
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECRA: MONITOR DEGENERATIVE REPETITION IN
LLM AGENTS USING RANDOMIZED FFT

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-based agents also suffer from "degenerative repetition" like chatbots, which
leads to task failure and results in significant waste of computational resources and
API costs until token limit is reached. Existing methods require modification of
training process or customization of model deployment, and detection algorithms
are brittle to approximate or structural recurrence. We therefore introduce SpecRA,
a simple yet effective algorithm for detection of self-repetitions in text. Via a
randomized projection from the large LLM vocabulary onto a unit-norm complex
sequence, our method leverages the power of the Fast Fourier Transform (FFT)
to compute the sequence’s autocorrelation. Peaks in the autocorrelation function
robustly reveal the underlying periodicity of the content, with tolerance to minor
variations. Through an analysis of 813 repetitive samples identified from 1.13M
records of anonymized agent outputs, we build a taxonomy of repetition modes
in agents and show that SpecRA offers a lightweight, non-intrusive mechanism
for constructing more reliable and cost-efficient LLM agents across both standard
open-source model deployments and proprietary models.

1 INTRODUCTION

The promise of LLM-based agents to automate complex, multi-step tasks is transforming diverse
fields, from deep research and software engineering to scientific discovery and gaming (Huang et al.,
2025b; Jimenez et al., 2024; Chen et al., 2025; Hu et al., 2024). However, their practical deployment
is constrained by degenerative repetition, where the model becomes trapped in a recursive loop,
generating near-identical sequences repeatedly (Holtzman et al., 2019; Huang et al., 2025a).

This behavior not only leads to task failure but also incurs significant computational waste or API
costs. The severity is amplified by the scale of modern agent deployments: a single long-running
agent task may involve dozens to hundreds of model invocations, meaning that even a seemingly
low failure rate of 1 in 10,000 can affect a substantial number of tasks at scale. Moreover, these
failures can cascade, as users may repeatedly re-trigger a malfunctioning agent, inadvertently creating
a denial-of-service-like scenario that degrades performance for all concurrent users.

Current approaches prove largely inadequate for addressing this challenge. Penalty-based methods
can mitigate repetition but often compromise overall performance (Holtzman et al., 2019; Keskar et al.,
2019) and frequently require custom model deployments that are impractical for many applications
(Dong et al., 2025; Ginart et al., 2025).

Classical exact string matching techniques (such as n-grams and suffix trees) fail entirely when faced
with minor variations, while edit-distance algorithms suffer from prohibitive polynomial runtime
complexity, making them unsuitable for streaming applications where pattern lengths are unknown a
priori.

We introduce SpecRA, a fast spectral detector for approximate repetition. Rather than analyzing
the text directly, we recast the input sequence as a discrete signal of constant energy and exploit
tools from signal processing. Each token is projected to a uniformly distributed random complex
of unit magnitude, producing a sequence S = {s1, . . . , sN}. The projection makes non-repetitive
text behave like white noise, so peaks provide a robust, quantitative signal for periodicity. We then
compute its autocorrelation of lag k via the Wiener-Khinchin theorem:

R(k) = F−1
(
|F(S)|2

)
[k],

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where F denotes the discrete Fourier transform. The procedure is streaming-friendly with overall
O(N logN) time.

Our contributions are: (1) An efficient approximate autorepetition detection algorithm; (2) Theoretical
bounds on false positives and detection efficacy; (3) A taxonomy of repetition modes from 1.13M
agent traces and practical guidance on setting the detection threshold.

2 RELATED WORK

Degenerative repetition is a widespread issue affecting modern LLMs, including current frontier
models. This phenomenon has been observed across diverse LLM-driven tasks such as code genera-
tion, translation, and dialogue (Dong et al., 2025; Wang et al., 2024; Xi et al., 2021). Prior research
has analyzed its underlying causes and mechanisms, including exposure bias and likelihood-driven
decoding that over-amplify frequent patterns, duplicated training data with skewed token frequencies,
and high-inflow dynamics that trap the generation process in self-reinforcing attractors (Holtzman
et al., 2019; Li et al., 2023; Fu et al., 2021; Mahaut & Franzon, 2025).

The most common approach involves applying penalties during the decoding process to discourage
repetitive behavior. Frequency and presence penalties, popularized by OpenAI-compatible APIs,
penalize tokens that have already appeared in the context window, while repetition penalty (Keskar
et al., 2019) suppresses the generation of duplicate n-grams. However, their effectiveness is highly
sensitive to hyperparameter tuning, and overly aggressive penalties can degrade output quality and
coherence.

More advanced decoding techniques such as contrastive search (Su et al., 2022; Sen et al., 2025),
information-theoretic penalties (Ginart et al., 2025), and grammar-aware penalties (Dong et al., 2025)
have been proposed to further reduce repetition rates. Nevertheless, these methods remain less widely
adopted, as they are not supported by many LLM inference providers or require custom model
deployments. Alternative approaches such as model editing (Wang et al., 2024) target the problem at
the model level but require significant computational effort and specialized expertise, making them
impractical for most agent developers.

An alternative paradigm focuses on post-hoc detection rather than prevention during generation.
Classical exact-match detection approaches include n-gram overlap and suffix trees, but these fail
entirely when faced with minor lexical variations. While edit-distance methods (Landau et al.,
1998) can tolerate some variations, they suffer from quadratic or higher complexity that becomes
prohibitive for streaming applications processing long sequences. Specialized periodicity detection
algorithms (Kolpakov & Kucherov, 1999; Main & Lorentz, 1984) achieve linear O(N) runtime but
are designed specifically for exact repetitions and require computationally expensive extensions to
handle approximate matching scenarios typical in LLM outputs.

Methods from bioinformatics offer alternative approaches to repetition detection (Kurtz et al., 2001).
K-mer based techniques, widely used in genomic sequence analysis, suffer from combinatorial
explosion when applied to LLM vocabularies due to their much larger alphabet size compared to the
4-nucleotide DNA alphabet. More promisingly, Fourier transforms have been successfully used in
bioinformatics for detecting tandem repeats (Silverman & Linsker, 1986) by mapping nucleotides to
complex symbols. SpecRA adapts this insight to LLM token vocabularies with randomized projection,
achieving O(N logN) complexity while maintaining robustness to lexical variation.

3 PROBLEM DEFINITION

Task intuition. Given a live token stream from an LLM agent, we want to raise an alarm as soon as
the agent falls into a "loop", namely, when its output becomes approximately periodic after allowing
up to εN mismatches per period.

While the excerpt below appears to show perfect repetition at first glance, the "P_P" sequence in the
middle disrupts the otherwise regular pattern. This exemplifies approximate periodicity, which we
formally define below.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Excerpt from Gemini-2.5-Pro-0605 using temperature of 0.3
...normal output writing a markdown table...
P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_
P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_P_S_P_S_P_S_P_S_P_S_P_S_P_
S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_
S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_S_P_

Data model. Let V be a finite vocabulary and x = (x1, x2, . . . ), xt ∈ V , the potentially unbounded
sequence of tokens emitted by an LLM agent. At time t the first t tokens are observable; future tokens
are not.

Approximate periodicity. Fix an integer period length p ≥ 2 and an error budget ε ∈ [0, 1). Given
an index s and positive integer K, denote by

Bj(s, p) = (xs+(j−1)p+1, . . . , xs+jp), j = 1, . . . ,K,

the j-th contiguous block of length p. We say the window xs:s+Kp−1 is (ε, p)-approximately
K-periodic if there exists a reference block U ∈ V p such that

1

p
d
(
Bj(s, p), U

)
≤ ε, for every j = 1, . . . ,K,

where d(·, ·) is a token-level distance (e.g. Hamming distance or edit distance). In words, each block
differs from the reference pattern in at most an ε fraction of its positions.

Remark: For theoretical clarity, we assume fixed-length period blocks in our analysis. Extensions to
handle variable-length blocks due to insertions and deletions are discussed in Section 7.

Definition 1 (Degenerative-repetition event). A stream x enters degenerative repetition at time
t0 if there exist p ∈ [Pmin, Pmax], K ≥ Kmin, and ε ≤ εmax such that xt0:t0+Kp−1 is (ε, p)-
approximately K-periodic according to the criteria above.

Online detection task. At each time t the detector outputs a Boolean alarm At ∈ {0, 1}. A correct
detector should satisfy two properties for given false-alarm probability δ and detection delay D:

(i) (Low false positives) For any stream that never satisfies Definition 1, Pr[At = 1] ≤ δ for
all t.

(ii) (Timely detection) If a degenerative repetition event starts at t0, then with probability at
least 1− δ the detector raises an alarm no later than t0 +D, i.e. ∃ t ≤ t0 +D with At = 1.

Streaming constraints. We adopt the standard RAM streaming model:

• Per-token time must be sub-linear in the window size; our target is O(logW ) amortized
per token, achieved via FFT.

• Memory is O(W ), where W is the largest sliding-window length the detector inspects.

Objective. Design an algorithm that, for user-specified (εmax, pmin, pmax,Kmin, δ,D,W ), meets
the guarantees above while respecting the streaming constraints.

The subsequent sections show that SpecRA meets these requirements withO(W logW ) preprocessing
per window and O(logW ) time per arriving token.

4 METHODOLOGY

Overview. SpecRA transforms the discrete token detection problem into a continuous signal
processing task through three key stages: (i) randomized projection maps each token to a unit-
magnitude complex number, converting the discrete vocabulary into a continuous signal while
preserving repetition structure; (ii) spectral analysis computes the autocorrelation function via

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

FFT, efficiently identifying periodic patterns across multiple candidate periods; and (iii) statistical
detection compares the maximum autocorrelation peak against a threshold derived from theoretical
false-positive bounds.

The core insight is that repetitive text exhibits strong autocorrelation peaks at the repetition period,
while non-repetitive text behaves like white noise with near-zero autocorrelation. The randomized
projection ensures robustness to minor variations (e.g., number increments, minor spelling changes)
that would confound exact string matching approaches.

Figure 1: SpecRA workflow diagram showing the complete pipeline from token stream input to
periodicity detection output.

Randomized Token Projection. Let V be the model’s vocabulary of size |V |. For each token
v ∈ V , we draw an independent random phase θv ∼ U [0, 2π) and define the projection function
ϕ : v 7→ eiθv . This maps each token to a point on the unit circle in the complex plane, ensuring
constant signal energy |ϕ(v)| = 1 regardless of token identity.

Given a token stream (x1, x2, . . . ), we obtain the complex sequence S = (s1, s2, . . . ) where st =
ϕ(xt). The key property is that identical tokens always map to the same complex number, preserving
exact repetition structure, while different tokens map to (nearly) orthogonal directions. This design
makes the detector robust to lexical variations: swapping "large" with "big" changes the complex
representation but preserves the overall periodic structure if the substitution occurs consistently across
repetitions.

Spectral Autocorrelation. We apply the Wiener-Khinchin theorem to compute the autocorrelation
efficiently via FFT. For a sliding window of length W , the circular autocorrelation at lag k is:

Rk = F−1
(
|F(S)|2

)
[k] =

W∑
t=1

sts
∗
t−k,

where F denotes the discrete Fourier transform and s∗t−k is the complex conjugate with indices taken
modulo W .

The power spectrum |F(S)|2 captures the frequency content of the signal, and its inverse FFT
yields the autocorrelation across all lags simultaneously. For repetitive sequences with period P ,
the autocorrelation RP exhibits a large magnitude because many terms sts∗t−P align constructively.
For non-repetitive sequences, these terms behave like independent random rotations, resulting in
near-zero autocorrelation due to destructive interference.

Repetition Score. To detect repetitive patterns, we focus on the real part of the autocorrelation,
which captures the alignment between tokens at different lags. Let Pmin and Pmax define the range
of plausible periods (e.g., 2 to 256 tokens). We compute the normalized repetition score:

Srep =
Pmax
max
l=Pmin

ℜ(Rl)

ℜ(R0)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The denominator ℜ(R0) = W normalizes by the total signal energy, ensuring the score is invariant
to window size. The numerator ℜ(Rl) measures how well the sequence aligns with itself when
shifted by l positions. For perfect repetition with period P , we have Srep ≈ 1, while for random
sequences, Srep ≈ 0.

We trigger a repetition alarm when Srep > τ for some threshold τ ∈ (0, 1). The period range
[Pmin, Pmax] excludes trivial cases: periods smaller than Pmin = 2 are not meaningful, while periods
larger than Pmax would require prohibitively long sequences to establish reliable patterns.

Algorithm 1: SPECRA-BATCH: Batch processing with FFT
Input: token stream (x1, x2, . . . ), window size W , period range [Pmin, Pmax], threshold τ ,

batch size B (e.g., B = W )
Output: alarm bit At every B timesteps
Offline: draw phases θv ∼ U [0, 2π) and set ϕ(v) = eiθv ;
Initialize: batch buffer B of size B;
Online:
for t← 1, 2, . . . do

st ← ϕ(xt);
append st to B;
if |B| = B or end-of-stream then

F ← F(B);
R← F−1(|F |2);
Srep ← maxPmax

l=Pmin

ℜ(Rl)
ℜ(R0)

;
Abatch ← 1{Srep > τ};
emit Abatch;
clear B;

end
end

Computational Complexity. Initializing one window costs O(W logW ). Afterwards each batch
has a complexity of O(W logW ) and can be amortized to O(logW ) per token when processed in
batches, meeting the streaming constraints of Section 3.

5 EFFECTIVENESS ANALYSIS

5.1 BEHAVIOR UNDER THE NULL HYPOTHESIS

Under a non-repetitive stream, the projected tokens st = eiθt , with θt ∼ U [0, 2π), form i.i.d.
isotropic noise. For any non-zero lag l ̸= 0, the real part of the circular autocorrelation, ℜ(Rl) =∑W

t=1ℜ(sts∗t−l), is a sum of W i.i.d. random variables. Each term ℜ(sts∗t−l) = cos(θt − θt−l) is a
random variable bounded in [−1, 1] with zero mean.

By applying Hoeffding’s inequality to this sum, we can bound the probability of observing a large
repetition score purely by chance. Let M = Pmax −Pmin +1 be the number of candidate periods. A
union bound over these periods yields:

Lemma 1 (False-positive bound). For any threshold τ > 0, Prnull
[
Srep > τ

]
≤ M · exp

(
−Wτ2

2

)
.

Choosing τ∗ =
√

2
W log(M/δ) guarantees a false-alarm rate no greater than δ.

Proof. Under the null hypothesis, the projected tokens st = eiθt are i.i.d. with phases θt uniformly
distributed in [0, 2π). For any non-zero lag l, the term sts

∗
t−l = ei(θt−θt−l) is a random rotation. Let

Yt = ℜ(sts∗t−l) = cos(θt− θt−l). Since θt and θt−l are independent and uniformly distributed, their
difference modulo 2π is also uniform in [0, 2π).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The variables {Yt}Wt=1 are thus i.i.d. with E[Yt] =
1
2π

∫ 2π

0
cos(u)du = 0 and are bounded in the

interval [−1, 1].

The real part of the autocorrelation is ℜ(Rl) =
∑W

t=1 Yt. The repetition score for this lag is
ℜ(Rl)
R0

= 1
W

∑W
t=1 Yt, since R0 = W . We want to bound the probability of the event {ℜ(Rl)

W > τ},
which is equivalent to {

∑W
t=1 Yt > Wτ}.

We apply Hoeffding’s inequality. For a sum SW =
∑

Yt of W independent random variables where
Yt ∈ [at, bt], the inequality states Pr[SW − E[SW ] ≥ ϵ] ≤ exp(− 2ϵ2∑

(bt−at)2
). Here, E[SW ] = 0,

ϵ = Wτ , at = −1, and bt = 1, so bt − at = 2. For a single lag, we have:

Pr
[ℜ(Rl)

W
> τ

]
≤ exp

(
− 2(Wτ)2∑W

t=1(1− (−1))2

)
= exp

(
−2W 2τ2

4W

)
= exp

(
−Wτ2

2

)
.

The score Srep is the maximum over M = Pmax − Pmin + 1 candidate lags. Applying the union
bound gives the final result:

Prnull
[
Srep > τ

]
≤

Pmax∑
l=Pmin

Pr
[ℜ(Rl)

W
> τ

]
≤ M · exp

(
−Wτ2

2

)
,

proving the claim.

5.2 POWER UNDER ε-MISMATCH APPROXIMATE PERIODICITY

Assume a true period P . For each position t, with probability 1 − ε we have an exact repeat
xt = xt−P ; with probability ε a mismatch occurs where xt is independent of xt−P (and independent
across t). Under the fixed random projection ϕ above, define Xt = ℜ(sts∗t−P ) ∈ [−1, 1].
When xt = xt−P , Xt = 1; when a mismatch occurs, st and st−P are independent unit phases so
E[Xt] = 0. Therefore

E[Xt] = (1− ε) · 1 + ε · 0 = 1− ε, E[ℜ(RP )] =

W∑
t=1

E[Xt] = W (1− ε).

Since R0 = W , the normalized score for the true period is ℜ(RP )
R0

= 1
W

∑W
t=1 Xt with mean 1− ε.

Theorem 1 (Exponential bound under ε-mismatch). If 0 < τ < 1 − ε and mismatches occur
independently across t, then

Pr
[
Srep ≤ τ

]
≤ exp

(
−W (1− ε− τ)2

2

)
.

Proof. Set SW =
∑W

t=1 Xt and µ′ = E[SW ] = W (1− ε). Each Xt ∈ [−1, 1] and, by assumption,
the {Xt} are independent. The miss event {Srep ≤ τ} implies ℜ(RP ) ≤ τW , i.e., SW − µ′ ≤
−(µ′ − τW ). Hoeffding’s inequality yields

Pr
[
SW − µ′ ≤ −(µ′ − τW )

]
≤ exp

(
− (µ′ − τW )2

2W

)
= exp

(
−W (1− ε− τ)2

2

)
.

6 EMPIRICAL ANALYSIS

6.1 ROBUSTNESS AGAINST SYNTHETIC NOISE

Theoretical analysis in Section 5 suggests that SpecRA can resist minor substitutions, while the effect
of different noise levels and robustness against insertions and deletions remain to be investigated. We
empirically validate this by generating synthetic sequences and evaluating the repetition scores.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To isolate the effect of perturbations we generate synthetic sequences in the form T =(
P ∥P ∥ . . . ∥P︸ ︷︷ ︸

L/p copies

)
⊕ N (ε), where P is a base pattern of length p drawn uniformly at random

from a vocabulary of size V = 32768, L = 1024 is the total window length, andN (ε) applies one of
substitution, deletion and insertion at rate ε∈ [0, 0.2]. We tested p∈{4, 16, 64} and report the median
repetition score Srep over 104 Monte-Carlo trials per setting.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise rate 

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ed

ia
n 

S_
re

p

Substitution
Period length

p=4
p=16
p=64

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise rate 

Deletion

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise rate 

Insertion

Figure 2: Median repetition score Srep as a function of noise rate ε. Shaded bands denote the
inter-quartile range. Insertions and deletions apply to the same randomly chosen anchor index within
each period copy to simulate structural repetitions that LLMs produce.

For substitution noise, curves for different p almost overlap and Srep decays almost linearly with ε for
all p, confirming its insensitivity to noise level and the underlying period length under substitutions.
SpecRA also tolerates indels on short patterns, as long as major structure is preserved.

6.2 REPETITION FEATURES IN REAL-WORLD DATA

To properly set the detection threshold for SpecRA, we need to first understand the distribution of
the repetition score Srep in real-world data. We sampled 153,060 passages from Wikipedia (89,359
passages in English and 63,701 passages in Chinese) (Foundation, 2023), 208,414 code snippets
from GitHub Code (CodeParrot, 2022), and collected repetition scores from 1,133,797 rounds of
LLM outputs from a general-purpose agent working on tasks spanning different domains. The Srep
distribution is shown in Figure 3.

Figure 3: Repetition score distribution comparison across Wikipedia-EN, GitHub-Code, and Agent-
Trace datasets. Red dots indicate mean values.

Industrial deployments that run the detector on all text streams (e.g., logging, analytics) typically
demand far stricter guarantees: FPR < 10−3 or even < 10−4. Empirically the GitHub-Code
corpus dominates the upper tail, with the 99.9th and 99.99th percentiles located at τ99.9 = 0.69 and
τ99.99 = 0.92, respectively. We therefore recommend the following tiers:

• Balanced: τ = 0.69 for general applications
• Safe: τ = 0.92 for coding agents

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Users with custom vocabularies or window sizes can re-estimate the quantile with a single offline
scan and plug them into the same decision rule.

6.3 AGENT REPETITION TAXONOMY

SpecRA flagged 813 suspicious repetition samples out of 1,133,797 agent traces (0.071%), using a
threshold of τ = 0.69. We excluded 264 samples that were too short to classify reliably, likely due to
incomplete generation from network errors or early termination by LLM safety filters. The remaining
549 samples were classified into four distinct repetition categories:

Structural repetition. Systematic iteration over semantically related content patterns, where agents
generate sequences of structurally similar elements with incremental variation. Examples include
enumeration of chemical elements in periodic table order, systematic generation of numbered function
definitions, and iterative construction of similar data structures. This pattern reflects the model’s
attempt to complete structured tasks through template-based generation.

Syntactic degradation. Purely syntactic repetition without semantic coherence, where models
generate identical token sequences or character patterns with no underlying logical structure. This
includes infinite repetition of single characters, alphabetical and numerical sequences (e.g., ",3,3,3..."),
representing complete semantic breakdown in the generation process.

Binary data generation. A notable repetition pattern observed in agents attempting to emit binary
data (105 / 549; 19.1%), manifesting in three distinct sub-patterns: (1) Multimedia encoding
loops: cyclical repetition of base64-encoded character sequences representing multimedia content
(images, audio, video files) or structured documents; (2) URI malformation cycles: iterative
generation of malformed data URIs or embedded content for visualization services (e.g., mermaid.ink,
plantuml.com), often producing corrupted markup with repeated URI fragments; and (3) Direct
binary emission: direct attempts to emit binary file headers and control characters (e.g., ZIP/Office
file magic numbers "PK", PNG signatures), interspersed with repeated \uFFFE patterns.

Legitimate repetition. Cases where structurally necessary repetition is misclassified as degen-
erative, including large-scale data serialization (JSON arrays, CSV records), ASCII art containing
repeated patterns, systematic progress tracking with templated status reports, and algorithmic output
requiring repetitive formatting patterns that serve a functional purpose.

These categories constitute 46.26%, 21.68%, 19.13%, 12.93% of the flagged cases, respectively.

Table 1: Breakdown of the 549 repetitive turns by error category.
Category # samples Share
Structural repetition 254 46.26%
Syntactic degradation 119 21.68%
Binary total 105 19.13%

Multimedia encoding loops 55 10.02%
URI malformation cycles 31 5.65%
Binary header emission 19 3.47%

Legitimate repetition 71 12.93%

Total 549 100%

7 DISCUSSION

7.1 USAGE NOTE ON PRACTICAL DEPLOYMENT

For agent developers who rely on LLM API providers without access to inference infrastructure,
original tokens may not be available. In such cases, SpecRA can still be effectively applied to
character-level streams to detect repetitive failures. However, when applied to smaller vocabularies

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(e.g., ASCII-only streams), performance may degrade due to increased collision probability in the
hash space.

Phase values θv are sampled i.i.d. from a continuous distribution. A potential issue arises when two
distinct tokens are assigned similar phases, causing mismatches to contribute cos(∆) ≈ 1 to the
autocorrelation, mimicking matches.

The risk depends on the interplay between random phase collisions and token co-occurrence statistics.
Large vocabularies increase the number of potential collision pairs (

(|V |
2

)
), while small vocabularies

concentrate statistical weight on fewer pairs. If frequently co-occurring tokens happen to receive
similar phases, the distortion effect is amplified.

Our proposed mitigation using K independent projections is highly effective. For a mismatch to
consistently distort the signal, it must be a near-collision across all K mappings—a vanishingly
unlikely event that ensures detector reliability regardless of vocabulary size or input statistics.

Additionally, legitimate repetition may occasionally be misclassified as degenerative. In such cases,
LLMs can serve as a secondary validation mechanism.

7.2 LIMITATIONS

While SpecRA demonstrates effectiveness in detecting repetitive failures, it has several inherent
limitations. First, although SpecRA excels at identifying simple structural repetitions, it may struggle
with more complex patterns that require deeper contextual understanding. For instance, it may fail
to detect repetitive failures in code generation tasks that produce semantically similar code snippets
with varying lengths, as the length variations introduce phase shifts across repetitive blocks (Dong
et al., 2025).

Second, as discussed in Section 7.1, SpecRA’s performance is sensitive to vocabulary size. Smaller
vocabularies increase collision probability, potentially leading to performance degradation. While
we have proposed mitigation strategies using multiple independent projections, their effectiveness
requires further empirical evaluation.

8 CONCLUSION AND FUTURE WORK

We framed degenerative repetition in LLM agents as an approximate periodicity detection problem and
introduced SpecRA, which combines randomized phase projection with FFT-based autocorrelation
analysis. Our method achieves O(W logW ) processing complexity with O(logW ) amortized time
per token, while providing provable bounds on both false-alarm and miss-detection probabilities.
Extensive experiments across public corpora and real agent traces demonstrate that SpecRA offers a
lightweight, non-intrusive solution for building more reliable and cost-efficient LLM agents.

Future work can extend this research in three immediate avenues: (1) Inference-time integration, by
incorporating SpecRA scores as decoding penalties to steer models away from repetitive attractors; (2)
Cross-modal generalization, by adapting the spectral approach to detect cyclic artifacts in vocoder
waveforms, embedding streams, or tool-use trajectories; and (3) An enhanced signal-processing
toolkit, exploring techniques like wavelet coherence or adaptive filtering to build a comprehensive
suite of guards for trustworthy AI.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a reference Go implementation in Appendix C. Our experiments
use synthetic data, generated as described in Section 6.1, and public corpora (Wikipedia, GitHub
Code) detailed in Section 6.2. The full experimental setup and parameters are specified in Section 6.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan
Ji, Hanjing Li, Mengkang Hu, Yimeng Zhang, Yihao Liang, Yuhang Zhou, Jiaqi Wang, Zhi Chen,
and Wanxiang Che. Ai4research: A survey of artificial intelligence for scientific research, 2025.
URL https://arxiv.org/abs/2507.01903.

CodeParrot. Github code dataset. https://huggingface.co/datasets/codeparrot/github-code, 2022.

Yihong Dong, Yuchen Liu, Xue Jiang, Zhi Jin, and Ge Li. Rethinking repetition problems of llms in
code generation, 2025. URL https://arxiv.org/abs/2505.10402.

Wikimedia Foundation. Wikimedia downloads. https://dumps.wikimedia.org, 2023.

Zihao Fu, Wai Lam, Anthony Man-Cho So, and Bei Shi. A theoretical analysis of the repetition
problem in text generation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):
12848–12856, May 2021. doi: 10.1609/aaai.v35i14.17520. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17520.

Antonio A. Ginart, Naveen Kodali, Jason Lee, Caiming Xiong, Silvio Savarese, and John R. Emmons.
Lz penalty: An information-theoretic repetition penalty for autoregressive language models, 2025.
URL https://arxiv.org/abs/2504.20131.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019. URL https://arxiv.org/abs/
1904.09751.

Sihao Hu, Tiansheng Huang, Gaowen Liu, Ramana Rao Kompella, Fatih Ilhan, Selim Furkan Tekin,
Yichang Xu, Zachary Yahn, and Ling Liu. A survey on large language model-based game agents,
2024. URL https://arxiv.org/abs/2404.02039.

Donghao Huang, Thanh-Son Nguyen, Fiona Liausvia, and Zhaoxia Wang. RAP: A metric for
balancing repetition and performance in open-source large language models. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pp. 1479–1496, Albuquerque, New Mexico, April 2025a. Association for
Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.69. URL
https://aclanthology.org/2025.naacl-long.69/.

Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Huichi Zhou, Meng Fang, Linyi Yang,
Xiaoguang Li, Lifeng Shang, Songcen Xu, Jianye Hao, Kun Shao, and Jun Wang. Deep research
agents: A systematic examination and roadmap, 2025b. URL https://arxiv.org/abs/
2506.18096.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation, 2019. URL https:
//arxiv.org/abs/1909.05858.

Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear time. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, pp.
596, USA, 1999. IEEE Computer Society. ISBN 0769504094.

Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens Stoye, and Robert
Giegerich. Reputer: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids
Research, 29(22):4633–4642, 11 2001. ISSN 0305-1048. doi: 10.1093/nar/29.22.4633. URL
https://doi.org/10.1093/nar/29.22.4633.

Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison. SIAM
Journal on Computing, 27(2):557–582, 1998. doi: 10.1137/S0097539794264810. URL https:
//doi.org/10.1137/S0097539794264810.

10

https://arxiv.org/abs/2507.01903
https://arxiv.org/abs/2505.10402
https://ojs.aaai.org/index.php/AAAI/article/view/17520
https://ojs.aaai.org/index.php/AAAI/article/view/17520
https://arxiv.org/abs/2504.20131
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2404.02039
https://aclanthology.org/2025.naacl-long.69/
https://arxiv.org/abs/2506.18096
https://arxiv.org/abs/2506.18096
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://doi.org/10.1093/nar/29.22.4633
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1137/S0097539794264810


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Huayang Li, Tian Lan, Zihao Fu, Deng Cai, Lemao Liu, Nigel Collier, Taro Watanabe, and Yixuan
Su. Repetition in repetition out: Towards understanding neural text degeneration from the data
perspective. ArXiv, abs/2310.10226, 2023. URL https://api.semanticscholar.org/
CorpusID:264146506.

Matéo Mahaut and Francesca Franzon. Repetitions are not all alike: distinct mechanisms sustain
repetition in language models, 2025. URL https://arxiv.org/abs/2504.01100.

Michael G Main and Richard J Lorentz. An o(n log n) algorithm for finding all repetitions in
a string. Journal of Algorithms, 5(3):422–432, 1984. ISSN 0196-6774. doi: https://doi.org/
10.1016/0196-6774(84)90021-X. URL https://www.sciencedirect.com/science/
article/pii/019667748490021X.

Jaydip Sen, Rohit Pandey, and Hetvi Waghela. Context-enhanced contrastive search for improved
llm text generation, 2025. URL https://arxiv.org/abs/2504.21020.

B.D. Silverman and R. Linsker. A measure of dna periodicity. Journal of Theo-
retical Biology, 118(3):295–300, 1986. ISSN 0022-5193. doi: https://doi.org/10.
1016/S0022-5193(86)80060-1. URL https://www.sciencedirect.com/science/
article/pii/S0022519386800601.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation, 2022. URL https://arxiv.org/abs/2202.06417.

Weichuan Wang, Zhaoyi Li, Defu Lian, Chen Ma, Linqi Song, and Ying Wei. Mitigating the language
mismatch and repetition issues in llm-based machine translation via model editing, 2024. URL
https://arxiv.org/abs/2410.07054.

Yadong Xi, Jiashu Pu, and Xiaoxi Mao. Taming repetition in dialogue generation, 2021. URL
https://arxiv.org/abs/2112.08657.

11

https://api.semanticscholar.org/CorpusID:264146506
https://api.semanticscholar.org/CorpusID:264146506
https://arxiv.org/abs/2504.01100
https://www.sciencedirect.com/science/article/pii/019667748490021X
https://www.sciencedirect.com/science/article/pii/019667748490021X
https://arxiv.org/abs/2504.21020
https://www.sciencedirect.com/science/article/pii/S0022519386800601
https://www.sciencedirect.com/science/article/pii/S0022519386800601
https://arxiv.org/abs/2202.06417
https://arxiv.org/abs/2410.07054
https://arxiv.org/abs/2112.08657


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PRIVACY AND ETHICS CONSIDERATIONS

Our analysis of agent logs was conducted under strict privacy safeguards and ethical guidelines. All
LLM outputs were anonymized and de-identified prior to analysis, with access restricted exclusively
to patterns flagged as anomalous by our detection algorithm. No personally identifiable information,
proprietary content, or sensitive user-generated data was examined during the analysis process.

SpecRA provides inherent privacy advantages: it operates on statistical properties of token sequences
rather than semantic content, enabling detection of repetitive failures without requiring persistent
storage or detailed inspection of user data. This design preserves the confidentiality of user-agent
interactions while delivering essential protection against computational waste and system instability.
Furthermore, the randomized projection mechanism ensures that even if projection parameters were
compromised, recovering original token sequences would remain impractical.

B USE OF LLMS

LLMs were utilized during various stages of this paper’s development. Specifically, LLMs assisted
with: (a) drafting portions of the methodology section and mathematical formulations, (b) language
polishing and stylistic refinement, and (c) comprehensive proofreading. We acknowledge that
[Anonymous frontier model] identified a critical flaw in our initial proof of Theorem 1, leading to its
subsequent correction.

Additionally, LLMs were employed to classify and anonymize potentially suspicious cases prior to
manual analysis. All automated labels were subsequently verified and validated by the authors to
ensure accuracy and consistency.

C REFERENCE IMPLEMENTATION

This section provides a minimal Go implementation of the SpecRA algorithm. The code demonstrates
the core spectral analysis pipeline described in Section 4, implementing offline batch processing
suitable for research and prototyping.

// Package specra provides a minimal implementation of the SpecRA detector
// for approximate repetition detection in token sequences.
package specra

import (
"math"
"math/cmplx"
"math/rand"

// The Gonum library dependency can be replaced
// with any FFT implementation supporting complex-valued transforms.
"gonum.org/v1/gonum/dsp/fourier"

)

// SpecRA detects approximate repetition in a token sequence
// using spectral analysis.
// Parameters:
// - rng: random number generator for phase assignment
// - s: input token sequence (as runes)
// - threshold: detection threshold for normalized repetition score
// Returns:
// - repetition score: maximum normalized autocorrelation value
// - detected: true if repetition detected above threshold
func SpecRA(rng *rand.Rand, s []rune, threshold float64) (float64, bool) {

// Step 1: Random phase projection
dict := make(map[rune]complex128)
seq := make([]complex128, 0, len(s))

for _, r := range s {

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

if _, ok := dict[r]; !ok {
// Assign random unit-magnitude complex phase
theta := rng.Float64() * 2 * math.Pi
dict[r] = cmplx.Rect(1, theta)

}
seq = append(seq, dict[r])

}

// Step 2: FFT-based autocorrelation via Wiener-Khinchin theorem
n := len(seq)
coeffs := make([]complex128, n)
fft := fourier.NewCmplxFFT(n)

// Forward FFT: F = FFT(seq)
fft.Coefficients(coeffs, seq)

// Power spectrum: |F|^2
power := make([]complex128, n)
for i, c := range coeffs {

power[i] = c * cmplx.Conj(c)
}

// Inverse FFT: autocorr = IFFT(|F|^2)
autocorr := make([]complex128, n)
fft.Sequence(autocorr, power)

// Step 3: Compute repetition score
r0 := real(autocorr[0]) // Zero-lag autocorrelation (total energy)

peak := -1.0
for p := 1; p < n/2; p++ { // Search candidate periods

if real(autocorr[p]) > peak {
peak = real(autocorr[p])

}
}

repetitionScore := peak / r0
return repetitionScore, repetitionScore > threshold

}

13


	Introduction
	Related Work
	Problem Definition
	Methodology
	Effectiveness Analysis
	Behavior under the null hypothesis
	Power under -mismatch approximate periodicity

	Empirical Analysis
	Robustness against Synthetic Noise
	Repetition features in real-world data
	Agent Repetition Taxonomy

	Discussion
	Usage Note on Practical Deployment
	Limitations

	Conclusion and Future Work
	Privacy and Ethics Considerations
	Use of LLMs
	Reference Implementation

