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ABSTRACT

Significant advances have been made in the sampling efficiency of diffusion mod-
els, driven by Consistency Distillation (CD), which trains a student model to
mimic the output of a teacher model at an earlier timestep. However, we found that
the learning complexity of the student model varies significantly across different
timesteps, leading to suboptimal performance in consistency models. To address
this issue, we propose the Curriculum Consistency Model (CCM), which stabi-
lizes and balances the learning complexity across timesteps. We define the distil-
lation process as a curriculum and introduce Peak Signal-to-Noise Ratio (PSNR)
as a metric to quantify the difficulty of each step in this curriculum. By incorpo-
rating adversarial losses, our method achieves competitive single-step sampling
Fréchet Inception Distance (FID) scores of 1.64 on CIFAR-10 and 2.18 on Im-
ageNet 64x64. Moreover, our approach generalizes well to both Flow Matching
models and diffusion models. We have extended our method to large-scale text-
to-image models, including Stable Diffusion XL and Stable Diffusion 3.

1 INTRODUCTION

The development of generative models has become a prominent research focus in the field of deep
learning. Variational autoencoders (VAEs) Kingma (2013) are preferred for their ease of training,
but they frequently experience posterior collapse during image generation, leading to blurred results.
Generative adversarial networks (GANs) Goodfellow et al. (2014), in contrast, can generate high-
quality images, but the instability of their training process remains a significant challenge. Recently,
diffusion models Ho et al. (2020),Song et al. (2020),Song et al. (2021) have received attention for
their ability to produce high-quality images, but despite this, their performance in sampling effi-
ciency is not satisfactory and often requires a lot of functional evaluation. Compared to diffusion
models, Flow Matching (FM) Lipman et al. (2023) is a simulation-free method with more determin-
istic trajectories, making it a potentially more robust and stable alternative for training generative
models. However, FM still requires multiple function evaluations to generate high-quality images.

With the introduction of the Consistency Models (CM) Song et al. (2023), researchers have shifted
their focus to distillation methods to enhance sampling efficiency. CM constrains any point on the
trajectory to the same solution by self-consistency, thus reducing the number of function evaluations.
Latent diffusion models (LCM) Rombach et al. (2022) use consistency constraints in the latent space
and extend the models to high-resolution text-to-image synthes. Consistency Trajectory Models
(CTM) Kim et al. (2023) further allows unlimited traversal along the probability flow Ordinary
Differential Equations (ODEs) between arbitrary starting and ending points during diffusion process.

As shown in Figure 1a, at timestep t (where t ∈ [0, 1), a common approach in Consistency Distilla-
tion (CD) is to encourage the student model to mimic the output of the teacher model at timestep u
(where u ∈ (t, 1]). However, we found that the learning complexity of the student model is highly
unstable across different timesteps, leading to unsatisfactory semantic structure and poor text-image
alignment in the consistency model. We analyze learning complexity in Figure 2, where we quan-
tify the learning complexity by calculating the Peak Signal-to-Noise Ratio (PSNR) between the
student and teacher outputs at different timesteps. The results indicate that the learning complexity
for student model increases gradually as t progresses from smaller values (corresponding to near-
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(a) Consistency Model (b) Curriculum Consistency Model

Figure 1: Comparison between Consistency Model (CM) and Curriculum Consistency Model
(CCM). CM encourages the student model to mimic the output of the teacher model, on this ba-
sis, CCM further guide the student model to learn at the more challenging timesteps.

pure noise) to larger values (closer to the final image). However, most studies Song et al. (2023),
Luo et al. (2023) suffer from the instability of learning complexity, as they sample uniformly along
the timesteps and use a fixed timestep size for the consistency distillation. As a result, the student
model struggles to learn effectively at the more challenging timesteps (when t→ 0), which are more
closely related to the semantic generation in the diffusion model as shown in Figure 1b.

To address these issues, we propose an adaptive training method that stabilizes and balances the
learning complexity of the model under varying noise intensities, as shown in Figure 1b. We first
measure the learnning complexity of the current training step. Then, Our approach integrates cur-
riculum learning into the distillation process to dynamicly adjust the difficulty of the learning targets.
Specifically, we use PSNR to quantify the difficulty and dynamically modify the learning objectives.
To ensure high-quality teacher outputs, we efficiently adopt a multi-step iterative generation strategy.

In summary, we propose Curriculum Consistency Model (CCM) to perform the consistency distil-
lation for the diffusion model. Our main contributions are as follows:

• We identify the instability in learning complexity during consistency distillation, which
significantly impacts text-to-image alignment and the generation of semantic structures in
diffusion models.

• We introduce PSNR to assess curriculum difficulty and design a more effective adaptive
noise schedule to maintain curriculum consistency across different training samples.

• By incorporating adversarial losses, our method achieves high-quality few-step generation.
Specifically, we obtain one-step sampling Fréchet Inception Distance (FID) scores of 1.64
on CIFAR-10 and 2.18 on ImageNet 64x64.

• We extend our method to large-scale high-resolution image generation models including
Stable Diffusion XL Podell et al. (2024) and Stable Diffusion 3 Esser et al. (2024). Our
results show that the introduction of curriculum consistency leads to lower FID, higher
CLIP scores, and significantly improved semantic understanding in the generated images.

2 PRELIMINARIES

2.1 FLOW MATCHING WITH OPTIMAL TRANSPORT

Given a data space Rd with data points x = (x1, ..., xd) ∈ Rd, we can define a time-dependent
probability density pt(x) and a vector field ut(x). The flow ψt(x), which is a time-dependent
diffeomorphic map induced by ut(x), can be derived using the ordinary differential equation (ODE):

d

dt
ψt(x) = ut(ψt(x)), ψ0(x0) = x0 (1)
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Figure 2: Learning Complexity Investigation:
Analysis of the PSNR between the student and
teacher model outputs across different timesteps
on various datasets for both Flow Matching
models and diffusion models.

Figure 3: The relationship of PSNR with dif-
ferent distillation step l. The learning complex-
ity remains consistent across various distillation
steps.

By modeling the vector field ut(x) with a neural network vt(x; θ), we obtain a Continuous Nor-
malizing Flow (CNF) that transforms a density p0 to p1 via the push-forward equation Chen et al.
(2018):

pt(x) = p0(ψ
−1
t (x))

∣∣∣∣det [∂ψ−1
t

∂x
(x)

]∣∣∣∣ (2)

A vector field ut(x) is said to generate a probability path pt(x) if its flow ψt(x) satisfies Eq.2.

Flow Matching (FM) Lipman et al. (2023) is a simulation-free method for training CNFs by regress-
ing onto a target vector field ut(x). They derive a simplified objective of Conditional Flow Matching
(CFM) with xt = ψt(x0|x1):

Et,q1(x1),pt(x|x1) ∥vt(x; θ)− ut(xt|x1)∥
2 (3)

A specific choice of pt(x|x1) is the optimal transport displacement interpolant and the corresponding
vector field is defined as:

ut(xt|x1) =
x1 − x
1− t

(4)

where xt = ψt(x0|x1) = (1 − t)x0 + tx1. This results in straight paths from x0 at t = 0 to x1 at
t = 1, known as stochastic interpolants. This approach generalizes to Gaussian conditional paths,
where pt(x|x1) = N (x|µt(x1), σt(x1)

2I), encompassing most prior diffusion models.

The objective of CD is to align the neural mapping Gθ with the true mapping G by ensuring
Gθ(xt, t, 1) ≈ G(xt, t, 1),∀t ∈ [0, 1). We train Gθ by comparing it with the numerical solution
of the pre-trained Probability Flow ODE (PF ODE) solver,

Gθ(xt, t, 1) ≈ Solver(xt, t, 1;ϕ) ≈ G(xt, t, 1) (5)

where ϕ means the teacher model. To simplify the training process, we adopt a local consistency
matching approach. Specifically, we compare the student’s prediction with the result obtained by
solving the PF ODE over the interval (t, u) using the teacher model, followed by mapping to time 1
using the target model:

Gθ(xt, t, 1) ≈ Gθ−(Solver(xt, t, u;ϕ), u, 1) (6)
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where u is randomly sampled from (t, 1), and θ− denotes the exponential moving average (EMA)
of the parameters, θ− ← stopgrad(µθ− + (1 − µ)θ). This method ensures that the student model
effectively distills information from the teacher model over the interval (t, u).

2.2 CONSISTENCY MODELS AND CONSISTENCY DISTILLATION

The inverse of the diffusion process can be represented by a deterministic Probability Flow ODE
(PF ODE) which is given by Song et al. (2021) :

dx =
[
− 1

2βσxσ −
1
2βσsθ(xσ, σ)

]
dσ (7)

where σ means signal-to-noise ratio. Consistency models aim to simplify multiple evaluations of
sθ(x, σ) by directly learning an ODE that maps any point (xσ, σ) on a trajectory to xϵ, where ϵ is a
small positive value to ensure numerical stability Song et al. (2023). The consistency function fθ is
defined as:

f : (xσ, σ) 7→ xϵ, σ ∈ [ϵ, T ] (8)
A common implementation of the consistency function involves a skip connection structure:

fθ(x, σ) = cskip,σx+ cout,σFθ(x, σ) (9)

where cskip,ϵ = 1 and cout,ϵ = 0, ensuring that f(xϵ, ϵ) = xϵ. The generation process begins by
sampling xT ∼ pT (xT ), and then directly obtaining xϵ through fθ(xT , T ). The direct optimization
objective is:

∥fθ(xσ, σ)− xϵ∥2 (10)

A practical solution is to enforce consistency between two adjacent points on the trajectory. By

discretizing the interval [ϵ, T ] intoN steps, σi =
(
ϵ1/ρ + i−1

N−1 (T
1/ρ − ϵ1/ρ)

)ρ

Karras et al. (2022),
we can approximate x̂ϕ(σn) using Euler’s method, and the resulting loss function is:

LN
CD(θ, θ

−;ϕ) = En∼U [1,N−1]

[
λ(σn)d

(
fθ(xσn+1 , σn+1), fθ−(x̂ϕ,σn , σn)

)]
(11)

where λ(σn) = 1 and d(·, ·) is a distance metrics.

3 PROBLEM ANALYSIS

In generative models based on denoising, the varying levels of noise in the input can lead to different
signal-to-noise ratios (SNR) during the denoising process, as discussed in Karras et al. (2022); Hang
et al. (2023). Consequently, at different training steps, the difficulty that generative models learn
varies, which in turn affects the model’s convergence rate and the quality of the generated results.
The core of the learning complexity lies in the magnitude of the difference between the model’s
predicted results and the ground truth. Inspired by this phenomenon, we conducted an in-depth
examination of the learning complexity during the consistent model learning process by comparing
the outputs of the student model with those of the teacher model.

In this article, we propose using Peak Signal-to-Noise Ratio (PSNR) to access learning complexity,
as PSNR is widely used to measure the difference between a denoised image and its original coun-
terpart. Specifically, given the outputs of the student model, xtarget, and those of the teacher model,
xest, PSNR is calculated using the following formula:

δ = 10 log10(
MAX2

MSE(xest, xtarget)
). (12)

A high PSNR means little difference between xtarget and xest with low learning complexity, and
vice versa.
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We conduct experiments on both diffusion-based and FM-based models (SDXL Podell et al. (2024),
SD3 Esser et al. (2024), OTCFM Tong et al. (2023)) and select 3 classic datasets (CIFAR-10, Im-
ageNet, and CC3M) covering both low and high resolutions (32x32, 64x64, and 1024x1024) to
ensure reliability and robustness. The mean and variance of PSNR between the student and teacher
model outputs on t are shown in Figure 2. We observe that the PSNR value consistently increases
as t progresses from 0 to 1, indicating a gradual reduction in the model’s learning complexity. This
aligns with our intuition: when t is near 0, the PSNR is typically around 30, as the input is heavily
mixed with noise, leading to high learning complexity. At this stage, the model is prone to confu-
sion, causing instability and slow convergence. Conversely, when t approaches 1, the PSNR usually
exceeds 50, indicating that the learning complexity is too low, resulting in reduced learning effi-
ciency. We argue that this instability and inefficiency hinder the overall learning process of the CM
model.

We further explore the effect of distillation step l = u − t, and present the results in Figure 3.
The value of l typically serves as a hyperparameter in the CM model, and greatly influences the
effectiveness of the model’s learning. In Figure 3, it can be observed that different values of l yield
consistent results across timesteps.

Can we mitigate this imbalance in learning complexity to enhance the effectiveness of CM learning?
In this paper, we attempt to present a feasible solution by proposing an adaptive method named the
Curriculum Consistency Model (CCM) which will be elaborated in the following section.

4 METHOD

4.1 CURRICULUM CONSISTENCY MODEL

Our goal is to design an algorithm that ensures a stable and balanced learning complexity for the
model under different noise intensities and at various training iterations. To achieve this, we should
see further when clear, thus, we propose the Curriculum Consistency Model (CCM). CCM incor-
porates three key designs, which are 1. A reliable metric for measuring the difficulty of learning,
2. Dynamic adjustment of learning objectives based on the difficulty of learning, and 3. Multi-step
iterative generation to ensure the quality of learning objectives.

Measuring the difficulty of learning. We directly use PSNR to measure the learning complexity
according to Eq. 12. We have shown the stability and generaliability of PSNR across different
datasets, different noise intensity and different training periods in Section 3.

Dynamic adjustment of learning objectives. In order to adjust the learning complexity, we
change the output of teacher model xtarget. At each training step, we cycle between estimating the
learning complexity and modifying u until the learning complexity exceeds a certain fixed value. At
different values of t and during various training steps, we may obtain different values of u, showing
the adaptive nature of CCM.

Multi-step iterative generation. There are various methods for generating xu. A straightforward
approach is to estimate u directly from t without regard for the magnitude of the difference between
u and t. However, CCM may select a u that is significantly greater than t to ensure a stable learning
complexity, which could lead to the teacher model making inaccurate predictions due to a large
timestep size. Consequently, this may result in the student model learning targets that are vague or
inaccurate. Therefore, we propose a multi-step iterative generation method where the teacher model
will iterate one step forward each time until the estimated model difficulty meets the requirements,
which are currently unknown.

For clarity, we have written the CCM algorithm’s procedure in pseudocode and presented it in Algo1.

4.2 IMPLEMENTATION

CCM focuses on addressing general issues in CM, thus making it applicable to a variety of common
denoising-based generative models, including diffusion and flow matching.
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Algorithm 1 PSNR-Adjusted Target Computation

1: Input: noisy input xt, timestep size s, condition c, threshold TPSNR, teacher model ϕ, target
model θ−, student model θ

2: Output: PSNR-Adjusted target xtarget
3: Sample t ∼ U(0, 1)
4: Calculate vt = Gθ(t, xt, c)
5: Calculate xest = Solver(vt, xt, t, 1)
6: repeat
7: Calculate vϕt = Gϕ(t, xt, c)
8: Update u← min(t+ s, 1)

9: Calculate xu = Solver(vϕt , xt, t, u)
10: Compute vu = Gθ−(u, xu, c)
11: Compute x̂u1 = Solver(vu, xu, u, 1)
12: Compute δ = PSNR(xest, xtarget)
13: Update t← u, xt ← xu
14: until δ < TPSNR or u == 1

CCM with diffusion models. In diffusion models, we compute the target as

LCCM(θ;ϕ) := Eσ∈[ϵ,T ]Eτ∈[ϵ,σ)Exϵ
Exσ|xϵ

[d(fθ−(Solver(xτ , τ, σ), τ ;ϕ), fθ(xσ, σ)]. (13)

CCM with flow match models. In flow matching models, we compute the target as

LCCM(θ;ϕ) := Et∈[0,1)Eu∈(t,1]Ex1
Ext|x1

[d(Gθ−(Solver(xt, t, u;ϕ), u, 1), Gθ(xt, t, 1)]. (14)

4.3 ADVERSARIAL LOSSES

In generative modeling, student models derived from distillation often produce lower-quality sam-
ples compared to their teacher models, as they rely solely on distillation losses. To improve the stu-
dent’s performance and potentially surpass the teacher in quality, we incorporate adversarial training
into our framework. Previous work, such as Esser et al. (2021) and Kim et al. (2023), has demon-
strated that combining reconstruction and adversarial losses significantly enhances image generation
quality.

Our Curriculum Consistency Model (CCM) framework integrates both PSNR-adjusted distillation
loss and adversarial losses into a unified training objective:

LGAN(θ, η) = Ex1(log dη(x1) + Et∈[0,1)Ex1Ext|x1
[log(1− dη(xest(xt, t, 1)] (15)

min
θ

max
η
L(θ, η) = LCCM(θ;ϕ) + λGANLGAN(θ, η) (16)

where dη represents the discriminator network and λGAN is an adaptive weighting. Details are in
Kim et al. (2023).

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

Datasets. For low-resolution image generation, we train models on CIFAR-10 Krizhevsky et al.
(2009) and ImageNet 64x64 Deng et al. (2009) datasets and evaluate on the same datasets. For high-
resolution image generation, we train LoRA weights Hu et al. (2022) on the CC3M Changpinyo
et al. (2021) dataset and evaluate on COCO-2017 Lin et al. (2014) with our chosen 5K split.

Models. We verify the image generation based on both flow match and diffusion models, includ-
ing Optimal Transport Conditional Flow Matching (OT-CFM) Tong et al. (2023), Stable Diffusion
3 Esser et al. (2024), and Stable Diffusion XL Podell et al. (2024). Our code implementation is
based on torchcfm and phased consistency model Wang et al. (2024).
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Evaluation Metrics. We report the FID Heusel et al. (2017) and CLIP score Radford et al. (2021)
of the generated images and the validation 5K-sample splits.

Our experimental parameters are shown in Appendix A.1.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

(a) Performance comparisons on CIFAR-10
Model Type Method NFE (↓) FID (↓)
GAN StyleGAN-XL(Sauer et al. (2022)) 1 1.85

Diffusion

DDPM(Ho et al. (2020)) 1000 3.17
DDIM(Song et al. (2020)) 100 4.16
Score SDE(Song et al. (2021)) 2000 2.20
EDM(Karras et al. (2022)) 35 2.01
2-Rectified Flow(Liu et al. (2023)) 1 4.85
CD(Song et al. (2023)) 1 3.55
CD + GAN(Lu et al. (2023)) 1 2.65
CTM(Kim et al. (2023)) 1 1.98

Flow Match
OT-CFM(Tong et al. (2023)) 100 6.29
PCM(Wang et al. (2024)) 8 1.94
CCM (ours) 1 1.64

(b) Performance comparisons on ImageNet 64×64
Model Type Method NFE (↓) FID (↓)

Diffusion
EDM(Karras et al. (2022)) 79 2.44
CD(Song et al. (2023)) 1 6.20
CTM(Kim et al. (2023)) 1 1.92

Flow Match OT-CFM(retrained) 100 5.36
CCM (ours) 1 2.18

(c) Performance comparisons on CoCo2017-5K
Base Model Method CLIP Score (↑) Resized FID (↓)

SD3

Original 28.09 99.61
LCM(Wang et al. (2024)) 32.32 35.62
PCM(Wang et al. (2024)) 32.44 33.55
CCM(ours) 32.42 32.54

SDXL

Original 30.41 70.28
Hyper-SD(Ren et al. (2024)) 32.10 30.38
PCM(Wang et al. (2024)) 32.47 29.89
CCM(ours) 32.60 28.90

Table 1: Performance comparisons on different datasets.

Based on the experimental results provided in Table 1, we conduct a performance analysis of
the Curriculum Consistency Model (CCM) compared to existing approaches. On the CIFAR-10
dataset, CCM achieves an impressive unconditional FID of 1.64 with only one function evalua-
tion (NFE=1), outperforming other methods. CCM not only surpasses these methods in sampling
efficiency but also achieves superior image quality. On the ImageNet 64×64 dataset, CCM also per-
formed strongly: CCM’s FID (NFE=1) reaches 2.18 on conditional generation, which is also com-
petitive with the mainstream generated models. The samples generated by CCM (NFE=1) trained
on CIFAR-10 and ImageNet 64x64 are shown in Figure 4. CCM show excellent acceleration that
the images generated by CCM in one step are comparable in quality to those generated by OT-CFM
in 100 steps, and at least 50x faster in inference. Additional images are provided in the appendix for
further reference A. The training cost of CCM will be discussed in ablation studies.

When scaled to large scale methods and high resolution, CCM can still maintain advantages. Ac-
cording to Table 1(c), CCM has achieved lower FID on both FM and Diffusion-based methods, even
the CLIP score on Diffusion-based methods has improved. We compare the samples generated by
different methods and find that CCM performs better semantic comprehension (Figure. 5) and struc-
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(a) OT-CFM
(NFE=1)

(b) OT-CFM
(NFE=100)

(c) CCM
(NFE=1)

(d) OT-CFM
(NFE=1)

(e) OT-CFM
(NFE=100)

(f) CCM
(NFE=1)

Figure 4: Samples generated by OT-CFM and CCM on CIFAR-10 and ImageNet 64x64.

(a) A high-quality
photo of a spaceship
that looks like the
head of a horse.

(b) an overhead view
of a pickup truck
with boxes in its
flatbed.

(c) a white flag with
a red circle next to a
solid blue flag.

(d) Photo of a T-Rex
wearing a cap sitting
at a bonfire with his
human friend.

(e) A green heart
with shadow.

Figure 5: Semantic comparison of images generated by PCM (up) and CCM (down). CCM shows
better semantic understanding and generates images that better fit the text.

tural rationality (Figure. 6). The results indicate that our method demonstrates strong generalization
capabilities.

5.3 ABLATION STUDIES

We perform thorough ablation studies to evaluate the impact of different modules in the method. All
ablation experiments are based on CIFAR-10, with adversarial training.

Static vs. Dynamic. We first compared different target selection strategies, namely static strategies
and dynamic strategies. Static strategies include varying numbers of iterative generation steps and
single-step timestep sizes s, while the dynamic strategy is CCM and inverse-CCM. From Table 2,
we can observe that CCM surpasses all other strategies. Moreover, when the number of iterative
steps increases from 1 to 3, the model’s performance improves. Similarly, increasing the distillation
step l = u− t also exhibits a similar phenomenon, but a larger number of l with less iterative steps
can be detrimental. Furthermore, we experimented with varying the timestep size in accordance
with the changes in t. Increasing l proportionally as t increases is not a good choice since it is
almost impossible to learn when both t and timestep size s are very small, which also reminds us
to balance learning complexity and model ability. A special case of the opposite is learning ground
truth directly, i.e., l = s = 1 − t, which also lags behind CCM. Last, we compare the results of
using different learning complexity metrics in dynamic methods and found that using inverse-CCM
not only performs worse than CCM, but is also inferior to some static methods.

Strategies of determining xtarget We tested various methods for determining xtarget, including
single-step iteration and multiple-steps with different timestep sizes s in Table 3. The effect of
directly generating xu from xt is poor compared to the effect of multi-step generation. This may

8
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(a) a close-up of a
blue dragonfly on a
daffodil.

(b) a cat jumping in
the air.

(c) a coffee mug
floating in the sky.

(d) a dutch baroque
painting of a horse in
a field of flowers.

(e) a kids’ book
cover with an illus-
tration of white dog
driving a red pickup
truck.

Figure 6: Structure comparison of images generated by PCM (up) and CCM (down). Both models
correctly understand the text, but the structures generated by CCM are more reasonable.

Strategy Method Steps FID (↓)

Static

l = 0.01 1 14.06
l = 0.03 1 11.38
l = 0.1 1 16.2
l = 0.06 2 10.15
l = 0.09 3 9.89

Dynamic

l = 0.1t 1 27.19
inverse-CCM - 12.66
l = 1− t 1 10.67
CCM - 9.32

Table 2: Comparison between static and
dynamic strategies. For CCM, TPSNR =
40, s = 0.03. Reverse-CCM adopts the
opposite strategy of CCM.

Method Timestep size FID (↓)
Single-step - 46.82

Multi-steps
s = 0.01 9.96
s = 0.03 9.32
s = 0.05 9.78

Table 3: Comparisons among strategies of deter-
mining xtarget, TPSNR = 40.

TPSNR FID (↓) Training Iteration
(hour/100K) (FID=12)

- 11.84 10.45 80K
35 10.26 20.97 25K
40 9.32 18.81 32K
45 9.95 18.19 35K

Table 4: The choice of TPSNR, s = 0.03.

be because the quality of the directly generated xu is relatively low, which affects the effectiveness
of CM learning. We also found that after using CCM, the model is no longer sensitive to timestep
sizes, with s = 0.03 slightly outperforming other choices.

The choice of TPSNR. Different PSNR values determine the dynamically selected number of iter-
ative steps during the training process, which is a hyperparameter in the methods presented in this
paper. We conducted experiments with different values of TPSNR, as shown in Table 4. It can be
observed that the FID results first decrease and then increase as the threshold value increases. How-
ever, within the range of 35-45, the results are better than the baseline, indicating that our method
is not very sensitive to PSNR. Moreover, although CCM will lead to an increase in the time of a
single iteration, the convergence rate is accelerated at the same time. Based on the same FID, the
CCM method accelerates by about 20% on average and achieves a lower FID, bringing significant
benefits.

Effect of GAN loss. It can be seen from Figure 7 that either in vanilla distillation or in CCM, FID
decreases significantly benefit from the ground truth indirectly introduced by adversarial training.
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Figure 7: The effect of adversarial loss.

6 RELATED WORKS

Diffusion model (DM). DMs have become a leading approach in high-fidelity image generation
Rombach et al. (2022). Recent work focuses on improving sample quality Ho et al. (2020), opti-
mizing density estimation Song et al. (2021), and accelerating the sampling process. Some studies
explore the underlying mechanisms and design space of DMs, while others scale up DMs for text-
conditioned image synthesis Podell et al. (2024) or improve sampling efficiency through methods in
the latent spaceSong et al. (2020).

Consistency models (CM) The consistency model Song et al. (2023) represents a new family of
generative models that can be trained either via distillation or without teacher models, often surpass-
ing diffusion models in performance. The Consistency Trajectory Model (CTM) Kim et al. (2023)
innovatively introduces trajectory consistency, offering a flexible framework for training. Recent
multistep consistency models propose splitting ODE trajectories for improved consistency learning
Wang et al. (2024).

Flow Matching (FM) Flow Matching (FM) learns a vector field that generates an ODE for a desired
probability path, without requiring computationally intensive simulations Lipman et al. (2023). This
flexibility has led to various efforts to improve trajectory properties, particularly straightness, which
enables efficient simulation with fewer steps. Methods like Multisample FM Pooladian et al. (2023)
and Minibatch OT Tong et al. (2023) aim to straighten trajectories through optimal transport plans,
but these approaches are computationally prohibitive. Rectified Flow Liu et al. (2022) and Optimal
FM offer alternatives.

7 CONCLUSION

In this article, we introduce the use of PSNR to measure the difficulty in the CM learning process and
have discovered that the distribution of difficulty is highly imbalanced under different noise intensi-
ties. To alleviate this issue, we propose Curriculum Consistency Model (CCM), an efficient method
for training models based on Neural Ordinary Differential Equations (ODEs). We design an adap-
tive noise schedule to maintain the consistency of curriculum difficulty and verify the rationality and
validity of the design. By incorporating adversarial losses, our method achieves comparable single-
step sampling Fréchet Inception Distance (FID) results on CIFAR-10 (1.64) and ImageNet64x64
(2.18). More importantly, our approach is not limited to FM, it works on diffusion models as well
and we have successfully extended the proposed method to large-scale models, such as Stable Dif-
fusion XL and Stable Diffusion 3. We hope that our paper will inspire greater attention to the issue
of difficulty in the CM learning process and attract more researchers to engage in related research
questions, such as dynamic PSNR thresholds, sampling probabilities of t, and so on.
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