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Abstract

The policy gradient theorem states that the policy should only be updated in states
that are visited by the current policy, which leads to insufficient planning in the
off-policy states, and thus to convergence to suboptimal policies. We tackle this
planning issue by extending the policy gradient theory to policy updates with re-
spect to any state density. Under these generalized policy updates, we show con-
vergence to optimality under a necessary and sufficient condition on the updates’
state densities, and thereby solve the aforementioned planning issue. We also
prove asymptotic convergence rates that significantly improve those in the policy
gradient literature. To implement the principles prescribed by our theory, we pro-
pose an agent, Dr Jekyll & Mr Hyde (J&H), with a double personality: Dr Jekyll
purely exploits while Mr Hyde purely explores. J&H’s independent policies al-
low to record two separate replay buffers: one on-policy (Dr Jekyll’s) and one
off-policy (Mr Hyde’s), and therefore to update J&H’s models with a mixture of
on-policy and off-policy updates. More than an algorithm, J&H defines principles
for actor-critic algorithms to satisfy the requirements we identify in our analysis.
We extensively test on finite MDPs where J&H demonstrates a superior ability
to recover from converging to a suboptimal policy without impairing its speed of
convergence. We also implement a deep version of the algorithm and test it on a
simple problem where it shows promising results.

1 Introduction

Policy Gradient algorithms in Reinforcement Learning (RL) have enjoyed great success both theo-
retically [50, 43, 16, 36] and empirically [23, 38, 37, 27]. Their principle consists in optimizing an
objective function J (the expected discounted return) through gradient steps, both being formally
specified below [43]:

J (π)
.
= E

[ ∞∑
t=0

γtRt

∣∣∣∣S0 ∼ p0, At ∼ π(·|St), St+1 ∼ p(·|St, At), Rt ∼ r(·|St, At)
]

(1)

∇θJ (π) =
∑
s∈S

dπ,γ(s)
∑
a∈A

qπ(s, a)∇θπ(a|s) and θt+1 ←−−−−proj θt + ηt∇θtJ (πt), (2)

using standard Markov Decision Process notations (recalled in App. A), where ηt is the learning
rate and dπ,γ(s)

.
=
∑∞
t=0 γ

tP(St = s|π) the discounted state density, the policies π .
= πθ and

πt
.
= πθt are implicitly parametrized by θ for conciseness, and←−−−−proj denotes the projection onto

the parameter space. We observe that the update established by the policy gradient theorem is
proportional to the state density of the current policy. This is problematic, as it implies that no value
improvement can be induced in off-policy states (i.e. states that are rarely visited). As a consequence,
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planning is inefficient in those states to the point of potentially compromising convergence to the
optimal policy.

To address the planning issue in off-policy states, we generalize the policy gradient theory by con-
sidering the more general policy update:

U(θ, d)
.
=
∑
s∈S

d(s)
∑
a∈A

qπ(s, a)∇θπ(a|s) and θt+1 ←−−−−proj θt + ηtU(θt, dt), (3)

where dt designates the state distribution on which the policy is updated. It does not have to match
the distribution induced by π and updates may therefore be off-policy. We note that U(θ, d) is not a
gradient in the general case, hence the use of the term update. We prove in the direct: πθ

.
= θ and

softmax: πθ ∼̇ exp(θ) parametrizations that following the exact policy updates induces a sequence
of value functions qt

.
= qπt that is monotonously increasing, upper bounded, and thereby converges

to a q∞. We then show that the condition “∀s ∈ S, ∑t ηtdt(s) =∞” on the sequence (dt) is neces-
sary and sufficient for q∞ to be optimal. Our result generalizes previous theorems to broader updates
and milder assumptions [2, 22]. Finally, we significantly improve the existing asymptotic conver-
gence rates. We show that (qt) converges to the optimal value i) exactly in finite time for the direct
parametrization (previously in O

(
t−1/2|S||A|(1− γ)−6

)
[2]), and ii) in O

(
t−1|S||A|(1− γ)−2

)
for the softmax parametrization, to be compared with O

(
t−1|S|2|A|2(1− γ)−6

)
[22].

Building on our theoretical results, we design a novel algorithm: Dr Jekyll and Mr Hyde (J&H). Its
principle consists in training two independent policies: a pure exploitation one (Dr Jekyll) and a pure
exploration one (Mr Hyde), and give control to either one for full trajectories. J&H’s independent
policies allow to record two separate replay buffers: one on-policy (Dr Jekyll’s) and one off-policy
(Mr Hyde’s), and therefore to update J&H’s models with any desired mixture of on-policy and
off-policy updates. Beyond an algorithm, J&H introduces conditions based on our analysis that
actor-critic algorithms should follow to properly plan off-policy. Furthermore, the separation of
exploration and exploitation allows to stabilise the training of the exploitation policy while ensuring
a full coverage of the state-action space through deep exploration [30].

We empirically validate our theoretical analysis and algorithmic innovation in both planning and RL
settings. In the planning setting where we assume that qt is exactly known, we analyze the impact of
the off-policiness of dt and conclude that, while it improves over classic policy gradient, the theoret-
ical sufficient condition does not allow to converge in a reasonable amount of time in very hard plan-
ning tasks: we thereby recommend to enforce the stronger condition “∀s ∈ S, ∑t ηtdt(s) ∈ Ω(t)”.
In the reinforcement learning domain, where qt must be estimated from the collected transitions,
the off-policiness of J&H’s policy updates allows by design to satisfy the recommendation as long
as Mr Hyde is able to cover the whole state space. This leads J&H to significantly outperform all
competing actor-critic algorithms in the hard planning tasks and to be competitive with gradient up-
dates in simple planning problems. As a proof of concept, we also test J&H in a deep reinforcement
learning setting and show that it outperforms various baselines on a simple environment.

The paper is organized as follows. Section 2 develops the policy update theory. Section 3 describes
J&H and positions it with respect to the literature. Section 4 presents the experiments and their re-
sults. Finally, Section 5 concludes the paper. The interested reader may refer to the appendix for the
proofs (App. B), the domains (App. C), and the full experiment reports (App. D, E, and F). Finally,
the supplementary material contains the code for the experiments: algorithms and environments.

2 Theoretical analysis

First, we recall some background: policy gradient methods depend on a parametrization θ ∈
R|S|×|A| of the policy. Like [2, 22], we will focus on the classic direct and softmax parametrizations:

• direct: π(a|s) .
= θs,a, for which us,a = dt(s)qπ(s, a) and the projection is on the simplex.

• softmax: π(a|s) .
=

exp(θs,a)∑
a′ exp(θs,a′)

, for which us,a = dt(s)π(a|s)(qπ(s, a)− vπ(s)).
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For both parametrizations, [2] proves that following the policy gradient∇θJ (π) from Eq. (2) even-
tually leads to the optimal policy in finite MDPs under the following assumptions and condition2:

A1. The model (p0, p, r) is known.
A2. The initial state-distribution covers the full state space: ∀s ∈ S, p0(s) > 0.

C3. The learning rate is constant: ηt = (1−γ)3

2γ|A| (direct) and ηt = (1−γ)3

8 (softmax).

Those are stringent requirements. A1 implies that the values qπ and state density dπ,γ of the policy
are known exactly. A2 is generally not satisfied in standard RL domains. Finally, verifying C3
makes learning slow to the point that it becomes impractical.

2.1 Convergence properties

In this section, we study, under A1, the convergence properties of the sequence of value functions
(qt) induced by the update rule defined in Eq. (3). We note that U(θ, d) is not a gradient in general.
Our first theoretical result is the monotonicity of the value function sequence (qt).
Theorem 1 (Monotonicity under the direct and softmax parametrization). Under A1, the se-
quence of value functions qt

.
= qπt and vt

.
= vπt are monotonously increasing.

By the monotonous convergence theorem, Thm. 1 directly implies the convergence of (qt):
Corollary 1 (Convergence under the direct and softmax parametrization). Under A1, the se-
quence of value functions qt uniformly converges: q∞

.
= limt→∞ qt.

In order to go further and prove convergence to a global optimal value, we need to enforce an
additional condition. Indeed, the update U relies multiplicatively on dt which could be equal (or
tend very fast) to 0 in some states, compromising the policy’s ability to reach the optimal value.
This argument is not only theoretical, it has been observed by many that policy gradient can get
stuck in suboptimal policies, even with entropy regularization. We designed our chain domain to
exhibit such behaviour (see Section 4.1).

Next, we show that (qt) converges to the optimal value function under some necessary and sufficient
condition.
Theorem 2 (Optimality under the direct and softmax parametrization). Under A1, the following
condition:

C4. Each state s is updated with weights that sum to infinity over time:
∑∞
t=0 ηtdt(s) =∞,

is necessary and sufficient to guarantee that the sequence of value functions (qt) converges to opti-
mality: q∞ = q?

.
= maxπ∈Π qπ .

Proof sketch. In both direct and softmax parametrizations, we assume there exists a state-action
pair (s, a) advantageous with respect to the state value limits q∞ and v∞

.
= limt→∞ vt, that is:

adv∞(s, a)
.
= q∞(s, a) − v∞(s) > 0. We then prove that in this state s, the policy improvement

yielded by the update is lower bounded by a linear function of the update weight ηtdt(s). Both
parametrizations require different proof techniques and are dealt with in different theorems. Sum-
ming over t, we notice that this lower bounding sum diverges to infinity, which contradicts Corollary
1. We therefore infer that there cannot exist such a state-action pair, which allows us to conclude
that no policy improvement is possible, and thus that the values are optimal: q∞ = maxπ∈Π qπ .

For the necessity of C4, we show that the parameter update is upper bounded in both parametriza-
tions by a term linear in the action gap. By choosing the reward function adversarially, we may set
it sufficiently small so that the sum of all the gradient steps is insufficient to reach optimality.

Thm. 2 is impactful along five dimensions.

Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates: As Thm. 2 is applicable to any distribution sequence, it
allows us in particular to consider the practice of using on-policy undiscounted updates: dt

.
= dπt,1.

2An assumption A# is a requirement on the environment or the application setting, while a condition C# is
a requirement that may be enforced by a dedicated algorithm in any environment or setting.
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Thus, it resolves a longstanding gap between the policy gradient theory and the actor-critic algorithm
implementations [12, 7, 51, 17, 1, 19, 41]. This mismatch and its lack of theoretical grounding were
identified in [45]. Later, [26] proved that the practitioners’ undiscounted updates are not the gradient
of any function and may be strongly biased under state aliasing. Recently, [53] studied the practical
advantage of the undiscounted updates from a representation learning perspective. C4 encompasses
both standard policy gradient and the undiscounted update rule: convergence to optimality of both
is guaranteed as long as C4 is verified. Our analysis thus shows that the convergence properties
of policy gradient and undiscounted updates require the same set of assumptions and conditions.
Conversely, it is possible to prove convergence to sub-optimal policies of either when C4 is violated.
In other words, Thm. 2 allows to reduce the study of specific algorithms to whether they verify C4.

Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates: It also justifies the use of an experience replay for the
actor, a trick also widely used in the literature to distributed the training over several agents [24, 34,
49, 14, 35]. Furthermore, while widely overlooked in the literature, we prove that off-policy updates
have an even higher impact, since they are necessary to guarantee the convergence to optimality3.
We leverage this discovery to introduce new design principles and a novel algorithm in Section 3.

Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory: Next, Thm. 2 generalizes previous optimality convergence results along two
axes. The initial state distribution p0 is not required to cover the state space anymore (aka A2). A2 is
unrealistic in most applications and cannot be enforced by an algorithm. Relaxing it is an important
open problem [2], we disprove it in the full class of MDP. However, it might be possible to find a
class of MDPs larger than the one verifying A2 where policy gradient also converges. Additionally,
the condition on our learning rates is also much more flexible than C3.

Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization: In contrast, C4 can be controlled by a dedicated algorithm. This
theoretical result promotes the principle of density-based regularization [21, 32], at the expense of
policy-based regularization that cannot guarantee that C4 is satisfied and sometimes fails to plan
over the whole state space (our chain domain experiments in Section 4 illustrate it well).

Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem: Finally, by combining Thm. 2, which analyzes pol-
icy improvement, with a thorough theoretical analysis of the policy evaluation step (discussed in
Section 3.1), we see a path towards results describing conditions on both components of generalized
policy iteration that guarantee convergence to optimality [4]. Furthermore, Thm. 2 gives sufficient
conditions on the policy improvement step. The generalized policy iteration theorem was conjec-
tured in [42] but never proved.

2.2 Convergence rates

Next, we give convergence rates for both softmax and direct parametrizations:

Theorem 3 (Asymptotic convergence rates under the direct parametrization). With direct
parametrization, under A1 and C4, the sequence of value functions qt converges to optimality in
finite time:

∃t0, such that ∀t ≥ t0, qt = q?. (4)

C4 is required for optimality and convergence rate contrarily to the softmax parametrization. We
significantly improve over previous bounds inO

(
t−1/2|S||A|(1− γ)−6

)
[2]. We wish to emphasize

that Theorem 3 does not say anything about how large t0 is, the rate is purely asymptotic.

Theorem 4 (Asymptotic convergence rates under the softmax parametrization). With softmax
parametrization, under A1, C4, and A8:

A8. The optimal policy is unique: ∀s, q?(s, a1) = q?(s, a2) = v?(s) implies a1 = a2,

the sequence of value functions qt converges asymptotically as follows:

∃t0, such that ∀t ≥ t0, v?(s)− vt(s) ≤
8|A|(v> − v⊥)

(1− γ) mins∈supp(dπ?,γ) δ(s)
∑t−1
t′=t0

ηt′dt′(s)
, (5)

3Other papers proving convergence to optimality of policy gradient rely on A2, which implies C4.
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where δ(s) = v?(s) − maxa∈A/{π?(s)} q?(s, a) is the gap with the best suboptimal action in state
s, v> (resp. v⊥) is the maximal (resp. minimal) value, and supp(dπ?,γ) denotes the support of the
distribution of the optimal policy.

If (dt) satisfies the additional mild condition that the support of d? is covered on average:

C5. ∀s ∈ supp(d?), limt→∞ 1
t

∑t
t′=0 ηt′dt′(s)

.
= e⊥(s) > 0,

then we obtain the following convergence rate in O(t−1):

∃t0, such that ∀t ≥ t0, v?(s)− vt(s) ≤
8|A|(v> − v⊥)

(t− t0)(1− γ) mins∈supp(dπ?,γ) δ(s)e⊥(s)
. (6)

C5 is implied by A2 and C3. Alternately, assuming ηt ≥ η⊥ > 0 ∀t, it is verified by a uniform
distribution in which case e⊥(s) = η⊥

|S| , or by an on-policy distribution dπt that converges to the dis-
tribution of some optimal policy dπ? in which case e⊥(s) = η⊥dπ?(s). Also, note that C4 is required
for optimality, but not for convergence rates with respect to q∞. Thm. 4 establishes asymptotic
rates in O

(
t−1|S||A|(1− γ)−2

)
, to be compared with O

(
t−1|S|2|A|2(1− γ)−6

)
[22]. The gap

is partially explained by dropping C3 and allowing any learning rate (see App. A.6 for a thorough
comparison). It is possible, see Thm. 7 of App. B, to show that under A2, a condition on the learning
rate, and a bounding condition on dt (∃d> ≥ d⊥ > 0 such that ∀s, t, d> ≥ dt(s) ≥ d⊥), we have:
t0 ≤ O

(
|S|

(1−γ)7
d>
d⊥

1
mins δ(s)

)
.

2.3 Related work

[11, 15, 52] study the off-policy, continuing setting paired with the average value objective. That
objective is either expressed with a state visitation coming from the behavioral policy (the excursion
objective) or from the trained policy (the alternative life objective). Its gradient can be computed
exactly or approximated and used to optimize the objective. The weights assigned to each state
during an update stem from the gradient computation (exactly as in the discounted return gradient
we study). It is an interesting question, left for future work, to understand whether those weights
have desirable properties from a convergence standpoint. In particular, it is possible that a condition
akin to C4 exists in the continuing objective case.

From a proof technique perspective, [2] studies gradient ascent and, as a byproduct, can rely on
standard optimization results: strong convexity and convergence of gradients to 0. We cannot do so
as our updates are not gradients anymore. More precisely, Lemma C2 in [2] uses the strong con-
vexity of the objective function to prove that following the gradient results in a value improvement
(assuming a learning rate sufficiently small). We provide a more general (we do not need the con-
dition on the learning rate) and, in our admittedly biased opinion, more elegant proof of that lemma
in our Theorem 1. Second, their Lemma C5 uses (i) the convergence of the gradient to 0 (a standard
result with gradient as-/des-cent), and (ii) the assumption that all states have a non-vanishing density
to infer that, in the limit, the learnt policy does not assign any mass to states that have a non-zero
advantage. Neither (i) nor (ii) hold in our setting, we had to leverage C4 instead.

3 Dr Jekyll and Mr Hyde: an actor-critic with convergence guarantees

3.1 Conditions for an actor-critic algorithm to converge to optimality

C4 states the necessary and sufficient condition for optimal planning with the exact model. In a
reinforcement learning setting however, the model is not known; the policy must be learnt from
samples collected in the environment. As a consequence, A1 cannot be made anymore, we need to
rely on an exploration condition instead:

C6. Each state-action pair is explored infinitely many times: ∀s, a, limt→∞ nt(s, a) =∞,

where nt(s, a) is the count of samples collected for the state-action pair (s, a) at time t.

In finite MDPs, C6 provides a necessary and sufficient condition for having an unbiased estimator of
the value. As is customary, we call this estimator the critic and denote it q̊t. C6 is necessary because
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the required statistical precision can only be achieved when the number of samples tends to infinity;
it is sufficient as guaranteed by many off-policy policy evaluation algorithms from the literature
[31, 46]. Classic concentration bounds, such as Hoeffding’s inequality, tell us that with O(1/ξ2)
samples in every state, a ξ-accurate critic can be achieved. Under C4 and C6, there thus exists
a timestep after which updates based on q̊t are sufficiently close to the true ones for a continuity
argument to show that the policy improves eventually4 (as guaranteed by theory under A1).

Our results till now have assumed a finite MDP and models with sufficient capacity. In larger
domains, those assumptions do not hold anymore, and therefore our theory does not apply. For in-
stance, [26] proves that using the on-policy undiscounted update dπt,1 instead of the policy gradient
can lead to highly suboptimal policies under state aliasing. Their counter-example applies to our
policy updates as well. Nevertheless, we believe that state aliasing is a worst-case scenario and con-
jecture that it does not happen to neural networks thanks to their high expressive capacity. Also note
that this concern with respect to distribution shift is general and could be formulated for any neural
model, including supervised models, or in RL the purely value-based ones such as DQN that are
frequently trained off-policy. The consensus in the literature is that neural models do not suffer too
much from distribution shift as long as the testing set distribution is well covered by the training set.
Since appropriate coverage of the state-action space is actually the final objective of our off-policy
policy updates, we expect minimal impact on this dimension, though it does remain to be formally
demonstrated. Our empirical results from Section 4.4 support this conjecture. The theoretical study
of the function approximation setting is left for future work.

3.2 Our solution to enforce C4 and C6

Enforcing C4 C4 defines the necessary and sufficient condition for asymptotic convergence to
optimality. However, we will see in Section 4.2 that in difficult planning tasks, C4 can be insufficient
for convergence to happen in a reasonable amount of time. Below, we therefore introduce C4-s, a
condition stronger5 than C4, as well as two techniques for C4-s to be verified:

C4-s. ∀s ∈ S, limT→∞ 1
T

∑T
t=0 ηtdt(s) ≥ d⊥(s) > 0.

The first technique to enforce C4-s is to apply the approximate expected policy update [39, 20, 10]:

Û(θ, s)
.
=
∑
a∈A

q̊(s, a)∇θπ(a|s). (7)

The expected policy update is deterministic in the sense that it does not require sampling actions. As
there exists a deterministic optimal policy, this in turn implies that the learning rate ηt does not need
to satisfy the second Robbins-Monro condition:

∑
t η

2
t <∞, and thus may be constant ηt

.
= η.

The second technique to enforce C4-s is to ensure that the density of updates dt does not decay
to 0 for any state s. This can be obtained by maintaining a constant proportion ot of off-policy
actor updates in order to cover the whole state space. We propose to do so by recording two replay
buffers: one with on-policy samples, i.e. samples collected with an exploitation policy, and another
with off-policy samples, i.e. samples collected with an exploration policy.

To the best of our knowledge, this type of prioritized experience replay has never been used in this
fashion, nor to this effect. We note that off-policy policy gradient is a concept that exists in the
literature, but it refers to the application of policy gradients from batch samples [21]. Following the
success of DQN [24], experience replays have also been used in actor-critic methods [49] which
bears some resemblance to our suggestion. Finally, off-policy actor-critic with shared prioritized
experience replay [34] has been applied to large-scale experiments with distributed agents [14, 35].

Enforcing C6 Many RL algorithms (actor-critic or purely value-based) ensure some form of ex-
ploration. They broadly form two groups: dithering exploration (e.g., epsilon greedy, softmax,
entropy regularization [47, 42, 13]), and deep exploration (e.g., UCB, thompson sampling, density
constraints [28, 3, 29, 32]). Strong cases have been made against dithering exploration, arguing
in particular its inability to ensure visits to all states and therefore convergence to optimality [30].

4A formal proof would require dealing with several technical challenges due to the stochasticity of the value
updates that break the monotonicity of the estimator accuracy. We leave it for future work.

5C4-s is identical to C5, but applied to the full state space S (it thus implies C5).
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Input: Scheduling of exploration (εt), of off-policiness (ot) and of actor learning rate (η̊t).

1: Initialize Dr Jekyll’s replay buffer D̊ = ∅, actor π̊, and critic q̊. . exploitation agent
2: Initialize Mr Hyde’s replay buffer D̃ = ∅, and policy π̃. . exploration agent
3: Set the behavioural policy and working replay buffer to Dr Jekyll’s: πb ← π̊ and Db ← D̊.
4: for t = 0 to∞ do
5: Sample a transition τt = 〈st, at ∼ πb(·|st), st+1 ∼ p(·|st, at), rt ∼ r(·|st, at)〉.
6: Add it to the working replay buffer Db ← Db ∪ {τt}.
7: if τ was terminal, then (πb, Db)← (π̃, D̃) w.p. εt, (πb, Db)← (̊π, D̊) otherwise.
8: if Update step, then
9: τ

.
= 〈s, a, s′, r〉 ∼ D̃ w.p. ot, τ

.
= 〈s, a, s′, r〉 ∼ D̊ otherwise.

10: Update Mr Hyde’s policy π̃ on τ . . e.g. with Q-learning trained on UCB rewards
11: Update Dr Jekyll’s critic q̊ on τ . . e.g. with SARSA update
12: Expected update of Dr Jekyll’s actor π̊ in state s. . Eq. (7)
13: end if
14: end for
Algorithm 1: Dr Jekyll & Mr Hyde algorithm. After initialization of parameters and buffers, we
enter the main loop. At every time step, an action, chosen by the behavioral policy, is executed in
the environment to produce a transition τt (line 5). τt is stored in the replay buffer of the personality
in control (either Dr Jekyll or Mr Hyde, line 6). If the trajectory is done, the algorithm samples a
new personality to be in control during the next one (line 7). Then, the updates of the models start
(line 8). The updates for Mr Hyde’s policy π̃ and Dr Jekyll’s critic q̊ are underspecified, and may be
any algorithm in the literature satisfying the exploration (for Mr Hyde) or unbiased (for Dr Jekyll)
conditions. When (εt) = 0, J&H amounts to on-policy expected updates from a single replay buffer.

In spite of these arguments (that we recall in App. A.5), there are still only very few actor-critic
algorithms that realize deep exploration [9, 33]. We conjecture that this relates to the following ob-
servations: i) exploration involves a moving objective, hence a non-stationarity of the desired policy,
ii) actor-critic algorithms have a structural inertia in their policy (in contrast to value-based methods
that can completely switch policy when an action’s value overtakes another’s). As a consequence,
a dual exploration-exploitation actor-critic algorithm takes a lot of time to switch from deep explo-
ration to exploitation, and back, making it inefficient. To avoid this issue, we propose to train two
policies, a pure exploration one and a pure exploitation one. As an added benefit, they will be used
to constitute the on-policy and off-policy replay buffers introduced in the second technique above.

3.3 Dr Jekyll and Mr Hyde algorithm (J&H)

The objective of this section is to introduce a novel algorithm that satisfies conditions C4 (or C4-s)
and C6 by design. To do so, we maintain a mixture of two policies:

• Dr Jekyll π̊t is a pure exploitation policy,

• Mr Hyde π̃t is a pure exploration policy.

At the beginning of a new trajectory, Mr Hyde π̃t (resp. Dr Jekyll π̊t) is chosen with probability εt
(resp. 1− εt) and used to generate the full trajectory. Dr Jekyll π̊t is trained with the update rule of
Eq. (3), where dt is defined by prioritized sampling over the experience replays, qt is replaced with
an unbiased estimator q̊ of the value of π̊t, and θ̊t are the parameters of π̊t. π̃t is a pure exploratory
policy, designed to verify almost surely: ∀(s, a) ∈ S × A, limt→∞ n|D̃|(s, a) ≥ d̃⊥ > 0,, where
n|D̃t|(s, a) is the count of samples (s, a) in its experience replay. We note that a uniform policy

satisfies this condition, but with a very small constant d̃⊥ which compromises convergence in a
reasonable time. Any deep exploration algorithm should be guaranteeing it6. In our finite MDP
experiments, we implement q-learning with UCB rewards [3]: π̃t

.
= argmaxa∈A q̃t where q̃t is

trained to predict the expectation of the discounted sum of rewards: r̃(s, a)
.
= 1√

nt(s,a)
(see full Alg.

6Efficient exploratory algorithms are a challenge in large environments. The design of such algorithms is
beyond the scope of this paper.
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3 in App. E). In our deep learning experiments, Hyde is a Double-DQN [48] trained to maximize an
exploration bonus based on Random Network Distillation [6] (Section 4.4).

The advantages of separating the exploration from the exploitation policy are the following. First,
it is easier to specify the exploration/exploitation trade-off and get full control on the exploration
requirements for condition C6: ∀s, a, ∑t dπt(s, a) =∞. Second, Jekyll’s actor π̊ is not optimized
under a moving objective which would otherwise induce a high level of instability on the policy.
Third, one can define the on-policiness/off-policiness ot by recording two separate replay buffers D̊
and D̃, for trajectories respectively controlled by Dr Jekyll and Mr Hyde. This offers full control on
condition C4/C4-s and on the asymptotic behaviour of

∑
t ηtdt(s).

These various observations lead to the design of the Dr Jekyll and Mr Hyde algorithm (J&H), for-
mally detailed in Alg. 1.

4 Experiments

4.1 Domains

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

s−1 r = βγ8

a1 a1 a1 a1 a1 a1 a1 a1 a1

a2 a2 a2 a2 a2 a2 a2 a2 a2

r = 1

Figure 1: Deterministic chain MDP. Initial state is s0. Reward is 0 everywhere except when access-
ing final states s−1 and s9. Reward in s−1 is set such that q(s0, a1) = βq?(s0, a2), with β ∈ [0, 1).

Chain Domain The chain domain is designed to measure the ability of algorithms to overcome
immediate rewards pushing the policy gradient towards suboptimal policies. In every state sk, the
agent has the opportunity to play action a1 and receive an immediate reward of βγ|S|−2, or to play
a2 and progress to next state sk+1 without any immediate reward. A reward of 1 is eventually
obtained when reaching state s|S|−1. Fig. 1 represents a chain of size 10. We report the normalized
performance: J π = Jπ−J⊥

J?−J⊥ , where J? is the optimal performance and J⊥ .
= q(s0, a1) = βγ|S|−2.

Random MDPs The random MDPs domain is designed to test the algorithms in situations where
exploration is not an issue. Indeed, by its design of stochastic transition functions, random MDPs
will have a non-null chance to visit every state whatever the behavioural policy. It is therefore
a domain where we expect policy gradient updates to perform well, perhaps optimally, and hope
that our modified updates still perform comparably. We reproduce the random MDPs environment
published in App. B.1.3 of [18]. We report the normalized performance: J π = Jπ−Ju

J?−Ju , where J?
is the optimal performance and Ju is the performance of the uniform policy. The full description of
both domains is available in App. C.

4.2 Finite MDP policy planning (A1)

We test performance against time, learning rate η of the actor, MDP parameters |S| and β, off-
policiness ot, and policy entropy regularization weight λ, with both direct and softmax parametriza-
tions, on the chain and random MDPs. The full report is available in App. D.

On the chain domain, we confirm that enforcing updates with dt
.
= otdu+(1−ot) dπt,γ

‖dπt,γ‖1
including

an off-policy component ot > 0 on a uniform state distribution du(s)
.
= 1
|S| helps path discovery and

policy planning, while on-policy updates fail at converging to the optimal policy, even with policy
entropy regularization. We also observe that while ot ∈ Ω(t) enforces C4, and therefore guarantees
convergence to optimality, it may not happen in a reasonable amount of time, and a constant off-
policiness is preferable. By sweeping over the chain parameters β and |S|, we observe that on-policy
updates are sensitive to both: even with a small β = 0.1, a reasonably sized chain |S| = 15 cannot
be solved. In contrast, ot = 0.5 converges fast to optimality even with β = 0.95 and |S| = 25.
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(a) Chain experiment
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(b) Random MDPs experiment
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(c) Random MDPs zoomed in

Figure 2: RL experiments: normalized expected return vs. number of trajectories (200+ runs).

On the random MDPs domain, we observe empirically that discounted and undiscounted updates
perform well but oftentimes stagnate at 99% of the optimal performance; dt with an off-policy
component performs better and gets even closer to optimality. Finally, we note that purely uniform
updates: ot = 1 slow down training in the random MDPs experiment. We conclude that it is best to
include both on-policy and off-policy components in dt. These experiments also allow us to observe
the biased convergence implied by policy entropy regularization.

4.3 Finite MDP reinforcement learning experiments

With the softmax parametrization, we tested J&H with various scheduling for εt and ot against
on-policy (PG/undiscounted) updates, with/without policy entropy regularization (hyperparameter
λ), and with/without UCB critic (UCB hyperparameter ν). The full description of the algorithms
implementations is available in App. E.1. Our policy planning experiments suggested that ot was
best constant at 0.5, the same holds in our RL experiments. Fig. 2a reveals that on-policy updates
with/without policy entropy regularization cannot solve the chain experiment of size 10 with β =
0.8. In contrast, the task is solved by on-policy updates with a strong UCB bonus ν = 1 for the
critic, and by all J&H implementations. Concerning J&H scheduling hyperparameters, we observe
that ot = 0.5 allows to identify the optimal policy significantly faster, and εt = 100

t is sufficient and
allows to converge faster asymptotically than εt = 10√

t
. Fig. 2b shows that all algorithms are able

to solve the random MDP task. However, UCB critics with high ν ∈ {0.1, 1} (including the only
on-policy setting that succeeded on the chain task) fail to do so properly: they eventually will, but
explore too much within the experimental time. If we look more closely at the tight convergence
of every algorithm on Fig. 2c, we observe that the policy entropy regularization incurs a bias and
that off-policiness of updates of J&H does not slow down convergence compared to vanilla on-
policy updates. Note that J&H with εt = 10√

t
performs worse only because we report the expected

performance of the mixture of Dr Jekyll and Mr Hyde. The performance of Dr Jekyll alone is
comparable, and even slightly better than vanilla on-policy updates (see Fig. 9b in App. E).

For completeness, we also test performance against time, learning rates of the actor η and critic
ηc, MDP parameters |S| and β, off-policiness ot, exploration εt, and critic initialization q0 with the
softmax parametrization on the chain and random MDPs domains. See App. E for the full report.

4.4 Deep reinforcement learning experiments

To conclude our empirical evaluation, we implemented a deep version of J&H, as described in
Algorithm 1, by parametrizing the agents using deep neural networks (see App. F for full details).

Dr Jekyll is a policy network, with a standard architecture, trained using the updates described in
Eq. (7). As previously mentioned, any exploration algorithm can be used for Mr Hyde. In our
experiments, we chose Random Network Distillation [6, RND] to generate exploration bonuses.
Two networks, one random, the target, and a second one, the predictor, are used to assess the novelty
of an observed state via the distance between the output of the target and the output of the predictor
on that state. Each time a given state is evaluated, the predictor is trained to predict the output of
the target. The more a state is seen, the smaller the prediction error will be. The error is used as a
reward signal for Mr Hyde, a standard Double-DQN [48, DDQN] trained to maximize it. By doing
so, Mr Hyde is incentivized to explore parts of the state space that have not been visited much yet.

9



(a) Level 1 (b) Level 2

Figure 3: Deep RL experiments: score vs. number of training episodes, averaged over 10 seeds.

We train J&H on a version of the Four Rooms environment [44], a 15x15 grid split into four rooms
(see App. F for the exact layout). The agent, placed at random initially, needs to navigate to a fixed
goal location, where it is granted a positive reward. For each step taken in the environment, the
agent incurs a small negative reward. We consider two levels for the task. In level 1 (the original
version of the game), the initial state distribution covers the entire state space, which corresponds to
A2 being verified. To make exploration harder, we also consider an initial state distribution that does
not contain any state from the room where the goal is located, and call that task level 2. We compare
J&H to DDQN and Soft-Actor Critic [13, SAC]. For fair comparison, we also train these agents on
the environment rewards augmented with the RND rewards used to train Mr Hyde, represented by
the curves labelled DDQN+RND and SAC+RND.

Results can be found in Fig. 3. On level 1, we see that J&H reaches quite fast the maximal score
of 90, The baselines do not perform as well and fail to converge to the optimal policy. Interestingly,
even with A2 verified, adding an RND bonus led to increased performance. We also notice that
overall SAC outperforms DDQN. The same observations can be made on level 2. We note that
on some seeds, J&H takes more time to learn the optimal policy, leading to visible plateaus and
temporary high variance. However, a powerful property underlined by our experiments and offered
by the decoupling of exploration from exploitation is the ability of J&H, unhindered by dithering
and/or conflicting reward signals, to converge to optimality. Comparatively, the baselines get stuck
in a mixed exploration/exploitation behavior and fail to reach the maximum score.

5 Contributions and limitations

Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions: We study a planning issue in actor-critic algorithms and tackle it by extending the
policy gradient theory to policy updates with respect to any state density. Under these generalized
policy updates, we show convergence to optimality under a necessary and sufficient condition on
the updates’ state densities. We also significantly improve previous asymptotic convergence rates.
We implement the principles prescribed by our theory in a novel algorithm, Dr Jekyll & Mr Hyde
(J&H), with a double personality: Dr Jekyll purely exploits while Mr Hyde purely explores. J&H’s
independent policies allow to record two separate replay buffers: one on-policy (Dr Jekyll’s) and
one off-policy (Mr Hyde’s), and therefore to update J&H’s models with a mixture of on-policy
and off-policy updates. Beyond J&H, we define conditions for actor-critic algorithms to satisfy
the requirements from our analysis. We extensively test J&H on finite MDPs and deep RL where it
demonstrates superior planning abilities, and at least comparable asymptotic rates, to its competitors.

Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work: On the theory side, our non-asymptotic convergence rates are limited
to the softmax and require A2 and C3. Although we are convinced our arguments hold, we did
not develop the formal convergence proof in the RL setting (see second paragraph of Section 3.1).
Finally, our theory does not tackle function approximation. In that context, we believe techniques
from [2] could be useful. On the empirical side, we wish to emphasize that our deep RL experiments
are to be considered as a proof of concept of the relevance of J&H’s principles in that setting. A
thorough study, encompassing more environments and baselines, potentially both in discrete and
continuous actions spaces, is left for future work.

10



Acknowledgments and Disclosure of Funding

We would like to thank Shangtong Zhang for our fruitful discussions and Alessandro Sordoni for
helping us presenting and organizing the paper.

References

[1] Joshua Achiam. Spinning up in deep reinforcement learning, 2018.
[2] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approx-

imation with policy gradient methods in markov decision processes. In Jacob Abernethy and
Shivani Agarwal, editors, Proceedings of 3rd Conference on Learning Theory (COLT), volume
125 of Proceedings of Machine Learning Research, pages 64–66. PMLR, 09–12 Jul 2020.

[3] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Proceedings of the 29th
Advances in Neural Information Processing Systems (NIPS), pages 1471–1479, 2016.

[4] Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for
finite mdps. In Proceedings of the 24th International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 2386–2394. PMLR, 2021.

[5] Mathieu Blondel, Akinori Fujino, and Naonori Ueda. Large-scale multiclass support vec-
tor machine training via euclidean projection onto the simplex. In Proceedings of the 22nd
International Conference on Pattern Recognition (ICPR), pages 1289–1294. IEEE, 2014.

[6] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by ran-
dom network distillation. In Proceedings of the 7th International Conference on Learning
Representations (ICLR), 2019.

[7] Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement learning coach,
December 2017.

[8] Petros Christodoulou. Deep reinforcement learning algo-
rithms with pytorch. https://github.com/p-christ/
Deep-Reinforcement-Learning-Algorithms-with-PyTorch, 2019.

[9] Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with op-
timistic actor critic. In Proceedings of the 32nd Advances in Neural Information Processing
Systems (NeurIPS), volume 32. Curran Associates, Inc., 2019.

[10] Kamil Ciosek and Shimon Whiteson. Expected policy gradients. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[11] Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In Proceedings
of the 29th nternational Conference on Machine Learning (ICML), page 179–186, 2012.

[12] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings
of the 35th International Conference on Machine Learning (ICML), pages 1861–1870. PMLR,
2018.

[14] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Has-
selt, and David Silver. Distributed prioritized experience replay. In Proceedings of the 6th
International Conference on Learning Representations (ICLR), 2018.

[15] Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using
emphatic weightings. In Proceedings of the 31st Advances in Neural Information Processing
Systems (NeurIPS), volume 31, 2018.

[16] Vijay R Konda. Actor-critic algorithms. PhD thesis, Massachusetts Institute of Technology,
2002.

[17] Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

11

https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch
https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch
https://github.com/openai/baselines
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail


[18] Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe policy improvement
with baseline bootstrapping. In Proceedings of the 36th International Conference on Machine
Learning (ICML), 2019.

[19] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In Proceedings of the 35th International Conference on Machine Learning (ICML),
2018.

[20] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. In Proceedings of the 4th International Conference on Learning Representations (ICLR,
poster), 2016.

[21] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gra-
dient with stationary distribution correction. In Ryan P. Adams and Vibhav Gogate, editors,
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference (UAI), pages 1180–
1190. PMLR, 2020.

[22] Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global con-
vergence rates of softmax policy gradient methods. In Proceedings of the 37th International
Conference on Machine Learning (ICML), pages 6820–6829. PMLR, 2020.

[23] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In Proceedings of the 33rd International Conference on Machine Learning
(ICML), 2016.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 2015.

[25] Kimia Nadjahi, Romain Laroche, and Rémi Tachet des Combes. Safe policy improvement
with soft baseline bootstrapping. In Proceedings of the 17th European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD),
2019.

[26] Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? In Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2020.

[27] OpenAI. Openai five. https://openai.com/five/, 2018.

[28] Ronald Ortner and Peter Auer. Logarithmic online regret bounds for undiscounted reinforce-
ment learning. In Proceedings of the 20th Advances in Neural Information Processing Systems
(NIPS), volume 19, page 49, 2007.

[29] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. In Proceedings of the 29th Advances in Neural Information Processing
Systems (NIPS), pages 4026–4034, 2016.

[30] Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via ran-
domized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

[31] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science
Department Faculty Publication Series, page 80, 2000.

[32] Zengyi Qin, Yuxiao Chen, and Chuchu Fan. Density constrained reinforcement learning, 2021.

[33] Srinjoy Roy, Saptam Bakshi, and Tamal Maharaj. Opac: Opportunistic actor-critic. arXiv
preprint arXiv:2012.06555, 2020.

[34] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience re-
play. In Proceedings of the 4th International Conference on Learning Representations (ICLR,
poster), 2016.

[35] Simon Schmitt, Matteo Hessel, and Karen Simonyan. Off-policy actor-critic with shared expe-
rience replay. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 8545–8554. PMLR, 13–18 Jul 2020.

12

https://openai.com/five/


[36] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[38] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 2016.

[39] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Ried-
miller. Deterministic policy gradient algorithms. In Proceedings of the 31st International
Conference on Machine Learning (ICML), pages 387–395. PMLR, 2014.

[40] Thiago D. Simão, Romain Laroche, and Rémi Tachet des Combes. Safe policy improvement
with estimated baseline bootstrapping. In Proceedings of the 19th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), 2020.

[41] Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning
in pytorch. arXiv preprint arXiv:1909.01500, 2019.

[42] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction (2nd
Edition). MIT press, 2018.

[43] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Proceedings of the 13th
Advances in Neural Information Processing Systems (NIPS), 2000.

[44] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181 –
211, 1999.

[45] Philip Thomas. Bias in natural actor-critic algorithms. In Proceedings of the 31st International
Conference on Machine Learning (ICML), 2014.

[46] Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforce-
ment learning. In International Conference on Machine Learning, pages 2139–2148. PMLR,
2016.

[47] Michel Tokic. Adaptive ε-greedy exploration in reinforcement learning based on value differ-
ences. In Proceeding of the 33rd Annual German Conference on AI, volume 6359, page 203.
Springer, 2010.

[48] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning, 2015. cite arxiv:1509.06461Comment: AAAI 2016.

[49] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

[50] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 1992.

[51] Shangtong Zhang. Modularized implementation of deep rl algorithms in pytorch. https:
//github.com/ShangtongZhang/DeepRL, 2018.

[52] Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. Generalized off-policy actor-
critic. In Proceedings of the 32nd Advances in Neural Information Processing Systems
(NeurIPS), volume 32, 2019.

[53] Shangtong Zhang, Romain Laroche, Harm van Seijen, Shimon Whiteson, and Remi Tachet
des Combes. A deeper look at discounting mismatch in actor-critic algorithms. arXiv preprint
arXiv:2010.01069, 2021.

13

https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

	Introduction
	Theoretical analysis
	Convergence properties
	Convergence rates
	Related work

	Dr Jekyll and Mr Hyde: an actor-critic with convergence guarantees
	Conditions for an actor-critic algorithm to converge to optimality
	Our solution to enforce C4 and C6
	Dr Jekyll and Mr Hyde algorithm (J&H)

	Experiments
	Domains
	Finite MDP policy planning (A1)
	Finite MDP reinforcement learning experiments
	Deep reinforcement learning experiments

	Contributions and limitations

