Error Forcing in Recurrent Neural Networks

A. Erdem Sagtekin Colin Bredenberg

New York University University of Montreal
University of Tiibingen Mila - Quebec Al Institute

aes10217@nyu.edu colin.bredenberg@mila.quebec

Cristina Savin
New York University
csavin@nyu.edu

Abstract

How should feedback influence recurrent neural network (RNN) learning? One
way to address the known limitations of backpropagation through time is to directly
adjust neural activities during the learning process. However, it remains unclear
how to effectively use feedback to shape RNN dynamics. Here, we introduce
error forcing (EF), where the network activity is guided orthogonally toward
the zero-error manifold during learning. This method contrasts with alternatives
like teaching forcing, which impose stronger constraints on neural activity and
thus induce larger feedback influence on circuit dynamics. Furthermore, EF can
be understood from a Bayesian perspective as a form of approximate dynamic
inference. Empirically, EF consistently outperforms other learning algorithms
across several tasks and its benefits persist when additional biological constraints
are taken into account. Overall, EF is a powerful temporal credit assignment
mechanism and a promising candidate model for learning in biological systems.

1 Introduction

Most theoretical neuroscience models posit that learning in the brain occurs via feedback projections
that guide local synaptic plasticity [[1H12]. Such models—based on approximations of gradient
descent—assume that feedback signals are delivered without interfering with network activity,
for example by multiplexing feedforward and feedback signals [[13], via global neuromodulatory
signals [14]], or by only infinitesimally perturbing the network state [[15[16]]. However, circuit-level
evidence of a crisp separation between learning and dynamics is less clear. Moreover, there is
substantial evidence that humans are able to learn both cognitive and motor skills with very few
feedback examples [[17, 18], and that they can rapidly correct for systematic errors induced by various
manipulations (e.g. external force fields [19] or visuomotor manipulations [20]). This suggests
that the brain may use dynamic error-correcting mechanisms to affect within-trial neural activity in
order to rapidly improve performance before longer-timescale synaptic learning and consolidation
[21} 22]]. However, previous models of dynamic error correction-based synaptic plasticity in the brain
have either been used in exclusively feedforward neural network architectures 23 [24]], or have been
used in recurrent neural networks provided with dense feedback signals [25H27]], without rigorous
quantification of the temporal credit assignment capabilities of the proposed learning algorithms.

Here, we introduce error forcing (EF), an algorithm designed to exploit both greedy error-based
guidance of circuit dynamics and temporal credit assignment to stabilize learning of long-term
temporal dependencies (Fig. [Th). Improving on generalized teacher forcing [28]], we show that our
algorithm can better stabilize learning for supervised tasks with sparse feedback and long temporal
horizons. Further, we justify our approach through a theoretically principled connection to Bayesian

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

vi
1

Figure 1: a) Illustration of the error forcing mechanism. Errors are used to update the synaptic
weights given by any gradient-based algorithm (blue dashed-lines), as well to update the activity (red
dashed lines). b) Discrete-time computational graph of the EF, showing only the forward changes.
Red dashed lines depict the error to activity projection weights. Notice we used stop-gradients (small
red line), which prevents gradients flowing backwards from activity to errors. See Section [2.3]for
mathematical justification of this step.

inference and variational expectation maximization [29], demonstrating that dynamic error correction
has a sensible connection to existing optimization algorithms. Lastly, we demonstrate that EF provides
significant benefits for temporal credit assignment across a variety of tasks, and that its biologically
plausible extensions preserve similar properties. These results collectively show that EF has promise
as both an improvement for temporal credit assignment in machine learning methods, and as a model
of rapid adaptation in the brain.

2 Learning by error forcing

2.1 Background
Consider the general formulation of a discrete-time RNN with a linear readout:
ry = Fo(ri-1,%), ()

yi = Wyry,)

where r; € RY is the network state, x; € R™V= the input, and y; € RNy the output. Parameters 6

and ¢ define the recurrent dynamics and readout, respectively. Minimizing the error between network
outputs and the target y; requires computing the derivative of the loss with respect to network
parameters 6, typically achieved by backpropagation through time (BPTT). Following [30]], given a
loss function £ = ZthTg Li(ye,y7), where Ty < t < T is defined as response period, the BPTT
equations are given by:

OL 9L .. OL, <~ DL, Or, Ory
— . with =\ 2t I
0, ; a6, "' o8, ; or, Ory 00, 3)
Ory Ore—y Ory—s Oy t>i>t! Ori—1 t>i>t! '

Depending on the spectral properties of the Jacobians, the above product can lead to instabilities,
where error signals either decay or grow without bounds [30]. For example, this occurs when the
network state changes little over time (i.e. J; are very small across steps, as when the network is
visiting a stable attractor). Such conditions are of practical importance in many neuroscience tasks
with an explicit memory component [31]], and here the Jacobian product can exponentially decay,
leading to a vanishing gradient problem. Conversely, when the goal of the RNN training is to generate
chaotic dynamics, the gradients inevitably explode [32].

This well-known issue of vanishing and exploding gradients motivated the development of alternative
approaches such as teacher forcing (and its variations) [28} [33H37/], especially for the self-supervised

aa«~ b~ C ~
> > >
p= = =
= = . Z2d - r
© © ro=r;=rp I3 =Ty ©)
2 % ® g IN2Z—
c c c ra
S S S AN /
> > > T ’
]] o ro i\ Ty
c c c A
- - _
neuron activity 1 neuron activity 1 neuron activity 1

Figure 2: Geometric explanation of differences between no forcing (a), teacher forcing with the
minimum-norm solution (b), and error forcing (c); @ = 1. a) Each circle denotes the RNN state r;
at a given time, and arrows denote the application of the forward function (Eq. [T). The RNN freely
runs during training when no forcing mechanism is used. The zero-error manifold is the set of points
where, for a given set of readout weights (which do not change within a trial), the network produces
the target outputs y; (assumed constant for visual simplicity). b) The teacher forcing mechanism
results in choosing the target state as the minimum-norm solution (white circle, the closest point to
the origin on the zero error manifold). Beginning from r(, we apply forcing to get Ty via Eq. [5] Then,
we apply the forward function via Eq. [l which results in r;. The same procedure will be applied
over the trial, and since the teacher state is not a function of the RNN state, it will remain the same,
causing the RNN to repeat the same activity sequence. Since Iy =I'; = I'p, we illustrate these points
with one circle. ¢) When error forcing is used instead, the RNN can explore the phase-space during
training.

setting. In its generalized version [38, 28], teacher forcing (TF) pushes neuron activity towards states
that would correspond to correct outputs:

r: = (1 — a)ry + ary, 5)
ry = F@(f‘tfhxt% (6)

where r; denotes the natural RNN state, r;y is the target (teacher) that satisfies y; = Wyry, and
their linear interpolation leads to the forced dynamics 1, with 0 < o < 1. When o = 0, the method
reduces to BPTT. When states are partially forced, the computational graph of the network dynamics
changes, which in turn changes the BPTT Jacobians:

Or _ O Oty OFo() s _ (g _ 3, ™)

J = =
! ori_1 Ori_1 Ory_q Ory_1 Ory_q

Well-behaved gradients can thus be ensured by a judicious selection of « [28]].

2.2 Geometric perspective

The question at hand becomes: How should we determine the target states r; ? When the readout is
invertible, we can simply use its inverse to go from the output space to the neural space: r; = W;ly;".
Similar approaches have been shown to be beneficial for RNN training when the output is higher
dimensional than the hidden neurons, or when the effective latent dimensionality is lower than the
output dimensionality [28} 33]. However, in most practical scenarios, and, arguably, in the brain
[39], the output is low-dimensional but the readout pools over a larger group of neurons in the circuit.
Mathematically, it follows that there is an entire manifold of neural states with zero error. In this case,
it is not a priori clear towards which target state we should force neural activity.

In one version of TF, the activity target is defined as the minimum-norm mapping from the low-
dimensional output space to activity space, given by the readout pseudoinverse, r;™" = W;“yt*. To
illustrate the potential issue with this strategy and a better way forward, we will start by a simple toy
example. Consider the scenario of a network with 2 neurons and a 1-dimensional output. Considering
the separation of time-scales between neuron activities and synaptic updates, we can think of the
mapping between activity and output as constant within trials. The only factor that changes the zero-
error manifold within trials is the output target (hence the offset of the manifold). For visualization
purposes only, let us assume constant target states y* (Fig. |2} cyan line), so that the zero error

manifold does not move from time step ¢ to ¢ + 1 within a trial. When states are not forced, the RNN
runs freely, finding itself outside of the zero-error manifold (Fig. [2p). With full forcing (o = 1), using
the minimum-norm solution, the RNN is driven to the teacher state, and the next step follows Eq. [6]
For a stationary target output, the same teacher state is used at each step, causing the RNN to repeat
the same activity pattern (Fig. [2b), limiting the exploration of the neural space during learning. Even
when the output is time-varying, the teacher states will always lie on the one-dimensional subspace
orthogonal to the null space of the readout (therefore orthogonal to the zero error manifold). Thus,
traditional TF enforces unnecessarily strong constraints on the network’s activity, which, as we will
show empirically, can slow down the learning process and damage test performance.

In contrast, our proposed EF selects the optimal state such that r} is the orthogonal projection of
r, onto the manifold of possible optimal responses (Fig.[2k). The idea is that instead of enforcing
a minimal norm solution, we select the minimal intervention to the preexisting network state to
minimize the error, which should result in a broader exploration of the zero-error manifold over
learning and generally less forcing of the dynamics away from their natural state.

More precisely, the EF target state is given by rj = r; + g(W;fet), where g(-) is a ‘stop gradient’
operation. We will justify the use of the stop gradient here in terms of our Bayesian perspective on EF
(Section[2.3} Appendix [B), but we note that the empirical performance of methods with and without
the stop gradient was similar (Appendix [C)). The resulting computational graph is shown in Fig.[Tp.
Substituting this term into Eq.[5]

fo= (L—a)re+a (v + g(Wer)) ®)
=r; + ag(W;“et), 9)

where e; = y; — y:. Given this form of the full dynamics (including the feedback loop), we can use
BPTT (or any of its bio-plausible approximations, as explained in Section[2.4)) for the synaptic weight
updates. When the EF mechanism is used with BPTT, we called the resulting learning procedure
EF-BPTT.

To see how EF changes the BPTT gradient computation and how it is different from the changes
induced by teacher forcing, we can write Eq.[9]by rearranging the terms as (see Appendix [A):

= 1Ir, — ag(WWyr,) + oWy} (10)

This form illustrates the differences between how EF and TF modify dynamics and gradient updates.
EF and TF become dynamically equivalent when N, > N as the W$W¢ term becomes an identity
matrix (see Appendix [A]), but the stop gradient operation prevents the TF gradient dampening
phenomenon (Eq. [7) because the two rightmost terms of Eq. [T0]have zero gradient. When N, < N,
EF only immediately affects activity in the row space of the readout. Since it doesn’t restrict activity
in the readout nullspace (see Fig. [2k), neuron activities are free to move along the zero error manifold.
These observations imply that the empirical performance improvements produced by EF relative to
TF and BPTT are not due to dampening of Jacobian magnitudes, but are rather due to minimally
guiding network activity towards an optimal activity regime.

2.3 Bayesian perspective

Although we have provided a geometric interpretation of why EF may be expected to improve
performance relative to TF, a question remains: is there a way to connect EF to theoretically
principled optimization methods? The need for such a link is underscored by a well-known limitation
of teacher forcing: it is unclear why TF should work at test time, since the training objective (an
RNN with forced states) differs from the one we ultimately care about (unforced states). In fact, there
has been targeted work on this train—test mismatch (e.g., [40,41]]). For GTF in particular, annealing
the parameter « during training has been as a way to get around this discrepancy. In contrast, we
will see that error forcing does not introduce this train—test mismatch, because it can be linked to
a principled optimization method in which training-time forcing can be expected to generalize to
unforced dynamics at test time.

One way construct this connection is by viewing EF as a mechanism to train an input-conditioned
latent generative model of the output targets, where the error corrections €; correspond to hidden
latent variables. In this view, latent error corrections are inferred during training, conditioned on

both input stimuli x and output targets y; subsequently, in an approximation to the variational
Expectation-Maximization algorithm [29], network parameters are updated via gradient descent.
Under this interpretation, test-time performance can be viewed as a stimulus-conditioned generative
process, where both latent errors and output targets are sampled via a stochastic process.

To illustrate how this works, we first replace the deterministic RNN dynamics (Eq. |1) with a Gaussian
state-space model (by the addition of Gaussian noise €; onto the hidden state and 7, onto the output):

r(€0:t,%0:4,0) = Fy (rt—l (€0:¢—1,%0:4-1,0), Xt) +e (11)
yi = Wyry (Eo:t,XO:t,e) + My, (12)

where, as in the deterministic case r; refers to the network hidden state, y; refers to the output targets,
and here we are treating €; as an additive latent variable. There are two factors that differentiate this
model from the more traditional Kalman Filter: 1) the transition function Fy(-) is nonlinear; and 2)
the error ¢; is treated as the random variable for inference, whereas the hidden state variable r; is
treated as a deterministic function that depends on all network parameters 6, as well as preceding
errors €o;¢ and stimuli Xo.;—1. We show (Appendix [B) that greedily inferring the optimal state
space correction €; given current and preceding targets yo.,, stimuli Xo.;, and corrections €g.,_; via
maximum a posteriori filtering produces nearly identical state space dynamics as the deterministic
EF case, while still allowing for BPTT learning (via the reparameterization trick [42]). In this case,
“reparameterization” refers to viewing the errors €; as stochastic latent variables, which allows for
the use of backpropagation through time through the deterministic hidden state update Fy(-). The
stochastic EF dynamics are given by:

9 -1

o
ry =71+ Wl W¢W;— + ;ZI €y, (13)

€

where r; is the “uncorrected” state driven by network inputs and recurrent corrections, e; is
the error in output space, and r; is the “corrected” state. The state space error correction
2 | —1

€ = Wg (W¢W; + Z—;’I) e; corresponds to the output space error e; multiplied by a regular-
ized pseudoinverse of the decoder, much as we have used in our original deterministic model. The
main difference is that instead of controlling the magnitude of forcing via o, the ratio between latent
noise and observation noise variances @» /o2 controls the magnitude of forcing [33] (v7/02 — 0 gives
full forcing and o7/02 — oo gives no forcing).

This perspective connects EF to inference in state-space models (e.g., the Kalman filter) and provides a
theoretically grounded basis for stochastic EF training. In particular, it explains why backpropagating
through the error signal that modulates the RNN dynamics is unnecessary—hence the use of the stop-
gradient operator—because the variational EM algorithm performs coordinate descent: it first infers
the errors given the current parameters and then updates the network parameters while treating the
inferred errors as constants (see Appendix [B]for details). Furthermore, it clarifies why applying error
forcing only during training is natural (as opposed to also forcing at test time): during training, error
corrections correspond to target-conditioned latent states inferred via approximate MAP estimation
under the generative model, whereas at test time both the latent errors (zero-mean, low-variance
Gaussian noise) and the targets are generated by the model (Eq. [TT).

2.4 Bio-plausible error forcing

In this section we describe additional approximations that we explored to increase the biological
plausibility of EF, which in its most basic form is unrealistic due to its dependence on BPTT [43] and
violations of weight transport [44] in its feedback signals used for both learning and error correction.

To alleviate issues associated with BPTT, we use RFLO [45] for temporal credit assignment in place
of BPTT. RFLO provides a local, online eligibility trace, by ignoring non-local interactions when
computing gradients. We allow weight transport when computing synaptic updates for two reasons:
the original work reported similar performance with and without random feedback weights, and recent
studies show that local learning rules can adapt feedback pathways to approximate the transpose
or pseudoinverse of the feedforward weights [46| 47]. We refer to this variant—using our EF with
RFLO-based temporal credit assignment—as EF-RFLO.

Less explored in previous work is the role played by feedback state-forcing weights. In particular,
EF introduces an additional weight transport problem because the optimal forcing weights are
constrained to be the pseudoinverse of the feedforward decoder weights, and it is unclear how
this type of parameter information could be shared between physiologically separate synapses. To
investigate this issue, we explored random fixed forcing weights and random learned forcing weights,
pairing these feedback mechanisms with RFLO synaptic learning. These experiments probe how
essential the exact pseudoinverse feedback matrix is to produce the benefits afforded by EF.

3 Numerical results

In this section, we evaluate the effectiveness of the error forcing (EF) mechanism and compare
it with competing algorithms. We consider a diverse battery of tasks: some are ethologically
relevant and widely used in computational neuroscience (evidence integration), and some are difficult
long-time credit assignment benchmarks (nonlinear working memory). Each task family includes
hyperparameters controlling the task difficulty to further probe the computational efficiency of EF.
We first present results for EF-BPTT, followed by EF-RFLO and its variants.

3.1 EF-BPTT

First, we tested the algorithms on the delayed XOR task (Fig.[3). This is a nonlinear working memory
task in which two input channels deliver rectangular pulses of amplitude +1 or —1, separated by a
fixed inter-stimulus delay at the start of each trial (Fig.[3p). The network must compute the XOR of
the two stimuli and report the answer after a second delay. Crucially, this second delay varies across
trials; consequently, the response time also varies across trials. To mark the start of the response
window, we provide an explicit cue signal—if the second delay were fixed, such a cue would be
unnecessary. Task difficulty is controlled by the mean of the second delay (not by its trial-to-trial
variability): for each task condition, the second delay is sampled from a distribution with a specified
mean and limited jitter, and increasing this mean increases the memory demand and thus the task
difficulty. The network loss is assessed only during the response time, and so the RNN readout is
unconstrained during non-response periods. Therefore, the forcing mechanism is also only active
during the response period.

For every algorithm, and for every task difficulty, we trained 20 networks (continuous time RNNs,
details in Appendix D)) and monitored their convergence. Specifically, a network is said to have
converged if its mean-squared error (MSE) remains under 0.1 for at least 10 gradient steps, within a
maximum of 200 training epochs. While the exact setting of this convergence threshold is somewhat
arbitrary, it does not qualitatively affect the nature of our results. The optimal degree of forcing «
was determined by a grid search (note that o = 0 reduces EF-BPTT to vanilla BPTT).

While task performance decreased sharply for standard BPTT with increasing task difficulty, EF-BPTT
maintained a high success rate over the task range, outperforming GTF at very long delays (Fig. [3p).
When results are aggregated across all delays, EF-BPTT proved not only systematically better when
compared to TF-BPTT, but it was also more robust to variations in « (Fig.[3f). This implies that the
directionality of the feedback w.r.t. the zero-error manifold is more important for learning in this task
than the precise strength of the forcing.

Next, we focused on input-dependent periodic signal generation, another task for which RNN training
is known to be nontrivial [48]]. Concretely, the network received one analog input (one out of 7
possible values, selected uniformly at random in each trial), constant throughout the trial, and had
to generate two sine waves on its two output channels, with a frequency proportional to the input
and a fixed phase difference between them (Fig. [3d). The multidimensional output space allows
us to test the generality of EF improvements to variations in IV,. Moreover, unlike the previous
task, feedback is persistent throughout the trial rather than sparse. As before, convergence is defined
by MSE; visually accurate reconstruction corresponds to a MSE of order 0.01, but we report the
distribution of test MSEs for the full picture (Fig. [3g).

We varied task difficulty by shifting the set of 7 frequencies upward. BPTT MSE increased substan-
tially with increasing mean frequency within the simulated range (Fig. [3g). Surprisingly, teacher
forcing destabilized learning, causing very high test MSE values for the entire frequency range.

a delayed XOR d sine wave gen. g cvidence int.

stimulus 2 J—‘—
cue —_ F 7 N y J |-| \—, \—l \—
target T L —l I.
—— A
delay response delay response
=b e — h
100 —Jse;_co 0 L100 -
g () o‘” 10 9 @ 0 é I\ g \o\
5] 75 — EF ‘.. m o 75 ...
: \. E -1 ?A T’J ~.~. ()
% 50 . 10 6 2 50— o\
o ol B)
£ 254 L Z 254
5] 10 : 6 Q
0 S 0
NS T T T T T 1 NS T T T
1000 2000 4849505152 1000 2000 3000
delay timesteps mean frequency delay timesteps
- C f - i
£ 100 2 100+
S 75 K S 75
— | e* 0. 2 i~ " _ea®~
2 504 Come, =10 3 5o fmee=ttitts,
5] ° 7 5]
B 25+ 8 B 25+
|5} —2 |5}
= 0- 10 g 0=
NS T T T T T T T
0.2 4.6 810 0 100 200 02 4.6 810
o epoch o

Figure 3: a) Delayed XOR schematic. b) Proportion of networks that learn the delayed XOR task up
to criterion as a function of delay (task difficulty); see main text for details. EF-BPTT and TF-BPTT
are shown as EF and TF, respectively, for brevity. ¢) Percentage of networks that learn XOR for
different « values, aggregated over every task difficulty. We use « values as small as 0.01. Note
that o = 0 is equivalent to BPTT for both algorithms. d) Schematic of sine generation task: higher
inputs (dashed line) require producing sines with higher frequency and the same relative phase. e)
Mean-squared error violin plots calculated for the sine wave generation task, estimated across 50
different networks for each task setting (x-axis) and for each algorithm (colors as in b). The x-axis
denotes the mean frequency of the signals that the network has to generate. f) Test MSE during sine
generation training for EF-,TF-, and BPTT. Bold lines denote mean over networks. g) Schematic of
evidence integration task. h) As in b) for evidence integration. i) As in c¢) for evidence integration.

Unlike delayed XOR, this task proved more sensitive to a judicious selection of «, but error forcing
still systematically improved test performance over BPTT.

Lastly, we trained RNNs (40 networks for each setting) on a variant of evidence integration motivated
by experiments in rodents [49] (Fig. Eg). In this task, two input channels provide a total of 7
temporally sparse inputs on the ‘left’ or ‘right’ side. After an additional delay period (fixed across
trials), the network has to output a persistent 1 or -1 during the response period depending on which
of the two input channels had more signals. What makes this task an interesting case is the fact that
its solution requires a different dynamical systems structure to emerge for efficient learning (line
attractor, as opposed to fixed points for XOR, or a set of limit cycles for sine generation) [50} 51].
Similar to the delayed XOR task, forcing is applied only during the response period, with the output
of the network unconstrained otherwise. In this case as well EF systematically improves over BPTT,
although the differences relative to TF are more modest.

To conclude, across tasks and manipulations, EF-BPTT consistently outperformed TF-BPTT and
BPTT, and proved much more robust to the degree of forcing ., consistently outperforming BPTT
unlike TF-BPTT.

a delayed XOR b evidence int. ¢ delayed XOR

.=
g 100_0 EF-RFLO 100_ ~ 100_(.
LF- 4 O e
§ \O \ \.\.
» \ 3 EF-BPTT
~ o AN 50 - rand. fixed
5 50 \ 50 <. A
=2 o ANa Nee—%¢—0
5) e
=) = 0
¥ 0 T T 0 T T T T
50 100 150 100 200 0 1
delay timesteps delay timesteps a
- d delayed XOR e 0=0.1 f a=1
Q 1.0 1.0
g 2
§ 50 E
wn .
~ I £0.5 0.5
o 254 R7)
E 8 rand. learned
g . S 00 rand. fixed 00
° —r Tt 0= T T 0= T T
° RO 0 1500 3000 0 1500 3000
& 38 gradient updates gradient updates

*
¢ Y oS
&8

Figure 4: a) Percentage of networks learned for a set of networks with increasing delay timesteps
(task difficulty), using RFLO. b) As in a), but for evidence integration. ¢) Comparison of percentage
of networks that learn (-BPTT), for delayed XOR task; with a delay of 1500 time steps. Red denotes
BPTT, green denotes EF-BPTT, blue denotes random-fixed projections instead of pseudoinverse. d)
Comparison of percentage of networks that learn (-RFLO), for delayed XOR task; with a delay of 95
time steps. Red denotes RFLO, green denotes EF-RFLO, blue denotes random-fixed projections, teal
green denotes random-learned projections. e) Blue: cosine similarity during gradient updates between
random-fixed connections and readout weights. Teal-green: between random-learned connections
and readout weights. « = 0.1. f) As in e), but a = 1.0.

3.2 EF-RFLO

To assess the efficiency of the EF in biologically plausible settings, we equipped RFLO with EF
and evaluated learning performance on the delayed XOR and evidence integration tasks, comparing
EF-RFLO, TF-RFLO, and RFLO. Despite the demands of temporal credit assignment, RFLO still
learned within a limited range of delays (Fig.p.b). In the delayed XOR task, adding EF consistently
improved performance relative to TF-RFLO and RFLO, though the gains were smaller than with
BPTT. All three algorithms performed comparably on the evidence integration task. These results
suggest that EF’s computational benefits persist under biologically plausible synaptic learning rules.

As explained in Section[2:4] a separate issue is the learning of the feedback forcing weights themselves.
For this we consider two different approximations to EF-RFLO that avoid weight transport issues
for the error forcing feedback synapses. Instead of using the correct projections (pseudoinverse),
we used either random-fixed connections, drawn from the same distribution as the initial readout or
random-learned connections, where the learning is achieved by RFLO used on the same loss as for
all other network parameters. First, we chose an easy task difficulty for the delayed XOR task, and
compared EF-BPTT with random-fixed projections to the idealized version using the pseudoinverse
(Fig.[k). As expected, using random projections severely decreased the performance, supporting the
idea that the feedback needs to push the dynamics towards the zero error manifold as opposed to in
some arbitrary fixed direction.

When testing the role of adaptive projections for RFLO (Fig. @), we found an overall degradation of
performance relative to the idealized case but similar or slightly better performance compared to the
no feedback (RFLO) scenario.

Investigating the alignment between the readout and error forcing weights during learning reveals
an effect similar to feedback alignment in static multilayer perceptron networks [52]]. Even with
fixed random projections, the cosine similarity between feedback and readout weights steadily
increases over time (Fig. [d.f) because the readout weights become aligned with the fixed random
projections. Increasing the o value negatively affects the cosine similarity between the weights;
however, alignment is not directly predictive of task performance (Fig.] d.e.f). This somewhat
paradoxical effect could be explained by the fact that alignment is primarily due to modification
of the decoder weights, not the feedback weights. Under such conditions, EF suboptimal feedback
weights could be effectively constraining the decoder to be in turn suboptimal with respect to the
intrinsic network dynamics at initialization, impairing performance.

Overall, we have shown that the error forcing mechanism works in concert with bio-plausible gradient
approximation methods (RFLO in particular), although additional work might be needed to fully
address the weight transport problem for forcing synapses.

4 Discussion

In this study we have introduced error forcing (EF), a method capable of reaping the benefits of
dynamic error corrections for stabilizing neural dynamics during learning, while still preserving
powerful temporal credit assignment capabilities. We have demonstrated empirical improvements
of our method over both BPTT and TF-BPTT on several supervised tasks, and were able to justify
these improvements in terms of both geometric and Bayesian interpretations of EF. Specifically,
error forcing—in contrast to TF—induces a minimally invasive intervention on neural dynamics
by orthogonally projecting neural activity onto the manifold of optimal outputs. We justified this
projection by establishing a connection between EF and variational EM [29], showing that our error
corrections can be interpreted as a form of online filtering, where network states are dynamically
adjusted based on incoming readout error information. Lastly, while the basic version of EF uses
the biologically implausible BPTT algorithm to adjust synaptic weights and suffers from the weight
transport problem, we showed that these plausibility issues can be fixed, at the cost of some perfor-
mance, by a combination of using random or learned error feedback projections in conjunction with
the substitution of RFLO for BPTT.

EF can be viewed as a hybridization of Kalman filter-based or control theoretic error correction
learning algorithms [25] 26} 53] and TF, theoretically unified by the use of the reparameterization
trick. A similar algorithm using a combination of RFLO and driving error feedback has recently
been used to model sensorimotor adaptation in response to a virtual reality visuomotor rotation in
macaques [27]: our work extends this approach through our theoretical justification for EF, as well as
our empirical demonstrations of performance improvements in sparse-feedback supervised learning
regimes.

While our analysis has been conducted assuming a linear decoder, EF could be extended to nonlinear
(and potentially multilayer) output decoders by using Taylor expansions to locally linearize the output,
in analogy to the extended Kalman filter [54] (see Appendix[B.4). Similar approaches have been used
for feedforward neural networks [21} 24]], but it remains an empirical open question whether linear
Taylor expansions prove a sufficient approximation for stable use in conjunction with error forcing
mechanisms. Such a nonlinear extension could be useful for stabilizing training dynamics in modern
state-space models [55}|56]], with potential applications to training large-language models [57]].

Because of its relationship to Bayesian inference, EF has potential applications for both in-context
learning [38]] and few-shot learning [59}60]: namely, the rapid inference of ‘errors’ allows for EF
networks to reach good training performance very rapidly, while test performance is consolidated on a
longer timescale through synaptic plasticity. Similarly, though we only used additive error corrections
in this study, EF could be combined with hierarchical, compositional Bayesian models to both enable
rapid compositional generalization [61}162]] and potentially ameliorate catastrophic forgetting [63]].

Lastly, though we have only explored supervised learning in this study, one might expect that most
biological motor learning occurs via reinforcement. This disconnect could be resolved by using a
critic network’s expected future reward as a form of short-term supervised objective, as used in active
inference [64] and deep Q-learning [65, 166] approaches; in this context, the rapid error correction
mechanism provided by error forcing could prove faster and more stable than the Markov-chain

Monte Carlo approach taken by [67]] while eliminating the need for the separate parameterized
variational posterior distributions used in [68169].

To conclude, in this study we have shown that EF is a theoretically justified approach stabilizing
temporal credit assignment in sparse supervised feedback regimes; our work opens promising avenues
for future research in improving machine learning algorithms, as well as for modeling learning in the
brain.

Broader Impacts: This study is foundational work devoted to improving optimization of recurrent
neural networks, with the goal of furnishing computationally powerful models of learning in the
brain. While there are a variety of potentially negative applications of effectively trained recurrent
neural network models, extensive modification by third parties would be required to produce such
negative impacts on the basis of the insights drawn here.

Acknowledgments and Disclosure of Funding

We would like to thank members of Savin lab and Neslihan Serap Sengor for insightful discussions
and feedback. This work was supported by the National Science Foundation under NSF Award No.
1922658, the Simons Foundation, and a Google faculty award. [CB] is supported in part by the
FRQNT Strategic Clusters Program (Centre UNIQUE - Quebec Neuro-Al Research Center).

10

References

[1] Lukasz Ku$mierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modu-
lating Hebbian plasticity with errors. Current Opinion in Neurobiology, 46:170-177, October
2017.

[2] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated Spike-Timing-Dependent Plasticity,
and Theory of Three-Factor Learning Rules. Frontiers in Neural Circuits, 9:85, January 2016.

[3] Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy
Gradient Methods Fail | PLOS Computational Biology.

[4] Peter L. Bartlett and Jonathan Baxter. Hebbian Synaptic Modifications in Spiking Neurons that
Learn, November 2019. arXiv:1911.07247 [cs, stat].

[5] R.V. Florian. A reinforcement learning algorithm for spiking neural networks. In Seventh
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’05), pages 8 pp.—, September 2005.

[6] Michael A. Farries and Adrienne L. Fairhall. Reinforcement learning with modulated spike
timing dependent synaptic plasticity. Journal of Neurophysiology, 98(6):3648-3665, December
2007.

[7] A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application
to Biofeedback | PLOS Computational Biology.

[8] Dorit Baras and Ron Meir. Reinforcement learning, spike-time-dependent plasticity, and the
BCM rule. Neural Computation, 19(8):2245-2279, August 2007.

[9] Frontiers | Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of
NeoHebbian Three-Factor Learning Rules.

[10] Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligi-
bility Traces and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian
Three-Factor Learning Rules. Frontiers in Neural Circuits, 12, July 2018. Publisher: Frontiers.

[11] James M Murray. Local online learning in recurrent networks with random feedback. eLife,
8:€43299, May 2019. Publisher: eLife Sciences Publications, Ltd.

[12] A solution to the learning dilemma for recurrent networks of spiking neurons | Nature Commu-
nications.

[13] Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A Richards, and Richard Naud.
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nature
neuroscience, 24(7):1010-1019, 2021.

[14] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules. Frontiers in neural circuits, 9:85, 2016.

[15] Xiaohui Xie and H Sebastian Seung. Equivalence of backpropagation and contrastive hebbian
learning in a layered network. Neural computation, 15(2):441-454, 2003.

[16] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation. Frontiers in computational neuroscience, 11:24,
2017.

[17] Daniel M Wolpert, Jorn Diedrichsen, and J Randall Flanagan. Principles of sensorimotor
learning. Nature reviews neuroscience, 12(12):739-751, 2011.

[18] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:€253, 2017.

[19] Maurice A Smith, Ali Ghazizadeh, and Reza Shadmehr. Interacting adaptive processes with
different timescales underlie short-term motor learning. PLoS biology, 4(6):e179, 2006.

11

[20] Reza Shadmehr, Maurice A Smith, and John W Krakauer. Error correction, sensory prediction,
and adaptation in motor control. Annual review of neuroscience, 33(1):89-108, 2010.

[21] Alexander Meulemans, Nicolas Zucchet, Seijin Kobayashi, Johannes Von Oswald, and Jodo
Sacramento. The least-control principle for local learning at equilibrium. Advances in Neural
Information Processing Systems, 35:33603-33617, 2022.

[22] Walter Senn, Dominik Dold, Akos F Kungl, Benjamin Ellenberger, Jakob Jordan, Yoshua
Bengio, Jodo Sacramento, and Mihai A Petrovici. A neuronal least-action principle for real-time
learning in cortical circuits. ELife, 12:RP89674, 2024.

[23] Bill Podlaski and Christian K Machens. Biological credit assignment through dynamic inversion
of feedforward networks. Advances in Neural Information Processing Systems, 33:10065-10076,
2020.

[24] Alexander Meulemans, Matilde Tristany Farinha, Javier Garcia Ordéfiez, Pau Vil-
imelis Aceituno, Jodo Sacramento, and Benjamin F Grewe. Credit assignment in neural
networks through deep feedback control. Advances in Neural Information Processing Systems,
34:4674-4687, 2021.

[25] Aditya Gilra and Wulfram Gerstner. Predicting non-linear dynamics by stable local learning in
a recurrent spiking neural network. Elife, 6:¢28295, 2017.

[26] Alireza Alemi, Christian Machens, Sophie Deneve, and Jean-Jacques Slotine. Learning nonlin-
ear dynamics in efficient, balanced spiking networks using local plasticity rules. In Proceedings
of the AAAI conference on artificial intelligence, volume 32, 2018.

[27] Barbara Feulner, Matthew G Perich, Lee E Miller, Claudia Clopath, and Juan A Gallego. A
neural implementation model of feedback-based motor learning. Nature communications,
16(1):1805, 2025.

[28] Florian Hess, Zahra Monfared, Manuel Brenner, and Daniel Durstewitz. Generalized teacher
forcing for learning chaotic dynamics. arXiv preprint arXiv:2306.04406, 2023.

[29] Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental,
sparse, and other variants. In Learning in graphical models, pages 355-368. Springer, 1998.

[30] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310-1318. Pmlr,

2013.

[31] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo.
Universality and individuality in neural dynamics across large populations of recurrent networks.
Advances in neural information processing systems, 32, 2019.

[32] Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning chaotic
dynamics with rnns. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 11297-11312.
Curran Associates, Inc., 2022.

[33] Matthijs Pals, A Erdem Sagtekin, Felix C Pei, Manuel Gloeckler, and Jakob H. Macke. Inferring
stochastic low-rank recurrent neural networks from neural data. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[34] Ronald J. Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2):270-280, 1989.

[35] A Learning Algorithm for Continually Running Fully Recurrent Neural Networks | MIT Press
Journals & Magazine | IEEE Xplore.

[36] Manuel Brenner, Florian Hess, Georgia Koppe, and Daniel Durstewitz. Integrating Multimodal

Data for Joint Generative Modeling of Complex Dynamics, December 2022. arXiv:2212.07892
[nlin] version: 1.

12

[37] Jonas M. Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning
chaotic dynamics with RNNs, October 2022. arXiv:2110.07238 [cs, math, stat].

[38] Kenji Doya. Bifurcations in the learning of recurrent neural networks. In Proceedings of the
1992 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2777-2780. IEEE,
1992.

[39] Adam Kohn, Anna I Jasper, Jodo D Semedo, Evren Gokcen, Christian K Machens, and Byron M
Yu. Principles of corticocortical communication: proposed schemes and design considerations.
Trends in Neurosciences, 43(9):725-737, 2020.

[40] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks, 2015.

[41] P.R. Vlachas and P. Koumoutsakos. Learning on predictions: Fusing training and autore-
gressive inference for long-term spatiotemporal forecasts. Physica D: Nonlinear Phenomena,
470:134371, 2024.

[42] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

[43] Owen Marschall, Kyunghyun Cho, and Cristina Savin. A unified framework of online learning
algorithms for training recurrent neural networks. Journal of Machine Learning Research,
21(135):1-34, 2020.

[44] Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance.
Cognitive science, 11(1):23-63, 1987.

[45] James M Murray. Local online learning in recurrent networks with random feedback. Elife,
8:e43299, 2019.

[46] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propa-
gation. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pages
498-515. Springer, 2015.

[47] Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed.
Deep learning without weight transport. Advances in neural information processing systems,
32,2019.

[48] David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural computation, 25(3):626-649, 2013.

[49] Bingni W Brunton, Matthew M Botvinick, and Carlos D Brody. Rats and humans can optimally
accumulate evidence for decision-making. Science, 340(6128):95-98, 2013.

[50] Colin Bredenberg, Cristina Savin, and Roozbeh Kiani. Recurrent neural circuits overcome
partial inactivation by compensation and re-learning. Journal of Neuroscience, 44(16), 2024.

[51] Klavdia Zemlianova, Amitabha Bose, and John Rinzel. Dynamical mechanisms of how an rnn
keeps a beat, uncovered with a low-dimensional reduced model. Scientific Reports, 14(1):26388,
2024.

[52] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J] Akerman. Random synap-
tic feedback weights support error backpropagation for deep learning. Nature communications,
7(1):13276, 2016.

[53] Karl Friston and Stefan Kiebel. Predictive coding under the free-energy principle. Philosophical
transactions of the Royal Society B: Biological sciences, 364(1521):1211-1221, 2009.

[54] Maria Isabel Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties.
Institute for Systems and Robotics, 43(46):3736-3741, 2004.

[55] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572-585, 2021.

13

[56] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[57] Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction, 2025.

[58] Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker.
Amortized in-context bayesian posterior estimation. arXiv preprint arXiv:2502.06601, 2025.

[59] Brenden M Lake, Russ R Salakhutdinov, and Josh Tenenbaum. One-shot learning by inverting
a compositional causal process. Advances in neural information processing systems, 26, 2013.

[60] Reuben Feinman and Brenden M Lake. Learning task-general representations with generative
neuro-symbolic modeling. arXiv preprint arXiv:2006.14448, 2020.

[61] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

[62] Nan Liu, Yilun Du, Shuang Li, Joshua B Tenenbaum, and Antonio Torralba. Unsupervised
compositional concepts discovery with text-to-image generative models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2085-2095, 2023.

[63] Lea Duncker, Laura Driscoll, Krishna V Shenoy, Maneesh Sahani, and David Sussillo. Organiz-
ing recurrent network dynamics by task-computation to enable continual learning. Advances in
neural information processing systems, 33:14387-14397, 2020.

[64] Noor Sajid, Philip J Ball, Thomas Parr, and Karl J Friston. Active inference: demystified and
compared. Neural computation, 33(3):674-712, 2021.

[65] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

[66] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[67] Alexander Ororbia and Ankur Mali. Active predictive coding: Brain-inspired reinforcement
learning for sparse reward robotic control problems. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 3015-3021. IEEE, 2023.

[68] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[69] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[70] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME—Journal of Basic Engineering, 82(Series D):35-45, 1960.

[71] Alexander Meulemans, Francesco Carzaniga, Johan Suykens, Jodo Sacramento, and Benjamin F.
Grewe. A Theoretical Framework for Target Propagation. In Advances in Neural Information
Processing Systems, volume 33, pages 20024-20036. Curran Associates, Inc., 2020.

[72] Colin Bredenberg, Ezekiel Williams, Cristina Savin, Blake Richards, and Guillaume Lajoie.
Formalizing locality for normative synaptic plasticity models. Advances in Neural Information
Processing Systems, 36:5653-5684, 2023.

[73] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278-1286. PMLR, 2014.

[74] Kenneth Lange. A gradient algorithm locally equivalent to the em algorithm. Journal of the
Royal Statistical Society: Series B (Methodological), 57(2):425-437, 1995.

14

[75] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural
computation, 11(2):305-345, 1999.

[76] Thomas J Page Jr. Multivariate statistics: A vector space approach. Journal of Marketing
Research, 21(2):236-236, 1984.

[77] P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550-1560, 1990.

[78] David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic neural
networks. Neuron, 63(4):544-557, 2009.

[79] Yuhang Song, Beren Millidge, Tommaso Salvatori, Thomas Lukasiewicz, Zhenghua Xu, and
Rafal Bogacz. Inferring neural activity before plasticity as a foundation for learning beyond
backpropagation. Nature Neuroscience, 27(2):348-358, 2024.

[80] Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

15

A Analyzing the hidden state impact of Error Forcing

In this section, for completeness, we give a step by step derivation explaining how error forcing
orthogonally projects the RNN hidden state onto the optimal readout manifold. First, notice that there
are infinitely many viable teacher states r; due to the dimensions of the decoder we consider W g, all
of which will produce the optimal readout y;. We can take:

=" g (14)

*mm W¢ Yt (15)

Z=a1V1 +aave + -+ aN_N,VN_N, (16)

where v; | i € 0,1,...,N — N, form a basis for the null space of W, and coefficients a; are

arbitrary scalar coefﬁcwnts ThlS solution works for arbitrary coefficients a; because by definition
Wyz = 0 Va; and Wyr;™" = y*. We will find the teacher state by orthogonally projecting
the current state r; to the manifold of possible optimal responses. To do so, we can think of the
orthogonally projected vector as consisting of two parts: the vector denoting the minimum-norm
solution and a second vector denoting the vector needed to get from the minimum-norm solution to
the projected solution. The second term can be found by taking the difference vector between the
current state and minimum-norm state, and projecting it onto the nullspace of the decoder W 4. This
can be done by setting the z in a particular way:

Pnull =1- PrOW7 (17)
me = W:;qu; (18)
z = Pnull (rt - rtmm)' (19)

One can think of this choice of r;™" + z as the point closest to r; that lies on the hyperplane of
optimal responses: it is the orthogonal projection of r; onto this manifold. Putting it all together:

r; =™ + Poun(r; — r;™") (20)
= (L= W W — 1) @
Rearranging the terms and using Eq. E], we have:
=[I-WIWy(r — Wiy}) + Wy} (22)
=[I-W/Wyr, + W)y, — W]y, + W W,Wlyr. (23)
First, notice that,
WIW,WE =W (24)
Therefore,
r; =[1- W/ Wyr, + Wiy, — Wiy, + W]y, (25)
=[I- W Wyr, + W]y;. (26)

Now we plug this teacher state to the generalized teacher dynamics (Eq. [3)):
= (1 —a)ry + ary 27
éf't:[l—aW W v+ aWiy;. (28)

Lastly, one can arrange terms to recover the EF equations we used in the main text:
Ty =1+ aW;r(y,f — Wyry) (29)
=r+ aw;;et. (30)
In the main text, we apply a ‘stop gradient’ to e;, which we justify in Appendix [B] Aside from the
‘stop gradient’ operation, these equations are equivalent to the EF dynamics, which shows that error

forcing pushes network activity orthogonally towards the optimal readout manifold. This equation
also makes it clear why EF and TF are dynamically same when N, > N, because under this condition

16

W$W¢ = I It is also worth noting that this approach is similar to how the Kalman Filter was first
derived in the seminal paper of Kalman [70]], using orthogonal projections.

Here we have compared EF to TF in terms of their dynamics. However, since it has been shown [28]]
that TF can solve the vanishing/exploding gradient problem by damping Jacobians, it is also useful to
investigate the differences between EF and TF in terms of their effects on parameter gradients during
optimization. Because of its use of stop gradients, EF does not reduce the magnitude of the network
dynamics Jacobian in the same way as TF, implying that its performance improvements are due to its
guiding influence on network states. However, it is also worthwhile investigating what happens if we
do let gradients flow through e; (explored empirically in Appendix [C). When we let the gradients
flow, EF only dampens the dimensions of the current state that are in the rowspace of the decoder,
replacing this activity with the target (optimal) network state. In this case, the Jacobians become (see
Eq. 28):

8I't 8rt 8f~t_1 aFg(f't_l) 8f‘t_1

— - - =J,(I-aWIW 31
ori_ Ofy_1 Ory_ oty Ori t(e ¢), S

This is in contrast to TF, which dampens the activity state in every dimension (decaying activity by a
multiplicative factor of (1 — a)I).

Ji

A.1 Network state updates induced by forcing versus gradient updates

The error forcing mechanism involves an optimization process in terms of both network activity states
and network parameters; in fact, the error driving mechanism can be viewed as a form of second
order optimization derived from Bayesian principles [71]] (Appendix [B). However, the question stands
whether forcing via errors derived from first-order loss gradients could be equally or more effective
than using the approach we have taken in this study. In this section we derive a first-order alternative
to error forcing and provide empirical comparisons to our approach.

First, consider the loss function:
T
L= L (32)
t=1

where £; € R is the instantaneous loss at each time step ¢. As it is commonly done, we assume that
the instantaneous loss does not depend on the past activities, given the current activity. The RTRL
factorization makes use of the instantaneous loss:

0L S~ OL(t) 0L O 33
691 N 801 N 8rt 891
t=1 t=1
Where the term %E is computed iteratively, using 822:1 from the previous time step. Much work has

been done in the iterative term % and it’s approximations. However, here we will focus on the first

term, %f: , because this term defines how network activity r; should change to locally improve the

loss. Consider instantaneous MSE loss: £; = %e;'—et, where e; = y; — y;. Using the chain rule,

0L, _ OL; Doy Oy
8I't n 8et 8yt 8rt

= (et)TINy W¢ = e;rWd) (35)

(34)

Which means that every 885 L term is in the direction of the vector given by Equation Consequently,

activity changes induced by synaptic weight changes are in the direction of this vector. One could

imagine that nudging network activity states ry in the direction of %f: = W;— e; could improve

performance during training; however, error forcing updates the dynamics via W;fet, which is

different from Eq. , since Wg #* W; One caveat of using the transpose rather than the
pseudoinverse is that the parameter a can no longer be interpreted as an interpolation between the
current state and the target state; only the pseudoinverse guarantees the exact target when oo = 1. We

17

empirically compared EF and this first-order error forcing approach by sweeping « over a range of
values for both methods. We found that EF outperforms the first-order method (Fig. [STk), although
for more complex readouts (e.g., multilayer perceptrons, nonlinear functions), first-order gradients
may provide a more stable solution for error forcing. In that case, we would use the first-order forcing

using the following equation:
5 oL, "
B =1, — 19 <ar:) (36)

which is equal to 1y = ry — ng(W;fet) when a linear decoder combined with a MSE loss is used.

B A Bayesian Interpretation of Error Forcing

B.1 Model definition

To start, consider a noisy dynamical system, with transition function Fy(-) : R — R parameterized
by 6:

ry (€0:t,%0:4,0) = Fy (I‘t—l (€0:t—1,X0:4—1, 9),Xt) + €, (37)

where €, ~ N(0,02I). Notice that here we define the network dynamics treating the errors €;
as random variables, as opposed to treating r; as a random variable. This is an example of the
reparameterization trick [42], which will ultimately allow us to do long-term gradient-based credit
assignment, as opposed to the traditional EM algorithm for Markovian state-space models, which
typically uses temporally ‘local’ updates [72], relying on the inference distribution to implicitly
perform temporal credit assignment. The network predicts targets y; € R™v via:

yi = Wyr; (Eo:n X0:t) 9) + 1y, (38)
where 1, ~ N (0, U%I) and Wy is a Ny x N matrix, so that we have:
p(yil€ot, Xo:¢) = N(W¢Pt (€0:¢, %0:¢, 9)70371)- (39)

These equations collectively define a stimulus-conditioned generative model for the output:

-
p(yor|xo:r; 0) :/[HP(Yta€t|50:t—1aX0:t—1§9)}10(}’0750|X0§0)d50:T7 (40)
=1

where p(yo, €0|Xo;) specifies the network’s initial conditions and output predictions, and o7 and
2

o2 are free hyperparameters that will ultimately control—via the ratio Z—Z—how much network states
are corrected by output errors, very similar in function to the Kalman gain [54].

B.2 A review of variational model fitting

Naively, to fit this generative model to a distribution of outputs, one would perform maximum
likelihood estimation by minimizing the Kullback-Leibler divergence between the data distribution
and the generative model, taking the loss to be:

Laize(0) = KL [pa(yor|xor)lIpyorlxor:0) (41)
For latent variable models, this loss is difficult to evaluate analytically, because of the intractable
integral in Eq. 40| [42, [73]]. To resolve this issue, variational methods minimize an upper bound on
Larre(0), called the variational free energy [29]], which has better computational properties:
Lyre(d) <KL [pd(yo:T‘XO:T)‘|p<YO:T|XO:T§ 9)}
+ Epy(yorrixor) {KL [CI(EO:T\XO:T, yo.r)||p(€o.7 %07, Yo.1; 9)H (42)

=KL [pd(YO:T |x0.7)q(€0:7|yo.1, X0.:7) | [P(Yo:1, €0:7 | X0:T; 9)} (43)
=Lrgp(8), (44)

18

where q(€o.7|Xo.7,yo.r) is a variational inference distribution over the errors €y, that we also
optimize, and the inequality is simply due to the fact that the KL divergence is strictly positive. The
advantage of this approach is that £Lrg(6) is a function of the joint distribution p(yo.7, €0.7|X0.7; 6),
which unlike the marginal distribution p(yo.7|Xo.7; ¢) does not require computing an intractable
integral. Practically, one selects an appropriate variational inference distribution ¢, and approximates
this loss with Monte Carlo samples from the joint distribution py(yo.7|%0.7)q(€0.7|y0.7, X0:7),
updating the generative model p(yo.7, €0.7|X0.7; 6) via maximum likelihood estimation.

To select a distribution ¢, one typically minimizes £rg with respect to some parametric family
of distributions (as is the case for variational autoencoders [42]), or one simply notes that Lpg is
minimized when one takes ¢ = p(€p.7|X0.7,Y0.7; 001d), Where 0,4 is treated as a constant with
respect to subsequent optimization (as is done in variational Expectation-Maximization [29] and
gradient EM [74]]). This results in a coordinate descent procedure, where one alternates between
optimizing ¢ and 6.

B.3 Error Forcing as approximate gradient EM

In this section, we will show that Error Forcing can be viewed as an approximation of this latter
approach. While it would be convenient to take ¢ = p(€g.7|X0.7, Yo.1; Goid), inference for arbitrary
dynamical systems typically requires a temporally causal filtering procedure, followed by a temporally
acausal smoothing procedure, as required by the forward-backward algorithm [75]: smoothing
prevents online learning, because it requires storing a record of past network states. This is much
the same problem that BPTT faces, making it unclear how either algorithm could be implemented
by a biological system (in contrast to RFLO, for instance). Furthermore, optimal filtering itself for
Gaussian state space models requires tracking large covariance matrices for the inferred €, variables;
it is again unclear how a biological system could store and perform nonlocal computations (like
matrix inversion) on N2 state variables.

As an approximation, we will instead do only filtering of maximum a posteriori (MAP) estimates. In
variational inference terms, this amounts to taking:

T

q(eo.r|yo.r, Xo.r) = H 5(e€f) (45)
t=0

€; = argmax p(€t|Yo:t, X0:t5 €p.t—1;0) (46)

€t

where d(-) is a Dirac delta distribution. Thus, at each time step, we will infer the appropriate error
correction €;, given the previous network state, errors, stimuli, and observations, but we will not
adjust our error estimate based on future information. After computing the estimated error correction
terms €;,.» for a sequence, we then update parameters for the recurrent network via gradient descent
on Eq. [52] It is important to stress that this approach is an approximation: because our maximization
with respect to €, is performed in a temporally greedy way, it cannot be viewed as global optimization
of Lrp as would be required for proper MAP estimation. However, empirically our approach is still
quite effective, and the absence of smoothing allows for exclusively online error correction.

Given the overall framework, the question now becomes: how do we calculate the filtered posterior
p(€t|yo:t, X0:t, €5.4—1; 0), and maximize it with respect to €;? Since, within our generative model,
conditioned on €(.,_;, X0, and yo..—1, the current time step’s target output y; is a linear function of
e¢, the joint distribution p(€:, y+|yo:t—1, Xo:t, €}.4_1;) is a multivariate Gaussian, with mean and
covariance given by:

(mN (.0 _(ol aiW,
K= <[J,y> B (Wd)f't) ’ %= <USW¢ O’EW¢W(—£ +O’%I ’ (47)

where T, = f (I‘t71 (GESH, X0:t—1, 9) , X5 9). Now the filtered posterior amounts to conditioning

this multivariate distribution on the observed output y;. For a multivariate Gaussian the conditioned
distribution has an analytic formula [76]:

p(6t|68:t—17X0:t7 Yo:t—15 9) = N(u’qu Z}e|y)a (48)

19

where |, and 3|y are given by:

o2 -
T T —
Bey = Wy <W¢>W¢ + UZI> (yt — Wyly) (49)
€
-1
0.2
ey = 0l —0lW] <W¢W; + 0’2’I> W, (50)

Since the filtered posterior is a Gaussian distribution, the maximum a posteriori estimate is equal to
the mean. Thus we use Eq. [49]as our point estimate €; of the posterior. This has the functional form
of a feedback error multiplied by a regularized pseudoinverse of the decoder W, so that the latent
network state is corrected, at each time point, by error feedback delivered from the output. These
equations provide all of the information we need to perform our optimization procedure; while the
pseudoinverse calculation may appear biologically implausible, previous work has shown that it can
easily be estimated by regression using a local ‘delta’ learning rule [46]. For a sequence of inputs
Xo.7 and outputs yo.7, we iteratively compute network states using the equation:

o (€0 X00,0) = f (Fet (€01, X00-1,0), %030 + € (51)

After computing errors €.~ and network states T'o.7 for a full sequence, we update parameters using
backpropagation through time [[77]] on the loss (Eq. [52), or for additional biological realism, RFLO
[45]]. To see how Eq. [52]produces a standard mean-squared error loss, we can substitute in our choice
of variational distribution g and remove terms that do not depend on the parameters 6:

Lrp(0) =KL [pd(YO:T|XO:T)Q(€O:T|yO:T7 xo:7)||p(Yo:1, €0:7|X0:7; 0) (52)
EEPd(yO:T\XO:T) [_ lng(}’o;T, ES:T|X01T) + IOg Q(ES:Tb’O:Tv XO:T)] (53)
EEPd(yo:T\XO:T) [_ 1ng(yo:Tv €8:T|X0:T)] . (54)

Here the first equivalency follows from the fact that the data distribution p,; does not depend on
the parameters ¢ and thus functions as an additive constant, and the second equivalence follows
from the fact that the entropy of ¢, as a product of Dirac delta distributions, has constant (negative
infinity) entropy that does not depend on the value of €.~ or any network parameters (if one does
not want to worry about negative infinities, one may simply consider g to be a product of Gaussian
distributions with arbitrarily small variance, where the same principles apply). This loss is now just a
negative log-likelihood over targets yo.7 and inferred errors €g.7. Substituting in the log-likelihood
of a Gaussian distribution and discarding additive constants, we have:

T

1 L. - 1
Lr50) =Epy (yourixom) 57 (Ve = Wi, (€h:02%0::0)) T (v — W (€50, X0:4,0)) + 252

Lt=0 —" "M €
(55)

T

=Lipy(yor|xor) Z ﬁ(yt - W¢f‘t (€S:t7 X0:ts 9))T(yt - W¢I~'t (eézh X0:t, 9))] ’

Lt=0 —" 7T

(56)

where we may discard the final term because it has no dependence on . Therefore, despite its apparent
complexity, for our choice of ¢ the loss £ g (0) is no different from a standard mean-squared error,
except that the errors €. are used to correct internal network dynamics online.

This approach provides a useful balance: we are able to use inferred errors € to drive the network
into a dynamical regime that is close to optimal performance before updating parameters, which
has been shown to provide benefits for learning in chaotic recurrent networks [28, (78] and in deep
networks [79]; simultaneously, we preserve temporal dependencies between parameters in our
recurrent network, enabling the use of BPTT and its variants, which have been shown to be very
powerful for fitting complex time series data distributions [80,169]]. To conclude, we can now see
that Error Forcing functions as an optimization algorithm (and generalizes to the unforced test-time
condition) because it is approximately optimizing an upper bound on £, (), where the driving
error signals €. function as inferred error corrections similar to those observed in the Kalman Filter.

20

B.4 Error forcing with an extended Kalman Filter

In the preceding section we used greedy MAP estimates for €y.7, however these greedy estimates do
not account for uncertainty regarding the proper error forcing term at previous time steps. To resolve
this issue, we can instead take:

T

q(€o:r|yo:r, X0:7) = H5(€}k) (57
=0

€; = argmax p(€&|yo:t, Xo:t; 0) (58)

€t

which is to say we now take for ¢ our filtered posterior. This approach differs from the previous
greedy MAP approach (Eq. #5) in that we do not condition our probability distribution on €g.;—1: our
maximization is instead performed by marginalizing over uncertainty in our previous state estimates.
This is still an approximation of variational EM, because we are not conditioning €; on targets and
stimuli from future time points, but it could theoretically improve performance by taking into account
uncertainty over previous error forcing terms €g.;—1.

In order to perform this filtered maximization approach, we need, for each timestep, access to
p(€t|yo:t, X0:¢;0). If our latent transition dynamics (Eq. were linear, this filtered posterior
could be computed analytically via Kalman Filtering. However, because the transition dynamics
for our noisy RNN are nonlinear, we can only perform an approximate inference procedure using
the Extended Kalman Filter [54]. For simplicity and consistency with the literature, we will slightly
adapt the Extended Kalman Filter equations by writing in terms of €, (as opposed to r;).

Under the Extended Kalman Filter, the filtered posterior p(e€:|yo.¢, Xo:¢;0) ~ N(&¢, 3Xy)¢) is nor-
mally distributed, with mean €;|; and covariance 3;|;, where the subscript t|t is used to note that the
state estimate at time ¢ is conditioned on inputs and targets up to time ¢, whereas the subscript ¢|¢t — 1
will be used to note that the state estimate at time ¢ is conditioned on inputs and targets up to time
t — 1. Estimates are computed iteratively, based on estimates obtained at the previous time ¢ — 1.
First, we define the predicted state estimates given previous state information by rolling forward the
network dynamics by one time step:

Ty = Fo(rio1 + €_10—1,%t) (59)
DINPERIEN 15 S RTPRER Bl § (60)

where 3, ;_; gives the covariance distribution over latent states before conditioning on targets y, and
we use J; to denote the Jacobian of the transition function evaluated at Ty_ 1)z =111 + €& _1¢—1,
i.e. we have:

_ OFp(rs,xq)

J
K 8rt

(61)

Tto1)t—1
This Jacobian is used in order to linearize network dynamics around the mean estimate of the previous

state, in order to preserve the Gaussianity of the inference distribution and the analytic tractability it
provides. In terms of these variables, we can then define €;; and 3;; as:

€t = K, (y - W¢I_'t|t71) (62)

2t|t = (I - KtW¢)Et|t—1 (63)
-1

K: = Et\tflwg (W¢Et|t71W£ + UE,I)) (64)

where K; is the Kalman gain. Since the maximum likelihood estimate of a normal distribution is
simply its mean, our filtered MAP estimate becomes: €; = €;;. Comparing Egs. and @], we
see that our error estimates in the two cases differ because 3;_;, through the Kalman gain K,
increases error corrections along dimensions with high latent uncertainty inherited from previous
time steps. In the event that we ignore latent uncertainty inherited from previous timesteps, by taking
-1 = 021, these equations are identical-therefore, the error forcing method employed in this
paper can be thought of as a simplified approximation of error forcing with an extended Kalman
Filter.

Because this latter method requires tracking errors and covariance matrices, it is more memory-
intensive, requiring records of N (N + 1) state variables, and it is unclear how single neurons

21

could be expected to store such variables in a biologically plausible way. Therefore, as a softer
approximation, one could also imagine taking 3, | ~ diag (J 125 1)i—1J d+ O’EI), so that only
2N variables would be required, with each neuron being required to track its own state and its own
error-uncertainty. To our knowledge, there is little evidence that cortical neurons maintain or use
such an error-uncertainty estimate. All the same, these methods may provide empirical performance
improvements relative to Error Forcing in its basic form.

C Additional results

We examined the difference between using or not using the stop-gradient in Eq. [9} The principal
theoretical difference between using or not using stop gradients is whether the Jacobians are damped
in the rowspace of the readout weights (see Eq. [3T). Notice this doesn’t mean that the Jacobians are
always damped in one particular direction during training, because the readout weights are trained
through learning and hence they change over learning. We compared the performance of these two
approaches on the delayed XOR task (Fig. [STk), where we found that not using stop gradients
marginally improved performance. This experiment shows that the benefits of EF mostly come from
dynamically guiding the network towards an optimal state, and has less to do with Jacobian damping
effects.

Lastly, we trained the networks on the sine wave generation task to examine the effects of choosing
different forcing feedback weights: in particular, we compared the pseudoinverse and transpose of
the decoder weights (Fig. [STH). We used the sine wave generation task because the differences
between using the pseudoinverse and transpose of the readout weights is only evident in the case of
multidimensional outputs. Here, we found that using qu produces improvements in performance

relative to using the W | , justifying our choice for the feedback weights.

a delayed XOR b delayed XOR ¢ sine wave gen.

=

Q

§ 100 —l“uuo.o‘..\. 100 - . 100 =

L 75 EF wels 751 T, 75

) o\‘ N I

% 50 50 ° 50—

- N

= 25 25

= -

o 0 T T 0 T 0= — T i
1000 2000 0 1 W¢ W¢ BPTT

delay timesteps o algorithm

Figure S1: a) As in Figure[3p, but without the stop gradient operation. b) As in Figure 3, but without
the stop gradient operation. ¢) We trained the sine wave generation task for a specific task difficulty of
mean frequency 5.0, using either the pseudoinverse (using o = 0.01) of the readout or the transpose.

D Details on task and training setup

We used leaky RNNs in the form:

A A A A
r,=(1- 7t)1rH T Ttwg,,tanh(rt,l) 1 gweth + Ttb (65)

where Wy _ is for recurrent connections, Wy_ for input to hidden neurons, b is the bias, which can
be different for each neuron and is trained, and we used a linear decoder as in the main text. For
every experiment, we used 7 = 10 ms, and N = 50 neurons. We never trained the input-to-hidden
connections, and always trained the recurrent and output connections with a learning rate 0.001,

22

using the Adam optimizer, except for the delayed XOR task with -BPTT, where we used learning rate
0.0003. For initialization, we used:

W, ~N (0, 66
) (02) "
where g is the spectral radius, which was set at 1.5. The number of input units NV,, depended on the
task: it was 3 for delayed XOR (two stimuli, one cue), 2 for evidence integral (two stimuli, no cue),
and 1 for sine wave generation (1 stimulus). Inputs were initialized with:

Wy ~N(0,1), (67)
and finally the decoder weights were initialized with:
W~ N(0, %) (68)
As initial values, we used
b+ 0 (69)
ro + 0. (70)

We did not treat r(as a trainable parameter. We used Lo regularization for neuron activities with
a 0.00001 scalar, for evidence integration and the sine wave generation task, which was arbitrarily
chosen and was not optimized. For every task, we trained the networks for at most 200 epochs with a
batch size of 128. During each epoch, 12 batches were used for testing, i.e., without forcing. We
neither clipped the gradients nor used weight decay. Each batch included 512 trials for delayed XOR,
1024 trials for evidence integration, and 2048 trials for sine wave generation. The network was said
to have converged if the MSE loss was under 0.1 for delayed XOR and evidence integration, and if it
was under 0.01 for sine wave generation, for 10 consecutive epochs. We stopped the training when
the network reached convergence according to these criteria.

For delayed XOR, the delay between the stimuli and the stimulus duration was chosen as 10 ms.
For evidence integration, it was 5 ms. The delay between the last stimulus and the response period
was varied to change the task difficulty; exact values are shown in the main text figures. For the
delayed XOR task, the second delay perios was decreased or increased by a maximum of 5 ms,
chosen uniformly in a given task difficulty, and the beginning of the response period was indicated
with a cue signal. We did not vary the last delay period for the evidence integration task, hence, the
task did not require a cue signal. The distribution of stimuli in the evidence integration task for left
and right stimuli was chosen uniformly, with a maximum of 7 signals in total. For delayed XOR,
input configurations were also chosen uniformly.

For sine wave generation, for a given task difficulty, we randomly (uniformly) picked from 7 discrete
frequencies for each trial, and provided the chosen frequency value to the network as a constant
input. The networks were required to generate 2 sine waves (output to two different output channels)
depending on the given input. These two sine waves were separated by 45 degree phase difference,
which was kept fixed for every task difficulty.

The experiments were conducted using an AMD Rome CPU. Each setting was trained using 20 seeds
for the delayed XOR and sine wave generation tasks, and 40 seeds for the evidence integration task.

Our code is available at https://github. com/Savin-Lab-Code/error-forcing,.

23

https://github.com/Savin-Lab-Code/error-forcing

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] All claims made are supported by both empirical and theoretical results
discussed within the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed at length in the discussion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

24

Justification: Yes, proofs (along with corresponding assumptions) for all mathematical
claims made in the paper are supported in the Appendices.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full descriptions of experiments run (and the network architecture used) are
provided in the results section of the paper and supplemental.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code will be provided with the camera ready draft for reproducibility.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Procedures used for hyperparameter and optimizer selection are described in
the results section, and further information is provided in the Appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars across multiple random seeds are provided for all figures produced.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Data pertaining to the compute resources used and execution time are provided
in the Supplemental.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The work in this study is basic science research on synthetic datasets, and as
such does not have issues pertaining to human subjects research or data; negative societal
impacts caused by this study would require extensive additional work with the explicit
intention to cause harm.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Both positive and negative societal impacts are described in the discussion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work done in this study poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Code packages used in the paper are credited in the supplemental.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

28

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There are no new assets released with this paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

29

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The method development in this research does not involve LLMs as any
important, original or non-standard component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Learning by error forcing
	Background
	Geometric perspective
	Bayesian perspective
	Bio-plausible error forcing

	Numerical results
	EF-BPTT
	EF-RFLO

	Discussion
	Analyzing the hidden state impact of Error Forcing
	Network state updates induced by forcing versus gradient updates

	A Bayesian Interpretation of Error Forcing
	Model definition
	A review of variational model fitting
	Error Forcing as approximate gradient EM
	Error forcing with an extended Kalman Filter

	Additional results
	Details on task and training setup

