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Abstract

The de facto way of utilizing black-box large
language models (LLMs) to perform various
downstream tasks is prompting. However,
obtaining suitable prompts for specific tasks
is still a challenging problem. While exist-
ing LLM-based methods demonstrate promis-
ing performance in the task-oriented dialogue
(TOD) task, they often require manual adjust-
ment in prompt selection or focus solely on dia-
logue understanding or generation. To address
these issues, we propose an adaptive prompt
generation framework to fully unleash the po-
tential of LLMs for the comprehensive TOD
system. Firstly, we design a trainable slot gen-
erator (TSG) that can generate domain and slot
information in the belief state, which serves as
prior knowledge for subsequent prompt genera-
tion. Next, we propose an adaptive prompt gen-
erator (APG) that utilizes the prior knowledge
to generate prompts for the LLM, deriving the
belief state and system response of the dialogue
for evaluation. Finally, we evaluate our frame-
work on the MultiWOZ 2.0 dataset. Extensive
experiments demonstrate that our method out-
performs existing methods. Our code and data
will be released.

1 Introduction

In recent years, significant progress has been made
in LLMs, such as Instruct-GPT (Ouyang et al.,
2022) and GPT4, and remarkable results have been
achieved in their application to various downstream
tasks such as task-oriented dialogue (TOD) and text
summarization (Bang et al., 2023). Prompting has
become a de facto method for utilizing black-box
LLMs, as appropriate prompts can significantly en-
hance the capabilities of these models. However,
different tasks require different prompts, and ob-
taining these prompts often requires manual adjust-
ment. This is particularly challenging in dynamic
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Figure 1: Comparison of our proposed Adaptive Prompt
Framework with the standard prompting method for
black-box LLM-based TOD system. Our method uses a
trainable slot generator to obtain domain and slot, which
serve as prior knowledge for prompt generation. This
allows for better adaption to diverse dialogues involving
various domains and slots.

scenarios like the TOD task, where prompt selec-
tion should adapt, usually indicating a large amount
of manual labor is required.

In the context of the TOD system, two crucial
components for measuring the success of a dia-
logue are belief state and system response. When
using prompts to generate the system response from
black-box LLMs, a problem arises: belief states
and system responses vary with the domains and
slots involved in dialogues. If the same prompt is
used for all dialogues, the prompt becomes overly
long and complex, resulting in hallucinations in
LLMs. On the other hand, manually designing dif-
ferent prompts for different dialogues would incur
a significantly higher labor cost and would be in-
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Figure 2: Overview of our proposed Adaptive Prompt Generation Framework.

convenient when extending the approach to new
domains.

To address these issues, an automated method is
needed to generate appropriate prompts for TOD
tasks. One approach is the continuous prompt
learning method, where prompts are represented
as trainable vectors that can be concatenated with
inputs (Shin et al., 2020; Zhang et al., 2022, 2023a;
Swamy et al., 2023), enabling the acquisition of
prompts suitable for the current input through gradi-
ent backpropagation. However, this approach lacks
interpretability and requires model fine-tuning,
making it unsuitable for black-box models (Diao
et al., 2023). Another approach is to represent
prompts using discrete tokens, which overcomes
the limitations of vector-based prompts (Shin et al.,
2020). However, this approach requires designing
suitable prompts for different scenarios and these
prompts often cannot be learned through training.
As a result, it may lead to the suboptimal perfor-
mance of LLMs and hallucinatory outputs (Bang
et al., 2023).

Traditional methods rely on static or heuris-
tic rules to construct prompts, but such methods
are only suitable for simple scenarios. Recent
approaches have achieved promising results in
prompt generation. Sun et al. (2022) propose a
black-box tuning framework but only applicable to
continuous prompts. Diao et al. (2023) use policy
gradient algorithm to find the optimal prompts, but
only focus on classification tasks Li et al. (2023)
propose a framework to provide prompt guidance
for black-box frozen LLMs, but only focus on dia-
log response generation. Zhang et al. (2023b) pro-
pose a schema-guided prompting method for the
TOD system, which still requires manual prompt
design. Hence, there is currently no cost-effective
method available to address the problem of adap-
tive prompt generation for black-box LLM-based

TOD systems.
In this paper, we propose an adaptive prompt

generation framework for the comprehensive black-
box LLM-based TOD system to address the afore-
mentioned challenges. To obtain appropriate
prompts with minimal data, we first extract do-
main and slot information from the belief state as
training data and introduce a trainable slot gener-
ator (TSG) that can generate domains and slots
involved in each dialogue turn. This approach re-
duces the annotation cost when expanding to other
domains. We then design a generator (APG) using
this information to generate domains and slots as
prior knowledge for subsequent prompt generation.
To automatically generate prompts suitable for the
current dialogue state, we maintain a query table
of prior knowledge and candidate values. We uti-
lize the previously generated prior knowledge to
select suitable entries from the list and compose
prompts that capture the current dialogue belief
state and system response. This way, the content
generated by the LLM is precisely constrained by
tailored prompts, which include the desired candi-
dates without introducing redundant content.

The main contributions of our work can be sum-
marized as follows:

1. We design a prompt construction method
based on domain and slot information.

2. We proposed an adaptive prompt generation
framework for the comprehensive black-box LLM-
based TOD system.

3. Experimental results demonstrate the effec-
tiveness of our approach in enhancing the capabili-
ties of LLMs.

2 Related work

2.1 Black-Box LLMs in Downstream Tasks

In recent years, there has been a proliferation of
large language models such as Codex (Chen et al.,



2021), LaMDA (Thoppilan et al., 2022), PaLM
(Chowdhery et al., 2022), chatGPT, GPT4, etc.,
which have greatly enhanced various downstream
tasks in NLP. However, most of these LLMs are
not open source and can only be accessed through
query and prediction interface (Diao et al., 2023).
As a result, a multitude of studies have emerged
that focus on prompting methods tailored to spe-
cific tasks for black-box LLMs. (Sun et al., 2022)
propose a black-box tuning framework but only ap-
plicable to common language understanding tasks.
(Diao et al., 2023) use policy gradient algorithm to
find the optimal prompts, but only focus on classifi-
cation tasks. (Li et al., 2023) propose a framework
to provide prompt guidance for black-box frozen
LLMs, but only focus on dialog response gener-
ation. (Pan et al., 2023) specifically focuses on
optimizing prompts for the dialogue understanding
task. In summary, they are not applicable to our
task. In our work, we propose an adaptive prompt
generation framework for the comprehensive TOD
system.

2.2 Prompt Learning

Another line of our work involves prompt learning
which finds optimal prompts suitable for specific
tasks. One common approach is to train continu-
ous prompts (Liu et al., 2021; Lester et al., 2021;
Gu et al., 2022). However, these prompt types
are not easily interpretable and require LLMs for
training or fine-tuning. Consequently, some studies
have proposed constructing prompts in a discrete
manner (Shin et al., 2020; Gao et al., 2021; Sun
et al., 2022), using generated or manually crafted
prompts. (Schick and Schütze, 2021) propose the
pattern-verbalizer pair (PVP) method, which con-
structs prompts by selecting appropriate patterns
and verbalizers. Inspired by the aforementioned
work, we propose a novel approach to generate
appropriate prompts for the comprehensive TOD
system.

3 Method

Due to the phenomenon of hallucination that oc-
curs during the application of black-box LLMs, it
is hard to generate belief states accurately required
for TOD tasks. Moreover, as the prompt becomes
more complex, the content generated by black-box
LLMs, like ChatGPT, becomes even more uncon-
trollable. Therefore, a method is needed to con-
strain the content generated by ChatGPT.

Domain Attraction Train Hotel Restaurant
Train 50 50 50 50
Valid 50 50 50 50
Test 100 200 200 200

Table 1: Data statistics of four single-domain dialog
datasets (Budzianowski et al., 2020; Peng et al., 2021)

3.1 Data Preparation

In this section, we describe the steps involved in
preparing the data for our experiments. Our ap-
proach involves selecting a small subset of belief
states from different domains in the MultiWOZ 2.0
dataset, based on the settings of SOLOIST. Subse-
quently, the selected data is processed to remove
the value component.

Selection of Belief State Data Subset: We fol-
low the setting of SOLOIST (Peng et al., 2021) and
choose a limited number of dialogues that contain
only one domain from the MultiWOZ 2.0 dataset.
The data statistics of each domain are shown in
Table1.

Processing of Selected Data: To train a gener-
ator that only generates domains and slots of the
belief state, we perform further processing to elim-
inate the value component from the belief state.
This step involves removing the actual values as-
sociated with each slot in the belief state while
retaining the slots and domains. By removing the
value component, we focus solely on the task of
predicting the belief state without considering spe-
cific slot values.

By following these steps, we prepare the dataset
for our experiments, which enables us to train and
evaluate TSG.

3.2 Trainable Slot Generator

In Dialogue State Tracking (DST) task, We use
SOLOIST with pre-trained weights and then fine-
tuned on a small amount of data obtained in Section
3.1. Nevertheless, unlike SOLOIST, our model is
fine-tuned to generate domains and slots of belief
states only. In this process, the TSG will generate
prior knowledge which can be used to generate
prompts in subsequent adaptive prompt generation
framework.

Specifically, we can represent each dialog turn
in the training dataset as :

x = (s, b)



where s is the dialog history up to the current dia-
log turn, b is the annotated belief state only with
domain and slots.

In the TOD system, the joint probability p(x)
can be expressed in the form of an autogressive
model:

p(x) = p(b, s)

= p(b | s)p(s)
where p(b | s) refers to predicting the slots in the
belief state. Note that we solely focus on predicting
the domains and slots of belief states, excluding
the values of belief state and system response, as
they are generated in the subsequent part.

If we define the length of the belief state, which
consists solely of domains and slots, as T , the train-
ing objective for this process can be denoted as:

L1 = log p(b | s) =
T∑
t=1

log pθ (bt | b<t, s)

where θ represents the model parameters to be
learned.

In line with the approach of SOLOIST, we have
also incorporated a contrastive learning training
objective to improve the efficiency of our model’s
learning process. However, unlike SOLOIST, when
constructing negative examples (represented as x′),
we do not perform a complete replacement of the
entire belief state. Instead, we perform separate
replacements on the domain and slots components
within the altered belief state b. We can define the
label for a belief match as y = 1 and the label for
a non-match as y = 0. In this case, the training
objective of contrastive learning can be formulated
as:

L2 = y log (pθ(x)) + (1− y) log
(
1− pθ

(
x′))

The three types of negative samples generated by
our approach are as follows:

• Only replacing the domain component of the
modified belief state.

• Only replacing the slots component of the
modified belief state.

• Simultaneously replacing both the domain and
slots components of the modified belief state.

Finally, the proposed method in this section is
model-agnostic and can be applied with other mod-
els interchangeably. However, due to code and data
availability, we have only validated the approach
using the SOLOIST model in this paper.

3.3 Adaptive Prompt Generation Framework
for TOD System

In the TOD task, the belief state serves as an indi-
cation of the user’s intent and also acts as an inter-
mediate state for extracting external information.
Existing methods have demonstrated that LLMs
perform well in acquiring the belief state. However,
they also face certain challenges. One important
factor is that large-scale models are sensitive to
prompts. Clear and concise prompts tend to yield
better results, while vague and lengthy prompts
may lead to unexpected outcomes.

The TOD task differs from traditional tasks in
that the domain and intent of user utterances change
in each dialogue turn. When extracting informa-
tion from such dialogues using LLMs, using the
same prompt may not effectively capture the re-
quired belief state information. On the other hand,
using different prompts for each dialogue can sig-
nificantly increase manual effort.

To address this, we propose a model-agnostic
adaptive prompt generation framework in this sec-
tion. This framework assists LLMs in generating
the belief state and system response of dialogues.
The overall structure of the framework is illustrated
in Figure 2.

Adaptive Prompt Generator (APG): The main
function of this generator is to generate prompts
that are required to obtain the final belief state and
system response. Since the prompts dynamically
change based on the dialogue process, we utilize
the partial belief state generated in Section 3.2.
In addition to this, the candidate lists of domains
and slots Lds are required to obtain the complete
belief state, as well as the special token lists Lst are
required to generate the system response. Next, it is
necessary to parse the generated partial belief state
b and generate domain sd and slot information ss.
We can consider the prompts input to the LLM as
a function related to the partial belief state b. The
prompts for generating the complete belief state
and system response can be represented as f1 and
f2, respectively.

Prompt for Belief State: The prompt for gener-
ating the complete belief state consists of two parts:
static and dynamic. The static part includes stan-
dard prompt and data examples, partly referenced
from (Bang et al., 2023), and can be represented
as Prompts1. The dynamic part involves domain
slots and candidates matched by s and can be de-



fined as Promptd1. The candidates of slots can be
divided into two categories: one category includes
slots with limited candidates that can be obtained
from the dataset, such as the ’area’ slot with can-
didates [’centre’, ’east’, ’north’, ’south’, ’west’].
The other category includes candidates that cannot
be exhaustively listed, such as the name slot rep-
resenting various entity names related to different
domains in user intents. The prompt function for
generating the complete belief state utilizes the pre-
viously partial belief state containing only the do-
main and slot information, and can be represented
as follows:

f1(b) = Prompts1 + Promptd1(b, Lds)

where specific b has a fixed mapping relationship
with the elements in Lds.

Once we have the partial belief state b containing
only the domain and slot information, we can use
its prompt function f1 to generate the prompt. This
prompt is then inputted into the LLM, pLLM , to
obtain the final result:

s∗ = pLLM (f1(b), s)

where s∗ represents the complete belief state in the
current dialogue state.

Prompt for System Response: The prompt for
generating the system response also consists of
static and dynamic components. The static part
serves as a guidance for the LLM to simulate
the generation of system response and can be
represented as Prompts2. The dynamic part
involves matching special tokens based on sd,
which are placeholders used to represent system-
recommended entities. The correct selection of
these special tokens is crucial for evaluating the
success of the dialogue and can be represented as
Promptd2. The prompt function for generating
the system response requires the dialogue history s
and can be represented as:

f2(sd) = Prompts2 + Promptd2(sd, Lst)

where specific sd has a fixed mapping relationship
with the elements in Lst, and both f1, Prompts1,
Promptd1, f2, Prompts2, Promptd2 are all in
string format, and the "+" operator denotes direct
string concatenation.

Next, we need to obtain the system response
using the LLM. Based on the previously obtained

prompt function, the final result can be represented
as:

r = pLLM (f2(s), s)

where r represents the delexicalized system re-
sponse.

Therefore, the combined output of the belief
state and system response generated by the LLM
for evaluation is:

y = pLLM (f1(b), s) + pLLM (f2(s), s).

4 Experiment

4.1 Dataset and Evaluation
We evaluated the effectiveness of the proposed
method on the MultiWOZ single-domain dialog
datasets (Budzianowski et al., 2020), reorganized
by (Peng et al., 2021). This dataset consists of four
domains: Attraction, Hotel, Restaurant, and Train.

In the TSG component, we used the standard
metric in DST: joint goal accuracy (JGA). This
metric compares the predicted belief state with the
ground truth belief state to determine if they are
completely identical. A successful prediction is
achieved when the predicted belief state matches
the ground truth belief state entirely. Note that
the JGA metric requires both value and slot infor-
mation to match for a successful evaluation. In
our work, the trainable slot generator only gener-
ates domain and slot information of the belief state
and does not include value information. Therefore,
the evaluation is performed by complementing the
value information using the LLM in the second part
before conducting the evaluation.

For the evaluation of the entire dialogue, we con-
catenate the belief state and system response gener-
ated by the LLM in the order of the dialogue and
then evaluate them. We employ the following evalu-
ation metrics: Inform, which measures whether the
provided entities satisfy the user’s needs correctly;
Success, which measures whether all requested
attributes are addressed; BLEU is not adopted be-
cause it measures the similarity between the gen-
erated response and the reference response, and
there may be significant differences between the
responses generated by the LLM and the reference
responses.

4.2 Implementation Details
The slot generator and adaptive prompt framework
proposed in our approach are not restricted to spe-
cific models. In this paper, the TSG is based on



GPT-2 with 117M parameters and initialized with
pretraining weights from SOLOIST. SOLOIST is
pre-trained on corpora from multiple task-oriented
dialogue datasets (Schema and Taskmaster) and
performs tasks such as belief state prediction and
response generation. Specifically, the input for the
belief state prediction task is the current dialogue
and all dialogue history, and the output is a text
sequence corresponding to the current dialogue
state. In our task, we only need the domain and
slot information from the belief state. An intuitive
approach would be to directly extract domain and
slot information from the belief state generated by
the original model. However, this method would
result in more complex and longer text sequences,
requiring more time but not improving accuracy.
Therefore, we only trained the model using the
domain and slot parts of the belief state.

In the experimental part of the adaptive prompt
framework, the LLM we use is chatgpt-3.5-turbo.
We generated belief states and system responses
of dialogues by calling OpenAI’s API. We find the
format of the generated content can affect its ac-
curacy, if we use curly braces to restrict the belief
state, such as "{belief state: attraction type = enter-
tainment}", the result is better than when not using
curly braces, like "belief state: attraction type =
entertainment". Based on our experience, we con-
trol the format of the generated content to achieve
optimal results. Therefore, belief states and sys-
tem responses generated during the intermediate
process may differ slightly in format from those in
SOLOIST.

4.3 Trainable Slot Generator (TSG)

4.3.1 Setup

The goal of the TSG is to generate belief states that
only contain slot information. We use SOLOIST
as a baseline to compare the improvement of our
method on the final results. First, we train the
TSG following SOLOIST, and the data statistics of
dataset are shown in Table 1. The training epoch
is 30, the learning rate is 5e-5, and the batch size
is 1. During testing, Nucleus filtering is used for
decoding with a top-p value of 0.4 and a temper-
ature of 0.3 to obtain the belief state. Since we
only need the slot part of the belief state, we parsed
the belief state and generated a new belief state
that only includes the domain and slot information
using rules-based methods.

For our proposed method, we only used the do-

main and slot information from the belief state in-
stead of the complete belief state for training. This
approach has two advantages as follows:

• In case manual annotation of data is required
for future applications, annotators only need
to label the domain and slot information of
dialogues. Unlike value information, which
is diverse and difficult to standardize, these
two types of information are usually easier
to determine and have a certain range. This
significantly reduces the annotation cost.

• Training and inferring with belief states that
contain only domain and slot information
make the input and output sequences of the
model shorter. Compared to complete belief
states, which contain more characters repre-
senting the format and content, this method
achieves better stability in generating results.

Attraction Hotel Restaurant Train
ChatGPT 58.80 30.76 45.31 59.76
PPTOD 57.71 31.89 54.12 61.78
PPTOD∗ 58.11 32.76 54.34 62.90
SOLOIST 60.10 27.83 54.94 63.30
TSG w/o CL 58.11 32.06 55.21 63.25
TSG 58.27 33.02 55.81 63.78

Table 2: JGA results across different methods and do-
mains. For a fair comparison, JGA is evaluated only
based on the domain and slot, excluding the consider-
ation of values. "*" indicates the replacement of corre-
sponding sections with the TSG method.

Inform Success BLEU Combined score
SOLOIST 73.88 72.22 13.11 86.16
SOLOIST+TSG 76.23 74.10 13.81 88.98

Table 3: Result on Camrest676 dataset.

4.3.2 Results
The results obtained by different methods are
shown in Table 2. We observe that directly uti-
lizing ChatGPT for extracting slot information of
belief state is not particularly effective. The method
trained with shorter belief states surpasses the re-
sults obtained by extracting slot information from
the original SOLOIST method, and is also better
than PPTOD and ChatGPT. We can observe that
in more complex domains, such as hotels, the im-
provement becomes more pronounced as the belief
state becomes more complex. This indicates that
using less information for training can lead to more



accurate results, validating the potential of our pro-
posed method. It is worth noting that the JGA
metric of belief states containing only domain and
slot information reflects the algorithm’s advantage
from one aspect. Further application in subsequent
methods is needed to verify its actual improvement
in the final dialogue evaluation.

To assess the generalizability of our proposed
method, we applied the TSG to the Camrest676
dataset. The results as shown in Table 3 indicate
that, even when tested on a novel dataset, our pro-
posed method consistently enhances the results.
This observation underscores the method’s capac-
ity to generalize to datasets beyond its training
domain.

4.4 Adaptive Prompt Framework

4.4.1 Setup

The purpose of the Adaptive Prompt Framework
is to generate suitable prompts for inputting the
current dialogue into the LLM to obtain the cor-
responding belief state and system response. The
underlying assumption is that the LLM possesses
strong comprehension and generalization capabili-
ties and can adapt to various downstream tasks by
designing appropriate prompts. Specifically, the
Adaptive Prompt Framework consists of two parts:

Part 1 involves refining the results from the TSG.
Firstly, a candidate list of domains, slots, and their
corresponding values is compiled based on the
dataset. This list serves the purpose of retrieving
the candidate values for a given domain and slot
when we obtain the domain and slot information.
This candidate list includes two types of entries.
The first type comprises slots with limited values,
where the values can be represented by short-word
sequences, such as slots indicating time or direc-
tion. The second type consists of slots with poten-
tially infinite values, where the values may vary
during the conversation, such as the "name" slot
that may change with different entities discussed
in the dialogue. These entries cannot be exhaus-
tively enumerated, and thus we use "?" to represent
candidate values. Each entry in the candidate list
pertains to a single domain and slot but can contain
multiple candidate values.

Next, we incorporate the static prompt section,
based on existing work on generating prompts for
belief states. However, these prompts are not adapt-
able to subsequent dynamic utterances. Therefore,
we adjust them by adding instructions on how to

use the subsequent dynamic section and include
an example to provide constraints on the generated
format.

Then, we parse the results generated by the TSG,
extract the domain and slot information, and se-
lect the relevant entries from the existing domain-
slot-value candidate list to form a list of candidate
entries.

Finally, we process the input dialogue informa-
tion to generate the second dynamic part of the
prompt. This part consists of current user utter-
ances, dialogue history, and partial belief state,
combined into a string list format. The partial
belief state is represented as "{slot =?}". The
example prompt is presented in Appendix A.

Part 2 involves generating the system response
based on the user utterance and dialogue history
in the current conversation. The purpose of this
part is to have the LLM act as an agent in the TOD
system and respond to user requests by generating
delexicalized system responses. It is important to
note that, for the convenience of evaluating the
success rate of subsequent dialogue, recommended
or queried entities in the generated response need
to be replaced with special tokens. The complete
response is then generated through post-processing.

Similar to the previous part, we need to compile
a list of domains and corresponding special tokens
based on the dataset. This list serves the purpose
of retrieving candidate values for a given domain
using table lookup when we obtain the domain in-
formation, to provide the LLM with options for
generating the final system response. This candi-
date list includes two types of special tokens. The
first type consists of domain-specific special tokens
represented in the form of domain-slot, such as
"attraction-name". The second type comprises spe-
cial tokens that are universally applicable across all
domains and are represented as value-slot, such as
"value-time". These special tokens represent some
commonly occurring entities that may be encoun-
tered in all domains.

Next, we incorporate the static prompt section
for generating the system response based on the
belief state prompt generated in the previous part.

Then, we generate the second dynamic section
of the system response prompt using the current
user utterance and dialogue history.

Finally, based on the parsing results from the
slot generator, we obtain the domain information
and select the relevant entries from the domain-



Attraction Hotel Restaurant Train
dst inform success dst inform success dst inform success dst inform success

SOLOIST / 86.00 68.00 / 75.00 51.50 / 84.00 62.5 / 81.30 74.20
GALAXY / 92.00 62.00 / 84.50 29.00 / 76.50 64.50 / 87.31 73.60
ChatGPT 59.98 95.00 86.00 28.30 89.50 43.00 53.98 95.00 61.50 59.72 83.70 77.70
ours w/o APG 45.14 84.00 73.00 8.50 48.50 36.50 15.09 61.50 46.50 2.06 81.22 29.95
ours w/o TSG 50.13 89.00 78.00 24.06 77.00 37.50 47.56 86.50 57.50 51.82 81.73 75.63
ours 62.20 98.00 87.00 28.90 88.50 62.00 54.90 96.50 71.50 61.70 82.74 80.71

Table 4: Results on four tasks. SOLOIST is quoted from (Peng et al., 2021) and we use the gpt-3.5-turbo-0301
version of ChatGPT.

Attraction Hotel Restaurant Train
BLEU Combined Score BLEU Combined Score BLEU Combined Score BLEU Combined Score

SOLOIST 14.60 91.60 10.09 73.34 13.17 86.42 11.90 89.18
GALAXY 9.47 86.47 5.50 62.25 11.68 82.18 6.67 87.13
ChatGPT 4.11 94.61 2.12 68.37 3.20 81.45 3.56 84.26
ours 4.89 97.39 2.76 78.01 3.51 87.51 4.98 86.71

Table 5: Results of combined score on four tasks. Calculated from BLEU, Inform, and Success metrics in Table 4
using the formula Combined Score = (Inform+ Success)/2 +BLEU .

special token candidate list to form a list of candi-
date entries. The example prompt is presented in
Appendix A.

4.4.2 Compared Methods

To demonstrate the effectiveness of our proposed
method, we compared it with several different com-
binations of methods for validation. The main
methods we employed are as follows:

• SOLOIST: Using SOLOIST alone to generate
belief states and system responses, followed
by direct evaluation.

• ChatGPT: Generating belief states and system
responses separately using ChatGPT. Then,
the two parts are concatenated for evalua-
tion. In contrast to our proposed method in
this section, this approach uses static prompts.
Specifically, when generating belief states, the
dynamic prompt section from our proposed
method, which consists of the candidate list
based on the output of TSG, is replaced with
the complete domain-slot-value list. Similarly,
when generating system responses, the dy-
namic prompt part from our proposed method,
which consists of the candidate list based on
the domain information, is replaced with the
complete domain-special token list. In other
words, this method solely relies on ChatGPT
to generate the required information, aiming
to verify if ChatGPT is capable of completing
the entire task.

• ours w/o APG: The domain and slot infor-
mation is generated using TSG, and then the
static prompt is used to input into ChatGPT
for generating the final belief state and system
response.

• ours w/o TSG: Using SOLOIST to generate
belief states. After that, the prompt is gener-
ated using APG and input into ChatGPT to
generate system responses.

These methods were evaluated by concatenating
the corresponding components and assessing their
performance.

4.4.3 Results
The final evaluation results are presented in Table
4. We use SOLOIST as the baseline. It can be
observed that the ours w/o TSG method achieves
an average improvement of 5 points. This improve-
ment can be attributed to the powerful comprehen-
sion and generation capabilities of ChatGPT, al-
lowing it to generate responses that align well with
the conversational context. The ChatGPT method
alone brings an average improvement of 1 point,
indicating its capability to generate belief states
effectively. However, we noticed that ChatGPT
performs better in generating simple belief states
(e.g., in the attraction domain) but struggles with
complex belief states (e.g., in the train domain).
We speculate that this discrepancy is due to com-
plex belief states containing more information, and
ChatGPT’s instability in generating longer pieces
of information. Ultimately, our proposed method



Attraction Hotel Restaurant Train
Info. Succ. BLEU Comb. Info. Succ. BLEU Comb. Info. Succ. BLEU Comb. Info. Succ. BLEU Comb.

ours- 85.00 69.00 12.90 89.90 74.50 43.50 8.12 67.12 81.00 55.50 12.80 81.05 80.81 64.65 9.96 82.69
ours 98.00 87.00 4.89 97.39 88.50 62.00 2.76 78.01 96.50 71.50 3.51 87.51 82.74 80.71 4.98 86.71

Table 6: Experimental results on the impact of static and dynamic prompts on system response. "-" indicates the
substitution of the dynamic prompt segment with a static prompt encompassing all entries.

Figure 3: Comparison of different methods in terms of
the proportion of high-frequency errors relative to the
total test data.

outperforms the ChatGPT method with an average
improvement of 8 points. This indicates our frame-
work effectively mitigates the issue of hallucination
in ChatGPT.

5 Analysis

High-frequency Errors. For the unsuccess dia-
logues, we analyze high-frequency errors compar-
ing the chatgpt method in the restaurant domain
with our proposed method, as shown in Figure 3.
Specifically, "format error" is the error that pre-
vents the belief state from being parsed, "dialogue
generation error" refers to the result of a system
response that does not align with logic, and "belief
state error" refers to unmatched content.

Our method significantly reduces the number of
evaluation failures caused by format errors owing
to the inclusion of precise constraints in the prompt.
Furthermore, the proportion of dialogue generation
errors is also reduced. Lastly, the occurrence of
belief states’ errors has been mitigated due to the
trainable slot generator.

Drawback of Static Prompt. While the present
study has already included a comparison between
static and dynamic prompts, to more distinctly il-
lustrate the differences between existing methods
and our proposed approach, we conducted a com-

Attraction Hotel Restaurant Train
Bang et al. 2023 91.00 83.50 90.50 77.27
Pan et al. 2023 93.00 84.00 91.00 78.82
ours 98.00 88.50 96.50 82.74

Table 7: Comparison of results with different prompts.

parative analysis of the effects of prompts using
the frameworks presented in Bang et al. (2023) and
Pan et al. (2023).

As depicted in Table 7, the dynamic prompt ex-
hibits a significantly higher performance in the in-
form metric compared to existing static prompt
methods. This is attributed to the inability of static
prompts to adapt to different domains.

Similarly, to investigate the impact of static and
dynamic prompts on system response, we supple-
mented our study with more detailed experiments
to compare their effects on the final results. Specif-
ically, we replaced the dynamic part of the prompt
with a static prompt containing all entries. As
shown in Table n, using only a static prompt has
a significant impact on success, resulting in a de-
crease in the combined score.

Necessity of Belief State in TOD. Due to the
inability of LLMs to interact extensively with exter-
nal knowledge, such as querying restaurant avail-
ability from a DB, we still need to retrieve key-
words from the belief state to perform DB queries.
While there may be better approaches in the future,
currently, querying external knowledge through the
belief state remains a more reliable method.

6 Conclusion

To address the issue of prompt generation of LLMs
in the TOD task, we propose an adaptive prompt
generation framework for the comprehensive TOD
system which consists of two parts: trainable slot
generator (TSG) and adaptive prompt generator
(APG). The framework tackles the limitation of
fixed prompts in TOD and focuses on both dia-
logue understanding and dialogue generation. Ex-
perimental results demonstrate that our proposed
method significantly improves the performance
compared to existing approaches.



Limitations

Limitations There are several aspects of this article
that can be improved in the future:

Result Updates: As ChatGPT continues to
evolve, we can continue using newer versions to
enhance performance.

More Scenarios: Currently, we have only ex-
perimented with single-domain task-oriented dia-
logues. In the future, we can improve the model’s
performance in multi-domain scenarios or incorpo-
rate additional information, such as database query
information, into the prompts.

Generalization validation: In the future, we
can expand our approach to compare it with other
methods in a broader range of tasks and validate its
generalization capabilities.
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A Appendix

A.1 Prompt for Belief State
The various parts of the prompt for obtaining the
belief state are presented in Table 8. The dynamic
part automatically adapts based on different inputs
to generate the optimal prompt.

Part Prompt
Input (utterance)

user : I’d like to visit a college in the center
of town. could you help me find something
interesting?

Static (example)
user : hello, i am looking for something to
do in the west part of town. it should involve
multiple sports.
system : unfortunately none of those places
exist here . any other preferences ?
user : hm, can you tell me about what
entertainment venues might be on the west
side of town instead?
=>
{ belief : attraction type = ? }
=>
{ belief : attraction type = entertainment }

(standard prompt)
According to the example, fill the blank
represented as ’?’ of the dialogue state of
the last utterance in the following dialogue
by using the following pre-defined slots and
possible values:

Dynamic (relevant entries)
Domain: attraction, type : [’dontcare’, ’park’,
’mutliple sports’, ’boat’, ’college’, ’cinema’,
’nightclub’, ’concerthall’, ’swimmingpool’,
’museum’, ’entertainment’, ’theatre’, ’archi-
tecture’]
Domain: attraction, area : [’dontcare’,
’centre’, ’east’, ’north’, ’south’, ’west’]

(TSG output)
=>
{belief : attraction type = ? ; area = ? }
=>

Output {belief : attraction type = college ; area = cen-
ter }

Table 8: Prompt for belief state
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A.2 Prompt for System Response
Similarly, the prompt for obtaining the system re-
sponse is presented in Table 9. The dynamic part
also selects relevant entries based on the output of
TSG.

Part Content
Input (utterance)

user : I’d like to visit a college in the center
of town. could you help me find something
interesting?

Static (example)
user : hello, i am looking for something to
do in the west part of town. it should involve
multiple sports.
system : unfortunately none of those places
exist here . any other preferences ?
user : hm, can you tell me about what
entertainment venues might be on the west
side of town instead?
=>
system : there s a fun place called [attrac-
tion_name] at [attraction_address].

(standard prompt)
According to the example, complete the
system without generating unnecessary
elements. Special tokens in the system can be
used:

Dynamic (relevant entries)
’[attraction_address]’, ’[attraction_area]’,
’[attraction_name]’, ’[attraction_phone]’, ’[at-
traction_postcode]’, ’[attraction_pricerange]’,
’[attraction_reference]’, ’[value_count]’,
’[value_day]’, ’[value_place]’, ’[value_time]’

Output system: sure, there are several colleges in the
center of town. one of the more interesting
ones is [attraction_name] located at [attrac-
tion_address].

Table 9: Prompt for system response


