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ABSTRACT

Estimating confidence intervals (CIs) of the average treatment effects (ATE) from
patient records is crucial to assess the effectiveness and safety of drugs. However,
patient records typically come from different hospitals, thus raising the question of
how multiple observational datasets can be effectively combined for this purpose.
In our paper, we propose a new method that estimates the ATE from multiple ob-
servational datasets and provides valid CIs. Our method makes little assumptions
about the observational datasets and is thus widely applicable in medical practice.
The key idea of our method is that we leverage prediction-powered inferences
and thereby essentially ‘shrink’ the CIs so that we offer more precise uncertainty
quantification as compared to naı̈ve approaches. We further prove the unbiased-
ness of our method and the validity of our CIs. We confirm our theoretical results
through various numerical experiments. Finally, we provide an extension of our
method for constructing CIs from combinations of experimental and observational
datasets.

1 INTRODUCTION

Estimating the average treatment effects (ATEs) together with confidence intervals (CIs) is relevant
in many fields such as medicine, where the ATE is used to assess the effectiveness and safety of
drugs, including for drug approval (Glass et al., 2013; Feuerriegel et al., 2024). Nowadays, there is
a growing interest in using observational datasets for this purpose, such as, for example, electronic
health records (EHRs) and clinical registries (Johnson, 2016; Corrigan-Curay et al., 2018; Hong,
2021). Importantly, such observational datasets typically originate from different hospitals, different
health providers, or even different countries (Colnet et al., 2023), thus raising the question of how to
construct CIs for ATE estimation from multiple observational datasets.

Motivating example: During the COVID-19 pandemic, the effectiveness and safety of potential
drugs and vaccines were often assessed from electronic health records that originated from different
hospitals to rapidly generate new evidence with treatment guidelines (Tacconelli et al., 2022). For
example, one study (Wong et al., 2024) estimated the effect of nirmatrelvir/ritonavir (also known
under the commercial name “paxlovid”) in patients with COVID-19 diagnosis on 28-day all-cause
hospitalizations from data obtained through a retrospective, multi-center study. The study eventually
reported not only the ATE but the corresponding CIs to allow for uncertainty quantification, which
is standard in medicine (Kneib et al., 2023)

Existing works for estimating ATEs from multiple datasets can be loosely categorized based on
(a) which datasets are used and (b) the underlying objective as follows (see Fig. 1): (a) The un-
derlying patient data can come either from experimental datasets (i.e., randomized controlled trials;
RCTs) and/or observational datasets (Feuerriegel et al., 2024). Both require tailored methods as the
propensity score is known in RCTs but not in observational data and must thus be estimated (Rubin,
1974). We later focus on setting where the ATE is estimated from multiple observational datasets but
we also provide an extension for combinations of RCT and observational datasets. (b) Much of the
literature is focused on estimating ATEs from multiple datasets focuses on point estimates (Kallus
et al., 2018; John et al., 2019; Yang & Ding, 2020; Guo et al., 2021; Hatt et al., 2022; Demirel
et al., 2024), but not uncertainty quantification. Therefore, these methods do not provide valid CIs.
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However, valid CIs are needed in medicine to ensure reliable decision-making, because of which the
existing methods are not applicable for medical applications.

Our method: In this paper, we propose a novel method to construct valid CIs for ATE estimation
from multiple observational datasets. Specifically, we consider a setting where we have one (poten-
tially small) unbiased observational dataset D1 where we assume unconfoundedness (i.e., all con-
founders observed), and another large-scale observational dataset D2 where we additionally allow
for unobserved confounders and we performed sample splitting. Then, the key idea of our method
is that we tailor prediction-powered inferences to our task so that we can essentially ‘shrink’ the CI
and thus offer more precise uncertainty quantification as compared to naı̈ve approach. We further
present an extension of our method where we show to ‘shrink’ the CI in settings with a combination
of RCT and observational data.

Why are naı̈ve approaches precluded? One may think that one can simply concatenate both datasets
to compute a pooled ATE, yet this is prohibited because the second dataset D2 may be confounded
and, hence, the overall ATE estimate would be biased. A different, naı̈ve approach is simply con-
struct finite-sample CIs from the observational dataset D1 to obtain an unbiased ATE with valid
CIs. Yet, the additional power of the second dataset D2 (e.g., the information about the treatment
assignment and thus the propensity score) would be ignored, so that the CIs are too conservative
(Aronow et al., 2021).

Intuition behind our method: The key non-trivial challenge in our task is that even though the
second dataset D2 is large and may help shrink the estimation variance, it may be confounded,
which would lead to biases in the downstream estimation. Therefore, simply using the second
dataset D2 directly for inference could lead to biased CATE estimates. To account for this, we derive
a prediction-powered inference estimator where we decompose the variance of the population-level
estimate of the CATE into two parts: one part comes from the estimation variance of the CATE on
dataset D2, while the second part is due to the difference in estimators of ATEs across both datasets
D1 and D2. The estimation variance of the first part can be significantly decreased with access to a
large-scale dataset D2. Interestingly, the second part allows us to account for potential confounding
bias in D2 and thus still derive valid CIs (→ Theorem 4.2)1.

Our main contributions are three-fold:2 (1) We propose a new method to construct CIs for the ATE
from multiple observational datasets. We further extend our method to combinations of RCTs and
observational datasets. (2) We prove that our method is a consistent estimator and gives valid CIs.
(3) We perform experiments with medical data, demonstrating the effectiveness of our method.

2 RELATED WORK

In this section, we give an overview of three literature streams relevant to our work: (i) methods for
constructing CIs for the ATE that solely rely on a single dataset; (ii) methods that estimate the ATE
from multiple datasets; and (iii) prediction-powered inference.

RCT + Obs.

Obs. + Obs.

Kallus et al. (2018), Hatt et al. (2022), 
Demiral et al. (2024), 

Yang et al. (2020), Guo et al. (2021)

Methods Uncertainty quantification

Ours

Dataset setting

RCT + Obs.

Obs. + Obs.

van der Laan et al. (2024)*

* Constrained to ATE estimators based on ATE, while we focus on arbitrary ATE estimators

Figure 1: Key works aimed at
ATE estimation from multiple
datasets.

Estimating CIs for the ATE: Several works focus on constructing
confidence intervals (CIs) for the ATE in different settings (Bang &
Robins, 2005; Laan & Rubin, 2006). One stream addresses asymp-
totically normal data, which typically results in

√
n-consistent,

asymptotically unbiased, normally distributed estimators. For ex-
ample, CIs are then constructed by adding and subtracting the prod-
uct of the standard deviation and the conventional critical value of
1.96 from the standard normal distribution to yield 95% CIs (Hahn,
1998; Heckman et al., 1998; Winship & Morgan, 1999; Hirano et al., 2003; Chen et al., 2008). An-
other stream focuses on finite-sample settings, yet these works impose strong assumptions, such as
that the data comes from an RCT (Aronow et al., 2021) or assume unconfoundedness with relaxed
overlap assumptions (Armstrong & Kolesár, 2021). However, this stream focuses on ATE estimation
from a single dataset, which is unlike our work.

1We refer to Barnard (1949) and refer to a confidence interval a “valid” when the interval achieves its stated
coverage probability. For example, a 95% confidence interval is valid if, under repeated sampling, it contains
the true parameter value approximately 95% of the time. Validity ensures the interval accurately reflects the
level of uncertainty about the estimate.

2Code is available via https://anonymous.4open.science/r/causalppi-7BE5/. Upon ac-
ceptance, we will move it to a public Repository.

2
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ATE estimation from multiple datasets:3 Existing methods can be grouped by (a) the underlying
dataset setting and (b) the objective, that is, whether the focus is on point estimates vs. uncertainty
quantification (see Fig. 1). We summarize both in the following. (a) Some methods focus on settings
with RCT + observational data (e..g, Kallus et al., 2018; Chen et al., 2021; Hatt et al., 2022; Demirel
et al., 2024).4 Other methods focus on multiple observational data (e.g., Yang & Ding, 2020; Guo
et al., 2021), which is our focus later. The former is typically easier because the propensity score
is known, while, in the latter, the propensity score is not known but must be estimated to account
for the covariate shift across treated and non-treated patients. (b) Most work focus on only point
estimation (e..g, Kallus et al., 2018; Chen et al., 2021; Hatt et al., 2022; Yang & Ding, 2020; Guo
et al., 2021; Demirel et al., 2024), but not uncertainty quantification. Hence, the output are not CIs,
which is our objective.

Closest to our method is the work by van der Laan et al. (2024). Yet, there are crucial differences: (i)
different ATE estimation process, and (ii) different flexibility of leveraging D2. We discuss further
differences in change to our new Appendix H.

Prediction-powered inference (PPI): Angelopoulos et al. (2023; 2024) proposed the PPI frame-
work for performing valid statistical inference from a given dataset when the dataset is supplemented
with predictions from a machine-learning model (a brief overview is in Sec. C). Several works have
extended the original PPI framework (e.g., Zrnic & Candès, 2024; Fisch et al., 2024). Yet, PPI is not
an ‘off-the-shelf’ framework; rather, the so-called rectified in PPI must be carefully derived for each
statistical quantity of interest, which is non-trivial. So far, PPI was derived mostly for traditional
statistical quantities (e.g., mean, median, quantile). For example, Demirel et al. (2024) derive PPI to
generalize point estimates of causal effects from one population to a target population but without
uncertainty quantification. However, to the best of our knowledge, there is no work that has tailored
PPI to construct CIs in ATE estimation, which is our novelty.

Research gap: Existing methods for ATE estimation from multiple observational datasets focus on
point estimates but not uncertainty quantification. To the best of our knowledge, we later derive the
first method for constructing asymptotically valid CIs that focuses on this setting.

3 PROBLEM SETUP

We consider the standard setting for ATE estimation from observational data (e.g., Imbens, 2004;
Rubin, 2006; Shalit et al., 2017; Hatt et al., 2022) but which we extend to multiple datasets.

 : Small but unconfounded  : Large but confounded

Assumptions:
(Consistency) 
(Overlap) 
(Unconfoundness) 

Assumptions:
(Consistency) 
(Overlap) 

CI for ATE in

Figure 2: Setup with two obser-
vational datasets and different as-
sumptions on the underlying data-
generating process.

Setting: We consider a setting with a small observational dataset
D1 and a large-scale observational dataset D2 (see Fig. 2). We use
d ∈ D = {1, 2} to refer to the datasets. We write variables with su-
perscript d to emphasize that variable Xd ∈ Dd for Dd ∈ {D1,D2}.
Without loss of generality, it is straightforward to extend our method
to more than two datasets, simply by concatenating them into D2. Let
n and N denote the size of the datasets, with n ≪ N .

Both datasets have patient information about treatments, outcomes (e.g., tumor size, length of hos-
pital stay, 30-day readmission risk), and covariates (e.g., the age or sex of a patient). Formally,
both consist of assigned treatments Ad

i ∈ A = {0, 1}, outcomes Y d
i ∈ Y ⊆ R, and covariates

Xd
i ∈ X ⊆ Rq for dataset d ∈ {1, 2} and with i = 1, . . . , n (for d = 1) and i = 1, . . . , 2N (for

d = 2). Our setting is relevant for a variety of practical applications in medicine where electronic
health records are collected from different environments, for example, from different hospitals or
different countries.

3Several methods have also aimed at estimating heterogeneous treatment effects (HTEs) from multiple
datasets (e.g., Johansson et al., 2018; Schweisthal et al., 2024). However, estimating HTEs is more challenging
than estimating the ATE because of the variation across subpopulations and the larger risk of overlap violations.
Importantly, using HTEs for computing ATEs is suboptimal, which is well-established in efficiency theory for
ATE estimation (Kennedy, 2016) and would lead to so-called plug-in bias Curth & van der Schaar (2021).
Hence, methods for HTE estimation are orthogonal to our work.

4There are specialized settings, yet which are different from ours. For example, some works estimate long-
term outcomes by combining RCT and observational data (Athey et al., 2020; Ghassami et al., 2022; Imbens
et al., 2024). Even others aim to increase the efficiency of trial analyses (Schuler et al., 2022; Liao et al., 2023).
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We assume that data are sampled i.i.d from the same population (Xd, Ad, Y d) ∼ P, meaning that
patients come from the same population. We later also generalize our theory to settings with dis-
tribution shifts and finite populations in Appendix B.1 and Appendix B.2, respectively. Given that
we focus on observational datasets, the treatment assignment rule may vary, and we thus define the
dataset-specific propensity score via πd(x) = P (A = 1 | X = x,D = d), d ∈ {1, 2}. Formally, we
assume that the propensity score may differ across the two datasets (i.e., π1 ̸= π2). This is common
in medical practice where different hospitals or countries have different treatment guidelines.

Target estimand: We adopt the potential outcomes framework (Neyman, 1923; Rubin, 1974) to
formalize our causal inference task. Let Y (a) ∈ Y denote the potential outcome in the target
population (i.e., where the small dataset is sampled from) for treatment intervention A = a. In
this paper, we are interested in estimating the ATE given by τ = E [Y (1)− Y (0)] in D1 and in
constructing corresponding CIs for τ .

Assumptions: We make the following assumptions necessary for ATE identification and estimation.
Of note, the following assumptions are standard in ATE estimation (Imbens, 2004; Rubin, 2006;
Shalit et al., 2017). Here, we distinguish our assumptions for the small dataset D1 and the large D2.

Assumption 3.1. For dataset D1, it holds: (i) (Consistency) A = a ⇒ Y = Y (a); (ii) (Overlap)
0 < π(X) < 1, ∀X ∈ X ; (iii) (Unconfoundedness) Y (0), Y (1) ⊥⊥ A | X .

Assumption 3.2. For dataset D2, it holds: (i) (Consistency) A = a ⇒ Y = Y (a); (ii) (Overlap)
0 < π(X) < 1, ∀X ∈ X .

The above assumptions are the standard assumptions for estimating ATEs from observational data
and are widely used for any underlying estimation method (Imbens, 2004; Rubin, 2006; Shalit et al.,
2017). Consistency holds as long as health information is accurately and systematically recorded.
Overlap can be ensured through preprocessing (e.g., clipping). Unconfoundedness is plausible in
digital health settings due to the growing availability of rich electronic health records.5

The above assumptions are consistent with the literature studying multiple observational datasets
(Yang & Ding, 2020; Guo et al., 2021). Note that the assumptions for dataset D2 are weaker as
compared to dataset D1. •For D1, we assume that there is no unobserved confounding but the
propensity score is unknown. This is often the case in specialized medical facilities where patients
receive close supervision and where thus all critical health measurements are reported, which is
typically the case in cancer care (Castellanos et al., 2024) and in intensive care units (Johnson, 2016).
Needless to say, our assumption is still considerably weaker than assuming an RCT because we
allow that the treatment assignment mechanism varies greatly across subpopulations, is unknown,
and must thus be estimated. Nevertheless, RCTs are a special case in which the RCT the propensity
score π1 is known. •For D2, we do not make the latter assumption but instead allow for unobserved
confounding. This is often the case when data is recorded by general practitioners where the need
for documentation is typically not as strictly enforced as in other medical facilities.

⇒ In sum, D1 would naturally lead to unbiased ATE estimation but suffers from a large estimation
variance due to the small sample size. In contrast, D2 has a larger size and thus more statistical
power but could lead to biased estimates due to unobserved confounding.

4 OUR METHOD FOR ATE ESTIMATION FROM MULTIPLE DATASETS
Overview. The general idea of our approach is shown in Fig. 3. A Measure of fit: We first
compute a measure of fit, mθ, to estimate the ATE on the large, observational dataset D2. Here,
we use a state-of-the-art method based on the DR-learner (Wager, 2024). We refer to the estimate
as τ̂2. Yet, τ̂2 can be biased due to unobserved confounding because of which we later need to
adjust for this via the rectifier. B Influence function estimation: We compute the non-centered
influence function score Ỹη̂(x) for the observational dataset D1. This is later used in the rectifier.
C Rectifier: We compute the rectifier ∆τ , which we use to adjust for the bias between datasets
D1 and D2. This allows us transform the biased estimates τ̂2 into unbiased estimates of the ATE in
population. D Constructing CIs: Eventually, this yields our CIs, CPP

α for significance level α.

5Furthermore, advances in sensitivity analysis (Frauen et al., 2023; Oprescu et al., 2023) and partial identi-
fication (Duarte et al., 2023) offer complementary pathways to relax this assumption. In that sense, all existing
works (see Fig. 1) for causal inference from multiple datasets make this assumption. In that sense, our work
makes weaker assumptions that are more realistic as we allow for unobserved confounders in D2.
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Why is the above task challenging? First, there is an information gap between different datasets.
This means that different datasets come from different distributions, and we do not have any prior
knowledge of the relationship between datasets. In particular, there can be a distribution shift due
to various reasons, such as different populations X between both datasets, unobserved effect modi-
fiers (i.e., variables that change the treatment effect even if they are no confounders), and different
treatment assignment mechanisms because of which the propensity scores may be different across
both datasets. We later account for this by proposing a rectifier that accounts for such distribution
shifts through an AIPW-based estimation. Further, the propensity scores must be estimated, which
introduces another source of uncertainty. Second, due to the fundamental problem of causal infer-
ence (Rubin, 1974), the ATEs are not directly observed but must be estimated, while considering the
aforementioned distribution shift. Further, such estimates must be asymptotically valid, so that we
can later derive CIs that are also asymptotically valid (→ see our Theorem 4.2).

Nuisance Parametes 

Rectifier 

DR-Learner

AIPW

S-Learner
T-Learner

RA-Learner

X

A

X

A

U

Observational Data 2

Target Population

Figure 3: Overview of our method. To con-
struct CIs for the ATE, we leverage prediction-
powered inferences: we decompose our task into
computing a measure of fit (i.e., estimating the
ATE on the large dataset D2 via the DR-learner,
given by τ̂2) and a rectifier ∆̂τ (i.e., that mea-
sures the differences in ATE estimates across both
datasets D1 and D2). However, finding a rectifier
for our task is non-trivial and requires a careful
derivation in order to ensure asymptotically valid
CIs (→ our Theorem 4.2).

Below, we describe the steps A – C in detail.
Pseuocode is in Algorithm 1.

Step A : Measure of fit. The first step is to esti-
mate the conditional average treatment effect (CATE)
τ2(x) = E[Y (1) − Y (0) | X = x] on the half of the
large-scale dataset D2. Let τ̂2 denote an arbitrary es-
timator (which may be biased due to, e.g., unobserved
confounding). For example, we could choose the DR-
learner due to its fast convergence rate and several fa-
vorable theoretical properties (Kennedy, 2023). Need-
less to say, one method is also applicable to other esti-
mators without making any assumptions. Formally, we
train τ̂2 on half of D2. We then yield the measure of fit
from the rest half of D2 via τ̂2 = 1

N

∑N
j=1 τ̂2(xj).

Step B : Influence function estimation. For our pro-
posed rectifier, we later need the non-centered influence function (IF) score. Ideally, one would
directly compute the difference in ATEs across both datasets for the rectifier, but this is impossible
since the ATEs are not directly observed but rather need to be estimated. The estimation needs to
be both valid and unbiased to later yield valid CIs. We observe that the average of the non-centered
IF score of the AIPW estimator is an unbiased estimation of ATE and is asymptotically normally
distributed. This is beneficial for two reasons: (i) we get an unbiased estimate, which allows us to
later obtain an unbiased ATE in population, and (ii) the estimate is asymptotically normal so that we
later can derive valid CIs.

Formally, the non-centered IF score for AIPW estimator (Robins & Rotnitzky, 1995) is given by

Ỹη̂(xi) =

(
A

π̂(xi)
− 1−A

1− π̂(xi)

)
Yi −

A− π̂(xi)

π̂(xi) (1− π̂(xi))
[(1− π̂(xi)) µ̂1(xi) + π̂(xi)µ̂0(xi)] ,

(1)
where the nuisance parameters η̂(x) = (µ̂0(x), µ̂1(x), π̂(x)) are plug-in estimators from D1. Then,
the AIPW estimator is τ̂AIPW = 1

n

∑n
i=1 Ỹη̂(xi). We leverage the following result from the causal

inference literature (Chernozhukov et al., 2018; Wager, 2024).

Remark 4.1 (follows from Wager (2024)). Suppose we have consistent estimated nuisance functions
η̂(x) = (µ̂0(x), µ̂1(x), π̂(x)) trained using cross-fitting with converge rate O(n−αµ) and O(n−απ ),
i.e., n−αµ(µ̂w(Xi) − µw(Xi))

p−→ 0, w = 0, 1 and n−απ (1/π̂(Xi) − 1/π(Xi))
p−→ 0, we the have

that τ̂AIPW is asymptotically normally distributed with
√
n
(
τ̂AIPW − τ

) d−→ N
(
0, V AIPW

)
, where

V AIPW = Var [µ1(x)− µ0(x)] + E
[(

AY−µ1(x)
π(x)

)2]
+ E

[(
(1−A)Y−µ0(x)

1−π(x)

)2]
6.

Hence, the above lemma allows us to estimate the ATE for D1 and construct the corresponding CI
with non-centered influence function scores, which we then use in the rectifier to assess the bias
between both datasets D1 and D2.

6The strong double robustness exists here. If we use the estimated nuisance functions that are both consistent
and the RMSE of µ̂(w)(x) and ê(x) decays fast enough, then the AIPW estimation is asymptotically normal
to the oracle ATE.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Step C : Rectifier. We now introduce our proposed rectifier to quantify the difference in ATE across
both datasets. Formally, we define the rectifier ∆τ as the difference of τ̂AIPW and τ̂2 on D1. For
individual observations i, we write ∆̂i = Ỹη̂(xi)− τ̂2(xi). Note that our rectifier is carefully tailored
to our task, and is non-trivial because, due to the fundamental problem of causal inference Rubin
(1974), the ATEs are never observed but we need to leverage the influence functions score in order
to be able to compute a valid and unbiased estimate. Formally, we have

∆̂τ =
1

n

n∑
i=1

[
Ỹη̂(xi)− τ̂2(xi)

]
=

1

n

n∑
i=1

[(
Ai

π̂(xi)
− 1−Ai

1− π̂(xi)

)
Yi (2)

− Ai − π̂(xi)

π̂(xi) (1− π̂(xi))
[(1− π̂(xi)) µ̂1(xi) + π̂(xi)µ̂0(xi)]− τ̂2(xi)

]
.

Then, the prediction-powered estimation of ATE on D1 is computed via

τ̂PP =∆̂τ + τ̂2 =
1

n

n∑
i=1

∆̂i +
1

N

N∑
j=1

τ̂2(xj) =
1

n

n∑
i=1

[
Ỹη̂(xi)− τ̂2(xi)

]
+

1

N

N∑
j=1

τ̂2(xj) (3)

=
1

N

N∑
j=1

τ̂2(xj) +
1

n

n∑
i=1

[(
Ai

π̂(xi)
− 1−Ai

1− π̂(xi)

)
Yi (4)

− Ai − π̂(xi)

π̂(xi) (1− π̂(xi))
[(1− π̂(xi)) µ̂1(xi) + π̂(xi)µ̂0(xi)]− τ̂2(xi)

]
.

Step D : Constructing CIs. We now use the above PPI-based ATE estimate to construct our CIs.
Let σ̂2

τ2 denote the empirical variance of τ̂2(x), and let σ̂2
∆ denote the empirical variance of ∆̂τ .

Then, for significance level α ∈ (0, 1), our prediction-powered confidence interval is

CPP
α =

(
τ̂PP ± z1−α

2

√
σ̂2
∆

n
+

σ̂2
τ2

N

)
, (5)

where σ̂2
∆ = 1

n

∑n
i=1

(
Ỹη̂(xi)− τ̂2(xi)− ∆̂τ

)2
, and σ̂2

τ2 = 1
N

∑N
j=1 (τ̂2(xj)− τ̂2)

2. We show

theoretically that CPP
α is asymptotically valid in Theorem 4.2.

Equation 5 has several implications for how our method ‘shrinks’ CIs. (i) The width of the CIs
depends on the size of the different datasets (which we later evaluate empirically as part of our
sensitivity analyses). Hence, the width shrinks with a larger dataset D1 and/or a larger dataset D2.
(ii) The with of the CIs depends on the estimation variance σ̂2

τ2 from the dataset D2. This is desired
because our method is particularly designed for using large-scale but confounded datasets D2, so
that this term should shrink the CIs. (iii) The CIs further depend on the estimation variance of the
rectifier σ̂2

∆. This term becomes smaller, the less confounding the observational dataset D2 has.

Theorem 4.2 (Validity of our prediction-powered CIs). Let D1 and D2 are sampled i.i.d. under
the assumptions from above. Further suppose that we have consistent and cross-fitted estimated
nuisance functions η̂(X) = (µ̂0(X), µ̂1(X), π̂(X)) with converge rates O(n−αµ), O(n−απ ) on
D1, i.e., n−αµ(µ̂w(Xi) − µw(Xi))

p−→ 0, w = 0, 1 and n−απ (1/π̂(Xi) − 1/π(Xi))
p−→ 0 and

αµ + απ ≥ 1/2. And we have trained CATE estimator, τ̂2(X), on D2. For some p ∈ [0, 1],

limn,N→∞
n
N = p. Fix α ∈ (0, 1), and let CPP

α =

(
τ̂PP ± z1−α/2

√
σ̂2
∆

n +
σ̂2
τ2

N

)
. Then, it holds

that lim supn,N→∞ P (τ ∈ CPP
α ) ≥ 1− α.

Proof. See Appendix A.2 where we leverage Lemma 4.1.

Specifically, given that τ2 is derived from a sum of independent random variables, the CLT en-
sures its asymptotic normality under standard regularity conditions, i.e.,

√
n(τ̂2 − E[τ2])

p→
N (0, σ2

τ2), as n → ∞. Then our proposed estimator is a biased estimation of the oracle ATE,
i.e., E[τ̂PP] = τ and the key focus of our analysis lies in the asymptotic normality of τ̂1 in the
observational unconfounded dataset.
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Algorithm 1 Prediction-powered CIs
for ATE estimation from multiple obser-
vational datasets

Input: small dataset D1 =
(
x1, A1, Y 1

)
, large

dataset D2 =
(
x2, A2, Y 2

)
, significance level α ∈

(0, 1)

1: τ̂2(x) ← estimated CATE estimator on the half of D2

and Ỹη̂(x) ← estimate non-centered influential function

score fromD1

2: ∆̂i ← Ỹη̂(xi)− τ̂2(xi)

3: τ̂2 ← 1
N

∑N
i=1 τ̂2(xi), and ∆̂τ ← 1

n

∑n
i=1 ∆̂i

4: τ̂PP ← τ̂2 − ∆̂τ ▷ prediction-powered estimator
5: σ̂2

τ2
← 1

N

∑N
i=1 (τ̂2(xi)− τ̂2)

2 ▷ empirical

variance of CATE estimation inD2

6: σ̂2
∆ ←

1
n

∑n
i=1

(
∆̂i − ∆̂τ

)2
▷ empirical

variance of rectifier inD1

7: wα ← z1−α
2

√
σ̂2
∆
n

+
σ̂2
τ2
N

▷ normal

approximation
Output: prediction-powered confidence interval CPP

α =(
τ̂PP ± wα

)

Why is our method better than using the unconfounded
dataset only? As shown in Equation 5, the width of our
proposed CIs are mainly determined by the variance term,√

σ̂2
∆

n +
σ̂2
τ2

N . When the τ̂2 are sufficiently accurate, the rec-
tifier is almost equal to zero, i.e., ∆̂ ≈ 0. Then, the variance
of the rectifier is significantly smaller than the variance of
estimated non-centered IF scores, i.e., σ̂2

∆ ≤ σ̂2
τ2 . Given the

large size of D2, the variance of the estimated conditional
treatment effect goes to zero, since the estimated variance
should be divided by the sample size of D2, i.e., N . As a
result, the variance (and thus the CI width) is smaller when
using our method than when using only the unconfounded
dataset, which means that our CIs are more narrow than the
naı̈ve baseline.

The above theorem is crucial because it ensures that our
PPI-based CIs are asymptotically valid. Further, note that
the above theorem is our contribution: it does not directly

follow from the PPI-based framework. Rather, we must carefully leverage theoretical guarantees for
the estimand of interest and the chosen rectifier, which is one of our contributions.

5 EXTENSION OF OUR METHOD FOR RCT + OBSERVATIONAL DATASETS

We now extend our PPI-based method to combinations of RCT+observational data. Using an RCT
dataset is a special case of D1. As a result, the propensity score is known, which simplifies the
underlying task. Yet, the information gap between the datasets remains in that both come from
different distributions (e.g., different populations X , different effect modifiers, etc.).

A straightforward way would be to apply our AIPTW-based method directly with the known propen-
sity. However, this may have disadvantages as it still requires the estimation of nuisance functions
(response functions). Below, we describe the alternative method based on the inverse-propensity
weighting (IPW) estimator, which necessary changes for the steps A – C . Note that we do longer
need the influence function estimation because the propensity score is known so that we can directly
estimate τ1 via the IPW estimator.

Step A : Measure of fit. This steps compute the CATEs analogous to the above by training τ̂2 on
D2. We thus yield the measure of fit τ̂2 = 1

N

∑N
j=1 τ̂2(xj).

Step B : IPW estimator. Given the RCT dataset (D1) and known propensity score, we can compute
the inverse propensity weighted estimation of ATE via

τ̂1 =
1

n

n∑
i=1

Ỹπ(xi) =
1

n

n∑
i=1

(
AiYi

π(xi)
− (1−Ai)Yi

π(xi)

)
, (6)

which we later use in the rectifier (instead of the influence function score as in our method for
multiple observational datasets).

Remark 5.1. 7 Let τ̂1 denote the IPW estimator for the ATE of the RCT dataset (D1), τ̂1 is
asymptotically normally distributed, i.e.,

√
n (τ̂1 − τ)

d−→ N
(
0, σ̂2

1

)
, where τ̂1 = 1

n

∑n
i=1 Ỹπ(xi),

σ̂2
1 = 1

n

∑n
i=1

(
Ỹπ(xi)− τ̂1

)2
.

The above Lemma 5.1 ensures that the estimate is asymptotically normal, which allows us to later
obtain valid CIs.

Step C : Rectifier. We now introduce our rectifier ∆τ , which denotes the bias of two CATE esti-
mators on D1. For this, let τ̂1(x) and τ̂2(x) be separately trained CATE estimators on D1 and D2,
respectively. Our rectifiers then given by ∆τ = E [τ1(x)− τ2(x)].

7The proof is standard and follows from, e.g., Wager (2024). We nevertheless provide a step-by-step variants
in Appendix A for interested readers.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Then, the prediction-powered estimate of the ATE on D1 is computed via

τ̂PP =
1

N

N∑
j=1

τ̂2(xj) +
1

n

n∑
i=1

∆̂i =
1

N

N∑
i=1

τ̂2(xi) +
1

n

n∑
j=1

Ỹπ(xi)− τ̂2(xj). (7)

Step D : Constructing CIs. We now use the above PPI-based ATE estimate to construct our CIs.
Let σ̂2

τ2 denote the empirical variance of τ̂2(x), and let σ̂2
∆ denotes empirical variance of rectifier.

Then, for significance level α ∈ (0, 1), the our prediction-powered CI is given by

CPP
α =

(
τ̂PP ± z1−α

2

√
σ̂2
∆

n
+

σ̂2
τ2

N

)
, (8)

where ∆̂τ = 1
n

∑n
i=1 ∆̂i, σ̂2

∆ = 1
n

∑n
i=1

(
∆̂i − ∆̂τ

)
, and τ̂2 = 1

N

∑N
j=1 τ̂2(xj), σ̂2

τ2 =

1
N

∑N
j=1 (τ̂2(xj)− τ̂2). The following theorem establishes that our above prediction-powered CI

is valid.
Theorem 5.2 (Validity of our prediction-powered CIs). Let D1 and D2 are sampled i.i.d. under the
assumptions from above, and limn,N→∞

n
N = p for some p ∈ [0, 1]. Then, the prediction-powered

confidence interval has valid coverage: lim infn,N→∞ P
(
τ ∈ CPP

α

)
≥ 1− α.

Proof. See Appendix A.2 where we leverage Lemma 5.1.

6 EXPERIMENTS

We now evaluate the effectiveness of our proposed method by examining the faithfulness and width
of the constructed CIs. To this end, we follow prior research and perform experiments with both
synthetic and real-world medical data (e.g., Schröder et al., 2024; Schweisthal et al., 2024). Syn-
thetic data has the advantage that we have access to the ground-truth CATEs and thereby can make
comparisons against oracle estimates. Further, real-world medical data allows us to demonstrate
both the applicability and relevance of our method in practice.

6.1 SYNTHETIC DATA

0 1 2

=
0.

05

Scenario 1

0 1 2

Scenario 2

0.5 1.0 1.5 2.0 2.5

Scenario 3

0 1 2

=
0.

1

0 1 2 0.5 1.0 1.5 2.0 2.5

PP (Ours) AIPW ( 1 only) AIPW ( 2 only)  (True in 1)

200 400
n

0.00

0.25

0.50

0.75

1.00

W
id

th
N 

= 
50

00

Scenario 1

200 400
n

Scenario 2

200 400
n

Scenario 3

200 400
n

0.00

0.25

0.50

0.75

1.00

W
id

th
n/

N 
= 

1/
50

200 400
n

200 400
n

2000 4000
N

0.00

0.25

0.50

0.75

1.00

W
id

th
n 

= 
20

0

2000 4000
N

2000 4000
N

PP (Ours) AIPW ( 1 only) AIPW ( 2 only)

Figure 4: Performance for synthetic
dataset. Left: We show the estimated CIs for
five seeds. The red line is the oracle ATE.
Ideally, the CIs should be narrow but still
overlap with the oracle ATE. Right: Shows
in the width of the CIs averaged over five
different seeds (α = 0.05). Here, we vary
the size of the different datasets given by n
(D1 only) and N (D2). Note that τ̂AIPW

(D2 only) is shown in intentionally shown in
gray: it is not faithful as seen in the left plot
and therefore not a valid baseline. ⇒ Our
method yields faithful CIs, and it performs
better in shrinking the width of CIs as de-
sired.

Data: Inspired by Demirel et al. (2024), we simulate
samples from a data-generating process with a con-
founder x ∈ [−1, 1] and a unobserved confounder
u ∈ U ⊆ [−1, 1], a binary treatment A ∈ {0, 1}, and a
real-valued outcome Y ∈ R. We generate the potential
outcomes Y d, d ∈ {1, 2} conditioned on x and u by
sampling from a Gaussian process GP : [−1, 1]2 → R
with mean function m(x, u) = 0 and kernel function
k ((x, u) , (x′, u′)). We choose a composite kernel by
adding a squared-exponential (SE) kernel to model the
local variation and a linear kernel to model the trends
in outcome. As a result, we have k ((x, u) , (x′, u′)) =

αxxx
′ + αuuu

′ + exp
[
− (x−x′)

2l2x
− (u−u′)

2l2u

]
, with con-

figuration parameters θ = {αx, αu, lx, lu} ∈ R4
+. We

can simulate different confounding strengths by vary-
ing the value of θ.

We generate the covariates of observational datasets
D1 and D2 by sampling xi, ui ∼ uniform[−1, 1] in-
dependently. For each patient, treatments assignments
are sampled via Ai ∼ Bernoulli(P (A = 1 | xi, ui)),
where the probability of treatment assignment is gen-

erated similarly to Equation 6.1 via a logit function Lπ(x, u) sampled from GPθπ (x, u), where
θπ = {απ

x , α
π
u, l

π
x , l

π
u}. A larger value of αu and a smaller value of lu implies stronger confounding.

The observed outcomes are computed via Y = (1−A) · GPθ0(x, u) +A · GPθ1(x, u).
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We generate n = 200 (D1) and N = 5000 (D2) samples. For D1, we set αu = 0 and lu = 106

to prevent confounding. For D2, we use different values of θ to generate different in confound-
ing scenarios. We consider the following scenarios: •Scenario 1: little confounding (with 5.89).
•Scenario 2: medium confounding (with 6.12). •Scenario 3: heavy confounding (with 7.69).
Further details about the setting of θ are given in Appendix F.1. Altogether, we generate over 60
different datasets under varying configurations for evaluations below.
Baselines: We compare our PPI-based method τ̂PP for constructing CIs against the following base-
line: (1) we estimate the ATE via the AIPW estimator τ̂AIPW only on the small dataset, named
τ̂AIPW (D1 only) which is the naı̈ve baseline; (2) we estimate the ATE via the AIPW estimator on
the large, confounded dataset, named τ̂AIPW (D2 only); and (3) we report the true value for τ in D1.
Main results: Fig. 4 (left). We observe the following: (1) The CIs from our method overlap with
the oracle ATE (in red), which shows that our method is faithful. (2) In contrast, the baseline τ̂AIPW

(D2 only) rarely covers the oracle ATE and is thus not faithful. This can be expected since the
dataset computes the CIs based on the confounded dataset and, hence, yields at biased estimates.
The un-faithfulness becomes especially evident in Scenario 3 where data under large confounding
is generated. (3) Our method generates CIs that are more narrow as compared to the naı̈ve baseline
τ̂AIPW (D1 only) and therefore clearly advantageous. For example, in the left plot, our CIs are, on
average, smaller by 49.99% (Scenario 1), 55.37% (Scenario 2), and 55.35% (Scenario 3). ⇒ Take-
away: Our PPI-based method yields faithful CIs but where the width of the CIs is clearly shorter.
Hence, our method performs the best.
Sensitivity to dataset size: Fig. 4 (right) compares the sensitivity to different dataset sizes. (1) Our
method generates CIs that are again more narrow and therefore superior. We observe that our method
outperforms the naı̈ve baseline in all scenarios and across all dataset sizes. In other words, our
method performs better in terms of widths of CIs than the naı̈ve baseline. (2) The advantages of our
method become pronounced for setting where N ≫ n as expected (see right plot, top row).
6.2 MEDICAL DATA

Dataset: We now provide a case study where demonstrate the applicability of our method to real-
world medical datasets. We chose two common datasets: the MIMIC-III dataset (Johnson, 2016)
and a Brazilian COVID-19 dataset (Baqui et al., 2020). •MIMIC-III contains health records from
patients admitted to intensive care units at large hospitals. We aim to estimate the average red blood
cell count of all patients after being treated with mechanical ventilation. Our estimation is based on
8 confounders from medical practice (e.g., respiratory rate, hematocrit). •The COVID-19 dataset
contains health records of hospitalizations in Brazil across different regions and from patients with
different socio-economic backgrounds. We are interested in predicting the effect of comorbidities
on the mortality of COVID-19 patients. We created two different splits of the original dataset into
D1 and D2: (i) once we split by regions of the hospitals in Brazil (i.e., North and Central-South) and
(ii) once by ethnicity of participants (i.e., White and others). Further details are in Appendix F.2.

Table 1: Results for different med-
ical datasets. We report the RMSE
of the ATE estimator and the width of
the CIs. The results for τ̂AIPW (D2

only) are shown in gray because the
estimator is not faithful and therefore
also not a viable baseline. Reported is
the average performance over 5 ran-
dom seeds.

Dataset MIMIC-III COVID-19 (by region) COVID-19 (by ethnicity)

RMSE Width RMSE Width RMSE Width

τ̂AIPW (D1 only) 0.057 0.077 7.591 8.479 39.970 0.081
τ̂AIPW (D2 only) 0.058 0.003 17.125 0.311 39.999 0.004
τ̂PP (Ours) 0.057 0.023 7.131 2.341 39.968 0.026

Smaller is better. Best value in bold.

Results: The results are in Table 1. We again compare the
CIs of our estimator against the baselines from above. We
further report the root means squared error for the factual out-
comes. We find: (1) Our method achieves the smallest RMSE,
which indicates that underlying patterns in the are well cap-
tured. (2) Our method obtains the smallest, yet valid CIs.
Compared to τ̂AIPW in D1, our methods leads a ∼ 3.5x re-
duction in the width of CIs. (3) τ̂AIPW in D2 is known to be
biased. This explains why the RMSE is sometimes consider-
ably larger than the RMSE for the other methods, which again
corroborates our findings that τ̂AIPW is not faithful. ⇒ Take-
away: Our PPI-based method is effective for medical data.

6.3 RESULTS FOR COMBINATIONS OF RCT+OBSERVATIONAL DATA

Data: We use the same data-generating process from above. However, we now mimic an RCT for
D1 by setting the unobserved confounder U to zero and corresponding α = 0 and lu = 106. Details
are in Appendix F.1.

Baselines: We now report our method based on IPW (instead of AIPW). We additionally implement
the method by van der Laan et al. (2024), which allows to estimate the ATE from both datasets. We
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refer to this method by τ̂ATMLE. However, we note that the method is often unstable: their method
involves a matrix inversion, yet where the matrix is often singular, so that no CIs can be computed
(see Appendix H for a detailed explanation). This later explains the fairly noisy performance of the
baseline. For a fair comparison, we simply set the output in these cases to D1.

Results: Fig. 5 (left) shows the results. We find: (1) The CIs from our method cover the oracle ATE
(in red), which shows that our method is faithful for the RCT+observational dataset. (2) τ̂ATMLE

is faithful in the settings with little and medium confounding (Scenarios 2 and 3), but it fails in
Scenario 3 where it is not faithful. (3) Our method generates CIs that are consistently more narrow
compared to the baselines. ⇒ Takeaway: Our method performs best.

Sensitivity to dataset size: In Fig. 5 (right), we analyze the role of dataset sizes. The results
confirm our findings from above: Compared to τ̂ATMLE, our method is much more stable. Further,
our method generates CIs that are consistently more narrow and thus superior.

6.4 ADDITIONAL EXPERIMENTS
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Figure 5: Performance for synthetic dataset. Left: We show
the estimated CIs for five different seeds in RCT and observa-
tional datasets. Right: We show the width of the CIs averaged
over five different seeds (α = 0.05). ⇒ Our method is both
stable and leads to CIs that are faithful and narrow, as desired.

We provide further experiments to
corroborate our above takeaways
in (Appendix. G). •Variations of
our method: (1) We performed
experiments where we instantiated
our method using neural networks
as regression models for estimat-
ing nuisance parameters in AIPW
to offer more flexibility in learn-
ing representation of the covariate
space (see Appendix G.1). (2) We
performed experiments with XG-
Boost to show the applicability of
our method to underlying base mod-
els for estimating nuisance parame-
ters in AIPW (see Appendix G.2). Here, our method based on neural networks performs best.
•Different settings: (3) We varied the size of the covariate space to demonstrate the effectiveness
of our method in settings with a high-dimensional covariate space (see Appendix G.3). (4) We
varied the covariate dependence by increasing the collinearity in input space (see Appendix G.4).
(5) We varied the strength of confounding in D1 (see Appendix G.5). We found that our method
performs best across settings. •Robustness/refutation checks: (6) Oftentimes, estimates of treat-
ment effects in RCT settings benefit when the propensity score is estimated (Su et al., 2023; Cai
& van der Laan, 2019). Motivated by this, we applied our AIPW-based method to combinations
of RCT and observational datasets (see Appendix G.6). Here, we find that we can improve the CI
width further using our AIPW-based method. (7) We performed a refutation check in which we
applied A-TMLE to combinations of two observational datasets (see Appendix G.7) but remind that
this violates the assumptions of A-TMLE. As expected, A-TMLE underperforms, and our method
remains clearly superior. (8) We expanded the sample size of D1 from 100 to 2500, to further assess
the role of the size of D1 and the robustness of our method regarding the size of D1. We found that
our method shows clear margin and results are as expected.

7 DISCUSSION

Relevance: In this paper, we developed a new method for ATE estimation from multiple obser-
vational datasets. Our method is highly relevant to medical practice where it helps to assess the
effectiveness and safety of drugs, and, to this end, we perform rigorous uncertainty quantification
by deriving and reporting valid CIs. Limitations & future work: One improvement is extending
our method to other estimands like the CATE or to causal survival analysis. Future research may
combine our method with the pre-trained large language model (LLMs) or develop tailored neural
network architectures on top of our method for text-based representations. However, as with any
method in causal inference, the assumptions must be carefully assessed to ensure a safe and reliable
use.
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Notation

S labeled dataset

S̃ unlabeled dataset

D1 Small dataset

D2 Large observational dataset

X,Xi Confounders and confounders of i-th individual

A,Ai Treatment and treatment of i-th individual

Y, Yi Real-valued outcome and outcome of i individual

πd(X) dataset-specific propensity score function

τ Average treatment effect

τ̂1 Estimated conditional average treatment effect

σ̂2
1 Empirical variance of conditional average treatment effect

τ̂PP Prediction-powered ATE estimation

∆̂τ , ∆̂i Mean of rectifier and rectifier of i-th inidividual

σ̂2
∆ Empirical variance of rectifier

τ̂2, τ̂2(Xi) Mean of CATE in D2 and estimated CATE of i-th inidividual

σ̂2
τ2 Empirical variance of CATE in D2

η̂ Nuisance parameters

µ̂0(X), µ̂1(X) Regression function of average potential outcome

π̂(X) Estimated propensity score function

Ỹη̂(X) Non-centered influence function score

α Significance level

z1−α/2 The upper 1− α/2 quantile of the normal distribution

CPP
α Prediction-powered (1− α)% confidence interval

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I. Jordan, and Tijana Zrnic.
Prediction-powered inference. Science, 382(6671):669–674, 11 2023.

Anastasios N. Angelopoulos, John C. Duchi, and Tijana Zrnic. PPI++: Efficient Prediction-powered
inference, 2024. arXiv:2311.01453.

Timothy B Armstrong and Michal Kolesár. Finite-sample optimal estimation and inference on aver-
age treatment effects under unconfoundedness. Econometrica, 89(3):1141–1177, 2021.

P. M. Aronow, James M. Robins, Theo Saarinen, Fredrik Sävje, and Jasjeet Sekhon. Nonparametric
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A ADDITIONAL THEORETICAL PROOFS

In the following, we prove the validity of the prediction-powered confidence interval in the non-
causal setting, Remark 4.1 and Remark 5.1.

A.1 PROOFS OF THE SUPPORTING LEMMAS

Proof of Remark 5.1 and Remark 4.1 Here we refer the proof to Wager (2024) Chapter 2 about
the asymptotic normality of IPW estimator and AIPW estimator. □

A.2 PROOF OF THEOREM 4.2

We show that τ /∈ CPP
α with probability at most α; that is,

lim sup
n,N→∞

P

(
| ∆̂τ + τ̂2 |> z1−α/2

√
σ̂2
∆

n
+

σ̂2
τ2

N

)
≤ α. (9)

First, let us define a new auxiliary random variable Zi = Ỹη̂(xi)− τ̂2(xi). Note that by assumption,
η̂(·) is estimated on D1 and τ̂2(·) is estimated on D2 (particularly, independent with D1). Thus,
Ỹη̂(·) and τ̂2(·) are independent functions, which means that Zi are i.i.d. random variables. To
show that the CLT holds on the joint variable Zi, we separated the rectifier ∆̂τ , the average of Zi

into two parts,

∆̂τ =
1

n

n∑
i=1

Zi =
1

n

n∑
i=1

[
Ỹη̂(xi)− Yη(xi)

]
︸ ︷︷ ︸

Error due to nuisance estimation

+
1

n

n∑
i=1

[Yη(xi)− τ̂2(xi)]︸ ︷︷ ︸
Oracle nuisance functions

.
(10)

Since 1
n

∑n
i=1 Yη(xi) − τ̂2(xi) is an average of i.i.d terms, the standard CLT immediately

holds for the second term. Analogously to the proof in Wager (2024) Chapter 2, we use
cross-fitting and convergence rate assumptions on the estimated nuisance functions. Imply that√
n (τ̂AIPW − τ̂∗AIPW) →p 0. The rectifier is asymptotically equivalent to the second term.

Hence, we can apply the central limit theorem and obtain that
√
n
(
∆̂τ − τ + E[τ2]

)
⇒ N

(
0, σ2

∆

)
;
√
N (τ̂2 − E[τ2]) ⇒ N

(
0, σ2

τ2

)
, (11)

where σ2
∆ is the variance of ∆̂i = Ỹη̂(xi)− τ̂2(xi) and σ2

τ2 is the variance of τ̂2(xi). Therefore, by
Slutsky’s theorem, we get

√
N
(
∆̂τ + τ̂2 − E[∆̂τ + τ̂2]

)
=
√
n
(
∆̂τ − E[∆̂τ ]

)√N

n
+
√
N (τ̂2 − E[τ̂2])

⇒N
(
0,

1

p
σ2
∆ + σ2

τ2

)
.

(12)

This in turn implies

lim sup
n,N→∞

P

(∣∣∣∆̂τ + τ̂2 − E[∆̂τ + τ̂2]
∣∣∣ > z1−α/2

√
σ̂

N

)
≤ α, (13)

where σ̂ is a consistent estimate of the variance 1
pσ

2
∆+σ2

τ . We take σ̂ = N
n σ2

∆+σ2
τ ; this estimate is

consistent since the two terms are individually consistent estimates of the respective variances. We
notice that

E
[
∆̂τ + τ̂2

]
= E

 n∑
i=1

Ỹη̂(Xi)−
n∑

i=1

τ̂2(Xi) +

N∑
j=1

τ̂2(Xj)

 = E

[
n∑

i=1

Ỹη̂(Xi)

]
= τ, (14)

where the last step is that putting together Eq. 13 and Eq. 14 together and apply a union bound, we
get

lim sup
n,N→∞

P

(∣∣∣∆̂τ + τ̂2 − E[∆̂τ + τ̂2]
∣∣∣ > z1−α/2

√
σ̂2
∆

n
+

σ̂2
τ2

N

)
≤ α. (15)
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Therefore, lim supn,N→∞ P

(
| ∆̂τ + τ̂2 |> z1−α/2

√
σ̂2
∆

n +
σ̂2
τ2

N

)
≤ α. □

A.3 PROOF OF VALIDITY OF PREDICTION-POWERED CI

Formally, we consider estimands of the form θ∗ = argminθ∈Rp E[lθ(Xi, Yi)], and f(X) is the
pre-trained machine learning model.

We show that τ /∈ CPP
α with probability at most α; that is,

lim sup
n,N→∞

P

| ∆̂θ∗,j + ĝfθ∗,j |> z1−α/2

√
σ̂2
∆,j(θ

∗)

n
+

σ̂2
g,j(θ

∗)

N
,∀j ∈ [p]

 ≤ α. (16)

For each j ∈ [p], the central limit theorem implies that
√
n
(
∆̂θ∗,j − E[∆̂θ∗,j ]

)
⇒ N

(
0, σ2

∆,j(θ
∗)
)
;
√
N
(
ĝfθ∗,j − E[ĝfθ∗,j ]

)
⇒ N

(
0, σ2

g,j(θ
∗)
)
, (17)

where σ2
∆,j(θ

∗) is the variance of ĝfθ∗,j(Xi, Yi) − ĝfθ∗,j(Xi, f(Xi)) and σ2
g,j(θ

∗) is the variance of
ĝfθ∗,j(Xi, f(Xi)). Therefore, by Slutsky’s theorem, we get

√
N
(
∆̂θ∗,j + ĝfθ∗,j − E[∆̂θ∗,j + ĝfθ∗,j ]

)
=
√
n
(
∆̂θ∗,j − E[∆̂θ∗,j ]

)√N

n
+

√
N
(
ĝfθ∗,j − E[ĝfθ∗,j ]

)
⇒N

(
0,

1

q
σ2
∆,j(θ

∗) + σ2
g,j(θ

∗)

)
.

(18)
This in turn implies

lim sup
n,N→∞

P

(∣∣∣∆̂θ∗,j + ĝfθ∗,j − E[∆̂θ∗,j + ĝfθ∗,j ]
∣∣∣ > z1−α/(2p)

√
σ̂j

N

)
≤ α/p, (19)

where σ̂j is a consistent estimate of the variance 1
qσ

2
∆,j(θ

∗) + σ2
g,j(θ

∗). We take σ̂ = N
n σ2

∆,j(θ
∗) +

σ2
g,j(θ

∗); this estimate is consistent since the two terms are individually consistent estimates of the
respective variances. We notice that

E
[
∆̂θ∗,j + ĝfθ∗,j

]
= E

[
gθ∗(Xi, Yi)− gθ∗(Xi, f(Xi)) + gθ∗(X̃i, f(X̃i))

]
= E [gθ∗(Xi, Yi)] = 0,

(20)
where the last step is that putting together Eq.19 and Eq.20 together and apply a union bound, we
get

lim sup
n,N→∞

P

(
∃j ∈ [p] :

∣∣∣∆̂τ + τ̂2 − E[∆̂τ + τ̂2]
∣∣∣ > z1−α/(2p)

√
σ̂2
∆

n
+

σ̂2
τ2

N

)

≤
p∑

j=1

lim sup
n,N→∞

P

(
| ∆̂τ + τ̂2 |> z1−α/(2p)

√
σ̂2
∆

n
+

σ̂2
τ2

N

)

=

p∑
j=1

lim sup
n,N→∞

P

(
| ∆̂τ + τ̂2 |> z1−α/(2p)

√
σ̂2
∆

n
+

σ̂2
τ2

N

)

=

p∑
j=1

α

p

=α.

(21)

□

B ADDITIONAL THEORETICAL RESULTS

In this section, we present more theoretical results about our methods. It can be generalized to deal
with distribution shifts and finite sample situations.
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B.1 DISTRIBUTION SHIFT

In our main paper, we focus on computing prediction-powered confidence intervals when the D1

and D1 come from the same distribution. Herein, we extend out tolls to the case where D1 comes
from P and the D2 comes from Q, and these are related by a distribution shift of covariates.

First, we assume that Q is a known covariate shift of P. That is , if we denote by Q = QX ·QA|X ·
QY |A,X and P = PX · PA|X · PY |X the relevant marginal and conditional distributions, we assume
that QY |A,X = PY |A,X , and QA|X = PA|X . As in previous sections, we consider the ATE from the
Q distribution,

τ̂ = EQ

 1

N

N∑
j=1

τ̂2(Xj)

 . (22)

The estimand from equation 22 can be related to form on P using the Radon-Nikodym derivative.
In particular, suppose that QX s dominated by PX and assume that the Radon-Nikodym derivative
w(X) = QX

PX
(X) is known. Then, we can rewrite equation 22 as,

τw2 = EP

 1

N

N∑
j=1

τ̂2(Xj)w(Xj)

 . (23)

In one word, the estimation of τ̂ on Q can be written as a reweighted function. This permits inference
on the rectifier to be based on data sampled from P as before. For concreteness, we explain the
estimation approach in detail. Let,

∆w
τ = EP

 1

n

n∑
j=1

Ỹη̂(Xi)w(Xi)− τ̂(Xi)w(Xi)

 . (24)

The confidence interval for the above rectifier suffices for prediction-powered inference on τ .

Confidence interval (Covariate shift). Let σ̂2
τw
2

denotes empirical variance of τ̂w2 (X), σ̂2
∆w de-

notes empirical variance of ∆̂τw . Then, for significance level α ∈ (0, 1), the prediction-powered
confidence interval is

CPP
α =

τ̂PP ± z1−α
2

√
σ̂2
∆w

n
+

σ̂2
τw
2

N

 , (25)

where τ̂PP = ∆̂τw + τ̂w2 = 1
n

∑n
j=1

[
Ỹη̂(Xi)w(Xi)− τ̂(Xi)w(Xi)

]
+ 1

N

∑N
j=1 τ̂2(Xj)w(Xj),

σ̂2
∆w = 1

n

∑n
i=1

[
Ỹη̂(Xi)w(Xi)− τ̂2(Xi)w(Xi)− ∆̂τw

]2
, σ̂2

τw
2

= 1
N

∑N
j=1 [τ̂2(Xj)w(Xj)− τ̂w

2 ]2.

B.2 INFERENCE ON FINITE POPULATION

The method developed in this paper can be directly translated to the finite-population setting. Here, we treatD1

and D2 as a fixed finite population consisting of n confounder-outcome pairs, without imposing distributional
assumptions on the data points. The only assumption required to apply the latter is that Ỹη̂(Xi)− τ̂(Xi) has a
known bound, i.e. [ai, bi], valid for all i ∈ [n].

In the finite-population setting, we still follow the same way of constructing the prediction-powered estimation
of ATE,

τ̂PP = ∆̂τ + τ̂2 =
1

n

n∑
j=1

[
Ỹη̂(Xi)− τ̂(Xi)

]
+

1

N

N∑
j=1

τ̂2(Xj). (26)

Confidence interval (Finite population). Let σ̂2
τ2 denotes empirical variance of τ̂2(X), σ̂2

∆ denotes empirical
variance of ∆̂τ . Then, for significance level α ∈ (0, 1), by Hoeffding’s inequality, the prediction-powered
confidence interval is

CPP
α =

(
τ̂PP ±

[√∑n
i=1(bi − ai)2

2n2
log

2

α
+ z1−α

2

√
σ̂2
τ2

N

])
, (27)

where σ̂2
∆ = 1

n

∑n
i=1

(
Ỹη̂(Xi)− τ̂2(Xi)− ∆̂τ

)2
, and σ̂2

τ2 = 1
N

∑N
j=1 (τ̂2(Xj)− τ̂2)

2.
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B.3 INFERENCE ON AVERAGE POTENTIAL OUTCOME

In this section, we show a generalization of our methods to the average potential outcome (APO). We define
the mean outcome function in D1 as fa

1 (X) := E[Y (a) | X].

ATE estimation. Let f̂a
1 (X) be the estimated potential outcome function on D1 and f̂a

2 (X) be the estimated
potential outcome function on D2. Let rectifier ∆a denotes difference of f̂a

1 (X) and f̂a
2 (X) on D1, ∆a =

E
[
f̂a
1 (X)− f̂a

2 (X)
]
, and ∆̂i = f̂a

1 (Xi)− f̂a
2 (Xi). Then, the prediction-powered estimation of APO on D1

is defined as,

µ̂PP
a,1 =∆̂ + µ̂a,2 =

1

n

n∑
i=1

∆̂i +
1

N

N∑
j=1

f̂a
2 (Xj) =

1

n

n∑
i=1

[
f̂a
1 (Xi)− f̂a

2 (Xi)
]
+

1

N

N∑
j=1

f̂a
2 (Xj). (28)

Confidence interval. Let σ̂2
a,2 denotes empirical variance of f̂a

2 (X), σ̂2
∆ denotes empirical variance of ∆̂a.

Then, for significance level α ∈ (0, 1), the prediction-powered confidence interval is

CPP
α =

µ̂PP
a,1 ± z1−α

2

√
σ̂2
∆

n
+

σ̂2
a,2

N

 , (29)

where σ̂2
∆ = 1

n

∑n
i=1

(
f̂a
1 (Xi)− f̂a

2 (Xi)− ∆̂a

)2
, and σ̂2

τ2 = 1
N

∑N
j=1

(
f̂a
2 (Xi)− µ̂a,2

)2
.

C MATHEMATICAL BACKGROUND

We start with a brief overview of PPI (Angelopoulos et al., 2023). In the standard PPI framework, one assumes
a labeled dataset Sn = {(X1, Y1), . . . , (Xn, Yn)} of n i.i.d. samples drawn from some unknown, but fixed
distribution P, where Xi ∈ X is input and Yi ∈ Y is the outcome. One further assumes a larger sample
S̃N = {(X̃1, f(X̃1)), . . . , (X̃N , f(X̃N ))} where n ≪ N , for which the outcome is not available, but where
one has access to a pre-trained function f : X → Y .

PPI protocol:8 The objective is then to estimate a statistical quantity of interest given by the estimand θ∗

(e.g., the mean). In PPI, one then constructs a prediction-powered estimate θ̂PP through a decompisition
θ̂PP = mθ + σ∆, where mθ is called ‘measure of fit’ and ∆θ is called ‘rectifier’. Of note, mθ is typically
defined by the statistical quantity of interest (e.g., mθ computes the sample average when θ∗ is the mean),
while the rectifier is a measure of the prediction accuracy of f . Yet, the rectifier is not given ‘out-of-the-box’
but it needs to be carefully derived for the statistical quantity of interest. Finally, the prediction-powered CI is
constructed via CPP

α = {θ | |mθ +∆θ| ≤ wθ(α)} where wθ(α) is a constant that depends on the confidence
level. Then CPP

α is guaranteed to contain the true parameter θ∗ with probability at least 1− α% (?). Crucially,
the prediction-powered CI is smaller than the classical CI when the model f is sufficiently accurate.

Of note, the rectifier must be carefully tailored for the estimand, and the derivation is typically non-trivial,
especially in order to obtain further theoretical guarantees (e.g., to show that the CIs are asymptotically valid).

D ALGORITHM

In our main paper, we presented the algorithm for computing the prediction-powered estimation of ATE and
confidence interval by combining observational datasets. Below, we state another algorithm 2 that is applicable
if D1 is the RCT dataset. In this case, all kinds of CATE estimation in D1 could be used.

8We further provide formal derivation in Appendix A.3.
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Algorithm 2 Prediction-powered ATE estimation with combined observational datasets

Input: small dataset D1 =
(
X1, A1, Y 1

)
, large dataset D2 =

(
X2, A2, Y 2

)
, significance level α ∈ (0, 1)

1: τ̂2(X) ← estimate CATE estimator from D2 and Ỹη̂(X) ← estimate non-centered influential function
score from D1

2: ∆̂i ← Ỹη̂(Xi)− τ̂2(Xi)

3: τ̂2 ← 1
N

∑N
i=1 τ̂2(Xi), and ∆̂τ ← 1

n

∑n
i=1 ∆̂i

4: τ̂PP ← τ̂2 − ∆̂τ ▷ prediction-powered estimator
5: σ̂2

τ2 ←
1
N

∑N
i=1 (τ̂2(Xi)− τ̂2)

2 ▷ empirical variance of CATE estimation in D2

6: σ̂2
∆ ← 1

n

∑n
i=1

(
∆̂i − ∆̂τ

)2
▷ empirical variance of rectifier in D1

7: wα ← z1−α
2

√
σ̂2
∆
n

+
σ̂2
τ2
N

▷ normal approximation
Output: prediction-powered confidence interval CPP

α =
(
τ̂PP ± wα

)
E EXTENDED LITERATURE REVIEW

In this section, we present extended related work on constructing CIs for ATE with multiple datasets in more
detail.

The classical way of constructing confidence intervals by making use of one observational dataset is utilizing
the TMLE estimator and the AIPW estimator (Bang & Robins, 2005; Laan & Rubin, 2006). It is based on its
property of unbiasedness and bounded variance which provide the theoretical support for the valid CIs.

Other works about combining observational datasets to estimate ATEs (Yang & Ding, 2020; Guo et al., 2021).
However, they make assumptions that the small dataset needs to be sampled from the main observational
dataset. Also, they aim to provide a more efficient estimator of ATE but only provide a bootstrap way to
construct confidence intervals which leads to more estimation uncertainty.

Another important stream of combining multiple datasets is that Kallus et al. (2018) proposed a method that
combined the RCT dataset and observational dataset to get estimation of CATE, which could be seen as a
special case of our method in Sec.5. Although Demirel et al. (2024) also applies prediction-powered inference
but focuses on average potential outcomes and does not consider the uncertainty quantification of estimation as
we do. We show in Section B.3 that the generalization of our method to the APO.

F EXPERIMENTATION DETAILS

F.1 SYNTHETIC DATASET GENERATION

Following the setup in section 6.1, we consider the three different scenarios of confounding inD2. As shown in
the equation 6.1, a larger value of αu and a smaller value of lu implies stronger confounding components. For
scenario 1, we set αu = 0 and lu = 106 which is the scenario that is almost without confounding. For scenario
2, the αu = 0 and lu = 0.5 which means also we still do not consider the linear component of U but let the
unobserved confounder play a more important role in the exponential term. For scenario 3, we set αu = 10
and lu = 0.5 where the unobserved confounder both influences linear and exponential terms, which is the most
confounded scenario. For a more clear understanding, we conclude three kernel settings in equation 30,

kscenario1
(
(X,U) ,

(
X ′, U ′

))
=exp

[
− (X −X ′)

2× 106
− (U − U ′)

2× 106

]
,

kscenario2
(
(X,U) ,

(
X ′, U ′

))
=exp

[
− (X −X ′)

2× 106
− (U − U ′)

1

]
,

kscenario3
(
(X,U) ,

(
X ′, U ′

))
=10× UU ′ + exp

[
− (X −X ′)

2× 106
− (U − U ′)

1

]
.

(30)

Here we also need to make clear that the unobserved confounder only plays a role in the generation process of
treatment, which means it does not have a straight relationship with the divergence of mean in D2 and D1.

F.2 MEDICAL DATASET

We showcase our method on the MIMIC-III dataset (Johnson, 2016), which includes electronic health records
(EHRs) from patients admitted to intensive care units. We extract 8 confounders (heart rate, sodium, red blood
cell count, glucose, hematocrit, respiratory rate, age, gender) and a binary treatment (mechanical ventilation)
using an open-source preprocessing pipeline (Wang et al., 2020). We define the outcome variable as the red
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blood cell count after treatment. To extract features from the patient trajectories in the EHRs, we sample
random time points and average the value of each variable over the ten hours prior to the sampled time point.
All samples with missing values and outliers are removed from the dataset. Our final dataset contains 14719
samples, which we still separate dataset by the constant ratio that n/N = 1/50 and add noise on D2.

For the second semi-synthetic dataset, we consider the COVID-19 hospitalizations in Brazil across different
regions (Baqui et al., 2020). We are interested in predicting the effect of comorbidity on the mortality of
COVID-19 patients. For the environments, we use the regions of the hospitals in Brazil, which are split into
North and Central-South. As observed confounders, we include age, sex, and ethnicity. Further, we exclude
patients younger than 20 or older than 80 years. To define comorbidity as a binary variable, we define comor-
bidity as 1 if at least one of the following conditions were diagnosed for the patient: cardiovascular diseases,
asthma, diabetes, pulmonary disease, immunosuppression, obesity, liver diseases, neurological disorders, and
renal disease. We then use the same data generation process to generate Ai and Yi, while using the second
confounding scenario and keeping the ratio of sample size n/N = 1/50.

F.3 IMPLEMENTATION DETAILS

We choose DR-learner as τ̂2 in D2 with linear regression and logistic regression model as our basic model.
Also, linear regression and logistic regression model for the nuisance function regression when estimating the
τ̂AIPW. We use all default settings for those regression models and we did not perform any hyperparameter
optimization, as our method aims to provide an agnostic confidence interval applicable to all CATE estimators.
All the experiments are done by five random seeds.
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G ADDITIONAL EXPERIMENTAL RESULTS

G.1 NEURAL INSTANTIATIONS OF OUR METHOD

We follow the same experiment setting and data generation process in Section 6.1, but replace the regression
model for the nuisance regression model with a multi-layer perception (MLP) in Figure 6. Compared with the
simple linear regression, our method achieves CIs that have a shorter width (as desired). Further, the CIs from
our method consistently cover the oracle ATE, which again confirms the superiority of our method.
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Figure 6: Results for MLP as regression method.
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G.2 INSTANTIATION WITH OTHER MACHINE LEARNING MODELS

Figure 7, we follow the same data generated setting as experiments in the Figure 4 but replace the regression
method used for the nuisance parameter estimation from a linear regression to XGBoost. Again, our method is
highly effective, which demonstrates the flexibility of our method beyond a simple regression model.
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Figure 7: Results for using XGBoost as nuisance parameter regression model.
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G.3 HIGH-DIMENSIONAL COVARIATES

We repeated our experiments with more input variables to show that our method is robust in settings with high-
dimensional covariate spaces. For this, we used a data-generating mechanism similar to that in the main paper.
In Figure 8, we generate 5 covariates, x ∈ [−1, 1]5. In Figure 9, we generate 50 covariates, x ∈ [−1, 1]50.
In Figure 10, we generate 500 covariates, x ∈ [−1, 1]500. The results show that the CIs from our method
consistently cover the oracle ATE and that our method reduces the width of CIs (as desired).
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Figure 8: Results for 5 variables.
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Figure 9: Results for 50 variables.
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Figure 10: Results for 500 variables.
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G.4 STRENGTH OF DEPENDENCE

As extended experiments based on Section G.3, we simulated the x ∈ [−1, 1]4 and let x5 = 1
n

∑4
i=1 xi which

leads to the collinearity in the input space in Figure 11. Thereby, we can assess the sensitivity of our method
to a varying strength of dependence in the input space. Compared with i.i.d. high-dimensional covariates, we
notice that the dependence does not affect our method. Our method still outperforms the other baselines and
achieves the best CI width.
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Figure 11: Results for varying dependence strength in input space.
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G.5 DIFFERENT STRENGTHS OF (UN)CONFOUNDING IN D1

We aim to show the experiment setting when relaxing ‘unconfoundedness’ assumption for D1. We fixed the
confoundedness inD2 as in Scenario 2 but varied the confoundedness inD1 from Scenario 1 to 3 in Figure 12.
We noticed that, while the strength of confounding becomes larger, our method performs better. The results
again confirm and that our method performs best.
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Figure 12: Results for relaxing unconfoundedness assumptions in D1.
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G.6 ROBUSTNESS CHECK OF APPLYING OUR AIPW METHOD TO RCT+OBSERVATIONAL
DATASETS

Data: We adopt the same data-generating process as outlined in the main paper while applying our proposed
AIPW method described in Section 4 to the RCT+observational setting.

Main results: In Figure 13, we demonstrates that, when replacing the known propensity score with the esti-
mated propensity score, the performance difference is small. Both methods consistently cover the oracle ATE
(in the left figure) and show a large gain compared to the naı̈ve baseline (in the right figure).
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Figure 13: Applying our AIPW method to RCT+observational datasets.
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G.7 REFUTATION CHECK OF APPLYING THE A-TMLE METHOD TO
OBSERVATIONAL+OBSERVATIONAL DATASETS

We apply the A-TMLE method to the synthetic datasets with observational+observational data. Of note, this
violates the assumptions that underly A-TMLE, so we expect that the method leads to large errors.

In Figure 14, we notice that, while applying the A-TMLE method to the synthetic dataset, the A-TMLE per-
forms not that well. Although it constructs the short CIs, it barely covers the oracle ATE in the left figure.
In the right figure, the A-TMLE method shows the instability of the estimating process again. These findings
highlight that A-TMLE leads to CIs that are not faithful in RCT+observational settings. Again, this is expected.
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Figure 14: Applying the A-TMLE to multiple observational datasets.
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G.8 INCREASING SAMPLE SIZE IN D1

Data: To provide a more comprehensive evaluation of our method, we increased the sample size in D1 to
enable further comparisons under varying conditions. In Figure 15, the sample size in D2 is fixed at 5000
(N = 5000), while the sample size in D1 varies from 100 to 2500 across three distinct scenarios. This setup
allows us to systematically assess the performance of our method under different data regimes.

Main results: Figure 15 reveals that our method consistently outperforms the naı̈ve method across all scenarios.
Notably, as the sample size in D1 increases, the performance gap gradually narrows, indicating diminishing
returns in improvement as more data becomes available in D1. These results are expected and, therefore,
further validate the robustness of our method.
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Figure 15: Performance for an increasing sample size of D1. The figure shows the width of
the CIs averaged over five different seeds (α = 0.05). Here, we vary the size of D1 datasets given
constant sample size N (D2) from 100 to 2500. Note that τ̂AIPW (D2 only) is shown in intentionally
shown in gray: it is not faithful as seen in the left plot and therefore not a valid baseline. ⇒ Our
method continually performs better than the τ̂AIPW (D2 only).
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G.9 RMSE AND COVERAGE FOR THE EXPERIMENTS WITH SYNTHETIC DATA

In Table 2, we report the RMSE of our point estimation and the width of the CIs in Sec. 6.1.
Table 2: We report the RMSE of the ATE estimator and the width of the CIs. We use the synethic
dataset. The results for τ̂AIPW (D2 only) are shown in gray because the estimator is not faithful and
therefore also not a viable baseline. Reported is the average performance over 5 random seeds.

Dataset RMSE Width

τ̂AIPW (D1 only) 0.298/0.298/0.298 0.241/0.240/0.237
τ̂AIPW (D2 only) 0.442/0.478/0.476 0.217/0.144/0.131
τ̂PP (Ours) 0.276/0.274/0.271 0.241/0.240/0.237

Smaller is better. Best value in bold.
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H COMPARISON TO A-TMLE

In this section, we will compare our method against A-TMLE (van der Laan et al., 2024) and thereby highlight
key differences as well as why the training in A-TMLE is unstable.

About A-TMLE: A-TMLE is a method that combines two datasets to estimate the ATE and can also construct
valid confidence intervals. In van der Laan et al. (2024), the authors prove that the A-TMLE estimator is

√
n-

consistent and asymptotically normal and gives valid confidence intervals. With the help of the observational
datasets, A-TMLE achieves smaller mean-squared errors and narrower confidence intervals.

The A-TMLE method proceeds as follows. First, in A-TMLE, the author decomposed targeted ATE estimand
as the difference of (a) the pooled-ATE estimand Ψ̃ and (b) a bias estimand Ψ#, Ψ = Ψ̃ − Ψ#. At a high
level, A-TMLE constructs two separated TMLE estimators for the Ψ̃ and Ψ#. Then, A-TMLE calculates the
difference of TMLE outcomes as the targeted estimand.

More specifically, for the bias estimand Ψ#, the estimation process can be decomposed into two steps: (i) learn-
ing a parametric working model, and (ii) constructing an efficient estimator for the targeted estimands. In
the first step (i), with the ‘atmle’ R-package (Qiu et al., 2024), the method applies the highly adaptive lasso
minimum-loss estimator (HAL-MLE)(van der Laan et al., 2021) with the HAL basis functions for the semi-
parametric regression working model. Given the above definition, one can define the working-model-specific
projection parameter as

Ψ#(P ) = EpΠp(0 |W, 0)τw,n,β(P )(W, 0)− EpΠp(0 |W, 1)τw,n,β(P )(W, 1), (31)

where P denotes the distribution, W denotes the covariates. We refer to van der Laan et al. (2024) for more
details about the notation.

After that, we need the canonical gradient of the β(P )-component to construct the canonical gradient of
the working-model-specific projection parameter ΨMw,2(P ) at P . However, when calculating the canoni-
cal gradient of the β(P )-component, one of the important things to observe is that Ip = EpΠ(1 − π)(1 |
W,A)ϕϕT (W,A), which measures the variance-covariance structure across basis functions. The expression
for Ip adjusts for variability in different directions, reducing weights for directions with high variance (overrep-
resented in data) and increasing weights where variance is low (underrepresented). Hence, A-TMLE essentially
performs an adaptive weighting to make the patients in both datasets more similar for the final estimate.

The reason for why A-TMLE is unstable: The computation of Ip has an important shortcoming: When (a)
the dimension of the covariate space is low or (b) when collinearity among the covariates exists, the computation
of Ip is challenging due to the matrix inversion. Eventually, this can lead to numerical instabilities, which can
cause the entire A-TMLE method to break down.

Differences to our method: In addition to the drawbacks of A-TMLE, two key differences exist as follows:
(1) differences in ATE estimation processes and (2) differences in the flexibility of estimating τ̂2. In the follow-
ing, we discuss the differences (1) and (2) in detail:

(1) Differences in the ATE estimation process. One of the key differences between our method and A-TMLE
is that our method is based on two different ATE estimations when computing the rectifier. In our method, we
define the rectifier ∆τ as the difference of τ̂AIPW and τ̂2 on D1. Formally, we have

∆̂τ =
1

n

n∑
i=1

[
Ỹη̂(xi)− τ̂2(xi)

]
(32)

=
1

n

n∑
i=1

[(
Ai

π̂(xi)
− 1−Ai

1− π̂(xi)

)
Yi −

Ai − π̂(xi)

π̂(xi) (1− π̂(xi))
[(1− π̂(xi)) µ̂1(xi) + π̂(xi)µ̂0(xi)]− τ̂2(xi)

]
.

In contrast, A-TMLE defines the target estimand by applying a bias correction Ψ#, which can be viewed as
the expectation of a weighted combination of the conditional effect of the treatment indicators on the treatment
effect of the two treatment arms, where the weights are the probabilities of enrolling in the RCT of the two arms.
Then, the highly adaptively lasso minimum-loss estimator (HAL-MLE) is used to learn the semi-parametric
regression model.

(2) Flexibility. Another key difference is that our method is more flexible, allowing us to use any approach to
estimate τ̂2 in D2. In contrast, the process in A-TMLE is more rigid: A-TMLE constructs a TMLE for the
pooled-ATE and bias correction term estimation. This can limit the flexibility for computing τ̂2, especially
when we want to use different modeling approaches for both datasets (which is likely given that one dataset is
probably larger than the other!).

Instead, our method supports a variety of approaches, allowing end-users of our method to better adapt to the
underlying data-generating process. For example, we can use various meta-learners like the S-learner, T-learner,
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R-learner, and DR-learner, where each comes with unique strengths in practice. The S-learner, for instance,
works well when there are fewer treatment interactions, while the T-learner and R-learner handle more complex
treatment effect patterns.

Additionally, our method allows us to use pre-trained models directly (which is unlike A-TMLE!). This allows
us – in our method – to calculate the ATE from model predictions without needing to re-fit or modify the model.
Alternatively, one can even use large language models or foundation models to generate the predictions of τ̂2.
The flexibility to use various models or integrate pre-trained models makes our approach more flexible to handle
a broad variety different settings and data structures. We believe that this makes our method a powerful tool for
accurate ATE estimation in a range of applications. For example, if we are given a pre-trained machine learning
model f(x), then we have access to the predictions on D2 as f̂(x). Formally, we then yield the measure of fit
and the rectifier via

τ̂2 =
1

N

N∑
j=1

f̂(xj), (33)

∆̂τ =
1

n

n∑
i=1

[
Ỹη̂(xi)− f̂(xi)

]
=

1

n

n∑
i=1

[(
Ai

π̂(xi)
− 1−Ai

1− π̂(xi)

)
Yi (34)

− Ai − π̂(xi)

π̂(xi) (1− π̂(xi))
[(1− π̂(xi)) µ̂1(xi) + π̂(xi)µ̂0(xi)]− f̂(xj)

]
,

τ̂PP =
1

N

N∑
j=1

f̂(xj) +
1

n

n∑
i=1

[
Ỹη̂(xi)− f̂(xi)

]
. (35)

According to the central limited theorem of the predictions f(x) and the asymptotical normality of the
AIPW estimator, we can construct valid CI as we mentioned in the main paper. This means, we have

CPP
α =

(
τ̂PP ± z1−α

2

√
σ̂2
∆
n

+
σ̂2
τ2
N

)
, where σ̂2

∆ and σ̂2
τ2 are variance of the rectifier and measure of fit

respectively.
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