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Abstract

Generated synthetic data in medical research can substitute privacy and security-
sensitive data with a large-scale curated dataset, reducing data collection and
annotation costs. As part of this effort, we propose UniXGen, a unified chest X-ray
and report generation model, with the following contributions. First, we design a
unified model for bidirectional chest X-ray and report generation by adopting a
vector quantization method to discretize chest X-rays into discrete visual tokens and
formulating both tasks as sequence generation tasks. Second, we introduce several
special tokens to generate chest X-rays with specific views that can be useful when
the desired views are unavailable. Furthermore, UniXGen can flexibly take various
inputs from single to multiple views to take advantage of the additional findings
available in other X-ray views. We adopt an efficient transformer for computational
and memory efficiency to handle the long-range input sequence of multi-view chest
X-rays with high resolution and long paragraph reports. In extensive experiments,
we show that our unified model has a synergistic effect on both generation tasks, as
opposed to training only the task-specific models. We also find that view-specific
special tokens can distinguish between different views and properly generate
specific views even if they do not exist in the dataset, and utilizing multi-view chest
X-rays can faithfully capture the abnormal findings in the additional X-rays. The
source code is publicly available at: https://github.com/ttumyche/UniXGen.

1 Introduction

Patient privacy, imbalanced class distribution, the need for trained clinicians, and the lack of large
publicly available datasets are chronic problems in medical research. In an effort to alleviate these
problems, research on synthetic data generation has been actively explored. Among them, the
combination of chest radiographs and radiology reports has made significant progress, as it provides a
comprehensive examination of the patient’s condition that helps diagnose and detect various diseases.
In response, we propose a unified chest X-ray and radiology report generation model with multiple
views, namely UniXGen, with the following improvements.

First, we design a unified model for bidirectional chest X-ray and report generation. Although these
tasks are bidirectional, existing works propose task-specific architectures and develop them separately.
We simplify the design effort by utilizing VQ-GAN [7] as an image tokenizer. This approach allows
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Figure 1: Overview of UniXGen. We propose a unified chest X-ray and report generation model.
UniXGen can generate view-specific X-rays of the user’s choice. We also boost the generation ability
with multi-view chest X-ray input.

us to convert an image into a sequence of discrete tokens; thus both X-ray generation and report
generation can be performed as sequence generation tasks with a unified model.

Next, UniXGen can generate chest X-rays with specific views of the user’s choice, such as posterior-
anterior (PA), anterior-posterior (AP), and lateral views. This ability can be useful when the desired
view is unavailable. In addition, it allows for generating various views, which can provide additional
findings that cannot be seen in a single view and also help radiologists make more accurate diagnoses.
Despite these advantages, no prior efforts have been made to control the view position in chest X-ray
generation. To achieve this, we introduce a set of special tokens according to the different view
positions.

Lastly, we utilize multi-view chest X-rays and study their effects on the generation quality. X-rays
from multiple views can provide more valuable information during generation, compared to a single
view input. There are; however, no previous chest X-ray generation studies considering the relations
between them. As a result, they do not take advantage of the additional findings available in other
X-ray views of the same study. Meanwhile, in report generation, [40, 39] only use studies with a
single frontal and a single lateral view. Therefore, their architectural design is not flexible to various
input formats. In this work, we design a model that can flexibly take arbitrary input from single
to multi-view images and empirically show that using multi-view images can faithfully capture
abnormal findings in both chest X-ray and report generation.

Specifically, we adopt Performer [4], an efficient transformer-based architecture. Although the vanilla
Transformer [34] is a task-agnostic design that can perform both image and text generation tasks, the
computational cost increases quadratically by the input sequence length. We adopt the Performer
for computational and memory efficiency as we utilize long paragraph reports and high resolution
multi-view chest X-rays, which result in long-range sequences.

We evaluate our model on MIMIC-CXR [17]. The experimental results show that UniXGen achieves
better performance on both standard metrics such as FID [13] and BLEU [25] and clinical efficacy
metrics such as 14-diagnosis Classification and CheXpert scores with CheXpert labeler [16] over
several baselines. Furthermore, human evaluation shows that UniXGen can generate realistic chest
X-rays comparable to the original image, and the view-specific special tokens capture the refined
features of each view, encouraging the model to generate appropriate view-specific X-rays.

Our contributions can be summarized as follows:
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1) We first propose a unified model for chest X-ray and radiology report generation in the
medical domain.

2) UniXGen can generate view-specific X-rays with a set of special tokens according to the
different view positions, even without the desired views.

3) We utilize multi-view chest X-rays and study their effects on chest X-ray and radiology
report generation. Also, we design a flexible model that can take both single and multi-views
as input.

2 Related Work

Chest X-ray Generation With the growing demand to access high quality medical data and the
success of generative models such as VAE [18], GANs [8], and diffusion models [10], chest X-ray
generation has gained a lot of attention. [22, 42] use unconditional GANs to augment a dataset
for abnormality classification. [2, 24] adopt a latent diffusion model [31] for class-conditional
generation. However, these works only focus on specific diseases and do not utilize radiology reports
that contain rich medical domain knowledge. Recently, [1] has taken advantage of radiology reports
for conditional generation, but they only use the impression section of the reports. Furthermore, they
cannot generate view-specific chest X-rays or accept multiple views as input.

Radiology Report Generation Automatic report generation can relieve the heavy burden on
radiologists. Most existing works adopt the CNN-RNN encoder-decoder framework based on
standard image captioning approaches. Specifically, [37] integrates multi-level attention. [40, 21]
adopt the hierarchical architecture, and the latter introduces reinforcement learning. [39] incorporates
a hierarchical retrieval-based method. However, these task-specific architectures make it difficult to
scale and generalize to other tasks. Also, they design a model for a specific input format. [37, 21] and
[40, 39] only support single-view and two multi-view inputs, respectively. Recently, [23] proposed
a Transformer-based architecture for various tasks, including report generation. They learn joint
representations of chest X-rays and reports for report generation but do not extend their work to chest
X-ray generation. In addition, they only use a subset of studies with a single frontal view.

Bidirectional Image-Text Generation Traditionally, image-to-text and text-to-image generation
have been developed separately with task-specific architectures in the general domain. However, with
the success of the Transformer-based model in both tasks [43, 28], several works [15, 41, 14] have
argued the bidirectional nature of these tasks and propose a unified model for the bidirectional image-
text generation. They discretize images into discrete tokens to formulate both tasks as sequence
generation tasks. [15] uses K-means clustering and [41, 14] adopt vector quantization methods
[33, 7].

Efficient Transformer Transformer [34] has proven to be highly adaptable to both vision and
language tasks with its task-agnostic design and generalization capabilities. However, the self-
attention mechanism increases the computational and memory cost quadratically by the input sequence
length. As we utilize long paragraph reports and high resolution multi-view chest X-rays, we adopt
Performer [4], an efficient transformer-based model to reduce the quadratic complexity to linear.
They approximate the standard transformer attention using positive orthogonal random features to
kernelize the softmax operation.

Image Tokenization Many efforts have been made to convert images into discrete tokens like
natural language, as this provides a compact and efficient representation compared to using raw
pixels. Based on the success of VQ-VAE [33], VQ-VAE-2 [30] improved VQ-VAE by introducing a
multi-scale hierarchical encoder. [7] introduced VQ-GAN with a discriminator and a perceptual loss
for high-resolution images. [28] proposed DALL-E to better optimize VQ-VAE with Gumbel-softmax
relaxation. Recently, diffusion models have achieved promising performance in generating high-
quality samples in continuous domains (e.g., image and audio) [27, 32]. However, diffusion models
for text generation are still underdeveloped and have not achieved significant success compared
to image generation. In addition, the models are not flexible to take arbitrary input from single to
multiple images. Thus, we adopt the transformer-based auto-regressive model with VQ-GAN to
generate both image and text with a unified model.
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Figure 2: Overview of UniXGen architecture. (a) UniXGen is a unified model that can generate both
reports and view-specific X-rays. (b) Images are tokenized via VQ-GAN, and reports are tokenized
via a text tokenizer. (c) A minibatch consists of input sequences consisting of AP/PA/Lateral X-rays
and a report in random order. (d) We use a causal attention mask to simultaneously handle multi-view
X-rays and a report.

3 Method

Figure 2 shows the overall depiction of UniXGen. Notably, 1) We design a unified model for
bidirectional chest X-ray and report generation. 2) To generate chest X-rays with specific views, we
incorporate various special tokens according to the view type. 3) UniXGen takes a series of chest
X-rays of different views and a report from the same study as input for better generation quality.

3.1 Input Embedding

Image Tokenization We adopt VQ-GAN [7] as an image tokenizer. This model consists of an
encoder, a decoder, and a fixed-size learnable codebook. Given an image x ∈ RH×W×3, the encoder
embeds the input image into a continuous feature space z ∈ Rh×w×dz , which is then quantized into a
sequence of discrete tokens {v1, . . . , vh×w} by finding the closest code embedding in the codebook
via the nearest neighbor search. The decoder then maps the discrete codes back to the original input.
This method allows the model to learn a compact and discrete representation of the images.

Chest X-ray Embedding Using the image tokenizer described above, chest X-rays of multiple views
from the same study are individually tokenized into a sequence of discrete visual tokens, surrounded
by special tokens to differentiate between different views, e.g. {[SOSPA], v1, . . . , vh×w, [EOSPA]}
for a PA-view X-ray. Additionally, if the study has fewer images than k2, we add padding tokens
to ensure that all input sequences have the same length. For example, the final embeddings of a
PA-view X-ray is vPA = {sPA, v̄1, . . . , v̄h×w, ePA}, where sPA, ePA ∈ Rd respectively denote
the embeddings of the special tokens, v̄i ∈ Rd is acquired by summing the visual embedding and
axial positional embedding [11, 19]:

v̄i = fV E(vi) + fV P (i)

where fV E(·) and fV P (·) are the visual embedding and axial positional embedding functions,
respectively.

Radiology Report Embedding We first split a report into word tokens with a byte-level BPE
tokenizer [36] and surround them with special tokens, e.g. {[SOS], w1, . . . , wT , [EOS]}. The final
embeddings for the report is w = {sR, w̄1, ..., w̄T , eR}, where sR, eR ∈ Rd respectively denote the
embeddings of the special tokens, w̄i ∈ Rd is obtained by summing up the word embedding and
sinusoid positional embedding:

w̄i = fWE(wi) + fWP (i)

2In our work, we use k = 3 to include PA, AP, and Lateral view.
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where fWE(·) and fWP (·) are the word embedding and sinusoidal positional embedding functions,
respectively.

3.2 Bidirectional Generative Model

We design a unified model for chest X-ray and report generation by formulating both tasks as
sequence generation tasks. Incorporating the Transformer architecture [34], our model is trained
with a multimodal causal attention mask, which is designed to handle multimodal input while still
maintaining the causal constraints of the standard causal mask as shown in Figure 2 (d). This attention
mechanism differs from the sequence-to-sequence attention mask [6] as it treats all modalities as
targets for generation, allowing the model to simultaneously learn each modality conditioned on the
preceding modalities along with the first modality which performs unconditional generation in each
iteration.

Furthermore, to handle long-range sequences with limited resources, we adopt Performer [4] as an
efficient attention mechanism. They propose the FAVOR+ algorithm which uses positive orthogonal
random features to approximate the softmax function with linear space and time complexity, allowing
the model to compute the attention score more efficiently and reduce memory consumption. For
causal attention, they utilize a prefix-sum mechanism to avoid storing an explicit lower-triangular
regular attention matrix. Please refer to Appendix B for a visual explanation.

During training, we concatenate a series of chest X-rays and report embeddings from the same study
in random order to form a single input sequence as shown in Figure 2 (c), which is then fed into
the model. UniXGen is trained to minimize the negative log-likelihood of the next token given
the previous tokens. Given [w;v1; ...;vk] as the input sequence, for example, the loss function is
formulated as follows:

L =

n∑
i=1

−logP (wi|w0:i−1) +

m∑
i=1

−logP (v1i |w, v10:i−1)

+ ...+

m∑
i=1

−logP (vki |w, v1, ..., vk−1, vk0:i−1)

where n = T + 2 and m = h× w + 2, and w0, wn, v
1
0 , v

1
m, . . . , v

k
0 , v

k
m are special tokens.

At inference, for generating an X-ray of a specific view, the input to the model is [w;v1; ...;vk−1],
meaning that the report embeddings are followed by X-ray embeddings of other views (if available
for this study.). For radiology report generation, the model input is [v1; ...;vk], assuming there are k
views of X-rays available for this study.

4 Experiments

4.1 Dataset

MIMIC-CXR [17] contains 377,110 chest X-rays from 227,835 radiology studies. Each study has
one or multiple chest X-rays and a single report. We select a total of 208,534 studies that contain at
most 3 chest X-rays composed of the most common views, namely PA, AP, and LATERAL3. Table 1
shows the statistics of chest X-ray view composition in each study. From the report, we use the two
primary sections, namely Findings and Impression. We follow the official split of MIMIC-CXR (train
204,102, valid 1,659 test 2,773).

Table 1: Composition of chest X-ray views in each study. S w/1, S w/2, and S w/2 indicate the
number of chest X-rays per study. LAT. is short for LATERAL.

Group Split AP PA LAT.
Train 91,736 85 1,596

S w/1 Valid 782 1 12

Test 1,428 3 29

Group Split (PA, LAT.) (AP, LAT.) (AP, AP) (LAT., LAT.) (PA, PA) (AP, PA)
Train 68,600 13,971 9,853 471 315 105

S w/2 Valid 513 95 90 3 2 2

Test 671 212 162 10 3 1

3A study can have PA, PA, LAT or PA, LAT, or just AP.
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Group Split (PA, PA, LAT.) (AP, LAT., LAT.) (PA, LAT., LAT.) (AP, AP, LAT.) (AP, AP, AP) Etc.
Train 8,056 3,968 3,539 848 748 211

S w/3 Valid 66 36 36 9 7 5

Test 82 89 52 11 14 6

4.2 Evaluation Metrics

We evaluate the generated chest X-rays and reports in various aspects, from sample quality to clinical
efficacy. FID and BLEU are the standard evaluation metrics in generative models, but they are not
appropriate to capture complex medical concepts. Therefore, we use additional metrics, including
14-diagnosis classification for the chest X-rays and CheXpert scores for the reports. We also perform
human evaluations.

4.2.1 Statistical Evaluation

FID [9] We compute the distances of feature statistics between the original X-rays from the test set
and the generated X-rays with the 1024-dimensional feature of the DenseNet-121 pretrained on chest
X-ray datasets [5].

BLEU [25] We report BLEU-4 between the original and the generated reports.

4.2.2 Clinical Efficacy Evaluation

14-diagnosis Classification We train DenseNet-121 with positive labels extracted from the Findings
and Impression sections using CheXpert labeler [16]. The model then predicts the classes of the
generated chest X-rays. We report micro-averaged F1 and AUROC.

CheXpert Scores We extracted diagnosis labels from the original and generated reports with the
CheXpert labeler. We then compare these labels and measure micro-averaged Precision, Recall, and
F1.

4.2.3 Human Evaluation

Using 100 triples of an original chest X-ray generated chest X-rays from our model and a baseline,
we ask three board-certified clinicians to evaluate each chest X-ray on three aspects: (1) realism, (2)
alignment with the given report, and (3) the view position among PA, AP, and LATERAL views. Both
(1) and (2) are rated on a scale from 1 (worst) to 5 (best). The triples consist of 33 triples from PA and
AP and 34 triples from LATERAL. The clinicians consist of two radiologists and one neurosurgeon,
and the X-rays are presented in random order for each triple.

4.3 Experiment Design

Experiments are designed to investigate the followings:

The Advantage of the Unified Model
We evaluate the advantage of a bidirectional unified model compared to separate models for chest
X-ray and radiology report generation. There are four variants: 1) SingleAP , 2) SinglePA, 3)
SingleLAT., and 4) Singlereport. Each model is only trained to maximize the log-likelihood of the
tokens corresponding to its specific modality.

The Effect of Multi-view Chest X-rays
To evaluate the effect of using multi-view chest X-rays on the generation quality, we divide the test
dataset into three groups based on the number of chest X-rays per study. These groups include studies
with one X-ray (S w/1), two X-rays (S w/2), and three X-rays (S w/3). We evaluate our model by
incrementally increasing the number of input chest X-rays within each group. For example, in the
group of studies with two X-rays (S w/2), we first only use the report as the input condition for
chest X-ray generation. Next, we use both the report and the remaining chest X-ray as the input
condition. Then we compare the generated chest X-rays under these different conditions. Similarly,
for radiology report generation, we first use only one of the X-rays as input and then both X-rays.
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The Ability to Generate Specific Views
We evaluate the impact of the special tokens in generating specific views by asking the three clinicians
to identify the view positions of the generated chest X-rays. Furthermore, the correctness of the view
position is indirectly evaluated with the FID score as well. The generated chest X-rays are divided
based on their original view position, and we calculate the FID scores to measure the similarity to the
original view position.

Comparison with Fine-tuned Stable Diffusion
We compare UniXGen with a fine-tuned Stable Diffusion for chest X-ray generation as proposed
in [1]. While various chest X-ray generation models have been proposed, only [1] utilize radiology
reports as an input condition. In addition, Stable Diffusion has shown great performance in image
generation.

4.4 Implementation Details

Image tokenizer We adopt VQ-GAN with dz=256 and a codebook size of 1024. The input image of
size 512 × 512 is quantized into 32 × 32 = 1024 discrete visual tokens. The model is trained for
540k steps with a batch size of 8, a learning rate of 4.5e-6 with the Adam optimizer.

Text tokenizer We train a byte-level BPE tokenizer [36] with a minimum frequency of 2 on reports
converted to lowercase. We then obtain 14,526 unique tokens, including three special tokens [SOS],
[EOS], [TXT PAD].

UniXGen We set the length of word tokens n=256 and visual tokens m=1,026, including special
tokens. In this work, UniXGen takes up to three chest X-rays as input, as the majority of studies in the
MIMIC-CXR dataset have three or fewer images. However, it is able to take more images if they are
available. Our model is built on the Transformer architecture with generalized attention [4]. The model
has 12 layers, 12 heads, and 768 dimensions. We incorporate seven special tokens (in addition to three
text special tokens), namely [SOSAP ], [EOSAP ], [SOSPA], [EOSPA], [SOSLAT ], [EOSLAT ],
[IMG PAD]. Thus, the size of visual embedding function (i.e. lookup matrix) is fV E(·) ∈ RN×d,
where N = 1024 + 7, d = 768, and word embedding function is fWE(·) ∈ RM×d, where M = 14,526,
d = 768. We train the model for 337k steps with a batch size of 48. We use the AdamW optimizer
with a learning rate of 1.7e-4, β1=0.9, β2=0.999, e = 1e− 8, a weight decay of 1e− 2, and a cosine
decay schedule. We generate all samples with Top-p sampling [12] with p=0.9 and temperature=0.7.

Finetuned Stable Diffusion Following [1], we replace the CLIP text encoder with SapBERT [20] to
handle both Findings and Impression sections (the CLIP tokenizer is limited to 77 tokens) and keep
frozen the text encoder and VAE and only train U-Net from scratch. Please refer to Appendix C for
more details.

5 Results and Discussion

5.1 The Advantage of the Unified Model

We first study the advantage of training a bidirectional unified model for both generation tasks.

For chest X-ray generation, we compare our model with SingleAP , SinglePA, and SingleLAT..
Table 2 shows the results. Although UniXGen achieves slightly lower performance than single
models (except for SinglePA) in terms of the statistical metric (FID), it outperforms all single models
in the clinical efficacy metric (14-diagnosis Classification). This result suggests that combining report
generation as a target can learn the abnormal findings from the report to generate chest X-rays that
correctly capture the abnormalities described in the report.

For radiology report generation, we compare our model with Singlereport. As shown in Table 3, we
can observe that UniXGen significantly outperforms Singlereport across all metrics. This indicates
that combining chest X-ray generation as a target can effectively capture local regions that encourage
the model to generate more precise reports containing abnormal findings. We can conclude that
bidirectional training has a synergistic effect on both generation tasks, as opposed to training only the
single models.
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Table 2: Comparison of UniXGen with various single models to evaluate the impact of the unified
model in chest X-ray generation. The FID scores for the original image are calculated with the same
number of train set as the test set. Each AP, PA and LAT. column shows the performance measured
by dividing the generated chest X-rays according to their original view position.

Models
FID (↓) 14-diagnosis Classification

ALL AP PA LAT. F1 micro AUROC
ALL AP PA LAT. ALL AP PA LAT.

Original Image 0.361 0.776 0.874 0.487 0.510 0.540 0.492 0.460 0.810 0.808 0.812 0.793
SingleAP - 15.458 - - - 0.382 - - - 0.689 - -
SinglePA - - 7.189 - - - 0.365 - - - 0.697 -

SingleLAT. - - - 7.991 - - - 0.326 - - - 0.667
UniXGen 10.436 17.331 5.935 9.328 0.416 0.465 0.368 0.353 0.728 0.755 0.704 0.695

Table 3: Comparison of UniXGen with a single model to evaluate the impact of the unified model in
radiology report generation.

Models BLEU-4
CheXpert Labeler

Precision Recall F1
Singlereport 0.038 0.364 0.343 0.353
UniXGen 0.050 0.431 0.410 0.420

5.2 The Effect of Multi-view Chest X-rays

We investigate the effect of inputting multi-view chest X-rays on the generation ability. As described
in Section 4.3, we divide test dataset into three groups (S w/1, w/2 and w/3) and evaluate within each
group.

For chest X-ray generation, we use the report as the input condition and also incrementally add the
rest of the chest X-rays as input. Tables 4 and 5 show FID and 14-diagnosis classification results,
respectively. In the ALL view of the S w/2 group (1 of 2 vs 2 of 2), we can observe that 2 of 2
achieves better performance than 1 of 2 in both statistical (FID 16.416 vs 8.757) and clinical efficacy
(F1 0.309 vs 0.400, AUROC 0.664 vs 0.713) metrics. Also, 2 of 2 is better than 1 of 2 in the individual
views (AP, PA, and LATERAL). Similarly, in the ALL view of S w/3 group (1 of 3 vs 2 of 3 vs 3
of 3), 3 of 3 outperforms 2 of 3 and 1 of 3 across all metrics: FID (19.252 vs 11.450 vs 11.136), F1
(0.313 vs 0.362 vs 0.376), and AUROC (0.668 vs 0.694 vs 0.699). In the individual views, 2 of 3
or 3 of 3 usually perform better than 1 of 3 (except for the F1 score in the AP view). In addition, 3
of 3 performs slightly lower than 2 of 3 in some metrics, which we believe that this is because the
studies with three chest X-rays account for only a small percentage of the entire train dataset (8.5%).
Therefore, there is less opportunity to learn the 3 of 3 input format during training. We can conclude
that utilizing multiple X-ray views as input helps the model generate more accurate chest X-rays that
can capture the abnormal findings in the report and other chest X-rays.

Table 6 shows the radiology report generation result. We also increase the input chest X-rays to
generate the target report. In the S w/2 group, the 1 of 2 and the 2 of 2 show the same statistical score
(BLEU-4 0.056), but the 2 of 2 shows a better clinical efficacy score (F1 0.415 vs 0.422). Also, in the
S w/3 group, 3 of 3 outperforms 1 of 3 and 2 of 3 across all metrics. These results also show that
using multi-view chest X-rays encourages the model to generate more precise reports.

5.3 The Ability to Generate Specific Views

View Position column in Table 8 indicates that UniXGen can generate the view-specific X-rays
comparable to the original images. In addition, FID scores in Tables 2 and 4 imply that the generated
chest X-rays are similar to their original view positions. These results demonstrate the usefulness of
view-specific special tokens that effectively capture the specific properties of each view.
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Table 4: Evaluations of generated chest X-rays using FID to quantify the effect of using multi-view
chest X-rays in chest X-ray generation. src., tar., and LAT. are short for source, target and LATERAL,
respectively.

Group Input (src. → tar.)
FID (↓)

ALL AP PA LAT.

S w/1 1 of 1 (w→ v1) 25.441 25.742 76.753 37.380

1 of 2 (w→ v1) 16.416 24.907 16.779 20.185

S w/2 (w,v2 → v1) 8.757 20.851 7.547 8.469
2 of 2 (w,v1 → v2) 6.583 9.312 5.838 9.511

1 of 3 (w→ v1) 19.252 33.584 23.753 22.786

(w,v2 → v1) 11.450 19.781 11.853 15.116
S w/3 2 of 3 (w,v1 → v2) 23.302 33.22 59.485 14.941

(w,v2,v3 → v1) 11.136 19.865 12.002 14.587
3 of 3 (w,v1,v3 → v2) 10.26 26.545 8.793 13.845

(w,v1,v2 → v3) 8.83 19.973 9.507 11.444

Table 5: Evaluations of generated chest X-rays using 14-diagnosis Classification to quantify the effect
of using multi-view chest X-rays in chest X-ray generation. src., tar., and LAT. are short for source,
target, and LATERAL, respectively.

Group Input (src. → tar.)
F1 micro AUROC

ALL AP PA LAT. ALL AP PA LAT.

S w/1 1 of 1 (w→ v1) 0.457 0.460 0.615 0.255 0.747 0.751 0.728 0.563

1 of 2 (w→ v1) 0.309 0.447 0.280 0.227 0.664 0.741 0.642 0.634

S w/2 (w,v2 → v1) 0.400 0.485 0.362 0.370 0.713 0.753 0.692 0.702
2 of 2 (w,v1 → v2) 0.394 0.487 0.382 0.334 0.726 0.781 0.715 0.696

1 of 3 (w→ v1) 0.313 0.396 0.333 0.245 0.668 0.714 0.667 0.643

(w,v2 → v1) 0.362 0.371 0.376 0.350 0.694 0.691 0.716 0.679
S w/3 2 of 3 (w,v1 → v2) 0.377 0.464 0.363 0.358 0.703 0.73 0.715 0.69

(w,v2,v3 → v1) 0.376 0.394 0.373 0.369 0.699 0.722 0.716 0.673
3 of 3 (w,v1,v3 → v2) 0.373 0.44 0.349 0.365 0.72 0.796 0.707 0.706

(w,v1,v2 → v3) 0.381 0.505 0.333 0.353 0.705 0.749 0.688 0.704

Table 6: Evaluations of generated reports using BLEU and CheXpert scores to quantify the effect of
using multi-view chest X-rays on radiology report generation. src. is short for source, and tar. for
target.

Group Input (src. → tar.) BLEU-4
CheXpert Labeler

Precision Recall F1

S w/1 1 of 1 (v1 → w) 0.042 0.419 0.405 0.412

1 of 2 (v1 → w) 0.056 0.431 0.400 0.415
S w/2 2 of 2 (v1,v2 → w) 0.056 0.434 0.410 0.422

1 of 3 (v1 → w) 0.054 0.461 0.413 0.435
S w/3 2 of 3 (v1,v2→ w) 0.060 0.447 0.424 0.435

3 of 3 (v1,v2,v3 → w) 0.063 0.471 0.431 0.450

5.4 Comparison with Stable Diffusion

Table 7 shows the chest X-ray generation performances of UniXGen and the fine-tuned Stable
Diffusion. For a fair comparison, our model generates chest X-rays using only radiology reports as
input, without adding any additional chest X-rays. As seen from the table, UniXGen outperforms
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the fine-tuned Stable Diffusion across all metrics. In addition, our model proves again that using
additional chest X-rays can effectively generate more realistic and accurate chest X-rays as shown in
Table 2 (FID 18.994 vs 10.436, F1 0.396 vs 0.416, AUROC 0.711 vs 0.728).

Table 7: Comparison of UniXGen and the fine-tuned Stable Diffusion for chest X-ray generation.

Models FID (↓)
14-diagnosis Classification

F1 micro AUROC
Stable Diffusion 78.857 0.29 0.589

UniXGen 18.994 0.396 0.711

5.5 Human Evaluation

Table 8 confirms that UniXGen can generate realistic chest X-rays close to the original, and the
view-specific special tokens can capture refined features of each view, encouraging the model to
generate view-specific X-rays. In addition, our model scores higher than the baseline for both realism
and alignment.

Table 8: Human evaluation for chest X-ray generation.

Models Realism Alignment View Position (%)
AP PA LATERAL

Original Image 4.177 3.977 84.3 58.3 100
UniXGen 4.193 3.583 75.5 66.7 100

Stable Diffusion 2.09 1.827 - - -

5.6 Qualitative Examples

Figure 3 shows that UniXGen can generate realistic chest X-ray images even when conditioned only
on the report, showing a small consolidation in the lingula as described by the report. When given an
additional view, UniXGen generates an image that is more similar to the original image, showing its
ability to take advantage of both input modalities. Figure 4, on the other hand, shows an example
where UniXGen cannot correctly capture all the facts in the report when the image is generated
conditioned on the report only. Although the report says “large right pleural effusion”, the generated
image depicts a rather small pleural effusion. When given an additional view, however, UniXGen
can draw pleural effusion that is of the similar size as that of the original image. Furthermore, both
figures show that the view-specific special tokens enables UniXGen to generate the desired views,
even when they do not exist in reality.

Figures 5, and 6 show that using multiple X-rays encourages the model to generate more precise
reports. Please refer to Appendix A for more examples. All examples are confirmed by the clinicians.

6 Limitation & Conclusion

In this paper, we propose for the first time a unified view-specific X-ray and report generation model.
Our approach has several limitations, each providing opportunities for future work. First, due to the
nature of the real-world patient dataset, the report contains many comparison phrases with previous
studies (e.g. unchanged, increase, and compared to previous radiographs), so the model simply
memorizes these patterns without understanding their meaning and generates historical phrases.
In the future, we plan to use CXR-PRO [29], a refined dataset that removes historical phrases, to
generate clinically accurate reports. Second, the human evaluation confirms that our model generates
chest X-rays that are as realistic as the original images, but lack precise alignment with the report. We
plan to improve the alignment between each sentence in the report and the image regions. In addition,
the position and shape of the support device are slightly different from the original image, so we can
infer that our model sometimes has difficulty capturing fine details. This will also be improved in the
future. We hope that our approach suggests a new direction for medical synthetic data generation and
can be useful in the medical domain.
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Figure 3: Generated chest X-rays of UniXGen. Based only on the report, the generated PA in the
orange dashed box draws a rather small portion of the consolidation in the lingula, as is written in
the report. Based on an additional lateral view, the generated PA in the blue dashed box draws a
consolidation that is of more similar size as that of the original PA.

Figure 4: Generated chest X-rays of UniXGen. The generated PA conditioned only on the report
(orange dashed box) draws relatively small-sized pleural effusion while the report says “large right
pleural effusion”. However, by adding an additional lateral view (blue dashed box), UniXGen can
properly generate the PA view with large pleural effusion.
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Figure 5: Generated radiology reports of UniXGen.

Figure 6: Generated radiology reports of UniXGen.
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A Generated Examples

Figures 7, and 8 show additional chest X-ray generation examples. Figures 9, and 10 show additional
radiology report generation examples.

Figure 7: Generated chest X-rays of UniXGen. The AP view generated only from the report (orange
dashed box) already reflects the facts described in the report quite well, capturing the wires and
the clips. With an additional lateral view, the AP view in the blue dashed box shows an increased
similarity with the original PA in terms of overall structure.

Figure 8: Generated chest X-rays of UniXGen. Although the PA view generated based only on the
report (orange dashed box) captures most of the facts in the report, it is missing the implanted device.
Given an additional lateral view, however, UniXGen can generate a PA view (blue dashed box) that
correctly draws the implanted device.
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Figure 9: Generated radiology reports of UniXGen

Figure 10: Generated radiology reports of UniXGen
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B Causal Attention Mechanism

Figure 11 shows a visual explanation of the causal attention mechanism.

Figure 11: Visualization of multimodal causal attention mask and its prefix-sum algorithm. Illustra-
tions inspired by [4]. This algorithm builds the prefix-sum of the outer-products of random feature
maps for keys K′ and value vectors V on the fly and left-multiplies it with the query random feature
vector Q′ to obtain the new row in the resulting matrix AV.
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C Details of the Fine-tuned Stable Diffusion

Following [1], we fine-tune Stable Diffusion [31] as a baseline model for chest X-ray generation.
Since the implementation code has not been released, we re-implement it with the descriptions
provided in the original paper.

The code is built on the diffusers library [35]. We load the stable diffusion pipeline from the Hugging
Face repository [38] (CompVis/stable-diffusion-v1-4).

To evaluate reproducibility, we use only PA views, limit the number of “No finding” reports, and
select only the Impression section. We train three different models: (a) train both U-Net and CLIP
[26], (b) train U-Net from scratch and freeze RadBERT [3], (c) train U-Net from scratch and freeze
SapBERT [20]. The models are trained for 1k steps with batch size of 256, learning rate of 5e-5. The
FID scores for each model are 23.534, 68.162, and 76.39, respectively. We measure the FID score
with chest X-ray pretrained DenseNet-121 [5] and P19 testset. Figure 12 shows our re-implementation
results.

For a fair comparison with our model, we fine-tune Stable Diffusion with multiple views and both
Findings and Impression sections. We replace the CLIP text encoder with SapBERT to handle both
Findings and Impression sections (the CLIP tokenizer is only limit to 77 tokens) and keep frozen
the text encoder and VAE and only train U-Net from scratch. The model is trained as the same
hyper-parameters with our model. We evaluate the generated chest X-rays every 1k steps and select
the best performance model. We try to make this model learn specific view information by prompting
the view position along with the report, but this model fails to learn the view position. Thus, we train
this model without the specific view information. Figure 13 shows the generated chest X-rays.

Figure 12: Re-implementation results of the fine-tuned Stable Diffusion as proposed in [1].

Figure 13: The generated chest X-rays of the fine-tuned Stable Diffusion with our dataset.
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