SPECRA: MONITOR DEGENERATIVE REPETITION IN LLM AGENTS USING RANDOMIZED FFT

Anonymous authors

Paper under double-blind review

ABSTRACT

LLM-based agents also suffer from "degenerative repetition" like chatbots, which leads to task failure and results in significant waste of computational resources and API costs until token limit is reached. Existing methods require modification of training process or customization of model deployment, and detection algorithms are brittle to approximate or structural recurrence. We therefore introduce SpecRA, a simple yet effective algorithm for detection of self-repetitions in text. Via a randomized projection from the large LLM vocabulary onto a unit-norm complex sequence, our method leverages the power of the Fast Fourier Transform (FFT) to compute the sequence's autocorrelation. Peaks in the autocorrelation function robustly reveal the underlying periodicity of the content, with tolerance to minor variations. Through an analysis of 813 repetitive samples identified from 1.13M records of anonymized agent outputs, we build a taxonomy of repetition modes in agents and show that SpecRA offers a lightweight, non-intrusive mechanism for constructing more reliable and cost-efficient LLM agents across both standard open-source model deployments and proprietary models.

1 Introduction

The promise of LLM-based agents to automate complex, multi-step tasks is transforming diverse fields, from deep research and software engineering to scientific discovery and gaming (Huang et al., 2025b; Jimenez et al., 2024; Chen et al., 2025; Hu et al., 2024). However, their practical deployment is constrained by degenerative repetition, where the model becomes trapped in a recursive loop, generating near-identical sequences repeatedly (Holtzman et al., 2019; Huang et al., 2025a).

This behavior not only leads to task failure but also incurs significant computational waste or API costs. The severity is amplified by the scale of modern agent deployments: a single long-running agent task may involve dozens to hundreds of model invocations, meaning that even a seemingly low failure rate of 1 in 10,000 can affect a substantial number of tasks at scale. Moreover, these failures can cascade, as users may repeatedly re-trigger a malfunctioning agent, inadvertently creating a denial-of-service-like scenario that degrades performance for all concurrent users.

Current approaches prove largely inadequate for addressing this challenge. Penalty-based methods can mitigate repetition but often compromise overall performance (Holtzman et al., 2019; Keskar et al., 2019) and frequently require custom model deployments that are impractical for many applications (Dong et al., 2025; Ginart et al., 2025).

Classical exact string matching techniques (such as n-grams and suffix trees) fail entirely when faced with minor variations, while edit-distance algorithms suffer from prohibitive polynomial runtime complexity, making them unsuitable for streaming applications where pattern lengths are unknown a priori.

We introduce **SpecRA**, a fast spectral detector for approximate repetition. Rather than analyzing the text directly, we recast the input sequence as a discrete signal of constant energy and exploit tools from signal processing. Each token is projected to a uniformly distributed random complex of unit magnitude, producing a sequence $S = \{s_1, \ldots, s_N\}$. The projection makes non-repetitive text behave like white noise, so peaks provide a robust, quantitative signal for periodicity. We then compute its autocorrelation of lag k via the Wiener-Khinchin theorem:

$$R(k) = \mathcal{F}^{-1}(|\mathcal{F}(S)|^2)[k],$$

where \mathcal{F} denotes the discrete Fourier transform. The procedure is streaming-friendly with overall $\mathcal{O}(N \log N)$ time.

Our contributions are: (1) An efficient approximate autorepetition detection algorithm; (2) Theoretical bounds on false positives and detection efficacy; (3) A taxonomy of repetition modes from 1.13M agent traces and practical guidance on setting the detection threshold.

2 RELATED WORK

 Degenerative repetition is a widespread issue affecting modern LLMs, including current frontier models. This phenomenon has been observed across diverse LLM-driven tasks such as code generation, translation, and dialogue (Dong et al., 2025; Wang et al., 2024; Xi et al., 2021). Prior research has analyzed its underlying causes and mechanisms, including exposure bias and likelihood-driven decoding that over-amplify frequent patterns, duplicated training data with skewed token frequencies, and high-inflow dynamics that trap the generation process in self-reinforcing attractors (Holtzman et al., 2019; Li et al., 2023; Fu et al., 2021; Mahaut & Franzon, 2025).

The most common approach involves applying penalties during the decoding process to discourage repetitive behavior. Frequency and presence penalties, popularized by OpenAI-compatible APIs, penalize tokens that have already appeared in the context window, while repetition penalty (Keskar et al., 2019) suppresses the generation of duplicate n-grams. However, their effectiveness is highly sensitive to hyperparameter tuning, and overly aggressive penalties can degrade output quality and coherence.

More advanced decoding techniques such as contrastive search (Su et al., 2022; Sen et al., 2025), information-theoretic penalties (Ginart et al., 2025), and grammar-aware penalties (Dong et al., 2025) have been proposed to further reduce repetition rates. Nevertheless, these methods remain less widely adopted, as they are not supported by many LLM inference providers or require custom model deployments. Alternative approaches such as model editing (Wang et al., 2024) target the problem at the model level but require significant computational effort and specialized expertise, making them impractical for most agent developers.

An alternative paradigm focuses on post-hoc detection rather than prevention during generation. Classical exact-match detection approaches include n-gram overlap and suffix trees, but these fail entirely when faced with minor lexical variations. While edit-distance methods (Landau et al., 1998) can tolerate some variations, they suffer from quadratic or higher complexity that becomes prohibitive for streaming applications processing long sequences. Specialized periodicity detection algorithms (Kolpakov & Kucherov, 1999; Main & Lorentz, 1984) achieve linear $\mathcal{O}(N)$ runtime but are designed specifically for exact repetitions and require computationally expensive extensions to handle approximate matching scenarios typical in LLM outputs.

Methods from bioinformatics offer alternative approaches to repetition detection (Kurtz et al., 2001). K-mer based techniques, widely used in genomic sequence analysis, suffer from combinatorial explosion when applied to LLM vocabularies due to their much larger alphabet size compared to the 4-nucleotide DNA alphabet. More promisingly, Fourier transforms have been successfully used in bioinformatics for detecting tandem repeats (Silverman & Linsker, 1986) by mapping nucleotides to complex symbols. SpecRA adapts this insight to LLM token vocabularies with randomized projection, achieving $\mathcal{O}(N\log N)$ complexity while maintaining robustness to lexical variation.

3 Problem Definition

Task intuition. Given a live token stream from an LLM agent, we want to raise an alarm as soon as the agent falls into a "loop", namely, when its output becomes approximately periodic after allowing up to εN mismatches per period.

While the excerpt below appears to show perfect repetition at first glance, the "P_P" sequence in the middle disrupts the otherwise regular pattern. This exemplifies *approximate periodicity*, which we formally define below.

Excerpt from Gemini-2.5-Pro-0605 using temperature of 0.3

Data model. Let V be a finite vocabulary and $\mathbf{x} = (x_1, x_2, \dots), x_t \in V$, the potentially unbounded sequence of tokens emitted by an LLM agent. At time t the first t tokens are observable; future tokens are not.

Approximate periodicity. Fix an integer period length $p \ge 2$ and an error budget $\varepsilon \in [0, 1)$. Given an index s and positive integer K, denote by

$$B_j(s,p) = (x_{s+(j-1)p+1}, \dots, x_{s+jp}), \quad j = 1, \dots, K,$$

the j-th contiguous block of length p. We say the window $\mathbf{x}_{s:s+Kp-1}$ is (ε,p) -approximately K-periodic if there exists a reference block $U \in V^p$ such that

$$\frac{1}{p}d(B_j(s,p),U) \le \varepsilon$$
, for every $j=1,\ldots,K$,

where $d(\cdot, \cdot)$ is a token-level distance (e.g. Hamming distance or edit distance). In words, each block differs from the reference pattern in at most an ε fraction of its positions.

Remark: For theoretical clarity, we assume fixed-length period blocks in our analysis. Extensions to handle variable-length blocks due to insertions and deletions are discussed in Section 7.

Definition 1 (Degenerative-repetition event). A stream \mathbf{x} enters degenerative repetition at time t_0 if there exist $p \in [P_{\min}, P_{\max}]$, $K \geq K_{\min}$, and $\varepsilon \leq \varepsilon_{\max}$ such that $\mathbf{x}_{t_0:t_0+Kp-1}$ is (ε, p) -approximately K-periodic according to the criteria above.

Online detection task. At each time t the detector outputs a Boolean alarm $A_t \in \{0, 1\}$. A correct detector should satisfy two properties for given false-alarm probability δ and detection delay D:

- (i) (Low false positives) For any stream that never satisfies Definition 1, $\Pr[A_t=1] \leq \delta$ for all t
- (ii) (**Timely detection**) If a degenerative repetition event starts at t_0 , then with probability at least 1δ the detector raises an alarm no later than $t_0 + D$, i.e. $\exists t \le t_0 + D$ with $A_t = 1$.

Streaming constraints. We adopt the standard RAM streaming model:

- **Per-token time** must be sub-linear in the window size; our target is $\mathcal{O}(\log W)$ amortized per token, achieved via FFT.
- **Memory** is $\mathcal{O}(W)$, where W is the largest sliding-window length the detector inspects.

Objective. Design an algorithm that, for user-specified $(\varepsilon_{\text{max}}, p_{\text{min}}, p_{\text{max}}, K_{\text{min}}, \delta, D, W)$, meets the guarantees above while respecting the streaming constraints.

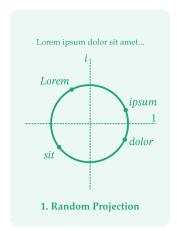
The subsequent sections show that SpecRA meets these requirements with $\mathcal{O}(W \log W)$ preprocessing per window and $\mathcal{O}(\log W)$ time per arriving token.

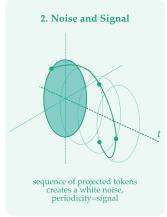
4 METHODOLOGY

Overview. SpecRA transforms the discrete token detection problem into a continuous signal processing task through three key stages: (i) **randomized projection** maps each token to a unit-magnitude complex number, converting the discrete vocabulary into a continuous signal while preserving repetition structure; (ii) **spectral analysis** computes the autocorrelation function via

FFT, efficiently identifying periodic patterns across multiple candidate periods; and (iii) **statistical detection** compares the maximum autocorrelation peak against a threshold derived from theoretical false-positive bounds.

The core insight is that repetitive text exhibits strong autocorrelation peaks at the repetition period, while non-repetitive text behaves like white noise with near-zero autocorrelation. The randomized projection ensures robustness to minor variations (e.g., number increments, minor spelling changes) that would confound exact string matching approaches.





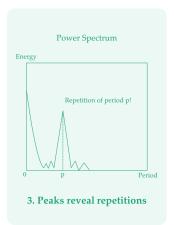


Figure 1: SpecRA workflow diagram showing the complete pipeline from token stream input to periodicity detection output.

Randomized Token Projection. Let V be the model's vocabulary of size |V|. For each token $v \in V$, we draw an independent random phase $\theta_v \sim \mathcal{U}[0,2\pi)$ and define the projection function $\phi: v \mapsto e^{i\theta_v}$. This maps each token to a point on the unit circle in the complex plane, ensuring constant signal energy $|\phi(v)| = 1$ regardless of token identity.

Given a token stream (x_1, x_2, \dots) , we obtain the complex sequence $S = (s_1, s_2, \dots)$ where $s_t = \phi(x_t)$. The key property is that identical tokens always map to the same complex number, preserving exact repetition structure, while different tokens map to (nearly) orthogonal directions. This design makes the detector robust to lexical variations: swapping "large" with "big" changes the complex representation but preserves the overall periodic structure if the substitution occurs consistently across repetitions.

Spectral Autocorrelation. We apply the Wiener-Khinchin theorem to compute the autocorrelation efficiently via FFT. For a sliding window of length W, the circular autocorrelation at lag k is:

$$R_k = \mathcal{F}^{-1}(|\mathcal{F}(S)|^2)[k] = \sum_{t=1}^W s_t s_{t-k}^*,$$

where $\mathcal F$ denotes the discrete Fourier transform and s_{t-k}^* is the complex conjugate with indices taken modulo W.

The power spectrum $|\mathcal{F}(S)|^2$ captures the frequency content of the signal, and its inverse FFT yields the autocorrelation across all lags simultaneously. For repetitive sequences with period P, the autocorrelation R_P exhibits a large magnitude because many terms $s_t s_{t-P}^*$ align constructively. For non-repetitive sequences, these terms behave like independent random rotations, resulting in near-zero autocorrelation due to destructive interference.

Repetition Score. To detect repetitive patterns, we focus on the real part of the autocorrelation, which captures the alignment between tokens at different lags. Let P_{\min} and P_{\max} define the range of plausible periods (e.g., 2 to 256 tokens). We compute the normalized repetition score:

$$S_{\text{rep}} = \max_{l=P_{\min}}^{P_{\max}} \frac{\Re(R_l)}{\Re(R_0)}$$

217

218

219

220

221

222

223224

225

226

227

228

229

230

231

232

233

235

236

237238239240

241

242

243244245

246

247

249

250 251

252253

254

255

256

257258

259

260261

262263

264265266

267

268

269

The denominator $\Re(R_0)=W$ normalizes by the total signal energy, ensuring the score is invariant to window size. The numerator $\Re(R_l)$ measures how well the sequence aligns with itself when shifted by l positions. For perfect repetition with period P, we have $S_{\text{rep}}\approx 1$, while for random sequences, $S_{\text{rep}}\approx 0$.

We trigger a repetition alarm when $S_{\rm rep} > \tau$ for some threshold $\tau \in (0,1)$. The period range $[P_{\rm min}, P_{\rm max}]$ excludes trivial cases: periods smaller than $P_{\rm min} = 2$ are not meaningful, while periods larger than $P_{\rm max}$ would require prohibitively long sequences to establish reliable patterns.

Algorithm 1: SPECRA-BATCH: Batch processing with FFT

```
Input: token stream (x_1, x_2, ...), window size W, period range [P_{\min}, P_{\max}], threshold \tau,
            batch size B (e.g., B = W)
Output: alarm bit A_t every B timesteps
Offline: draw phases \theta_v \sim \mathcal{U}[0, 2\pi) and set \phi(v) = e^{i\theta_v};
Initialize: batch buffer \mathcal{B} of size B;
Online:
for t \leftarrow 1, 2, \dots do
      s_t \leftarrow \phi(x_t);
      append s_t to \mathcal{B};
      if |\mathcal{B}| = B or end-of-stream then
            F \leftarrow \mathcal{F}(\mathcal{B});
            R \leftarrow \mathcal{F}^{-1}(|F|^2);
           S_{\text{rep}} \leftarrow \max_{l=P_{\min}}^{P_{\max}} \frac{\Re(R_l)}{\Re(R_0)};
A_{\text{batch}} \leftarrow \mathbf{1}\{S_{\text{rep}} > \tau\};
            clear \mathcal{B};
      end
end
```

Computational Complexity. Initializing one window costs $\mathcal{O}(W \log W)$. Afterwards each batch has a complexity of $\mathcal{O}(W \log W)$ and can be amortized to $\mathcal{O}(logW)$ per token when processed in batches, meeting the streaming constraints of Section 3.

5 EFFECTIVENESS ANALYSIS

5.1 Behavior under the null hypothesis

Under a non-repetitive stream, the projected tokens $s_t = e^{i\theta_t}$, with $\theta_t \sim \mathcal{U}[0,2\pi)$, form i.i.d. isotropic noise. For any non-zero lag $l \neq 0$, the real part of the circular autocorrelation, $\Re(R_l) = \sum_{t=1}^W \Re(s_t s_{t-l}^*)$, is a sum of W i.i.d. random variables. Each term $\Re(s_t s_{t-l}^*) = \cos(\theta_t - \theta_{t-l})$ is a random variable bounded in [-1,1] with zero mean.

By applying Hoeffding's inequality to this sum, we can bound the probability of observing a large repetition score purely by chance. Let $M=P_{\rm max}-P_{\rm min}+1$ be the number of candidate periods. A union bound over these periods yields:

Lemma 1 (False-positive bound). For any threshold $\tau > 0$, $\Pr_{\text{null}}[S_{rep} > \tau] \leq M \cdot \exp\left(-\frac{W\tau^2}{2}\right)$.

Choosing $\tau_* = \sqrt{\frac{2}{W} \log(M/\delta)}$ guarantees a false-alarm rate no greater than δ .

Proof. Under the null hypothesis, the projected tokens $s_t = e^{i\theta_t}$ are i.i.d. with phases θ_t uniformly distributed in $[0,2\pi)$. For any non-zero lag l, the term $s_t s_{t-l}^* = e^{i(\theta_t - \theta_{t-l})}$ is a random rotation. Let $Y_t = \Re(s_t s_{t-l}^*) = \cos(\theta_t - \theta_{t-l})$. Since θ_t and θ_{t-l} are independent and uniformly distributed, their difference modulo 2π is also uniform in $[0,2\pi)$.

The variables $\{Y_t\}_{t=1}^W$ are thus i.i.d. with $\mathbb{E}[Y_t] = \frac{1}{2\pi} \int_0^{2\pi} \cos(u) du = 0$ and are bounded in the interval [-1,1].

The real part of the autocorrelation is $\Re(R_l) = \sum_{t=1}^W Y_t$. The repetition score for this lag is $\frac{\Re(R_l)}{R_0} = \frac{1}{W} \sum_{t=1}^W Y_t$, since $R_0 = W$. We want to bound the probability of the event $\{\frac{\Re(R_l)}{W} > \tau\}$, which is equivalent to $\{\sum_{t=1}^W Y_t > W\tau\}$.

We apply Hoeffding's inequality. For a sum $S_W = \sum Y_t$ of W independent random variables where $Y_t \in [a_t,b_t]$, the inequality states $\Pr[S_W - \mathbb{E}[S_W] \ge \epsilon] \le \exp(-\frac{2\epsilon^2}{\sum (b_t-a_t)^2})$. Here, $\mathbb{E}[S_W] = 0$, $\epsilon = W\tau$, $a_t = -1$, and $b_t = 1$, so $b_t - a_t = 2$. For a single lag, we have:

$$\Pr\left[\frac{\Re(R_l)}{W} > \tau\right] \le \exp\left(-\frac{2(W\tau)^2}{\sum_{t=1}^{W}(1-(-1))^2}\right) = \exp\left(-\frac{2W^2\tau^2}{4W}\right) = \exp\left(-\frac{W\tau^2}{2}\right).$$

The score S_{rep} is the maximum over $M = P_{\text{max}} - P_{\text{min}} + 1$ candidate lags. Applying the union bound gives the final result:

$$\Pr_{\mathsf{null}} \left[S_{\mathsf{rep}} > au
ight] \ \leq \ \sum_{l=P-1}^{P_{\max}} \ \Pr \left[rac{\Re(R_l)}{W} > au
ight] \ \leq \ M \cdot \exp \left(-rac{W au^2}{2}
ight),$$

proving the claim.

5.2 Power under ε -mismatch approximate periodicity

Assume a true period P. For each position t, with probability $1 - \varepsilon$ we have an exact repeat $x_t = x_{t-P}$; with probability ε a mismatch occurs where x_t is independent of x_{t-P} (and independent across t). Under the fixed random projection ϕ above, define $X_t = \Re(s_t s_{t-P}^*) \in [-1, 1]$.

When $x_t = x_{t-P}$, $X_t = 1$; when a mismatch occurs, s_t and s_{t-P} are independent unit phases so $\mathbb{E}[X_t] = 0$. Therefore

$$\mathbb{E}[X_t] = (1 - \varepsilon) \cdot 1 + \varepsilon \cdot 0 = 1 - \varepsilon, \quad \mathbb{E}[\Re(R_P)] = \sum_{t=1}^W \mathbb{E}[X_t] = W(1 - \varepsilon).$$

Since $R_0 = W$, the normalized score for the true period is $\frac{\Re(R_P)}{R_0} = \frac{1}{W} \sum_{t=1}^W X_t$ with mean $1 - \varepsilon$.

Theorem 1 (Exponential bound under ε -mismatch). If $0 < \tau < 1 - \varepsilon$ and mismatches occur independently across t, then

$$\Pr[S_{rep} \le \tau] \le \exp\left(-\frac{W(1-\varepsilon-\tau)^2}{2}\right).$$

Proof. Set $S_W = \sum_{t=1}^W X_t$ and $\mu' = \mathbb{E}[S_W] = W(1-\varepsilon)$. Each $X_t \in [-1,1]$ and, by assumption, the $\{X_t\}$ are independent. The miss event $\{S_{\text{rep}} \leq \tau\}$ implies $\Re(R_P) \leq \tau W$, i.e., $S_W - \mu' \leq -(\mu' - \tau W)$. Hoeffding's inequality yields

$$\Pr[S_W - \mu' \le -(\mu' - \tau W)] \le \exp\left(-\frac{(\mu' - \tau W)^2}{2W}\right) = \exp\left(-\frac{W(1 - \varepsilon - \tau)^2}{2}\right).$$

6 Empirical Analysis

6.1 ROBUSTNESS AGAINST SYNTHETIC NOISE

Theoretical analysis in Section 5 suggests that SpecRA can resist minor substitutions, while the effect of different noise levels and robustness against insertions and deletions remain to be investigated. We empirically validate this by generating synthetic sequences and evaluating the repetition scores.

To isolate the effect of perturbations we generate synthetic sequences in the form $T = \underbrace{(P \parallel P \parallel \ldots \parallel P)}_{L/p \text{ copies}} \oplus \mathcal{N}(\varepsilon)$, where P is a base pattern of length p drawn uniformly at random

from a vocabulary of size V=32768, L=1024 is the total window length, and $\mathcal{N}(\varepsilon)$ applies one of substitution, deletion and insertion at rate $\varepsilon \in [0,0.2]$. We tested $p \in \{4,16,64\}$ and report the median repetition score S_{rep} over 10^4 Monte-Carlo trials per setting.

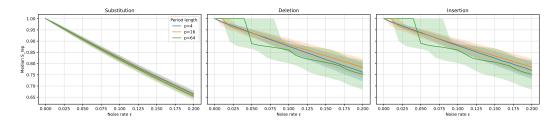


Figure 2: Median repetition score S_{rep} as a function of noise rate ε . Shaded bands denote the inter-quartile range. Insertions and deletions apply to the same randomly chosen anchor index within each period copy to simulate structural repetitions that LLMs produce.

For substitution noise, curves for different p almost overlap and S_{rep} decays almost linearly with ε for all p, confirming its insensitivity to noise level and the underlying period length under substitutions. SpecRA also tolerates indels on short patterns, as long as major structure is preserved.

6.2 REPETITION FEATURES IN REAL-WORLD DATA

To properly set the detection threshold for SpecRA, we need to first understand the distribution of the repetition score $S_{\rm rep}$ in real-world data. We sampled 153,060 passages from Wikipedia (89,359 passages in English and 63,701 passages in Chinese) (Foundation, 2023), 208,414 code snippets from GitHub Code (CodeParrot, 2022), and collected repetition scores from 1,133,797 rounds of LLM outputs from a general-purpose agent working on tasks spanning different domains. The $S_{\rm rep}$ distribution is shown in Figure 3.

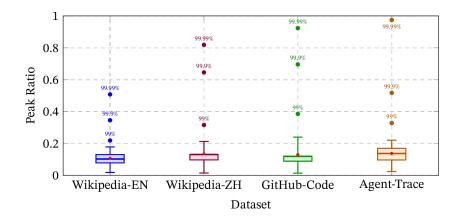


Figure 3: Repetition score distribution comparison across Wikipedia-EN, GitHub-Code, and Agent-Trace datasets. Red dots indicate mean values.

Industrial deployments that run the detector on all text streams (e.g., logging, analytics) typically demand far stricter guarantees: FPR $< 10^{-3}$ or even $< 10^{-4}$. Empirically the GitHub-Code corpus dominates the upper tail, with the 99.9th and 99.99th percentiles located at $\tau_{99.9}=0.69$ and $\tau_{99.99}=0.92$, respectively. We therefore recommend the following tiers:

- Balanced: $\tau = 0.69$ for general applications
- Safe: $\tau = 0.92$ for coding agents

Users with custom vocabularies or window sizes can re-estimate the quantile with a single offline scan and plug them into the same decision rule.

6.3 AGENT REPETITION TAXONOMY

SpecRA flagged 813 suspicious repetition samples out of 1,133,797 agent traces (0.071%), using a threshold of $\tau=0.69$. We excluded 264 samples that were too short to classify reliably, likely due to incomplete generation from network errors or early termination by LLM safety filters. The remaining 549 samples were classified into four distinct repetition categories:

Structural repetition. Systematic iteration over semantically related content patterns, where agents generate sequences of structurally similar elements with incremental variation. Examples include enumeration of chemical elements in periodic table order, systematic generation of numbered function definitions, and iterative construction of similar data structures. This pattern reflects the model's attempt to complete structured tasks through template-based generation.

Syntactic degradation. Purely syntactic repetition without semantic coherence, where models generate identical token sequences or character patterns with no underlying logical structure. This includes infinite repetition of single characters, alphabetical and numerical sequences (e.g., ",3,3,3..."), representing complete semantic breakdown in the generation process.

Binary data generation. A notable repetition pattern observed in agents attempting to emit binary data (105 / 549; 19.1%), manifesting in three distinct sub-patterns: (1) Multimedia encoding loops: cyclical repetition of base64-encoded character sequences representing multimedia content (images, audio, video files) or structured documents; (2) URI malformation cycles: iterative generation of malformed data URIs or embedded content for visualization services (e.g., mermaid.ink, plantuml.com), often producing corrupted markup with repeated URI fragments; and (3) Direct binary emission: direct attempts to emit binary file headers and control characters (e.g., ZIP/Office file magic numbers "PK", PNG signatures), interspersed with repeated \uFFFE patterns.

Legitimate repetition. Cases where structurally necessary repetition is misclassified as degenerative, including large-scale data serialization (JSON arrays, CSV records), ASCII art containing repeated patterns, systematic progress tracking with templated status reports, and algorithmic output requiring repetitive formatting patterns that serve a functional purpose.

These categories constitute 46.26%, 21.68%, 19.13%, 12.93% of the flagged cases, respectively.

Table 1: Breakdown of the 549 repetitive turns by error category.

Category	# samples	Share
Structural repetition Syntactic degradation	254 119	46.26% 21.68%
Binary total	105	19.13%
Multimedia encoding loops	55	10.02%
URI malformation cycles	31	5.65%
Binary header emission	19	3.47%
Legitimate repetition	71	12.93%
Total	549	100%

7 DISCUSSION

7.1 USAGE NOTE ON PRACTICAL DEPLOYMENT

For agent developers who rely on LLM API providers without access to inference infrastructure, original tokens may not be available. In such cases, SpecRA can still be effectively applied to character-level streams to detect repetitive failures. However, when applied to smaller vocabularies

- (e.g., ASCII-only streams), performance may degrade due to increased collision probability in the hash space.
- Phase values θ_v are sampled i.i.d. from a continuous distribution. A potential issue arises when two distinct tokens are assigned similar phases, causing mismatches to contribute $\cos(\Delta) \approx 1$ to the autocorrelation, mimicking matches.
- The risk depends on the interplay between random phase collisions and token co-occurrence statistics. Large vocabularies increase the number of potential collision pairs $\binom{|V|}{2}$, while small vocabularies concentrate statistical weight on fewer pairs. If frequently co-occurring tokens happen to receive similar phases, the distortion effect is amplified.
 - Our proposed mitigation using K independent projections is highly effective. For a mismatch to consistently distort the signal, it must be a near-collision across all K mappings—a vanishingly unlikely event that ensures detector reliability regardless of vocabulary size or input statistics.
 - Additionally, legitimate repetition may occasionally be misclassified as degenerative. In such cases, LLMs can serve as a secondary validation mechanism.

7.2 LIMITATIONS

While SpecRA demonstrates effectiveness in detecting repetitive failures, it has several inherent limitations. First, although SpecRA excels at identifying simple structural repetitions, it may struggle with more complex patterns that require deeper contextual understanding. For instance, it may fail to detect repetitive failures in code generation tasks that produce semantically similar code snippets with varying lengths, as the length variations introduce phase shifts across repetitive blocks (Dong et al., 2025).

Second, as discussed in Section 7.1, SpecRA's performance is sensitive to vocabulary size. Smaller vocabularies increase collision probability, potentially leading to performance degradation. While we have proposed mitigation strategies using multiple independent projections, their effectiveness requires further empirical evaluation.

8 CONCLUSION AND FUTURE WORK

We framed degenerative repetition in LLM agents as an approximate periodicity detection problem and introduced **SpecRA**, which combines randomized phase projection with FFT-based autocorrelation analysis. Our method achieves $\mathcal{O}(W\log W)$ processing complexity with $\mathcal{O}(\log W)$ amortized time per token, while providing provable bounds on both false-alarm and miss-detection probabilities. Extensive experiments across public corpora and real agent traces demonstrate that SpecRA offers a lightweight, non-intrusive solution for building more reliable and cost-efficient LLM agents.

Future work can extend this research in three immediate avenues: (1) Inference-time integration, by incorporating SpecRA scores as decoding penalties to steer models away from repetitive attractors; (2) Cross-modal generalization, by adapting the spectral approach to detect cyclic artifacts in vocoder waveforms, embedding streams, or tool-use trajectories; and (3) An enhanced signal-processing toolkit, exploring techniques like wavelet coherence or adaptive filtering to build a comprehensive suite of guards for trustworthy AI.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a reference Go implementation in Appendix C. Our experiments use synthetic data, generated as described in Section 6.1, and public corpora (Wikipedia, GitHub Code) detailed in Section 6.2. The full experimental setup and parameters are specified in Section 6.

REFERENCES

- Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan Ji, Hanjing Li, Mengkang Hu, Yimeng Zhang, Yihao Liang, Yuhang Zhou, Jiaqi Wang, Zhi Chen, and Wanxiang Che. Ai4research: A survey of artificial intelligence for scientific research, 2025. URL https://arxiv.org/abs/2507.01903.
- CodeParrot. Github code dataset. https://huggingface.co/datasets/codeparrot/github-code, 2022.
- Yihong Dong, Yuchen Liu, Xue Jiang, Zhi Jin, and Ge Li. Rethinking repetition problems of Ilms in code generation, 2025. URL https://arxiv.org/abs/2505.10402.
- Wikimedia Foundation. Wikimedia downloads. https://dumps.wikimedia.org, 2023.
- Zihao Fu, Wai Lam, Anthony Man-Cho So, and Bei Shi. A theoretical analysis of the repetition problem in text generation. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(14): 12848–12856, May 2021. doi: 10.1609/aaai.v35i14.17520. URL https://ojs.aaai.org/index.php/AAAI/article/view/17520.
- Antonio A. Ginart, Naveen Kodali, Jason Lee, Caiming Xiong, Silvio Savarese, and John R. Emmons. Lz penalty: An information-theoretic repetition penalty for autoregressive language models, 2025. URL https://arxiv.org/abs/2504.20131.
- Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. *arXiv preprint arXiv:1904.09751*, 2019. URL https://arxiv.org/abs/1904.09751.
- Sihao Hu, Tiansheng Huang, Gaowen Liu, Ramana Rao Kompella, Fatih Ilhan, Selim Furkan Tekin, Yichang Xu, Zachary Yahn, and Ling Liu. A survey on large language model-based game agents, 2024. URL https://arxiv.org/abs/2404.02039.
- Donghao Huang, Thanh-Son Nguyen, Fiona Liausvia, and Zhaoxia Wang. RAP: A metric for balancing repetition and performance in open-source large language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1479–1496, Albuquerque, New Mexico, April 2025a. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.69. URL https://aclanthology.org/2025.naacl-long.69/.
- Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Huichi Zhou, Meng Fang, Linyi Yang, Xiaoguang Li, Lifeng Shang, Songcen Xu, Jianye Hao, Kun Shao, and Jun Wang. Deep research agents: A systematic examination and roadmap, 2025b. URL https://arxiv.org/abs/2506.18096.
- Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL https://arxiv.org/abs/2310.06770.
- Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional transformer language model for controllable generation, 2019. URL https://arxiv.org/abs/1909.05858.
- Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear time. In *Proceedings of the 40th Annual Symposium on Foundations of Computer Science*, FOCS '99, pp. 596, USA, 1999. IEEE Computer Society. ISBN 0769504094.
- Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens Stoye, and Robert Giegerich. Reputer: the manifold applications of repeat analysis on a genomic scale. *Nucleic Acids Research*, 29(22):4633–4642, 11 2001. ISSN 0305-1048. doi: 10.1093/nar/29.22.4633. URL https://doi.org/10.1093/nar/29.22.4633.
- Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison. *SIAM Journal on Computing*, 27(2):557–582, 1998. doi: 10.1137/S0097539794264810. URL https://doi.org/10.1137/S0097539794264810.

- Huayang Li, Tian Lan, Zihao Fu, Deng Cai, Lemao Liu, Nigel Collier, Taro Watanabe, and Yixuan Su. Repetition in repetition out: Towards understanding neural text degeneration from the data perspective. ArXiv, abs/2310.10226, 2023. URL https://api.semanticscholar.org/ CorpusID: 264146506. Matéo Mahaut and Francesca Franzon. Repetitions are not all alike: distinct mechanisms sustain repetition in language models, 2025. URL https://arxiv.org/abs/2504.01100. Michael G Main and Richard J Lorentz. An o(n log n) algorithm for finding all repetitions in a string. Journal of Algorithms, 5(3):422-432, 1984. ISSN 0196-6774. doi: https://doi.org/ 10.1016/0196-6774(84)90021-X. URL https://www.sciencedirect.com/science/ article/pii/019667748490021X. Jaydip Sen, Rohit Pandey, and Hetvi Waghela. Context-enhanced contrastive search for improved
 - Ilm text generation, 2025. URL https://arxiv.org/abs/2504.21020.
 - B.D. Silverman and R. Linsker. A measure of dna periodicity. Journal of Theoretical Biology, 118(3):295-300, 1986. ISSN 0022-5193. doi: https://doi.org/10. 1016/S0022-5193(86)80060-1. URL https://www.sciencedirect.com/science/ article/pii/S0022519386800601.
 - Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive framework for neural text generation, 2022. URL https://arxiv.org/abs/2202.06417.
 - Weichuan Wang, Zhaoyi Li, Defu Lian, Chen Ma, Linqi Song, and Ying Wei. Mitigating the language mismatch and repetition issues in llm-based machine translation via model editing, 2024. URL https://arxiv.org/abs/2410.07054.
 - Yadong Xi, Jiashu Pu, and Xiaoxi Mao. Taming repetition in dialogue generation, 2021. URL https://arxiv.org/abs/2112.08657.

A PRIVACY AND ETHICS CONSIDERATIONS

Our analysis of agent logs was conducted under strict privacy safeguards and ethical guidelines. All LLM outputs were anonymized and de-identified prior to analysis, with access restricted exclusively to patterns flagged as anomalous by our detection algorithm. No personally identifiable information, proprietary content, or sensitive user-generated data was examined during the analysis process.

SpecRA provides inherent privacy advantages: it operates on statistical properties of token sequences rather than semantic content, enabling detection of repetitive failures without requiring persistent storage or detailed inspection of user data. This design preserves the confidentiality of user-agent interactions while delivering essential protection against computational waste and system instability. Furthermore, the randomized projection mechanism ensures that even if projection parameters were compromised, recovering original token sequences would remain impractical.

B USE OF LLMS

LLMs were utilized during various stages of this paper's development. Specifically, LLMs assisted with: (a) drafting portions of the methodology section and mathematical formulations, (b) language polishing and stylistic refinement, and (c) comprehensive proofreading. We acknowledge that [Anonymous frontier model] identified a critical flaw in our initial proof of Theorem 1, leading to its subsequent correction.

Additionally, LLMs were employed to classify and anonymize potentially suspicious cases prior to manual analysis. All automated labels were subsequently verified and validated by the authors to ensure accuracy and consistency.

C REFERENCE IMPLEMENTATION

This section provides a minimal Go implementation of the SpecRA algorithm. The code demonstrates the core spectral analysis pipeline described in Section 4, implementing offline batch processing suitable for research and prototyping.

```
624
      // Package specra provides a minimal implementation of the SpecRA detector
625
      // for approximate repetition detection in token sequences.
626
      package specra
627
      import (
628
           "math"
629
           "math/cmplx"
630
           "math/rand"
631
632
           // The Gonum library dependency can be replaced
           // with any FFT implementation supporting complex-valued transforms.
633
           "gonum.org/v1/gonum/dsp/fourier"
634
635
636
      // SpecRA detects approximate repetition in a token sequence
637
      // using spectral analysis.
      // Parameters:
638
           - rng: random number generator for phase assignment
639
           - s: input token sequence (as runes)
640
           - threshold: detection threshold for normalized repetition score
641
      // Returns:
          - repetition score: maximum normalized autocorrelation value
           - detected: true if repetition detected above threshold
643
      func SpecRA(rng *rand.Rand, s []rune, threshold float64) (float64, bool) {
644
           // Step 1: Random phase projection
645
          dict := make(map[rune]complex128)
646
           seq := make([]complex128, 0, len(s))
647
           for _, r := range s {
```

```
648
               if _, ok := dict[r]; !ok {
649
                    // Assign random unit-magnitude complex phase
                   theta := rng.Float64() * 2 * math.Pi
                   dict[r] = cmplx.Rect(1, theta)
651
652
               seq = append(seq, dict[r])
653
654
655
           // Step 2: FFT-based autocorrelation via Wiener-Khinchin theorem
656
           n := len(seq)
           coeffs := make([]complex128, n)
657
           fft := fourier.NewCmplxFFT(n)
658
659
           // Forward FFT: F = FFT(seq)
660
           fft.Coefficients(coeffs, seq)
661
           // Power spectrum: |F|^2
662
           power := make([]complex128, n)
663
           for i, c := range coeffs {
664
               power[i] = c * cmplx.Conj(c)
665
666
           // Inverse FFT: autocorr = IFFT(|F|^2)
667
           autocorr := make([]complex128, n)
668
           fft.Sequence(autocorr, power)
669
670
           // Step 3: Compute repetition score
           r0 := real(autocorr[0]) // Zero-lag autocorrelation (total energy)
671
672
           peak := -1.0
673
           for p := 1; p < n/2; p++ \{ // Search candidate periods \}
674
               if real(autocorr[p]) > peak {
675
                   peak = real(autocorr[p])
676
           }
677
678
           repetitionScore := peak / r0
679
           return repetitionScore, repetitionScore > threshold
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
```