote Rn
+ := {x ∈ Rn : xi ≥

0 for any 1 ≤ i ≤ n}. Moreover, for any subsets X ,Y ⊂ Rn, we denote X ⊙ Y := {x ⊙ y : x ∈ X , y ∈ Y},
|X | := {|x| : x ∈ X} and ∥X∥ = sup{∥w∥ : w ∈ X}. In addition, for any z ∈ Rn, we denote z +X := {z}+X
and z ⊙X := {z} ⊙ X .

Furthermore, for any positive sequence {θk}, we define λ0 := 0, λi :=
∑i−1

k=0 θk for i ≥ 1, and Λ(t) := sup{k ≥
0 : t ≥ λk}. More explicitly, Λ(t) = p if λp ≤ t < λp+1 for any p ≥ 0. In particular, Λ(λp) = p.

2.2 Noise model

In this subsection, we present some essential concepts from probability theory, which are necessary for the
proofs in this paper.
Definition 2.1. Let (Ω,F ,P) be a probability space. We say that {Fk}k∈N is a filtration if {Fk} is a
collection of σ-algebras that satisfies F0 ⊆ F1 ⊆ · · · ⊆ F∞ ⊆ F .
Definition 2.2. We say that a stochastic series {ξk} is a martingale difference sequence if the following
conditions hold,

• The sequence of random vectors {ξk} is adapted to the filtration {Fk},

• For each k ≥ 0, almost surely, it holds that E[|ξk|] <∞ and E [ξk|Fk−1] = 0.

Moreover, we say that a martingale difference sequence {ξk} is uniformly bounded if there exists a constant
Mξ > 0 such that supk≥0 ∥ξk∥ ≤Mξ.

In the following, we present the results in (Benaïm, 2006, Proposition 4.4), which controls the weighted
summation of any uniformly bounded martingale difference sequence, and plays a crucial role in establishing
the convergence properties for our proposed framework (AFMDW).
Proposition 2.3 (Proposition 4.4 in (Benaïm, 2006)). Suppose {θk} is a diminishing positive sequence of
real numbers that satisfy limk→∞ θk log(k) = 0. Then for any T > 0, and any uniformly bounded martingale
difference sequence {ξk}, almost surely it holds that

lim
s→∞

sup
s≤i≤Λ(λs+T )

∥∥∥∥∥
i∑

k=s

θkξk+1

∥∥∥∥∥ = 0. (1)

2.3 Nonsmooth analysis

In this subsection, we introduce some basic concepts in nonsmooth optimization, especially those related to
the concept of conservative field (Bolte & Pauwels, 2021). Interested readers could refer to (Bolte & Pauwels,
2021; Davis et al., 2020) for more details.
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We begin our introduction on the concept of Clarke subdifferential (Clarke, 1990), which plays an essential
role in characterizing stationarity and the development of algorithms for nonsmooth optimization problems.
Definition 2.4 ((Clarke, 1990)). For any given locally Lipschitz continuous function f : Rn → R and any
x ∈ Rn, the Clarke subdifferential ∂f is defined as

∂f(x) := conv ({d ∈ Rn : xk → x,∇f(xk)→ d}) . (2)

Next we present a brief introduction on the concept of conservative field, which can be applied to characterize
how nonsmooth neural networks are differentiated by automatic differentiation (AD) algorithms.
Definition 2.5. A set-valued mapping D : Rn ⇒ Rs is a mapping from Rn to a collection of subsets of Rs.
D is said to have a closed graph, or is graph-closed if the graph of D, defined by

graph(D) := {(w, z) ∈ Rn × Rs : w ∈ Rn, z ∈ D(w)} ,

is a closed subset of Rn × Rs.
Definition 2.6. A set-valued mapping D : Rn ⇒ Rs is said to be locally bounded if, for any x ∈ Rn, there
is a neighborhood Vx of x such that ∪y∈Vx

D(y) is bounded.

Next, we present the definition of conservative field and its corresponding potential function.
Definition 2.7. An absolutely continuous curve is a continuous mapping γ : R+ → Rn whose derivative
γ′ exists almost everywhere in R+ and γ(t)− γ(0) equals the Lebesgue integral of γ′ between 0 and t for all
t ∈ R+, i.e.,

γ(t) = γ(0) +
∫ t

0
γ′(u)du, for all t ∈ R+.

Definition 2.8 (Definition 1 in (Bolte & Pauwels, 2021)). Let D be a graph-closed set-valued mapping from
Rn to subsets of Rn. We call D a conservative field whenever it has nonempty compact values, and for any
absolutely continuous curve γ : [0, 1]→ Rn satisfying γ(0) = γ(1), it holds that∫ 1

0
max

v∈D(γ(t))
⟨γ′(t), v⟩dt = 0. (3)

Here the integral is understood in the Lebesgue sense.

It is important to note that any conservative field is locally bounded (Bolte & Pauwels, 2021, Remark 3).
We now introduce the definition of potential function corresponding to a conservative field.
Definition 2.9 (Definition 2 in (Bolte & Pauwels, 2021)). Let D be a conservative field in Rn. Then with
any given x0 ∈ Rn, we can define a function f : Rn → R through the path integral

f(x) =f(x0) +
∫ 1

0
max

d∈D(γ(t))
⟨γ′(t), d⟩dt = f(x0) +

∫ 1

0
min

d∈D(γ(t))
⟨γ′(t), d⟩dt (4)

for any absolutely continuous curve γ that satisfies γ(0) = x0 and γ(1) = x. The function f is called a
potential function for D. We also say that D admits f as its potential function, or that D is a conservative
field for f .

The following two lemmas characterize the relationship between conservative field and Clarke subdifferential.
Lemma 2.10 (Theorem 1 in (Bolte & Pauwels, 2021)). Let f : Rn → R be a potential function that admits
Df as its conservative field. Then Df (x) = {∇f(x)} almost everywhere.
Lemma 2.11 (Corollary 1 in (Bolte & Pauwels, 2021)). Let f : Rn → R be a potential function that admits
Df as its conservative field. Then ∂f is a conservative field for f , and for all x ∈ Rn, it holds that

∂f(x) ⊆ conv (Df (x)). (5)
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From the above two lemmas, we can conclude that the concept of conservative field can be regarded as a gen-
eralization of Clarke subdifferential. Therefore, conservative field can be applied to characterize stationarity,
as illustrated in the following definition.
Definition 2.12. Let f : Rn → R be a potential function that admits Df as its conservative field. We say
that x is a Df -stationary point of f if 0 ∈ conv (Df (x)). In particular, we say x is a ∂f-stationary point of
f if 0 ∈ ∂f(x).

As demonstrated in (Bolte & Pauwels, 2021), a conservative field can be regarded as a generalization of
Clarke subdifferential. Therefore, a function is differentiable in the sense of conservative field if it admits a
conservative field for which Definition 2.9 holds true. Such functions are called path-differentiable (Bolte &
Pauwels, 2021, Definition 3), which is given below.
Definition 2.13. Given a locally Lipschitz continuous function f : Rn → R, we say that f is path-
differentiable if f is the potential function of a conservative field on Rn.

It is worth mentioning that the class of path-differentiable functions is general enough to cover the objectives
in a wide range of real-world problems. As shown in (Davis et al., 2020, Section 5.1), any Clarke regular func-
tion is path-differentiable. Beyond Clarke regular functions, another important class of path-differentiable
functions are functions whose graphs are definable in an o-minimal structure (Davis et al., 2020, Definition
5.10). Usually, the o-minimal structure is fixed, and we simply call these functions definable. As demon-
strated in (Van den Dries & Miller, 1996), any definable function admits a Whitney Cs stratification (Davis
et al., 2020, Definition 5.6) for any s ≥ 1, hence is path-differentiable (Bolte & Pauwels, 2021; Davis et al.,
2020). To characterize the class of definable functions, (Davis et al., 2020; Bolte & Pauwels, 2021; Bolte
et al., 2022b) shows that numerous common activation functions and dissimilarity functions are all definable.
Furthermore, since definability is preserved under finite summation and composition (Bolte & Pauwels, 2021;
Davis et al., 2020), for any neural network built from definable blocks, its loss function is definable and thus
belongs to the class of path-differentiable functions.

Moreover, (Bolte et al., 2007) shows that any Clarke subdifferential of definable functions is definable.
Consequently, for any neural network constructed from definable blocks, the conservative field corresponding
to the AD algorithms can be chosen as a definable set-valued mapping formulated by compositing the Clarke
subdifferentials of all its building blocks (Bolte & Pauwels, 2021). The following proposition shows that the
definability of f and Df leads to the nonsmooth Morse–Sard property (Bolte et al., 2007) for (UOP).
Proposition 2.14 (Theorem 5 in (Bolte & Pauwels, 2021)). Let f be a potential function that admits Df as
its conservative field. Suppose both f and Df are definable over Rn, then the set {f(x) : 0 ∈ conv (Df (x))}
is finite.

2.4 Differential inclusion and stochastic subgradient methods

In this subsection, we introduce some fundamental concepts related to the stochastic approximation technique
that are essential for the proofs presented in this paper. The concepts discussed in this subsection are mainly
from (Benaïm et al., 2005). Interested readers could refer to (Benaïm, 2006; Benaïm et al., 2005; Borkar,
2009; Davis et al., 2020) for more details on the stochastic approximation technique.
Definition 2.15. For any locally bounded set-valued mapping D : Rn ⇒ Rn that is nonempty compact
convex valued and has closed graph, we say that an absolutely continuous path x(t) in Rn is a solution for
the differential inclusion

dx

dt
∈ D(x), (6)

with initial point x0 if x(0) = x0, and ẋ(t) ∈ D(x(t)) holds for almost every t ≥ 0.
Definition 2.16. For any given set-valued mapping D : Rn ⇒ Rn and any constant δ ≥ 0, the set-valued
mapping Dδ is defined as

Dδ(x) := {w ∈ Rn : ∃ z ∈ Bδ(x), dist(w,D(z)) ≤ δ}. (7)

Definition 2.17. Let B ⊂ Rn be a closed set. A continuous function ϕ : Rn → R is referred to as a Lyapunov
function for the differential inclusion (6) with the stable set B, if it satisfies the following conditions:

8
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1. For any γ that is a solution for (6) with γ(0) ∈ B, it holds that ϕ(γ(t)) ≤ ϕ(γ(0)) for any t ≥ 0.

2. For any γ that is a solution for (6) with γ(0) /∈ B, it holds that ϕ(γ(t)) < ϕ(γ(0)) for any t > 0.

The following proposition illustrates that f is a Lyapunov function for the differential inclusion dx
dt ∈ −Df (x).

The proof of the following proposition directly follows from (Bolte & Pauwels, 2021), hence is omitted for
simplicity.
Proposition 2.18. Suppose f is a path-differentiable function f that admits Df as its conservative field.
Then f is a Lyapunov function for the differential inclusion dx

dt ∈ −Df (x) with the stable set {x ∈ Rn : 0 ∈
Df (x)}.
Definition 2.19. We say that an absolutely continuous function γ is a perturbed solution to (6) if there
exists a locally integrable function u : R+ → Rn, such that

• For any T > 0, it holds that lim
t→∞

sup
0≤l≤T

∥∥∥∫ t+l

t
u(s) ds

∥∥∥ = 0.

• There exists δ : R+ → R such that lim
t→∞

δ(t) = 0 and γ̇(t)− u(t) ∈ Dδ(t)(γ(t)).

Now consider the sequence {xk} generated by the following updating scheme,

xk+1 = xk + ηk(dk + ξk), (8)

where {ηk} is a diminishing positive sequence of real numbers. We define the (continuous-time) interpolated
process of {xk} generated by (8) as follows.
Definition 2.20. The (continuous-time) interpolated process of {xk} generated by (8) is the mapping w :
R+ → Rn such that

w(λi + s) := xi + s

ηi
(xi+1 − xi) , s ∈ [0, ηi). (9)

Here λ0 := 0, and λi :=
∑i−1

k=0 ηk for i ≥ 1.

The following lemma is an extension of (Benaïm et al., 2005, Proposition 1.3), which allows for inexact
evaluations of the set-valued mapping D. It shows that the interpolated process of {xk} from (8) is a
perturbed solution of the differential inclusion (6).
Lemma 2.21. Let D : Rn ⇒ Rn be a locally bounded set-valued mapping that is nonempty compact convex
valued with closed graph. Suppose the following conditions hold in (8):

1. For any T > 0, it holds that lim
s→∞

sup
s≤i≤Λ(λs+T )

∥∥∥∑i
k=s ηkξk

∥∥∥ = 0.

2. There exist a positive sequence {δk} such that limk→∞ δk = 0 and dk ∈ Dδk (xk).

3. supk≥0 ∥xk∥ <∞, supk≥0 ∥dk∥ <∞.

Then the interpolated process of {xk} defined in (9) is a perturbed solution for (6).

The following theorem summarizes the results in (Benaïm et al., 2005), which illustrates the convergence of
{xk} generated by (8). It is worth mentioning that Theorem 2.22 is directly derived from putting (Benaïm
et al., 2005, Proposition 3.27) and (Benaïm et al., 2005, Theorem 3.6) together. Therefore, we omit the
proof of Theorem 2.22 for simplicity.
Theorem 2.22. Let D : Rn ⇒ Rn be a locally bounded set-valued mapping that is nonempty compact convex
valued with closed graph. For any sequence {xk}, suppose there exist a continuous function ϕ : Rn → R and
a closed subset B of Rn such that

1. ϕ is bounded from below, and the set {ϕ(x) : x ∈ B} has empty interior in R.

9
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2. ϕ is a Lyapunov function for the differential inclusion (6) that admits B as its stable set.

3. The interpolated process of {xk} is a perturbed solution of (6).

Then any cluster point of {xk} lies in B, and the sequence {ϕ(xk)} converges.

Similar results under slightly different conditions can be found in (Borkar, 2009; Davis et al., 2020; Duchi &
Ruan, 2018). Moreover, towards the convergence properties of (8) with potentially non-diminishing stepsizes,
several recent works (Bianchi et al., 2022; Josz et al., 2023; Xiao et al., 2023b) provide convergence guarantees
under more relaxed conditions. Interested readers could refer to those works for details.

3 Global Convergence

In this section, we prove the convergence properties of the framework (AFMDW) even though the sequence
of stepsizes {ηk} is assumed to be non-diminishing. The proofs are provided in the Appendix.

3.1 Basic assumptions

We first make the following assumptions on the quadratically regularized optimization problem (UOP).
Assumption 3.1. 1. f is a path-differentiable function that admits a convex valued set-valued mapping

Df as its conservative field.

2. There exists a constant L > 0 and ν ∈ [0, 1), such that for any x ∈ Rn, it holds that ∥Df (x)∥ ≤
L(1 + ∥x∥ν).

3. The set {g(x) : 0 ∈ Df (x) + σx} has empty interior in R.

As discussed in Section 2.3, the class of path-differentiable functions covers a wide variety of objective
functions in real-world applications. In particular, for a wide range of common neural networks, their loss
functions are definable and thus path-differentiable, as demonstrated in (Bolte & Pauwels, 2021; Castera
et al., 2021; Davis et al., 2020). As a result, Assumption 3.1(1) is mild in practice. Moreover, Assumption
3.1(2) imposes a growth condition on the conservative field. Furthermore, Assumption 3.1(3) is referred to
as the nonsmooth weak Sard’s property, which is commonly observed in various existing works (Bianchi &
Rios-Zertuche, 2021; Bolte et al., 2022a; Bolte & Pauwels, 2021; Castera et al., 2021; Davis et al., 2020; Le,
2023) and is demonstrated to be mild in (Bolte & Pauwels, 2021; Castera et al., 2021; Davis et al., 2020).

Notice that the chain rule holds for conservative fields (Bolte & Pauwels, 2021, Lemma 5), and it is easy to
verify that g is a path-differentiable function that admits Df (x) + σx as its conservative field. Therefore, in
the rest of the paper, we fix the conservative field Dg : Rn ⇒ Rn for the objective function g in (UOP) as:

Dg(x) := Df (x) + σx. (10)

In the following lemma, we present some basic properties of Dg. The proof of Lemma 3.2 follows straight-
forwardly from (Bolte & Pauwels, 2021, Corollary 4), hence it is omitted for simplicity.
Lemma 3.2. Suppose Assumption 3.1 holds. Then g is a path-differentiable function, and Dg is a convex-
valued graph-closed conservative field that admits g as its potential function.

We also need the following assumptions on the framework (AFMDW) to establish its convergence properties.
Assumption 3.3. 1. There exist constants εv and Mv with 0 < εv < Mv, such that εv ≤ H(vk) ≤Mv

holds for any k ≥ 0.

2. There exists a non-negative sequence {δk} such that limk→∞ δk = 0 and dk ∈ Dδk

f (xk).

3. The sequence of noises {ξk} is a uniformly bounded martingale difference sequence. That is, there
exists a constant Mξ such that almost surely, supk≥0 ∥ξk∥ ≤Mξ, and E[ξk+1|Fk] = 0 for any k ≥ 0.

10
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Here, we make some comments on the assumptions in Assumption 3.3. Assumption 3.3(1) assumes the
uniform boundedness of {H(vk)}, which is satisfied in various existing works as shown in Table 2. In
addition, later in Section 3.2, we provide some sufficient conditions that guarantee the uniform boundedness
of {xk}. Assumption 3.3(2) characterizes how dk approximates Df (xk).

Furthermore, Assumption 3.3(3) assumes that the evaluation noises {ξk} is a uniformly bounded martingale
difference sequence. Consider the setting where f(x) = 1

N

∑N
i=1 fi(x) for locally Lipschitz continuous and

path-differentiable functions {fi} that admit {Dfi
} as their conservative fields (i.e., f follows a finite-sum

formulation), {xk} is uniformly bounded, and gk ∈ Dfik
(xk) with randomly chosen ik ∈ [N ] by WRS. Then as

demonstrated in (Bolte & Pauwels, 2021; Castera et al., 2021), there exists {ξk} such that gk−ξk+1 ∈ Df (xk)
and {ξk} is a uniformly bounded martingale difference sequence. Therefore, we can conclude that Assumption
3.3(3) characteizes the evaluation noises when f follows a finite-sum formulation and the indexes are sampled
by WRS.

3.2 Uniform boundedness of {xk} and {vk}

In this subsection, we present some sufficient and easy-to-verify conditions that guarantee the validity of
uniform boundedness of {xk}. The following proposition illustrates that under some mild global growth
conditions for f and the uniform boundedness of {H(vk)}, the sequence {xk} is uniformly bounded.
Proposition 3.4. Suppose Assumption 3.1 and Assumption 3.3 hold, and supk≥0 ηk ≤ 1

σεv
. Then for any

initial point (x0, m0, v0), there exists a constant Q > 0 such that supk≥0 ∥xk∥ ≤ Q.

Next, we discuss the uniform boundedness of the sequence {H(vk)}. Apart from Assumption 3.1 and
Assumption 3.3, we make the assumption on the global Lipschitz continuity of f , in the sense that

sup
x∈Rn

∥Df (x)∥ ≤Mf , for some constant Mf > 0. (11)

Such an assumption is standard in various existing works. Table 2 lists some Adam-family methods, where
the sequence {H(vk)} remains uniformly bounded under Assumption 3.1, Assumption 3.3, and equation
(11).

Table 2: Different update schemes for {vk} in the framework (AFMDW) under Assumption 3.1, Assumption
3.3, and (11). Here ε, cl, cu > 0 are hyper-parameters for these Adam-family methods.

Method Update scheme for {vk} Formulation for H(v) Choice of (εv , Mv)
SGDW (Loshchilov & Hutter, 2019) vk+1 = (1 − β1)vk + β1g2

k 1 (1, 1)
Adam (Kingma & Ba, 2015) vk+1 = (1 − β1)vk + β1g2

k (
√

v + ε)−1 ( 1
(Mf +Mξ)+ε

, 1
ε

)
AMSGrad (Reddi et al., 2018) vk+1 = max{vk, (1 − β1)vk + β1g2

k} (
√

v + ε)−1 ( 1
(Mf +Mξ)+ε

, 1
ε

)
Adamax (Kingma & Ba, 2015) vk+1 = max{β1vk, |gk| + ε} (v)−1 ( 1

(Mf +Mξ)2+ε
, 1

ε
)

RAdam (Liu et al., 2019) vk+1 = (1 − β1)vk + β1g2
k (

√
v + ε)−1 ( 1

(Mf +Mξ)+ε
, 1

ε
)

AdaBelief (Zhuang et al., 2020) vk+1 = (1 − β1)vk + β1(gk − mk+1)2 (
√

v + ε)−1 ( 1
2(Mf +Mξ)+ε

, 1
ε

)

AdaBound (Luo et al., 2019) vk+1 = (1 − β1)vk + β1g2
k min{cl, max{cu, v− 1

2 }} (cl, cu)
Yogi (Zaheer et al., 2018) vk+1 = vk − β1sign(vk − g2

k) ⊙ g2
k (

√
v + ε)−1 ( 1

(Mf +Mξ)+ε
, 1

ε
)

3.3 Convergence with non-diminishing stepsizes{ηk}

Assumption 3.5. The sequences of stepsizes {ηk} and momentum parameters {θk} satisfy

ηmax := sup
k≥0

ηk < min
{

2
σMv

,
1

σεv

}
, ηmin := inf

k≥0
ηk > 0, and

∞∑
k=0

θk =∞. (12)

We begin our theoretical analysis with Lemma 3.6, which shows that the sequence {mk} and {gk} are
uniformly bounded. Lemma 3.6 directly follows from the uniform boundedness of {xk} in Proposition 3.4
and {ξk} in Assumption 3.3(3) and the fact that Df is locally bounded, hence we omit its proof for simplicity.
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Lemma 3.6. Suppose Assumption 3.1 and Assumption 3.3 hold. Then there exists a constant Md > 0 such
that supk≥0{∥gk∥+ ∥mk∥} ≤Md holds almost surely.

Lemma 3.7 illustrates that ∥σxk + mk∥ → 0 as the momentum parameter {θk} diminishes.
Lemma 3.7. Suppose Assumption 3.1, Assumption 3.3, and Assumption 3.5 hold. Then for any {θk}
satisfying limk→+∞ θk = 0, we have that limk→+∞ ∥σxk + mk∥ = 0 holds almost surely.

From the proof of Lemma 3.7, it follows that the asymptotic behavior of ∥σxk + mk∥ can be controlled
by {θk} as k → ∞. Specifically, from equation (32), we have limk→∞ δ̂k+1 = 0 when limk→∞ θk = 0.
Consequently, for any ε > 0, there exists a threshold θmax > 0 such that, if lim supk→∞ θk ≤ θmax, it follows
that lim supk→∞ ∥σxk + mk∥ ≤ ε. Moreover, the convergence of ∥σxk + mk∥ is faster as {θk} decreases more
rapidly.

Based on the Lemma 3.7, let the auxiliary sequence {yk} be defined as

yk := − 1
σ

mk, for any k ≥ 0. (13)

Then we can conclude that limk→∞ ∥yk − xk∥ = 0. More importantly, substituting (13) into the update
scheme for {mk} in (AFMDW), we arrive at the following relation

yk+1 = yk −
θk

σ
(dk + σyk + ξk+1) . (14)

In the following lemma, we prove that dk + σyk can be regarded as an approximated evaluation for Dg(yk).
Lemma 3.8. Suppose Assumption 3.1, Assumption 3.3, and Assumption 3.5 hold. Then let δ⋆

k := (1 +
σ)δk + δ̂k, it holds that

dk + σyk ∈ D
δ⋆

k
g (yk), (15)

where δ̂k is defined in equation (32).

We can conclude from Lemma 3.8 that the auxiliary sequence {yk} follows the differential inclusion,

yk+1 ∈ yk −
θk

σ

(
Dδ⋆

k
g (yk) + ξk+1

)
. (16)

This fact illustrates that the sequence {yk} can be viewed as a sequence generated by the SGD method for
minimizing g. Therefore, in the following proposition, we prove that the interpolated process of the sequence
{yk} is a perturbed solution of the following differential inclusion:

dy

dt
∈ −Dg(y). (17)

We first present the results for the case where the noise is induced by with-replacement sampling.
Proposition 3.9. Suppose Assumption 3.1, Assumption 3.3 and Assumption 3.5 hold, and
limk→+∞ θk log(k) = 0. Then the interpolated process of the sequence {yk} is a perturbed solution for
the differential inclusion (17).

In the following theorem, we prove the convergence properties of the framework (AFMDW).
Theorem 3.10. Suppose Assumption 3.1, Assumption 3.3 and Assumption 3.5 hold, and
limk→+∞ θk log(k) = 0. Then almost surely, any cluster point of the sequence {xk} is a Dg-stationary point
of g, and {g(xk)} converges.

In the rest of this subsection, we aim to establish the global stability of the framework (AFMDW), where
the noises {ξk} correspond to random reshuffling. Therefore, we make the following assumptions on the
momentum parameters {θk} and noises {ξk}.

12
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Assumption 3.11. There exists an integer N > 0 such that

1. For any nonnegative integers i, j < N , it holds that θkN+i = θkN+j for any k ∈ N+.

2. For any j ∈ N+, almost surely, it holds that
∑(j+1)N−1

k=jN ξk+1 = 0.

Here we make several remarks on Assumptions 3.11. Assumption 3.11(1) demonstrates that the momentum
parameters {θk} remain constant within each epoch, which is a standard setting in neural network training
tasks.

Moreover, Assumption 3.11(2) characterizes the random reshuffling sampling technique for computing the
stochastic subgradients {gk} in (AFMDW). For example, consider the case where f(x) = 1

N

∑N
i=1 fi(x), with

each fi being path-differentiable and admitting a convex-valued conservative field Dfi(x). At each iteration,
we sample ik from [N ] := {1, 2, . . . , N} such that {ik : jN ≤ k < (j + 1)N} = [N ] holds for any j ≥ 0. We
then compute gk ∈ Dfik

(xk). This setup corresponds to the standard random reshuffling framework.

For each k ≥ 0, let jk ≥ 0 be such that k ∈ [jkN, (jk + 1)N), it follows that gk ∈ Df (xk) + ξk+1, where ξk+1
represents the evaluation noise. Defining

δk = 2N
∑

jkN≤l<(jk+1)N

∥xl+1 − xl∥ , (18)

we have gk ∈ Dfik
(xk) ⊆ Dδk/(2N)

fik
(xjkN ). Consequently, it holds that

1
N

∑
jkN≤l<(jk+1)N

gl ∈
1
N

∑
jkN≤l<(jk+1)N

Dδk/(2N)
fil

(xjkN ) ⊆ Dδk/2
f (xjkN ) ⊆ Dδk

f (xk).

Furthermore, it holds that 1
N

∑
jN≤k<(j+1)N ξk+1 = 0. Therefore, we conclude that Assumption 3.11(2)

corresponds to settings where the stochastic subgradients {gk} are generated by the random reshuffling
sampling technique. Furthermore, as shown later in Theorem 3.13, establishing the global stability of the
iterates only requires {δk} to be sufficiently small rather than diminishing. This condition is ensured when
{ηk} is chosen sufficiently small, given the definition of {δk} in (18).
Lemma 3.12. Suppose Assumption 3.3(3) and Assumption 3.11 hold for the sequence of noises {ξk} and
momentum parameters {θk}. Then for any ε > 0 and T > 0, there exists θε > 0 such that for any {θk}
satisfying lim supk→+∞ θk ≤ θε, almost surely, it holds that

lim sup
s→+∞

sup
s≤i≤Λ(λ(s)+T )

∥∥∥∥∥
i∑

k=s

θkξk+1

∥∥∥∥∥ ≤ ε. (19)

Then we have the following theorem illustrating the global stability of the framework (AFMDW) with
non-diminishing {θk}.
Theorem 3.13. Suppose Assumption 3.1, Assumption 3.3(1)(3), Assumption 3.5, and Assumption 3.11
hold. Then for any ε > 0, there exists θ̂ > 0 and δ̂ > 0, such that for any {θk} and {δk} satisfying
lim supk→+∞ δk ≤ δ̂ and lim supk→+∞ θk ≤ θ̂, almost surely, it holds that

lim sup
k→+∞

dist (xk, {x ∈ Rn : 0 ∈ Dg(x)}) ≤ ε. (20)

Theorem 3.13 implies that as long as the momentum parameters {θk} are sufficiently small, the sequence {xk}
maintains stability, regardless of how the estimator vk is updated. When the estimator vk is updated in the
manner of Adam, i.e., as a second-moment estimator, AdamD consistently works as long as the momentum
parameter θk is kept small, irrespective of the choice of parameters for updating the second-moment estimator
vk. Therefore, our proposed AdamD offers greater flexibility in selecting momentum parameters and those
associated with updating vk. For a numerical illustration, refer to Figure 4 in Section 5.1.3.
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Moreover, from the results in Theorem 3.13, we can prove that with diminishing {θk}, the sequence {xk}
can asymptotically find the stationary points of (UOP). The result is presented in the following corollary
and is omitted for simplicity.
Corollary 3.14. Suppose Assumption 3.1, Assumption 3.3, Assumption 3.5, and Assumption 3.11 hold, and
limk→+∞ θk = 0. Then almost surely, any cluster point of the sequence {xk} is a Dg-stationary point of g,
and {g(xk)} converges.

3.4 Convergence with a single-timescale in {ηk} and {θk}

In this subsection, we investigate the convergence of the framework (AFMDW) when the sequences of
stepsizes {ηk} and momentum parameters {θk} are single-timescale in the sense that they diminish at the
same rate.

The convergence properties presented in Section 3 suggest that the sequence {yk} asymptotically approx-
imates the trajectory of the differential inclusion (17). One may conjecture that this phenomenon is at-
tributable to the involvement of non-diminishing stepsizes {ηk} in the framework (AFMDW).

However, in this section, we aim to show that when single-timescale stepsizes and momentum parameters are
employed in the framework (AFMDW), the interpolated process of {yk} is still a perturbed solution of the
differential inclusion (17). These theoretical results suggest that it is the decoupled weight decay that leads
to the asymptotic approximation of the differential inclusion (17) in the framework (AFMDW), regardless
of the timescale of the employed sequences {ηk} and {θk}.

The proof techniques in this section are motivated by the techniques in (Xiao et al., 2023a, Section 3). To
prove the convergence of (AFMDW) with single-timescale sequences {ηk} and {θk}, we make the following
assumptions.
Assumption 3.15. 1. There exists a locally bounded mapping W : Rn × Rn → Rn

+ and a prefixed
constant τ2 > 0 such that the sequence of estimators {vk} follows the update scheme vk+1 = vk −
τ2ηk(vk −W (gk, mk+1)).

2. The mapping H : Rn
+ → Rn

+ is fixed as H(v) = (max{v, 0}+ ε)− 1
2 for a prefixed constant ε > 0.

3. The sequences {ηk} and {θk} are positive and satisfies
∞∑

k=0
ηk =∞,

∞∑
k=0

θk =∞, lim
k→∞

θk

ηk
= τ1, (21)

for a prefixed positive constant τ1 ∈ [ τ2
4 ,∞).

4. There exists a non-negative sequence {δk} such that limk→∞ δk = 0 and dk ∈ Dδk

f (xk).

5. The sequence of noises {ξk} is a uniformly bounded martingale difference sequence.

Here we make some comments on Assumption 3.15. Assumption 3.15(4)(5) are identical to Assumption
3.3(2)(3), respectively. Assumption 3.15(1) characterizes how the estimators {vk} are updated. As discussed
in (Barakat & Bianchi, 2021; Xiao et al., 2023a), Assumption 3.15(1) is general enough to include the update
schemes for Adam, AdaBelief, AMSGrad, and Yogi. Moreover, Assumption 3.15(2) fixes the formulation of
the mapping H, and Assumption 3.15(3) assumes that the stepsizes {ηk} and momentum parameters {θk}
in the framework (AFMDW) are single-timescale.

We begin our analysis with the following lemma, which shows the uniform boundedness of {mk} and {gk}
directly from the uniform boundedness of {xk} in Proposition 3.4. As a result, we omit its proof for simplicity.
Lemma 3.16. Suppose Assumption 3.1 and Assumption 3.15 hold. Then there exists a constant Md > 0
such that supk≥0 ∥gk∥+ ∥mk∥ ≤Md holds almost surely.

Next we present the following auxiliary lemma, which follows directly from the uniform boundedness of {xk},
{mk} and {gk} in Lemma 3.16, together with the local boundedness of the mappings Df and W .
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Lemma 3.17. Suppose Assumption 3.1 and Assumption 3.15 hold. Then there exists a constant MW > 0
such that supk≥0 ∥W (gk, mk+1)∥ ≤MW holds almost surely.

Let P+(v) := max{v, 0}, and U(x, m) := {d ∈ Rn
+ : ∥d∥ ≤ MW }. Consider the set-valued mapping

G : Rn × Rn × Rn ⇒ Rn × Rn × Rn defined by

G(x, m, v) :=

(P+(v) + ε)− 1
2 ⊙ (m + σx)

τ1m− τ1Df (x)
τ2v − τ2U(x, m)

 , (22)

and the following differential inclusion:(
dx

dt
,

dm

dt
,

dv

dt

)
∈ −G(x, m, v). (23)

In the following lemma, we prove that the set-valued mapping G is capable of characterizing the update
direction of {(xk, mk, vk)} in the framework (AFMDW). The proof straightforwardly follows from Lemma
3.17, hence we omit it for simplicity.
Lemma 3.18. Suppose Assumption 3.1 and Assumption 3.15 hold. Then the inclusion

vk+1 ∈ vk − τ2ηk(vk − U(xk, mk)) (24)

holds for any k ≥ 0. Furthermore, supk≥0 ∥vk+1∥ <∞ holds almost surely.

Let ∂P+ be the generalized Jacobian of the mapping P+, and define the function h : Rn ×Rn ×Rn → R as

h(x, m, v) = f(x) + σ

2 ∥x∥
2 + 1

2τ1

〈
m + σx, (P+(v) + ε)− 1

2 ⊙ (m + σx)
〉

. (25)

The next Lemma 3.19 presents the formulation of the conservative field of h.
Lemma 3.19. Suppose Assumption 3.1 and Assumption 3.15 hold. Then h is a potential function that
admits

Dh(x, m, v) =

Df (x) + σx + σ
τ1

(P+(v) + ε)− 1
2⊙(m + σx)

1
τ1

(P+(v) + ε)− 1
2 ⊙ (m + σx)

− 1
4τ1

(m + σx)2 ⊙ (P+(v) + ε)− 3
2 ⊙ ∂P+(v)

 (26)

as its conservative field.
Proposition 3.20. Suppose Assumption 3.1 and Assumption 3.15 hold. Then h is a Lyapunov function for
the differential inclusion (23) with the stable set {(x, m, v) ∈ Rn × Rn × Rn : 0 ∈ Dg(x), m + σx = 0}.

In the next proposition, we show that the interpolated process of the sequence {(xk, mk, vk)} is a perturbed
solution to the differential inclusion (23).
Proposition 3.21. Suppose Assumption 3.1 and Assumption 3.15 hold, and limk→+∞ ηk log(k) = 0. Then
almost surely, the interpolated process of {(xk, mk, vk)} is a perturbed solution for the differential inclusion
(23).

In the following theorem, we present the convergence properties of the sequence {(xk, mk, vk)}, and prove
that limk→∞ ∥mk + σxk∥ = 0 almost surely.
Theorem 3.22. Suppose Assumption 3.1 and Assumption 3.15 hold, and limk→+∞ ηk log(k) = 0. Then for
the sequence {(xk, mk, vk)} generated by the framework (AFMDW), almost surely, it holds that

1. any cluster point of the sequence {xk} is a Dg-stationary point of g;

2. limk→∞ ∥mk + σxk∥ = 0;

3. the sequence of function values {g(xk)} converges.
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Theorem 3.22 illustrates that limk→∞ ∥xk − yk∥ = 0. Therefore, substituting the formulation of {yk} in
(13) into the update scheme of {mk} in the framework (AFMDW), we conclude that {yk} follows the same
scheme as (14). Together with the fact that limk→∞ ∥xk − yk∥ = 0, based on the same proof techniques as
in Lemma 3.8, we can conclude that there exists a sequence of non-negative random variables {τk} such that
limk→∞ τk = 0 holds almost surely, and

yk+1 ∈ yk −
θk

σ
(Dτk

g (yk) + ξk+1).

Then we have the following corollary showing that the interpolated process of the sequence {yk} is a perturbed
solution of the differential inclusion (17). The proof of Corollary 3.23 is the same as Proposition 3.9, hence
is omitted for simplicity.
Corollary 3.23. Suppose Assumption 3.1 and Assumption 3.15 hold. Then the interpolated path of the
sequence {yk} is a perturbed solution of the differential inclusion (17).

4 Application: Adam with Decoupled Weight Decay

In this section, we propose a novel variant of Adam, which is named as Adam with decoupled weight decay
(AdamD). As an application of our theoretical analysis in Section 3, we show the convergence properties of
AdamD directly from the results in Theorem 3.10 and Theorem 3.22.

Throughout this section, we focus on the settings where f in (UOP) takes the following finite-sum formula-
tion:

f(x) = 1
N

N∑
i=1

fi(x). (27)

Here we make the following assumptions on the functions {fi : i ∈ [N ]} in (27).
Assumption 4.1. 1. For each i ∈ [N ], fi is a definable function that admits a definable set-valued

mapping Dfi as its conservative field.

2. supi∈[N ], x∈Rn ∥Dfi
(x)∥ <∞.

3. f is bounded from below.

As demonstrated in (Bolte & Pauwels, 2021), for any neural network that is built from definable blocks, the
conservative field corresponds the AD algorithms is a definable set-valued mapping. Hence, we can conclude
that Assumption 4.1(1) can be satisfied in a wide range of training tasks. Assumption 4.1(2) assumes the
Lipschitz continuity of the function f , which is common in various existing works (Barakat & Bianchi, 2021;
Guo et al., 2021; Shi et al., 2021; Zhang et al., 2022).

Moreover, (Bolte et al., 2021, Corollary 4) illustrates that f is a path-differentiable function and admits
1
N

∑N
i=1Dfi

as its conservative field. Therefore, in the rest of this section, we choose the conservative field
Df as

Df (x) = conv
(

1
N

N∑
i=1
Dfi(x)

)
. (28)

The detailed AdamD method is presented in Algorithm 1. In our proposed AdamD method, the weight
decay term σxk is decoupled from the update schemes for {mk} and {vk}. In particular, the estimators {vk}
are updated as an exponential moving average over {g2

k} with parameter β ∈ (0, 1). We note that AdamP
introduced in Schaipp (2023) employs a proximal operator to handle the L2 regularizer term, derived from
a first-order Taylor expansion with a variable metric. In practice, its updates yield approximately the same
coefficients for xk and mk, as our AdamD method. However, to the best of our knowledge, no convergence
result is available for AdamP, even in the smooth case.

Based on the convergence properties of the framework (AFMDW) presented in Theorem 3.10, the following
theorem establishes the convergence properties of Algorithm 1 with non-diminishing {ηk}.
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Algorithm 1 Adam with decoupled weight decay
(AdamD) for nonsmooth problem (UOP).
Require: Initial point x0 ∈ Rn, m0 ∈ Rn, v0 ∈

Rn
+, weight decay parameter σ > 0, safeguard

parameter ε > 0, stepsize η ≤ ε
σ , and β ∈ (0, 1);

1: Set k = 0;
2: while not terminated do
3: Independently sample ik from [N ], and com-

pute gk ∈ Dfik
(xk);

4: Update momentum:

mk+1 = (1− θk)mk + θk gk;

5: Update estimator:

vk+1 = (1− β)vk + β g2
k;

6: Update:

xk+1 = xk−η (√vk+1 + ε)−1 ⊙
(
mk+1 + σxk

)
;

7: Set k ← k + 1;
8: end while
9: return xk.

Algorithm 2 AdamW (Loshchilov & Hutter, 2019).
Require: Initial point x0 ∈ Rn, m0 ∈ Rn, v0 ∈

Rn
+, weight decay parameter σ > 0, safeguard

parameter ε > 0, θ ∈ (0, 1), and β ∈ (0, 1);
1: Set k = 0;
2: while not terminated do
3: Independently sample ik from [N ], and com-

pute gk ∈ Dfik
(xk);

4: Update momentum:

mk+1 = (1− θ)mk + θ gk;

5: Update estimator:

vk+1 = (1− β)vk + β g2
k;

6: Update:

xk+1 = xk−η
(

(√vk+1 + ε)−1 ⊙mk+1 + σxk

)
;

7: Set k ← k + 1;
8: end while
9: return xk.

Theorem 4.2. Suppose Assumption 3.5 and Assumption 4.1 hold. Moreover, we assume that the momentum
parameters {θk} is a positive sequence that satisfies limk→∞ θk log(k) = 0. Then almost surely, any cluster
point of {xk} in Algorithm 1 is a Dg-stationary point of g, and the sequence {g(xk)} converges.

In the following theorem, we establish the convergence properties for Algorithm 1 when it is equipped with
single-timescale stepsizes. The results in Theorem 4.3 are direct consequences of Theorem 3.22. Hence, we
omit its proof for simplicity.
Theorem 4.3. Suppose Assumption 4.1 holds. Moreover, we assume that

1. The stepsizes η and β are replaced by ηk and βk respectively in Algorithm 1;

2. There exists constants τ2 ≥ 4τ1 > 0 such that θk = τ1ηk and βk = τ2ηk hold for any k ≥ 0. Moreover,
the sequence {ηk} satisfies

∑∞
k=0 ηk =∞ and limk→∞ ηk log(k) = 0.

3. In Step 6 of Algorithm 1, the sequence {xk} follows the update scheme

xk+1 = xk − ηk(vk+1 + ε)− 1
2 ⊙ (mk+1 + σxk).

Then almost surely, any cluster point of {xk} in Algorithm 1 is a Dg-stationary point of g, and the sequence
{g(xk)} converges.

5 Numerical Experiments

In this section, we conduct numerical experiments to demonstrate the effectiveness of AdamD in the context
of image classification and language modeling tasks. We compare AdamD with the most popular adaptive
algorithms used for training neural networks, i.e. Adam and AdamW. All experiments are conducted using
an NVIDIA RTX 3090 Ti GPU and are implemented in Python 3.9 with PyTorch 1.12.0.
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5.1 Implementations of AdamD

In our numerical experiments, we focus on two key tasks: image classification employing Convolutional Neural
Networks (CNNs) and language modeling using Long Short-Term Memory (LSTM) networks (Hochreiter
& Schmidhuber, 1997). Specifically, our image classification experiments include the deployment of well-
established architectures, namely Resnet34 (He et al., 2016) and Densenet121 (Huang et al., 2018), to train
the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009). Our language modeling experiments focus
on LSTM networks applied to the Penn Treebank dataset (Marcus et al., 1993). It is worth noting that
AdamW typically demonstrates superior generalization performance when used to train CNNs for image
classification tasks. For training LSTMs, prior studies such as (Ding et al., 2023; Loshchilov & Hutter, 2019;
Zhuang et al., 2020) have observed that Adam exhibits better generalization capacity than AdamW.

5.1.1 CNNs on image classification

In all our experiments on image classification, we train the models consistently for 200 epochs, employing a
batch size of 128. At the 150th epoch, we reduce the step size by a factor of 0.1. This step size reduction
schedule is a prevalent practice in contemporary deep neural network training. It is helpful to accelerate
the convergence of the optimization algorithm, and to enhance generalization capacity. Similar strategies
can be observed in previous works, such as (He et al., 2016; Zhuang et al., 2020). We adopt the following
hyperparameter settings for the tested algorithms. For the weight decay parameter, we consider values in
σ ∈ {5×10−3, 10−3, 5×10−4, 10−4}. By fixing σ first, we ensure that all methods solve the same minimization
problem. With σ fixed, we then perform a grid search over the learning rate η for AdamD, Adam, and AdamW
using η ∈ {5×10−5, 10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}. Other parameters are set as follows:

• Adam/AdamW: We set ε = 10−8, θk = 10−1 and β = 10−3 as the default setting in Pytorch.

• AdamD: We set θs = θ0

(log(s+2))
3
2

, with s representing the epoch number. Within the s-th epoch, θk

takes the constant value θs. Under this setting, we can easily verify that θk = o( 1
log k ). Here, we

set the initial momentum parameter to θ0 = 10−1, the second moment parameter to β = 10−3 and
the regularization parameter to ε = 10−8, which are the same as the default settings in PyTorch for
Adam/AdamW.

In Step 6 of Algorithm 1, the coefficient associated with xk is given by 1 − ησ
(√

vk+1 + ε
)−1. Note that

as training progresses, √vk+1 + ε tends to decrease, which can make the coefficient excessively small when
the weight decay σ is relatively large. In our experiments, larger weight decay parameters (exceeding 10−5)
enhance generalization in image classification, whereas smaller weight decay parameters (not exceeding
10−5) yield better performance for LSTM training, as discussed in a later subsection. This trend is also
observed in (Luo et al., 2019; Zhuang et al., 2020; Li et al., 2022). To enhance AdamD’s performance in
image classification, where larger weight decay typically yields better generalization, we adopt a clipping
strategy for the preconditioner similar to that used in Adabound (Luo et al., 2019). Specifically, we define
σ̂k := Clip

(
σ(√vk+1 + ε)−1, cl, cu

)
, thereby balancing the coefficient, now expressed as 1 − ησ̂k. Here, the

clipping function is defined as Clip(z, cl, cu) := max{min{z, cu}, cl}, and we choose (cl, cu) = (10−2, 102).

Figure 1 presents numerical results obtained with a fixed weight decay parameter σ = 5 × 10−3 and the
best-tuned learning rate η that achieves the highest test accuracy, ensuring that all methods minimize the
same objective function. Additional experimental results and further details are provided in Appendix B.
As shown in the first row, all methods can achieve 100% training accuracy across four tasks. In the second
row, AdamD consistently attains the highest test accuracy compared with Adam and AdamW, while Adam’s
generalization performance is inferior. This may be due to AdamD’s asymptotic approximation to SGD with
weight decay, which has been shown to perform better in image classification (Luo et al., 2019; Zhuang
et al., 2020). These findings underscore the importance of weight decoupling when solving the quadratically
regularized problem defined in (UOP).

To verify the results in Lemma 3.7, we also present a plot of ∥xk + σmk∥ as shown in Figure 2. When θk

adheres to a decay schedule described by O (k−γ), (32) and basic calculus imply that ∥σxk + mk∥ exhibits
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(a) ResNet34 on CIFAR10 (b) DenseNet on CIFAR10 (c) ResNet34 on CIFAR100 (d) DenseNet on CIFAR100

Figure 1: ResNet34 and DenseNet121 on CIFAR10 and CIFAR100 datasets. Stepsize is reduced to 0.1 times
of the original value at the 150th epoch.
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(a) ResNet34 on CIFAR10 (b) ResNet34 on CIFAR100

Figure 2: ∥mk + σxk∥ under different decay rates of {θk}. The stepsizes for updating {xk} are fixed.

an asymptotic behavior of O (k−γ). The results in Figure 2 are consistent with our theoretical analysis
that {∥mk + σxk∥} converges to 0, or equivalently {∥xk − yk∥} converges to 0. Notably, larger values of γ
correspond to a more rapid decline in ∥σxk + mk∥.
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5.1.2 LSTMs on language modeling

In all our language modeling experiments, we train our models for 200 epochs using a batch size of 128.
We employ a step size reduction strategy that decreases the learning rate to 0.1 times its previous value
twice during training, specifically at the 75th and 150th epochs. These settings follow the commonly used
experimental setup for training LSTMs, as demonstrated in previous works (Chen et al., 2021; Zhuang et al.,
2020). This strategy accelerates convergence and enhances the generalization capacity of the optimization
algorithm. We adopt the following hyperparameter settings for the tested algorithms. For the weight decay
parameter, we consider values in σ ∈ {10−4, 10−5, 10−6}. By first fixing σ, we ensure that all methods
minimize the same objective function. With σ fixed, we perform a grid search over the learning rate η for
AdamD, Adam, and AdamW using values in η ∈ {10−1, 5 × 10−2, 10−2, 5 × 10−3, 10−3, 5 × 10−4}. In the
training of LSTMs, we do not employ the clipping strategy since smaller weight decay parameters already
yield good generalization performance. All other hyperparameter settings are identical to those used in
Section 5.1.1. Figure 3 displays the numerical results obtained with a fixed σ = 10−5, ensuring that all
methods minimize the same objective function.

As shown in Figure 3, both AdamD and Adam outperform AdamW in terms of generalization. For 1-layer
LSTMs, AdamD and Adam achieve comparable performance, whereas for deeper 2-layer and 3-layer LSTM
models, AdamD reduces the test perplexity by at least 0.6 units compared to Adam. We summarize the
tuned stepsizes in the experiments in Figure 1 and 3 in Table 3. Further experimental details can be found
in Appendix B.

σ : 5e-03 σ : 1e-05
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

AdamD 5e-03 5e-03 5e-03 5e-03 5e-03 5e-03 5e-03
Adam 1e-04 1e-04 1e-04 1e-04 5e-03 5e-03 5e-03

AdamW 1e-02 5e-04 5e-04 5e-04 1e-03 1e-03 1e-03

Table 3: Tuned stepsizes for varing tasks. Task 1: ResNet34 on CIFAR10; Task 2: DenseNet121 on CIFAR10;
Task 3: ResNet34 on CIFAR100; Task 4: DenseNet121 on CIFAR100; Task 5: 1-layer LSTM; Task 6: 2-layer
LSTM; Task 7: 3-layer LSTM.

5.1.3 Performance with different choices of {θk} and {βk}

Finally, we investigate the performance of the AdamD method with different choices of its step sizes {θk} and
{βk} for the momentum terms {mk} and {vk}, respectively. In our numerical experiments, both sequences
are fixed as constants, i.e., θk = θ ∈ [0, 1] and βk = β ∈ [0, 1]. The weight decay parameter is set to 5×10−4,
and the step size η is tuned among {10−2, 10−3, 10−4} to maximize the proportion of training loss below 0.6.
The regularization parameter for the second moment is ε = 10−8, following the default settings in PyTorch
for Adam.

Figure 4 shows that the light-colored regions (indicating lower training loss) for AdamW and AdamD are
larger than that for Adam. As demonstrated in (Zhang et al., 2022), Adam can fail when θ is small and β is
large, as indicated by the red area in the bottom right portion of Figure 4(a). In contrast, the corresponding
region for AdamD in Figure 4(c) remains light. These observations suggest that incorporating weight decay
in AdamD enhances its robustness to the choices of θ and β compared to Adam with coupled weight decay.
Furthermore, the results support the theoretical findings in Theorem 3.13, which imply that if the momentum
parameters θk are kept sufficiently small, the sequence xk remains stable. This stability is maintained with
relaxed requirements on the updates of the estimator vk, provided that the preconditioner H(vk) is bounded
both below and above. An additional observation is that, while AdamD and AdamW exhibit similar overall
robustness, the favorable regions for θ and β differ between the two methods. Specifically, compared with
AdamW, AdamD is more robust than AdamW when θ is small, but less robust when θ is large, as shown in
Figures 4(b) and (c).
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(a) 1-layer LSTM (b) 2-layer LSTM (c) 3-layer LSTM

Figure 3: Training and test perplexity (lower is better) of LSTMs on Penn Treebank dataset with stepsize
reduced to 0.1 times of the original value at the 75th epoch and 150th epoch.
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Figure 4: Performance comparison of Adam, AdamW, and AdamD for training a three-layer CNN on the
MNIST dataset. Here, the parameters {θk} and {βk} are set to fixed constants θ and β, respectively. The
proportion of values below 0.55 is 15.50% for Adam, and 80.25% for both AdamW and AdamD.

5.2 Further discussions on the AdamD

5.2.1 Asymptotic approximation to SGD sequence helps generalization

As demonstrated in Lemma 3.7, the term ∥σxk + mk∥ converges to 0 as k tends to infinity. Then as discussed
in Lemma 3.8, the sequence {yk} (defined by yk := −σ−1mk) approximately follows the update scheme (14),
which asymptotically approximates a SGD method. Together with the fact that limk→∞ ∥xk − yk∥ = 0, we
can conclude that the sequence {xk} in AdamD is controlled by an SGD sequence {yk} as k goes to infinity.
Moreover, the interpolated process of {yk} is a perturbed solution of the differential inclusion (17), i.e.,

dy

dt
∈ −(Df (y) + σy). (29)
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On the other hand, in the early stage of the iterations of AdamD, the term ∥σxk + mk∥ is large, and the
ratio of θk and ηk usually remains nearly unchanged. Then as illustrated in the discussion in Section 4, the
sequence {(xk, mk, vk)} jointly tracks the trajectories of the differential inclusion

(
dx

dt
,

dm

dt
,

dv

dt

)
∈ −

(P+(v) + ε)− 1
2 ⊙ (m + σx)

τ1m− τ1Df (x)
τ2v − τ2U(x)

 . (30)

Here U(x) := 1
N

∑N
i=1{d ⊙ d : d ∈ Dfi

(x)}. Similar results are also exhibited in (Bianchi et al., 2022; Xiao
et al., 2023a). As the differential inclusion (30) imposes preconditioners to the update directions of {xk}
based on the second-order moments of the stochastic subgradients, the sequence could quickly converge to a
neighborhood of the stationary points.

These theoretical properties explain the fast convergence of AdamD in the early stage of the training and its
lower generalization error than Adam with coupled weight decay. Based on the numerical experiments and
our theoretical analysis, we believe the ability to asymptotically track an SGD sequence in AdamD helps to
explain its superior generalization performance over Adam.

5.2.2 Decoupled weight decay is equivalent to quadratic regularization

It is conjectured in (Loshchilov & Hutter, 2019) that the quadratic regularization term contributes to the
low generalization error in training neural networks. Moreover, the authors in (Loshchilov & Hutter, 2019)
develop AdamW, showing that weight decay is not equivalent to quadratic regularization. As a result, the
term σxk in AdamW is not scaled by the preconditioner (√vk+1 + ε)−1. Therefore, AdamW does not have
a clear objective function and lacks convergence guarantees in training nonsmooth neural networks.

In our AdamD method, the objective function is exactly the g(x) in (UOP). Hence the weight decay
parameter σ is exactly the penalty parameter for the quadratic penalty term σ

2 ∥x∥
2 in (UOP). More

importantly, we provide theoretical guarantees for AdamD in training nonsmooth neural networks. The
stationarity of the iterates {xk} is characterized by Df (xk)+σxk, hence has clearer meaning when compared
with AdamW.

Furthermore, our numerical experiments demonstrate the superior performance of AdamD, illustrating that
employing the quadratic regularization term in (UOP) does not undermine the generalization error. Based
on these results, we can conclude that within our framework (AFMDW), the weight decay can be interpreted
as the quadratic regularization, which is different from the demonstrations in (Loshchilov & Hutter, 2019)
regarding AdamW.

6 Conclusion

In this paper, motivated by AdamW, we propose a novel framework (AFMDW) for Adam-family methods
with decoupled weight decay. We prove that under mild assumptions with non-diminishing stepsizes {ηk}
and diminishing momentum parameters {θk}, any cluster point of {xk} is a Dg-stationary point of (UOP).
When {θk} is also non-diminishing, the sequence {xk} eventually stabilizes around the critical points of
the Dg-stationary point of (UOP). Moreover, when employing a single-timescale scheme, any cluster point
of {xk} is a Dg-stationary point of (UOP). Compared with AdamW, our proposed framework (AFMDW)
enjoys convergence guarantees in training nonsmooth neural networks and yields solutions that have clearer
meanings. More importantly, we prove that the decoupled weight decay grants more flexibility of the choices
of the parameters {θk} and {βk} in (AFMDW) than Adam. This fact theoretically illustrates the advantages
of the employment of the decoupled weight decay.

As an application of our proposed framework (AFMDW), we develop a novel Adam-family method named
Adam with decoupled weight decay (AdamD), and prove its convergence properties under mild conditions.
Numerical experiments on image classification and language modeling demonstrate the effectiveness of our
proposed method. To conclude, we believe that our work has enriched the theoretical understanding of
weight decay and explained its practical utility in the field of deep learning applications.
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It is worth mentioning that the formulation of (AFMDW) is slightly different from the widely employed
AdamW (Loshchilov & Hutter, 2019). However, it is still challenging to find a Lyapunov function for
AdamW to establish its convergence guarantees under general nonsmooth nonconvex settings. We believe
that exploring the convergence properties of AdamW in nonsmooth nonconvex optimization is an interesting
topic for future research.
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A Proofs

Proof of Proposition 3.4. As illustrated in Assumption 3.3, dk ∈ Dδk

f (xk) and {ξk} is uniformly bounded.
Then it is easy to verify that there exists a constant L̂ such that ∥gk∥ = ∥dk + ξk+1∥ ≤ L̂(1 + ∥xk∥ν) holds
for any k ≥ 0.

Let the constant Q be defined as

Q ≥ max


(

2MvL̂

εvσ

) 1
1−ν

,
Mv ∥m0∥

εvσ
, ∥x0∥+ 1

 . (31)

In the following, for any sequence {xk} generated from (AFMDW), we aim to prove that the set {k ≥ 0 :
∥xk∥ ≥ Q} is an empty set by contradiction. Therefore, we assume that the set {k ≥ 0 : ∥xk∥ ≥ Q} is non-
empty and set τ = inf{k ≥ 0 : ∥xk∥ ≥ Q} − 1. Then from the definition of τ , we have ∥xτ+1∥ ≥ Q > ∥xτ∥.

On the other hand, from the update scheme (AFMDW), for any k < τ , we have

∥mk+1∥ ≤ max
{

m0, sup
0≤i≤k+1

∥gi∥
}

< max{∥m0∥ , L̂(1 + Qν)} ≤ σεv

Mv
Q,

where the last inequality follows from the definition of Q and the fact that

L̂(1 + Qν) ≤ 2L̂Qν = σεv

Mv
· 2MvL̂

σεv
Qν ≤ σεv

Mv
Q1−νQν = σεv

Mv
Q.

Then it holds that

∥xτ+1∥ = ∥(1− ηkσHτ (vτ+1))⊙ xτ − ηkHτ (vτ+1)⊙mτ+1∥

≤ (1− ηkσεv) ∥xτ∥+ ηkMv ∥mτ+1∥ < (1− ηkσεv)Q + ηkMv ·
σεv

Mv
Q = Q.

But ∥xτ+1∥ < Q contradicts to the definition of τ . Thus, the set {k ≥ 0 : ∥xk∥ ≥ Q} is empty. Therefore,
we have that supk≥0 ∥xk∥ ≤ Q holds almost surely. This completes the proof.

Proof of Lemma 3.7. From Assumption 3.5, there exists a constant η̃ ∈ (0, 1) such that max{|1−ηkσMv|, |1−
ηkσεv|} ≤ 1 − η̃ holds for any k ≥ 0. Then from the update scheme of {xk} in the framework (AFMDW),
almost surely, it holds that

∥σxk+1 + mk+1∥
= ∥(1− ηkσH(vk+1))⊙ (σxk + mk) + θk(1− ηkσH(vk+1))⊙ (gk −mk)∥
≤ max{|1− ηkσMv|, |1− ηkσεv|}(∥σxk + mk∥+ θk ∥gk −mk∥)

≤ (1− η̃) ∥σxk + mk∥+ 2Mdθk ≤ (1− η̃)k+1 ∥σx0 + m0∥+ 2Md

k∑
i=0

(1− η̃)k−iθi

≤ (1− η̃)k+1(σMx + Md) + 2Md

k∑
i=0

(1− η̃)k−iθi =: δ̂k+1.

(32)

Since limk→∞ θk = 0, we have lim
k→∞

∑k
i=0(1−η̃)k−iθi = 0. Thus we get limk→∞ δ̂k = 0, and ∥σxk + mk∥ ≤ δ̂k

holds for any k ≥ 0. This completes the proof.

Proof of Lemma 3.8. As illustrated in Assumption 3.3(2), there exists x̃k ∈ Bδk
(xk) and d̃k ∈ Df (x̃k)

such that
∥∥dk − d̃k

∥∥ ≤ δk and limk→∞ δk = 0. Combining with equation (32), it holds that ∥yk − x̃k∥ ≤
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∥yk − xk∥+ ∥xk − x̃k∥ ≤ δ̂k

σ + δk. As a result,

dist (dk + σyk,Dg(x̃k)) ≤
∥∥dk + σyk − (d̃k + σx̃k)

∥∥
≤

∥∥dk − d̃k

∥∥+ σ ∥yk − x̃k∥ ≤ δk + σ( δ̂k

σ
+ δk).

Since x̃k ∈ Bδ⋆
k
(yk) and dist(dk + σyk,Dg(x̃k)) ≤ δ⋆

k, we get (15).

Proof of Proposition 3.9. Based on Lemma 2.21, by verifying its conditions, we can prove that the interpolated
process of {yk} is a perturbed solution for the differential inclusion (17).

Condition (1) of Lemma 2.21 directly follows from Assumption 3.3(3) and Proposition 2.3, by choosing the
stepsizes in (8) as { θk

σ }. Moreover, Lemma 3.8 guarantees the validity of the condition (2) in Lemma 2.21 by
noting that limk→∞ δ∗

k = 0. Furthermore, condition (3) of Lemma 2.21 follows from Assumption 3.3(2) and
Lemma 3.6. As a result, directly from Lemma 2.21, we can conclude that almost surely, the interpolated
process of {yk} is a perturbed trajectory of the differential inclusion (17).

Proof of Theorem 3.10. From Lemma 3.2 and Proposition 2.18, we can conclude that g is a Lyapunov
function for the differential inclusion (17) with the stable set {x ∈ Rn : 0 ∈ Dg(x)}. Moreover, Proposition
(3.9) illustrates that almost surely, the interpolated process of the sequence {yk} in (13) is a perturbed
solution of the differential inclusion (17). As a result, it follows from Theorem 2.22 that any cluster point of
{yk} lies in the set {x ∈ Rn : 0 ∈ Dg(x)} and the sequence {g(yk)} converges.

Since limk→∞ θk = 0, Lemma 3.7 implies that limk→∞ ∥xk − yk∥ = 0 holds almost surely. Then from the
continuity of g and the convergence properties of {yk}, we can conclude that any cluster point of {xk} lies
in the set {x ∈ Rn : 0 ∈ Dg(x)} and the sequence {g(xk)} converges. This completes the proof.

Proof of Lemma 3.12. From Assumption 3.11, it holds for all s ≥ 0 and any i satisfying s ≤ i ≤ Λ(λ(s) + T )
that ∥∥∥∥∥

i∑
k=s

θkξk+1

∥∥∥∥∥ ≤
∥∥∥∥∥∥

N ·⌈ s
N ⌉−1∑

k=s

θkξk+1

∥∥∥∥∥∥+

∥∥∥∥∥∥
N ·⌊ i

N ⌋−1∑
k=N ·⌈ s

N ⌉

θkξk+1

∥∥∥∥∥∥+

∥∥∥∥∥∥
i∑

k=N ·⌊ i
N ⌋

θkξk+1

∥∥∥∥∥∥
=

∥∥∥∥∥∥
N ·⌈ s

N ⌉−1∑
k=s

θkξk+1

∥∥∥∥∥∥+

∥∥∥∥∥∥
i∑

k=N ·⌊ i
N ⌋

θkξk+1

∥∥∥∥∥∥ .

(33)

Therefore, for any any ε > 0, choose θε = ε
2NMξ

guarantees that

lim sup
s→+∞

sup
s≤i≤Λ(λ(s)+T )

∥∥∥∥∥
i∑

k=s

θkξk+1

∥∥∥∥∥ ≤ 2NMξ lim sup
s→+∞, s≤i≤Λ(λ(s)+T )

θi ≤ ε.

This completes the proof.

Proof of Theorem 3.13. For the update scheme (14), Lemma 3.12 and (Xiao et al., 2023b, Theorem 3.7)
illustrate that for any ε > 0, there exists η̂, θ̂1, T > 0 such that whenever lim supk≥0 ηk ≤ η̂, lim supk≥0 θk ≤
θ̂1 and {ξk} is (ε, T, {θk})-controlled, we have

lim sup
k→+∞

dist (yk, {x ∈ Rn : 0 ∈ Dg(x)}) ≤ ε

2 . (34)

Then by equation (32) in Lemma 3.7, we have that there exists θ̂2 such that whenever lim supk≥0 θk ≤ θ̂2,
lim supk→∞ ∥xk − yk∥ ≤ ε

2 . Therefore, whenever lim supk≥0 θk ≤ min{θ̂1, θ̂2}, we have that

lim sup
k→+∞

dist (xk, {x ∈ Rn : 0 ∈ Dg(x)}) ≤ lim sup
k→+∞

dist (yk, {x ∈ Rn : 0 ∈ Dg(x)}) + ε

2 ≤ ε. (35)
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This completes the proof.

Proof of Lemma 3.19. Notice that f is a potential function that admits Df as its conservative field, and the
function (x, m, v) 7→

〈
m + σx, (P+(v) + ε)− 1

2 ⊙ (m + σx)
〉

is semi-algebraic and thus definable. Then by
the chain rule for conservative field (Bolte & Pauwels, 2021), we can conclude that h is a potential function
that admits Dh as its conservative field. Moreover, as Df and ∂P+ are convex-valued over Rn, it holds that
Dh is convex-valued over Rn × Rn × Rn. This completes the proof.

Proof of Proposition 3.20. For any trajectory of the differential inclusion (23), there exists lf : R+ → Rn

and lu : R+ → Rn such that lf (s) ∈ Df (x(s)) and lu(s) ∈ U(x(s), m(s)) for almost every s ≥ 0, and

(ẋ(s), ṁ(s), v̇(s)) =

−(P+(v(s)) + ε)− 1
2 ⊙ (m(s) + σx(s))

−τ1m(s) + τ1lf (s)
−τ2P+(v(s)) + τ2lu(s)

 . (36)

Then from the formulation of h, we have
⟨Dh(x(s), m(s), v(s)), (ẋ(s), ṁ(s), v̇(s))⟩

∋ −
〈

lf (s) + σx(s) + σ

τ1
(P+(v(s)) + ε)− 1

2 ⊙ (m(s) + σx(s)), (P+(v(s)) + ε)− 1
2 ⊙ (m(s) + σx(s))

〉
+
〈

(P+(v(s)) + ε)− 1
2 ⊙ (m(s) + σx(s)), −m(s) + lf (s)

〉
+ τ2

4τ1

〈
(m(s) + σx(s))2 ⊙ (P+(v(s)) + ε)− 3

2 ⊙ ∂P+(v(s)), v(s) − lu(s)
〉

≤ − σ

τ1

〈
(P+(v(s)) + ε)−1 ⊙ (m(s) + σx(s)), m(s) + σx(s)

〉
−
〈

(P+(v(s)) + ε)− 1
2 ⊙ (m(s) + σx(s)), m(s) + σx(s)

〉
+ τ2

4τ1

〈
(m(s) + σx(s))2, P+(v(s)) ⊙ (P+(v(s)) + ε)− 3

2

〉
≤ − σ

τ1

〈
(P+(v(s)) + ε)−1 ⊙ (m(s) + σx(s)), m(s) + σx(s)

〉
−
(

1 − τ2

4τ1

)〈
(P+(v(s)) + ε)− 1

2 ⊙ (m(s) + σx(s)), m(s) + σx(s)
〉

≤ − σ

τ1

〈
(P+(v(s)) + ε)−1 ⊙ (m(s) + σx(s)), m(s) + σx(s)

〉
.

Here the first inequality follows from the fact that lu(s) ≥ 0 and ∂P+(v)⊙ v = P+(v). The third inequality
follows from the fact that 1− τ2

4τ1
≥ 0 in Assumption 3.15(3). Therefore, we can conclude that for any initial

point (x(0), m(0), v(0)) ∈ Rn × Rn × Rn, it holds for any t ≥ 0 that
h(x(t), m(t), v(t))− h(x(0), m(0), v(0))

=
∫ t

0
min

l∈Dh(x(s),m(s),v(s))
⟨l, (ẋ(s), ṁ(s), v̇(s))⟩ds

≤ − σ

τ1

∫ t

0

〈
(P+(v(s)) + ε)−1 ⊙ (m(s) + σx(s)), m(s) + σx(s)

〉
ds.

(37)

As a result, we can conclude that for any trajectory of the differential inclusion (23), it holds for any t > 0
that h(x(t), m(t), v(t)) ≤ h(x(0), m(0), v(0)).

Now consider the case when (x(0), m(0), v(0)) /∈ {(x, m, v) ∈ Rn × Rn × Rn : 0 ∈ Dg(x), m + σx = 0}.
Suppose there exists some T > 0 such that

h(x(T ), m(T ), v(T )) = h(x(0), m(0), v(0)). (38)
Then (37) implies that m(s) + σx(s) = 0 holds for almost every s ∈ [0, T ]. Therefore, ṁ(s) + σẋ(s) = 0 and
(23) implies that ẋ(s) = 0 hold for almost every s ∈ [0, T ]. As a result, we have

0 = ṁ(s) ∈ −τ1m(s) + τ1Df (x(s)) = τ1σx(s) + τ1Df (x(s))
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holds for almost every s ∈ [0, T ]. Together with the fact that (x(t), m(t), v(t)) is absolutely continuous and
Df is graph-closed and locally bounded, we have that

m(0) + σx(0) = 0, 0 ∈ Df (x(0)) + σx(0) = Dg(x(0)).

But the above contradicts the condition that (x(0), m(0), v(0)) /∈ {(x, m, v) : 0 ∈ Dg(x), m + σx = 0}. As a
result, we can conclude that for any T > 0, whenever (x(0), m(0), v(0)) /∈ {(x, m, v) : 0 ∈ Dg(x), m+σx = 0},
it holds that

h(x(T ), m(T ), v(T )) < h(x(0), m(0), v(0)).

This completes the proof.

Proof of Proposition 3.21. From the uniform boundedness of {mk}, {vk} and {gk} in Lemma 3.16 and
Lemma 3.17, and Assumption 3.15(4), we can conclude that limk→∞ ∥mk+1 −mk∥ + ∥vk+1 − vk∥ = 0.
Therefore, there exists a sequence of random variables {τk} such that almost surely, limk→∞ τk = 0 holds
and ∥mk+1 −mk∥+ ∥vk+1 − vk∥ ≤ τk.

Then from the formulation of the framework (AFMDW), the sequence {(xk, mk, vk)} satisfies the following
inclusion

(xk+1, mk+1, vk+1) ∈ (xk, mk, vk)− ηkGτk (xk, mk, vk)− ηk(0,−τ1ξk+1, 0).

Then it directly follows from Assumption 3.15(4) and Proposition 2.3 that

lim
s→∞

sup
s≤i≤Λ(λs+T )

∥∥∥∥∥
i∑

k=s

ηk(0, τ1ξk+1, 0)
∥∥∥∥∥ = 0.

Therefore, we can conclude that the conditions (1) and (2) in Lemma 2.21 hold. Moreover, condition (3)
in Lemma 2.21 directly follows from Assumption 3.15(1), Lemma 3.16 and Lemma 3.17. Therefore, from
Lemma 2.21, we can conclude that the interpolated process of {(xk, mk, vk)} is a perturbed solution for the
differential inclusion (23). This completes the proof.

Proof of Theorem 3.22. From Proposition 3.21, we can conclude that the interpolated process of
{(xk, mk, vk)} is a perturbed solution for the differential inclusion (23). Moreover, Proposition 3.20 illustrates
that h is a Lyapunov function for the differential inclusion (23) with stable set {(x, m, v) ∈ Rn × Rn × Rn :
0 ∈ Dg(x), m + σx = 0}. Then we can conclude that any cluster point of {(xk, mk, vk)} lies in the set
{(x, m, v) ∈ Rn × Rn × Rn : 0 ∈ Dg(x), m + σx = 0}, and the sequence {h(xk, mk, vk)} converges.

Thus, we can conclude that any cluster point of {xk} lies in the set {x ∈ Rn : 0 ∈ Dg(x)}, and any cluster
point of {(xk, mk)} lies in {(x, m) ∈ Rn×Rn : σx + m = 0}. As a result, noting that {σxk + mk} is bounded
in Rn, it holds that limk→∞ ∥σxk + mk∥ = 0. Furthermore, since

lim
k→∞

|h(xk, mk, vk)− g(xk)| ≤ lim
k→∞

1
2τ1
√

ε
∥σxk + mk∥2 = 0,

we can deduce that the sequence {g(xk)} converges. This completes the proof.

Proof of Theorem 4.2. We first verify the validity of Assumption 3.1. The definability of fi and Dfi implies
the definability of f and Df , hence from (Bolte & Pauwels, 2021, Theorem 5), f is path-differentiable and
the set {f(x) : 0 ∈ Df (x)} is a finite subset of R. Additionally, Assumption 4.1(2) ensures the validity of
Assumption 3.1(2). This verifies the validity of Assumption 3.1.

Moreover, let {Fk} be a sequence of σ-algebras generated by {xj , dj , mj : j ≤ k}, dk = E[gk|Fk] and
ξk+1 = gk − dk. Then we can conclude that dk ∈ Df (xk) and E[ξk+1|Fk] = 0. Moreover, Assumption 4.1(2)
illustrates that there exists a constant Mf such that supi∈[N ], x∈Rn ∥Df (x)∥ ≤ Mf . Thus we can conclude
that supk≥0 ∥gk∥ ≤Mf and supk≥0 ∥dk∥ ≤Mf hold almost surely. Then supk≥0 ∥ξk+1∥ ≤ 2Mf holds almost
surely. This verifies the validity of Assumption 3.3(3).
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Furthermore, from the update scheme in Step 5 of Algorithm 1, we can conclude that supk≥0 ∥vk∥ ≤
supk≥0

∥∥g2
k

∥∥ ≤M2
f . This illustrates that Assumption 3.3(1) holds with εv = 1

Mf +ε and Mv = 1
ε . Therefore,

from Theorem 3.10, we can conclude that any cluster point of the sequence {xk} is a Dg-stationary point of
g, and the sequence {g(xk)} converges. This completes the proof.

B Experiments details

In this section, we provide additional experimental results to further illustrate the performance and robust-
ness of our methods. The following tables report the outcomes on various tasks under different hyperparam-
eter settings.

B.1 Image Classification:

Tables 4–7 present the performance of ResNet34 and DenseNet121 on CIFAR10 and CIFAR100 datasets. In
these experiments, we vary the learning rate (LR) and weight decay parameter for the optimizers AdamD,
Adam, and AdamW. The best performance for each fixed weight decay parameter σ is highlighted in bold.

η
σ: 5e-03 σ: 1e-03 σ: 5e-04 σ: 1e-04

AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW
1e-01 77.05 17.84 92.01 91.23 59.13 93.39 93.67 62.71 93.19 94.41 65.09 92.22
5e-02 85.03 55.27 93.28 93.68 59.33 94.31 95.22 63.57 93.93 94.96 76.80 93.72
1e-02 94.08 62.33 94.54 95.10 79.67 94.16 94.54 81.43 94.22 94.28 88.96 94.09
5e-03 95.13 73.20 94.28 94.67 84.46 94.19 94.53 86.81 94.33 93.69 91.47 94.27
1e-03 94.57 89.81 94.40 93.05 92.48 94.34 92.54 93.31 94.18 92.12 94.06 94.56
5e-04 93.42 92.25 94.19 91.60 93.46 94.40 91.24 93.83 94.26 90.67 94.29 94.39
1e-04 87.64 94.09 94.09 87.22 94.04 93.86 87.47 94.10 94.58 86.62 93.89 93.71
5e-05 85.91 93.63 93.11 85.90 93.64 92.65 84.68 93.23 92.86 85.03 92.78 92.96

Table 4: ResNet34 on CIFAR10.

η
σ: 5e-03 σ: 1e-03 σ: 5e-04 σ: 1e-04

AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW
1e-01 68.39 46.88 89.47 90.13 59.13 93.55 93.80 59.58 93.26 94.52 67.28 93.24
5e-02 81.32 51.89 93.21 94.02 59.33 93.96 95.47 65.89 93.72 94.73 76.94 93.11
1e-02 94.09 66.60 94.21 95.68 79.67 93.94 95.25 84.27 93.51 94.48 88.40 93.58
5e-03 95.22 71.17 94.44 95.04 84.46 94.01 94.75 87.19 93.68 93.99 90.51 94.07
1e-03 95.04 89.91 94.29 92.65 92.48 94.54 91.94 93.57 94.32 91.55 94.10 94.49
5e-04 93.57 92.37 94.69 90.88 93.46 94.83 90.62 94.11 94.41 90.48 94.32 94.38
1e-04 86.08 94.14 94.16 85.16 94.10 93.86 84.60 94.10 93.93 84.53 93.88 93.58
5e-05 81.22 93.64 92.47 80.96 93.64 92.29 81.53 92.35 91.82 81.34 92.38 91.96

Table 5: DenseNet121 on CIFAR10

η
σ: 5e-03 σ: 1e-03 σ: 5e-04 σ: 1e-04

AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW
1e-01 44.78 1.71 55.48 71.37 14.12 70.27 75.40 18.67 71.21 73.80 28.14 69.27
5e-02 60.58 8.19 72.09 74.71 21.98 72.39 77.22 25.05 69.82 72.79 37.42 69.70
1e-02 76.64 19.20 70.68 77.26 41.02 70.65 76.16 42.35 67.47 74.74 56.91 68.50
5e-03 77.74 30.09 68.44 76.47 54.23 67.86 75.73 58.16 67.71 74.11 67.05 67.10
1e-03 75.11 60.86 72.69 72.18 71.26 72.73 70.86 73.25 72.33 70.01 74.55 72.83
5e-04 73.15 71.67 73.99 68.11 73.71 73.82 66.86 74.36 73.79 67.31 74.65 73.78
1e-04 60.71 74.31 73.18 59.29 75.00 72.99 58.83 75.42 73.09 58.85 74.53 73.17
5e-05 55.21 73.84 71.11 54.67 73.31 70.77 53.93 72.54 70.47 54.45 71.32 70.90

Table 6: ResNet34 on CIFAR100
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η
σ: 5e-03 σ: 1e-03 σ: 5e-04 σ: 1e-04

AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW
1e-01 34.09 9.07 48.00 68.93 17.65 68.67 75.90 26.13 64.31 75.66 34.29 61.80
5e-02 51.52 15.52 69.43 77.81 22.10 69.12 78.93 30.30 65.41 77.05 39.90 65.60
1e-02 78.38 23.09 70.97 79.28 49.81 71.15 77.65 48.65 70.57 76.06 64.45 70.63
5e-03 79.42 28.61 71.90 77.54 52.05 70.82 76.42 59.47 70.25 74.42 69.14 70.01
1e-03 76.27 64.95 75.08 71.94 72.93 74.79 70.27 73.85 75.42 70.10 74.86 75.11
5e-04 73.77 73.25 76.20 67.19 75.12 76.34 65.47 76.28 76.10 67.17 75.61 75.98
1e-04 54.30 74.29 73.82 52.55 74.44 73.23 51.84 73.97 74.01 52.09 73.62 73.46
5e-05 42.13 71.99 69.23 42.55 70.03 68.29 42.10 69.56 68.23 42.47 69.40 68.12

Table 7: DenseNet121 on CIFAR100

Additionally, Tables 8 and 9 present experiments on CIFAR100 using the AdamW-D variant, which employs
a diminishing momentum parameter θs for AdamW. The results indicate that using a diminishing momentum
parameter in AdamW is effective, achieving performance comparable to that of the original AdamW.

η
σ: 5e-03 σ: 1e-03 σ: 5e-04 σ: 1e-04

AdamW AdamW-D AdamW AdamW-D AdamW AdamW-D AdamW AdamW-D
1e-01 55.48 63.90 70.27 70.03 71.21 70.90 69.27 66.50
5e-02 72.09 70.24 72.39 69.95 69.82 70.06 69.70 70.72
1e-02 70.68 72.02 70.65 70.46 67.47 70.10 68.50 69.71
5e-03 68.44 69.77 67.86 69.72 67.71 68.43 67.10 67.23
1e-03 72.69 73.19 72.73 72.58 72.33 72.83 72.83 72.81
5e-04 73.99 74.26 73.82 73.99 73.79 73.85 73.78 73.61
1e-04 73.18 73.38 72.99 73.08 73.09 73.49 73.17 73.66
5e-05 71.11 70.51 70.77 70.47 70.47 70.20 70.90 70.71

Table 8: ResNet34 on CIFAR100: diminishing θs for AdamW-D

η
σ: 5e-03 σ: 1e-03 σ: 5e-04 σ: 1e-04

AdamW AdamW-D AdamW AdamW-D AdamW AdamW-D AdamW AdamW-D
1e-01 48.00 55.29 68.67 68.57 64.31 63.80 61.80 65.40
5e-02 69.43 67.20 69.12 66.55 65.41 67.23 65.60 68.11
1e-02 70.97 71.04 71.15 70.92 70.57 68.98 70.63 70.48
5e-03 71.90 72.20 70.82 71.29 70.25 70.67 70.01 70.80
1e-03 75.08 75.06 74.79 74.95 75.42 75.73 75.11 74.74
5e-04 76.20 76.32 76.34 75.79 76.10 75.85 75.98 76.45
1e-04 73.82 74.02 73.23 73.77 74.01 73.18 73.46 73.23
5e-05 69.23 68.70 68.29 69.20 68.23 69.38 68.12 68.55

Table 9: DenseNet121 on CIFAR100: diminishing θs for AdamW-D

B.2 Language Modeling with LSTMs:

Tables 10–12 summarize the performance of 1-layer, 2-layer, and 3-layer LSTM models under various learn-
ing rate and weight decay configurations. Figure 5 illustrates the training and test perplexity curves for
LSTM models with different numbers of layers, highlighting the convergence behavior and generalization
performance of the optimizers. In Figure 5, the weight decay parameter is fixed at σ = 10−5, and the
learning rates are tuned among {10−2, 5× 10−3, 10−3} based on observations from Tables 10 and 12.

From Figure 5, we observe that AdamD consistently outperforms Adam and AdamW in terms of test per-
formance for models with more than two layers. Moreover, the performance gap between AdamD and the
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other methods widens as the number of layers increases. Note that for models with more than five layers,
overfitting may occur, as indicated by an increase in test perplexity.

η
σ: 1e-04 σ: 1e-05 σ: 1e-06

AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW
1e-01 166.1 172.8 560.6 582.9 88.2 582.9 128.5 173.0 572.8
5e-02 165.2 167.6 361.9 381.3 85.3 381.3 95.1 95.8 372.3
1e-02 163.2 165.2 139.1 85.8 85.6 139.7 92.0 90.9 138.9
5e-03 163.5 163.9 102.9 85.2 85.0 103.2 95.3 85.8 103.3
1e-03 171.1 165.9 87.8 90.1 89.7 87.8 85.4 85.1 87.8
5e-04 182.6 169.3 88.7 96.2 94.8 88.7 88.5 88.0 88.7

Table 10: 1-layer LSTM

η
σ: 1e-04 σ: 1e-05 σ: 1e-06

AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW
1e-01 602.1 158.5 602.1 623.9 75.0 623.9 92.4 93.3 623.8
5e-02 489.3 197.1 502.5 507.2 71.8 507.2 70.2 71.2 446.5
1e-02 145.1 147.2 93.0 70.9 71.4 93.3 68.4 68.1 93.5
5e-03 146.8 147.0 83.6 70.0 70.7 82.9 83.4 67.9 83.2
1e-03 154.4 147.5 73.2 74.9 74.5 73.3 71.2 71.0 73.3
5e-04 170.5 151.2 73.3 79.9 78.5 73.3 72.4 72.4 73.3

Table 11: 2-layer LSTM

η
σ: 1e-04 σ: 1e-05 σ: 1e-06

AdamD Adam AdamW AdamD Adam AdamW AdamD Adam AdamW
1e-01 141.7 154.6 642.1 638.9 72.9 638.9 69.8 69.7 638.9
5e-02 138.4 145.9 587.1 573.5 67.9 573.5 65.2 65.0 591.4
1e-02 135.0 191.2 106.0 64.9 66.7 99.4 64.9 65.2 99.1
5e-03 134.5 138.8 81.0 64.4 65.4 80.9 73.5 65.9 81.1
1e-03 144.7 137.8 69.0 69.6 67.1 69.2 67.3 66.6 69.2
5e-04 164.1 139.8 69.2 69.2 70.7 69.2 68.3 68.1 69.2

Table 12: 3-layer LSTM
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Figure 5: Comparison of training and test perplexity curves across LSTM models with different numbers of
layers and three optimizers.

32


	Introduction
	Existing works on training nonsmooth neural networks
	Challenges from non-diminishing stepsizes in Adam
	Challenges from decoupling the weight decay term in Adam

	Contributions
	Organization

	Preliminaries
	Notations
	Noise model
	Nonsmooth analysis
	Differential inclusion and stochastic subgradient methods

	Global Convergence
	Basic assumptions
	Uniform boundedness of {xk } and {vk }
	Convergence with non-diminishing stepsizes{k}
	Convergence with a single-timescale in {k} and {k}

	Application: Adam with Decoupled Weight Decay
	Numerical Experiments
	Implementations of AdamD
	CNNs on image classification
	LSTMs on language modeling
	Performance with different choices of {k} and {k}

	Further discussions on the AdamD
	Asymptotic approximation to SGD sequence helps generalization
	Decoupled weight decay is equivalent to quadratic regularization


	Conclusion
	Proofs
	Experiments details
	Image Classification:
	Language Modeling with LSTMs:


