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ABSTRACT

LLM-based agents also suffer from "degenerative repetition" like chatbots, which
leads to task failure and results in significant waste of computational resources and
API costs until token limit is reached. Existing methods require modification of
training process or customization of model deployment, and detection algorithms
are brittle to approximate or structural recurrence. We therefore introduce SpecRA,
a simple yet effective algorithm for detection of self-repetitions in text. Via a
randomized projection from the large LLM vocabulary onto a unit-norm complex
sequence, our method leverages the power of the Fast Fourier Transform (FFT)
to compute the sequence’s autocorrelation. Peaks in the autocorrelation function
robustly reveal the underlying periodicity of the content, with tolerance to minor
variations. Through an analysis of 813 repetitive samples identified from 1.13M
records of anonymized agent outputs, we build a taxonomy of repetition modes
in agents and show that SpecRA offers a lightweight, non-intrusive mechanism
for constructing more reliable and cost-efficient LLM agents across both standard
open-source model deployments and proprietary models.

1 INTRODUCTION

The promise of LLM-based agents to automate complex, multi-step tasks is transforming diverse
fields, from deep research and software engineering to scientific discovery and gaming (Huang et al.,
2025b; Jimenez et al., 2024; Chen et al., 2025; Hu et al., 2024). However, their practical deployment
is constrained by degenerative repetition, where the model becomes trapped in a recursive loop,
generating near-identical sequences repeatedly (Holtzman et al., 2019; Huang et al., 2025a).

This behavior not only leads to task failure but also incurs significant computational waste or API
costs. The severity is amplified by the scale of modern agent deployments: a single long-running
agent task may involve dozens to hundreds of model invocations, meaning that even a seemingly
low failure rate of 1 in 10,000 can affect a substantial number of tasks at scale. Moreover, these
failures can cascade, as users may repeatedly re-trigger a malfunctioning agent, inadvertently creating
a denial-of-service-like scenario that degrades performance for all concurrent users.

Current approaches prove largely inadequate for addressing this challenge. Penalty-based methods
can mitigate repetition but often compromise overall performance (Holtzman et al., 2019; Keskar et al.,
2019) and frequently require custom model deployments that are impractical for many applications
(Dong et al., 2025; Ginart et al., 2025).

Classical exact string matching techniques (such as n-grams and suffix trees) fail entirely when faced
with minor variations, while edit-distance algorithms suffer from prohibitive polynomial runtime
complexity, making them unsuitable for streaming applications where pattern lengths are unknown a
priori.

We introduce SpecRA, a fast spectral detector for approximate repetition. Rather than analyzing
the text directly, we recast the input sequence as a discrete signal of constant energy and exploit
tools from signal processing. Each token is projected to a uniformly distributed random complex
of unit magnitude, producing a sequence S = {s1, . . . , sN}. The projection makes non-repetitive
text behave like white noise, so peaks provide a robust, quantitative signal for periodicity. We then
compute its autocorrelation of lag k via the Wiener-Khinchin theorem:

R(k) = F−1
(
|F(S)|2

)
[k],
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where F denotes the discrete Fourier transform. The procedure is streaming-friendly with overall
O(N logN) time.

Our contributions are: (1) An efficient approximate autorepetition detection algorithm; (2) Theoretical
bounds on false positives and detection efficacy; (3) A taxonomy of repetition modes from 1.13M
agent traces and practical guidance on setting the detection threshold.

2 RELATED WORK

Degenerative repetition is a widespread issue affecting modern LLMs, including current frontier
models. This phenomenon has been observed across diverse LLM-driven tasks such as code genera-
tion, translation, and dialogue (Dong et al., 2025; Wang et al., 2024; Xi et al., 2021). Prior research
has analyzed its underlying causes and mechanisms, including exposure bias and likelihood-driven
decoding that over-amplify frequent patterns, duplicated training data with skewed token frequencies,
and high-inflow dynamics that trap the generation process in self-reinforcing attractors (Holtzman
et al., 2019; Li et al., 2023; Fu et al., 2021; Mahaut & Franzon, 2025).

The most common approach involves applying penalties during the decoding process to discourage
repetitive behavior. Frequency and presence penalties, popularized by OpenAI-compatible APIs,
penalize tokens that have already appeared in the context window, while repetition penalty (Keskar
et al., 2019) suppresses the generation of duplicate n-grams. However, their effectiveness is highly
sensitive to hyperparameter tuning, and overly aggressive penalties can degrade output quality and
coherence.

More advanced decoding techniques such as contrastive search (Su et al., 2022; Sen et al., 2025),
information-theoretic penalties (Ginart et al., 2025), and grammar-aware penalties (Dong et al., 2025)
have been proposed to further reduce repetition rates. Nevertheless, these methods remain less widely
adopted, as they are not supported by many LLM inference providers or require custom model
deployments. Alternative approaches such as model editing (Wang et al., 2024) target the problem at
the model level but require significant computational effort and specialized expertise, making them
impractical for most agent developers.

An alternative paradigm focuses on post-hoc detection rather than prevention during generation.
Classical exact-match detection approaches include n-gram overlap and suffix trees, but these fail
entirely when faced with minor lexical variations. While edit-distance methods (Landau et al.,
1998) can tolerate some variations, they suffer from quadratic or higher complexity that becomes
prohibitive for streaming applications processing long sequences. Specialized periodicity detection
algorithms (Kolpakov & Kucherov, 1999; Main & Lorentz, 1984) achieve linear O(N) runtime but
are designed specifically for exact repetitions and require computationally expensive extensions to
handle approximate matching scenarios typical in LLM outputs.

Methods from bioinformatics offer alternative approaches to repetition detection (Kurtz et al., 2001).
K-mer based techniques, widely used in genomic sequence analysis, suffer from combinatorial
explosion when applied to LLM vocabularies due to their much larger alphabet size compared to the
4-nucleotide DNA alphabet. More promisingly, Fourier transforms have been successfully used in
bioinformatics for detecting tandem repeats (Silverman & Linsker, 1986) by mapping nucleotides to
complex symbols. SpecRA adapts this insight to LLM token vocabularies with randomized projection,
achieving O(N logN) complexity while maintaining robustness to lexical variation.

3 PROBLEM DEFINITION

Task intuition. Given a live token stream from an LLM agent, we want to raise an alarm as soon as
the agent falls into a "loop", namely, when its output becomes approximately periodic after allowing
up to εN mismatches per period.

While the excerpt below appears to show perfect repetition at first glance, the "P_P" sequence in the
middle disrupts the otherwise regular pattern. This exemplifies approximate periodicity, which we
formally define below.
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Excerpt from Gemini-2.5-Pro-0605 using temperature of 0.3
...normal output writing a markdown table...
P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_
P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_P_S_P_S_P_S_P_S_P_S_P_S_P_
S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_
S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_

Data model. Let V be a finite vocabulary and x = (x1, x2, . . . ), xt ∈ V , the potentially unbounded
sequence of tokens emitted by an LLM agent. At time t the first t tokens are observable; future tokens
are not.

Approximate periodicity. Fix an integer period length p ≥ 2 and an error budget ε ∈ [0, 1). Given
an index s and positive integer K, denote by

Bj(s, p) = (xs+(j−1)p+1, . . . , xs+jp), j = 1, . . . ,K,

the j-th contiguous block of length p. We say the window xs:s+Kp−1 is (ε, p)-approximately
K-periodic if there exists a reference block U ∈ V p such that

1

p
d
(
Bj(s, p), U

)
≤ ε, for every j = 1, . . . ,K,

where d(·, ·) is a token-level distance (e.g. Hamming distance or edit distance). In words, each block
differs from the reference pattern in at most an ε fraction of its positions.

Remark: For theoretical clarity, we assume fixed-length period blocks in our analysis. Extensions to
handle variable-length blocks due to insertions and deletions are discussed in Section 7.

Definition 1 (Degenerative-repetition event). A stream x enters degenerative repetition at time
t0 if there exist p ∈ [Pmin, Pmax], K ≥ Kmin, and ε ≤ εmax such that xt0:t0+Kp−1 is (ε, p)-
approximately K-periodic according to the criteria above.

Online detection task. At each time t the detector outputs a Boolean alarm At ∈ {0, 1}. A correct
detector should satisfy two properties for given false-alarm probability δ and detection delay D:

(i) (Low false positives) For any stream that never satisfies Definition 1, Pr[At = 1] ≤ δ for
all t.

(ii) (Timely detection) If a degenerative repetition event starts at t0, then with probability at
least 1− δ the detector raises an alarm no later than t0 +D, i.e. ∃ t ≤ t0 +D with At = 1.

Streaming constraints. We adopt the standard RAM streaming model:

• Per-token time must be sub-linear in the window size; our target is O(logW ) amortized
per token, achieved via FFT.

• Memory is O(W ), where W is the largest sliding-window length the detector inspects.

Objective. Design an algorithm that, for user-specified (εmax, pmin, pmax,Kmin, δ,D,W ), meets
the guarantees above while respecting the streaming constraints.

The subsequent sections show that SpecRA meets these requirements withO(W logW ) preprocessing
per window and O(logW ) time per arriving token.

4 METHODOLOGY

Overview. SpecRA transforms the discrete token detection problem into a continuous signal
processing task through three key stages: (i) randomized projection maps each token to a unit-
magnitude complex number, converting the discrete vocabulary into a continuous signal while
preserving repetition structure; (ii) spectral analysis computes the autocorrelation function via

3
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FFT, efficiently identifying periodic patterns across multiple candidate periods; and (iii) statistical
detection compares the maximum autocorrelation peak against a threshold derived from theoretical
false-positive bounds.

The core insight is that repetitive text exhibits strong autocorrelation peaks at the repetition period,
while non-repetitive text behaves like white noise with near-zero autocorrelation. The randomized
projection ensures robustness to minor variations (e.g., number increments, minor spelling changes)
that would confound exact string matching approaches.

Figure 1: SpecRA workflow diagram showing the complete pipeline from token stream input to
periodicity detection output.

Randomized Token Projection. Let V be the model’s vocabulary of size |V |. For each token
v ∈ V , we draw an independent random phase θv ∼ U [0, 2π) and define the projection function
ϕ : v 7→ eiθv . This maps each token to a point on the unit circle in the complex plane, ensuring
constant signal energy |ϕ(v)| = 1 regardless of token identity.

Given a token stream (x1, x2, . . . ), we obtain the complex sequence S = (s1, s2, . . . ) where st =
ϕ(xt). The key property is that identical tokens always map to the same complex number, preserving
exact repetition structure, while different tokens map to (nearly) orthogonal directions. This design
makes the detector robust to lexical variations: swapping "large" with "big" changes the complex
representation but preserves the overall periodic structure if the substitution occurs consistently across
repetitions.

Spectral Autocorrelation. We apply the Wiener-Khinchin theorem to compute the autocorrelation
efficiently via FFT. For a sliding window of length W , the circular autocorrelation at lag k is:

Rk = F−1
(
|F(S)|2

)
[k] =

W∑
t=1

sts
∗
t−k,

where F denotes the discrete Fourier transform and s∗t−k is the complex conjugate with indices taken
modulo W .

The power spectrum |F(S)|2 captures the frequency content of the signal, and its inverse FFT
yields the autocorrelation across all lags simultaneously. For repetitive sequences with period P ,
the autocorrelation RP exhibits a large magnitude because many terms sts∗t−P align constructively.
For non-repetitive sequences, these terms behave like independent random rotations, resulting in
near-zero autocorrelation due to destructive interference.

Repetition Score. To detect repetitive patterns, we focus on the real part of the autocorrelation,
which captures the alignment between tokens at different lags. Let Pmin and Pmax define the range
of plausible periods (e.g., 2 to 256 tokens). We compute the normalized repetition score:

Srep =
Pmax
max
l=Pmin

ℜ(Rl)

ℜ(R0)

4
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The denominator ℜ(R0) = W normalizes by the total signal energy, ensuring the score is invariant
to window size. The numerator ℜ(Rl) measures how well the sequence aligns with itself when
shifted by l positions. For perfect repetition with period P , we have Srep ≈ 1, while for random
sequences, Srep ≈ 0.

We trigger a repetition alarm when Srep > τ for some threshold τ ∈ (0, 1). The period range
[Pmin, Pmax] excludes trivial cases: periods smaller than Pmin = 2 are not meaningful, while periods
larger than Pmax would require prohibitively long sequences to establish reliable patterns.

Algorithm 1: SPECRA-BATCH: Batch processing with FFT
Input: token stream (x1, x2, . . . ), window size W , period range [Pmin, Pmax], threshold τ ,

batch size B (e.g., B = W )
Output: alarm bit At every B timesteps
Offline: draw phases θv ∼ U [0, 2π) and set ϕ(v) = eiθv ;
Initialize: batch buffer B of size B;
Online:
for t← 1, 2, . . . do

st ← ϕ(xt);
append st to B;
if |B| = B or end-of-stream then

F ← F(B);
R← F−1(|F |2);
Srep ← maxPmax

l=Pmin

ℜ(Rl)
ℜ(R0)

;
Abatch ← 1{Srep > τ};
emit Abatch;
clear B;

end
end

Computational Complexity. Initializing one window costs O(W logW ). Afterwards each batch
has a complexity of O(W logW ) and can be amortized to O(logW ) per token when processed in
batches, meeting the streaming constraints of Section 3.

5 EFFECTIVENESS ANALYSIS

5.1 BEHAVIOR UNDER THE NULL HYPOTHESIS

Under a non-repetitive stream, the projected tokens st = eiθt , with θt ∼ U [0, 2π), form i.i.d.
isotropic noise. For any non-zero lag l ̸= 0, the real part of the circular autocorrelation, ℜ(Rl) =∑W

t=1ℜ(sts∗t−l), is a sum of W i.i.d. random variables. Each term ℜ(sts∗t−l) = cos(θt − θt−l) is a
random variable bounded in [−1, 1] with zero mean.

By applying Hoeffding’s inequality to this sum, we can bound the probability of observing a large
repetition score purely by chance. Let M = Pmax −Pmin +1 be the number of candidate periods. A
union bound over these periods yields:

Lemma 1 (False-positive bound). For any threshold τ > 0, Prnull
[
Srep > τ

]
≤ M · exp

(
−Wτ2

2

)
.

Choosing τ∗ =
√

2
W log(M/δ) guarantees a false-alarm rate no greater than δ.

Proof. Under the null hypothesis, the projected tokens st = eiθt are i.i.d. with phases θt uniformly
distributed in [0, 2π). For any non-zero lag l, the term sts

∗
t−l = ei(θt−θt−l) is a random rotation. Let

Yt = ℜ(sts∗t−l) = cos(θt− θt−l). Since θt and θt−l are independent and uniformly distributed, their
difference modulo 2π is also uniform in [0, 2π).

5
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The variables {Yt}Wt=1 are thus i.i.d. with E[Yt] =
1
2π

∫ 2π

0
cos(u)du = 0 and are bounded in the

interval [−1, 1].

The real part of the autocorrelation is ℜ(Rl) =
∑W

t=1 Yt. The repetition score for this lag is
ℜ(Rl)
R0

= 1
W

∑W
t=1 Yt, since R0 = W . We want to bound the probability of the event {ℜ(Rl)

W > τ},
which is equivalent to {

∑W
t=1 Yt > Wτ}.

We apply Hoeffding’s inequality. For a sum SW =
∑

Yt of W independent random variables where
Yt ∈ [at, bt], the inequality states Pr[SW − E[SW ] ≥ ϵ] ≤ exp(− 2ϵ2∑

(bt−at)2
). Here, E[SW ] = 0,

ϵ = Wτ , at = −1, and bt = 1, so bt − at = 2. For a single lag, we have:

Pr
[ℜ(Rl)

W
> τ

]
≤ exp

(
− 2(Wτ)2∑W

t=1(1− (−1))2

)
= exp

(
−2W 2τ2

4W

)
= exp

(
−Wτ2

2

)
.

The score Srep is the maximum over M = Pmax − Pmin + 1 candidate lags. Applying the union
bound gives the final result:

Prnull
[
Srep > τ

]
≤

Pmax∑
l=Pmin

Pr
[ℜ(Rl)

W
> τ

]
≤ M · exp

(
−Wτ2

2

)
,

proving the claim.

5.2 POWER UNDER ε-MISMATCH APPROXIMATE PERIODICITY

Assume a true period P . For each position t, with probability 1 − ε we have an exact repeat
xt = xt−P ; with probability ε a mismatch occurs where xt is independent of xt−P (and independent
across t). Under the fixed random projection ϕ above, define Xt = ℜ(sts∗t−P ) ∈ [−1, 1].
When xt = xt−P , Xt = 1; when a mismatch occurs, st and st−P are independent unit phases so
E[Xt] = 0. Therefore

E[Xt] = (1− ε) · 1 + ε · 0 = 1− ε, E[ℜ(RP )] =

W∑
t=1

E[Xt] = W (1− ε).

Since R0 = W , the normalized score for the true period is ℜ(RP )
R0

= 1
W

∑W
t=1 Xt with mean 1− ε.

Theorem 1 (Exponential bound under ε-mismatch). If 0 < τ < 1 − ε and mismatches occur
independently across t, then

Pr
[
Srep ≤ τ

]
≤ exp

(
−W (1− ε− τ)2

2

)
.

Proof. Set SW =
∑W

t=1 Xt and µ′ = E[SW ] = W (1− ε). Each Xt ∈ [−1, 1] and, by assumption,
the {Xt} are independent. The miss event {Srep ≤ τ} implies ℜ(RP ) ≤ τW , i.e., SW − µ′ ≤
−(µ′ − τW ). Hoeffding’s inequality yields

Pr
[
SW − µ′ ≤ −(µ′ − τW )

]
≤ exp

(
− (µ′ − τW )2

2W

)
= exp

(
−W (1− ε− τ)2

2

)
.

6 EMPIRICAL ANALYSIS

6.1 ROBUSTNESS AGAINST SYNTHETIC NOISE

Theoretical analysis in Section 5 suggests that SpecRA can resist minor substitutions, while the effect
of different noise levels and robustness against insertions and deletions remain to be investigated. We
empirically validate this by generating synthetic sequences and evaluating the repetition scores.

6
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To isolate the effect of perturbations we generate synthetic sequences in the form T =(
P ∥P ∥ . . . ∥P︸ ︷︷ ︸

L/p copies

)
⊕ N (ε), where P is a base pattern of length p drawn uniformly at random

from a vocabulary of size V = 32768, L = 1024 is the total window length, andN (ε) applies one of
substitution, deletion and insertion at rate ε∈ [0, 0.2]. We tested p∈{4, 16, 64} and report the median
repetition score Srep over 104 Monte-Carlo trials per setting.
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Figure 2: Median repetition score Srep as a function of noise rate ε. Shaded bands denote the
inter-quartile range. Insertions and deletions apply to the same randomly chosen anchor index within
each period copy to simulate structural repetitions that LLMs produce.

For substitution noise, curves for different p almost overlap and Srep decays almost linearly with ε for
all p, confirming its insensitivity to noise level and the underlying period length under substitutions.
SpecRA also tolerates indels on short patterns, as long as major structure is preserved.

6.2 REPETITION FEATURES IN REAL-WORLD DATA

To properly set the detection threshold for SpecRA, we need to first understand the distribution of
the repetition score Srep in real-world data. We sampled 153,060 passages from Wikipedia (89,359
passages in English and 63,701 passages in Chinese) (Foundation, 2023), 208,414 code snippets
from GitHub Code (CodeParrot, 2022), and collected repetition scores from 1,133,797 rounds of
LLM outputs from a general-purpose agent working on tasks spanning different domains. The Srep
distribution is shown in Figure 3.

Figure 3: Repetition score distribution comparison across Wikipedia-EN, GitHub-Code, and Agent-
Trace datasets. Red dots indicate mean values.

Industrial deployments that run the detector on all text streams (e.g., logging, analytics) typically
demand far stricter guarantees: FPR < 10−3 or even < 10−4. Empirically the GitHub-Code
corpus dominates the upper tail, with the 99.9th and 99.99th percentiles located at τ99.9 = 0.69 and
τ99.99 = 0.92, respectively. We therefore recommend the following tiers:

• Balanced: τ = 0.69 for general applications
• Safe: τ = 0.92 for coding agents

7
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Users with custom vocabularies or window sizes can re-estimate the quantile with a single offline
scan and plug them into the same decision rule.

6.3 AGENT REPETITION TAXONOMY

SpecRA flagged 813 suspicious repetition samples out of 1,133,797 agent traces (0.071%), using a
threshold of τ = 0.69. We excluded 264 samples that were too short to classify reliably, likely due to
incomplete generation from network errors or early termination by LLM safety filters. The remaining
549 samples were classified into four distinct repetition categories:

Structural repetition. Systematic iteration over semantically related content patterns, where agents
generate sequences of structurally similar elements with incremental variation. Examples include
enumeration of chemical elements in periodic table order, systematic generation of numbered function
definitions, and iterative construction of similar data structures. This pattern reflects the model’s
attempt to complete structured tasks through template-based generation.

Syntactic degradation. Purely syntactic repetition without semantic coherence, where models
generate identical token sequences or character patterns with no underlying logical structure. This
includes infinite repetition of single characters, alphabetical and numerical sequences (e.g., ",3,3,3..."),
representing complete semantic breakdown in the generation process.

Binary data generation. A notable repetition pattern observed in agents attempting to emit binary
data (105 / 549; 19.1%), manifesting in three distinct sub-patterns: (1) Multimedia encoding
loops: cyclical repetition of base64-encoded character sequences representing multimedia content
(images, audio, video files) or structured documents; (2) URI malformation cycles: iterative
generation of malformed data URIs or embedded content for visualization services (e.g., mermaid.ink,
plantuml.com), often producing corrupted markup with repeated URI fragments; and (3) Direct
binary emission: direct attempts to emit binary file headers and control characters (e.g., ZIP/Office
file magic numbers "PK", PNG signatures), interspersed with repeated \uFFFE patterns.

Legitimate repetition. Cases where structurally necessary repetition is misclassified as degen-
erative, including large-scale data serialization (JSON arrays, CSV records), ASCII art containing
repeated patterns, systematic progress tracking with templated status reports, and algorithmic output
requiring repetitive formatting patterns that serve a functional purpose.

These categories constitute 46.26%, 21.68%, 19.13%, 12.93% of the flagged cases, respectively.

Table 1: Breakdown of the 549 repetitive turns by error category.
Category # samples Share
Structural repetition 254 46.26%
Syntactic degradation 119 21.68%
Binary total 105 19.13%

Multimedia encoding loops 55 10.02%
URI malformation cycles 31 5.65%
Binary header emission 19 3.47%

Legitimate repetition 71 12.93%

Total 549 100%

7 DISCUSSION

7.1 USAGE NOTE ON PRACTICAL DEPLOYMENT

For agent developers who rely on LLM API providers without access to inference infrastructure,
original tokens may not be available. In such cases, SpecRA can still be effectively applied to
character-level streams to detect repetitive failures. However, when applied to smaller vocabularies

8
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(e.g., ASCII-only streams), performance may degrade due to increased collision probability in the
hash space.

Phase values θv are sampled i.i.d. from a continuous distribution. A potential issue arises when two
distinct tokens are assigned similar phases, causing mismatches to contribute cos(∆) ≈ 1 to the
autocorrelation, mimicking matches.

The risk depends on the interplay between random phase collisions and token co-occurrence statistics.
Large vocabularies increase the number of potential collision pairs (

(|V |
2

)
), while small vocabularies

concentrate statistical weight on fewer pairs. If frequently co-occurring tokens happen to receive
similar phases, the distortion effect is amplified.

Our proposed mitigation using K independent projections is highly effective. For a mismatch to
consistently distort the signal, it must be a near-collision across all K mappings—a vanishingly
unlikely event that ensures detector reliability regardless of vocabulary size or input statistics.

Additionally, legitimate repetition may occasionally be misclassified as degenerative. In such cases,
LLMs can serve as a secondary validation mechanism.

7.2 LIMITATIONS

While SpecRA demonstrates effectiveness in detecting repetitive failures, it has several inherent
limitations. First, although SpecRA excels at identifying simple structural repetitions, it may struggle
with more complex patterns that require deeper contextual understanding. For instance, it may fail
to detect repetitive failures in code generation tasks that produce semantically similar code snippets
with varying lengths, as the length variations introduce phase shifts across repetitive blocks (Dong
et al., 2025).

Second, as discussed in Section 7.1, SpecRA’s performance is sensitive to vocabulary size. Smaller
vocabularies increase collision probability, potentially leading to performance degradation. While
we have proposed mitigation strategies using multiple independent projections, their effectiveness
requires further empirical evaluation.

8 CONCLUSION AND FUTURE WORK

We framed degenerative repetition in LLM agents as an approximate periodicity detection problem and
introduced SpecRA, which combines randomized phase projection with FFT-based autocorrelation
analysis. Our method achieves O(W logW ) processing complexity with O(logW ) amortized time
per token, while providing provable bounds on both false-alarm and miss-detection probabilities.
Extensive experiments across public corpora and real agent traces demonstrate that SpecRA offers a
lightweight, non-intrusive solution for building more reliable and cost-efficient LLM agents.

Future work can extend this research in three immediate avenues: (1) Inference-time integration, by
incorporating SpecRA scores as decoding penalties to steer models away from repetitive attractors; (2)
Cross-modal generalization, by adapting the spectral approach to detect cyclic artifacts in vocoder
waveforms, embedding streams, or tool-use trajectories; and (3) An enhanced signal-processing
toolkit, exploring techniques like wavelet coherence or adaptive filtering to build a comprehensive
suite of guards for trustworthy AI.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a reference Go implementation in Appendix C. Our experiments
use synthetic data, generated as described in Section 6.1, and public corpora (Wikipedia, GitHub
Code) detailed in Section 6.2. The full experimental setup and parameters are specified in Section 6.
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A PRIVACY AND ETHICS CONSIDERATIONS

Our analysis of agent logs was conducted under strict privacy safeguards and ethical guidelines. All
LLM outputs were anonymized and de-identified prior to analysis, with access restricted exclusively
to patterns flagged as anomalous by our detection algorithm. No personally identifiable information,
proprietary content, or sensitive user-generated data was examined during the analysis process.

SpecRA provides inherent privacy advantages: it operates on statistical properties of token sequences
rather than semantic content, enabling detection of repetitive failures without requiring persistent
storage or detailed inspection of user data. This design preserves the confidentiality of user-agent
interactions while delivering essential protection against computational waste and system instability.
Furthermore, the randomized projection mechanism ensures that even if projection parameters were
compromised, recovering original token sequences would remain impractical.

B USE OF LLMS

LLMs were utilized during various stages of this paper’s development. Specifically, LLMs assisted
with: (a) drafting portions of the methodology section and mathematical formulations, (b) language
polishing and stylistic refinement, and (c) comprehensive proofreading. We acknowledge that
[Anonymous frontier model] identified a critical flaw in our initial proof of Theorem 1, leading to its
subsequent correction.

Additionally, LLMs were employed to classify and anonymize potentially suspicious cases prior to
manual analysis. All automated labels were subsequently verified and validated by the authors to
ensure accuracy and consistency.

C REFERENCE IMPLEMENTATION

This section provides a minimal Go implementation of the SpecRA algorithm. The code demonstrates
the core spectral analysis pipeline described in Section 4, implementing offline batch processing
suitable for research and prototyping.

// Package specra provides a minimal implementation of the SpecRA detector
// for approximate repetition detection in token sequences.
package specra

import (
"math"
"math/cmplx"
"math/rand"

// The Gonum library dependency can be replaced
// with any FFT implementation supporting complex-valued transforms.
"gonum.org/v1/gonum/dsp/fourier"

)

// SpecRA detects approximate repetition in a token sequence
// using spectral analysis.
// Parameters:
// - rng: random number generator for phase assignment
// - s: input token sequence (as runes)
// - threshold: detection threshold for normalized repetition score
// Returns:
// - repetition score: maximum normalized autocorrelation value
// - detected: true if repetition detected above threshold
func SpecRA(rng *rand.Rand, s []rune, threshold float64) (float64, bool) {

// Step 1: Random phase projection
dict := make(map[rune]complex128)
seq := make([]complex128, 0, len(s))

for _, r := range s {

12
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if _, ok := dict[r]; !ok {
// Assign random unit-magnitude complex phase
theta := rng.Float64() * 2 * math.Pi
dict[r] = cmplx.Rect(1, theta)

}
seq = append(seq, dict[r])

}

// Step 2: FFT-based autocorrelation via Wiener-Khinchin theorem
n := len(seq)
coeffs := make([]complex128, n)
fft := fourier.NewCmplxFFT(n)

// Forward FFT: F = FFT(seq)
fft.Coefficients(coeffs, seq)

// Power spectrum: |F|^2
power := make([]complex128, n)
for i, c := range coeffs {

power[i] = c * cmplx.Conj(c)
}

// Inverse FFT: autocorr = IFFT(|F|^2)
autocorr := make([]complex128, n)
fft.Sequence(autocorr, power)

// Step 3: Compute repetition score
r0 := real(autocorr[0]) // Zero-lag autocorrelation (total energy)

peak := -1.0
for p := 1; p < n/2; p++ { // Search candidate periods

if real(autocorr[p]) > peak {
peak = real(autocorr[p])

}
}

repetitionScore := peak / r0
return repetitionScore, repetitionScore > threshold

}
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