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ABSTRACT

Significant advances have been made in the sampling efficiency of diffusion mod-
els, driven by Consistency Distillation (CD), which trains a student model to
mimic the output of a teacher model at an earlier timestep. However, we found that
the learning complexity of the student model varies significantly across different
timesteps, leading to suboptimal performance in consistency models. To address
this issue, we propose the Curriculum Consistency Model (CCM), which stabi-
lizes and balances the learning complexity across timesteps. We define the distil-
lation process as a curriculum and introduce Peak Signal-to-Noise Ratio (PSNR)
as a metric to quantify the difficulty of each step in this curriculum. By incorpo-
rating adversarial losses, our method achieves competitive single-step sampling
Fréchet Inception Distance (FID) scores of 1.64 on CIFAR-10 and 2.18 on Im-
ageNet 64x64. Moreover, our approach generalizes well to both Flow Matching
models and diffusion models. We have extended our method to large-scale text-
to-image models, including Stable Diffusion XL and Stable Diffusion 3.

1 INTRODUCTION

The development of generative models has become a prominent research focus in the field of deep
learning. Variational autoencoders (VAEs) Kingmal (2013) are preferred for their ease of training,
but they frequently experience posterior collapse during image generation, leading to blurred results.
Generative adversarial networks (GANs) |Goodfellow et al.| (2014)), in contrast, can generate high-
quality images, but the instability of their training process remains a significant challenge. Recently,
diffusion models |Ho et al.[ (2020).,Song et al.| (2020),Song et al.| (2021) have received attention for
their ability to produce high-quality images, but despite this, their performance in sampling effi-
ciency is not satisfactory and often requires a lot of functional evaluation. Compared to diffusion
models, Flow Matching (FM)|Lipman et al.| (2023) is a simulation-free method with more determin-
istic trajectories, making it a potentially more robust and stable alternative for training generative
models. However, FM still requires multiple function evaluations to generate high-quality images.

With the introduction of the Consistency Models (CM) Song et al.[(2023)), researchers have shifted
their focus to distillation methods to enhance sampling efficiency. CM constrains any point on the
trajectory to the same solution by self-consistency, thus reducing the number of function evaluations.
Latent diffusion models (LCM) Rombach et al.|(2022) use consistency constraints in the latent space
and extend the models to high-resolution text-to-image synthes. Consistency Trajectory Models
(CTM) Kim et al| (2023) further allows unlimited traversal along the probability flow Ordinary
Differential Equations (ODEs) between arbitrary starting and ending points during diffusion process.

As shown in Figure at timestep ¢ (where ¢ € [0, 1), a common approach in Consistency Distilla-
tion (CD) is to encourage the student model to mimic the output of the teacher model at timestep
(where u € (t, 1]). However, we found that the learning complexity of the student model is highly
unstable across different timesteps, leading to unsatisfactory semantic structure and poor text-image
alignment in the consistency model. We analyze learning complexity in Figure 2| where we quan-
tify the learning complexity by calculating the Peak Signal-to-Noise Ratio (PSNR) between the
student and teacher outputs at different timesteps. The results indicate that the learning complexity
for student model increases gradually as ¢ progresses from smaller values (corresponding to near-
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Figure 1: Comparison between Consistency Model (CM) and Curriculum Consistency Model
(CCM). CM encourages the student model to mimic the output of the teacher model, on this ba-
sis, CCM further guide the student model to learn at the more challenging timesteps.

pure noise) to larger values (closer to the final image). However, most studies [Song et al.| (2023),
Luo et al|(2023) suffer from the instability of learning complexity, as they sample uniformly along
the timesteps and use a fixed timestep size for the consistency distillation. As a result, the student
model struggles to learn effectively at the more challenging timesteps (when ¢ — 0), which are more
closely related to the semantic generation in the diffusion model as shown in Figure [Ib]

To address these issues, we propose an adaptive training method that stabilizes and balances the
learning complexity of the model under varying noise intensities, as shown in Figure We first
measure the learnning complexity of the current training step. Then, Our approach integrates cur-
riculum learning into the distillation process to dynamicly adjust the difficulty of the learning targets.
Specifically, we use PSNR to quantify the difficulty and dynamically modify the learning objectives.
To ensure high-quality teacher outputs, we efficiently adopt a multi-step iterative generation strategy.

In summary, we propose Curriculum Consistency Model (CCM) to perform the consistency distil-
lation for the diffusion model. Our main contributions are as follows:

* We identify the instability in learning complexity during consistency distillation, which
significantly impacts text-to-image alignment and the generation of semantic structures in
diffusion models.

* We introduce PSNR to assess curriculum difficulty and design a more effective adaptive
noise schedule to maintain curriculum consistency across different training samples.

* By incorporating adversarial losses, our method achieves high-quality few-step generation.
Specifically, we obtain one-step sampling Fréchet Inception Distance (FID) scores of 1.64
on CIFAR-10 and 2.18 on ImageNet 64x64.

* We extend our method to large-scale high-resolution image generation models including
Stable Diffusion XL [Podell et al.| (2024) and Stable Diffusion 3 [Esser et al.| (2024). Our
results show that the introduction of curriculum consistency leads to lower FID, higher
CLIP scores, and significantly improved semantic understanding in the generated images.

2 PRELIMINARIES

2.1 FLOW MATCHING WITH OPTIMAL TRANSPORT

Given a data space R? with data points z = (2!, ...,2) € R? we can define a time-dependent
probability density p;(x) and a vector field u;(x). The flow ;(z), which is a time-dependent
diffeomorphic map induced by u; (), can be derived using the ordinary differential equation (ODE):

d

WM) = uw(Pe()),  Yo(w0) = z0 ¢))
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Figure 2: Learning Complexity Investigation:  Figure 3: The relationship of PSNR with dif-
Analysis of the PSNR between the student and  ferent distillation step /. The learning complex-
teacher model outputs across different timesteps ity remains consistent across various distillation
on various datasets for both Flow Matching  steps.

models and diffusion models.

By modeling the vector field u;(x) with a neural network v;(z; 8), we obtain a Continuous Nor-
malizing Flow (CNF) that transforms a density pg to p; via the push-forward equation |Chen et al.
(2018):

pue) = oo ) | 22| @

A vector field u; () is said to generate a probability path p; () if its flow 1 (z) satisfies Eq[2]

Flow Matching (FM) Lipman et al.|(2023) is a simulation-free method for training CNFs by regress-
ing onto a target vector field u;(x). They derive a simplified objective of Conditional Flow Matching
(CFM) with 2y = ¢ (zo|z1):

2
Et g1 (21),p: (a]r) 10e(250) — wg(@e|z1) | 3)

A specific choice of p;(x|z1) is the optimal transport displacement interpolant and the corresponding
vector field is defined as:

r1 — T
1-t¢

“4)

ug(xe|z) =

where x; = ¥i(zg|z1) = (1 — t)xo + tz1. This results in straight paths from z at t = 0 to x; at
t = 1, known as stochastic interpolants. This approach generalizes to Gaussian conditional paths,
where p;(z|x1) = N (z|p(21), o1 (21)?]), encompassing most prior diffusion models.

The objective of CD is to align the neural mapping Gy with the true mapping G by ensuring
Go(zy,t,1) =~ G(ay,t,1),Vt € [0,1). We train G by comparing it with the numerical solution
of the pre-trained Probability Flow ODE (PF ODE) solver,

Go(xy,t,1) = Solver(zy, t, 1; ¢) = G(x,t,1) (5)

where ¢ means the teacher model. To simplify the training process, we adopt a local consistency
matching approach. Specifically, we compare the student’s prediction with the result obtained by
solving the PF ODE over the interval (¢, «) using the teacher model, followed by mapping to time 1
using the target model:

G@(J:t,t, 1) ~ G(’* (Solver(xt,t,u;gb),u,l) (6)
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where u is randomly sampled from (¢, 1), and #~ denotes the exponential moving average (EMA)
of the parameters, 6~ <+ stopgrad(u0~ 4+ (1 — p)d). This method ensures that the student model
effectively distills information from the teacher model over the interval (¢, u).

2.2 CONSISTENCY MODELS AND CONSISTENCY DISTILLATION

The inverse of the diffusion process can be represented by a deterministic Probability Flow ODE
(PF ODE) which is given by Song et al.| (2021)) :

dr = [7%6‘7$U - %ﬂUSO(m(nU)] do (7)

where o means signal-to-noise ratio. Consistency models aim to simplify multiple evaluations of
s¢(x, o) by directly learning an ODE that maps any point (z,, o) on a trajectory to x., where € is a
small positive value to ensure numerical stability |[Song et al.|(2023)). The consistency function fj is
defined as:

fi(xg,0) = xc,0 € [e,T) (8)
A common implementation of the consistency function involves a skip connection structure:

fG (xa U) = Cskip,o L + Cout,a'FG (fﬂ, U) (9)

where cgip,e = 1 and cou,e = 0, ensuring that f (ze,€) = x.. The generation process begins by
sampling z7 ~ pr(xr), and then directly obtaining z. through fy(z7,T'). The direct optimization
objective is:

1 fo(zey0) — || (10)

A practical solution is to enforce consistency between two adjacent points on the trajectory. By
‘ p
discretizing the interval [e, T'| into N steps, o; = (61/” + =L (Tt/e — el/p)) Karras et al.|(2022),

we can approximate Z, (o, ) using Euler’s method, and the resulting loss function is:

‘CgD(ev 6_§ (b) = EnNL{[l,Nfl] [/\(Un)d (fﬁ(xanJrl ’ Un+1)a f@* ('/iaqﬁ,an ; Un))} (1m)

where A(0,,) = 1 and d(-, -) is a distance metrics.

3 PROBLEM ANALYSIS

In generative models based on denoising, the varying levels of noise in the input can lead to different
signal-to-noise ratios (SNR) during the denoising process, as discussed in |Karras et al.|(2022); Hang
et al.| (2023). Consequently, at different training steps, the difficulty that generative models learn
varies, which in turn affects the model’s convergence rate and the quality of the generated results.
The core of the learning complexity lies in the magnitude of the difference between the model’s
predicted results and the ground truth. Inspired by this phenomenon, we conducted an in-depth
examination of the learning complexity during the consistent model learning process by comparing
the outputs of the student model with those of the teacher model.

In this article, we propose using Peak Signal-to-Noise Ratio (PSNR) to access learning complexity,
as PSNR is widely used to measure the difference between a denoised image and its original coun-
terpart. Specifically, given the outputs of the student model, Zyarget, and those of the teacher model,
Test, PSNR is calculated using the following formula:

MAX?
MSE(xest; xtarget) '

A high PSNR means little difference between Tiarger and es; With low learning complexity, and
vice versa.

d = 101log,(

(12)
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We conduct experiments on both diffusion-based and FM-based models (SDXL Podell et al.| (2024)),
SD3 [Esser et al.|(2024), OTCFM [Tong et al.| (2023)) and select 3 classic datasets (CIFAR-10, Im-
ageNet, and CC3M) covering both low and high resolutions (32x32, 64x64, and 1024x1024) to
ensure reliability and robustness. The mean and variance of PSNR between the student and teacher
model outputs on ¢ are shown in Figure 2l We observe that the PSNR value consistently increases
as t progresses from O to 1, indicating a gradual reduction in the model’s learning complexity. This
aligns with our intuition: when t is near 0, the PSNR is typically around 30, as the input is heavily
mixed with noise, leading to high learning complexity. At this stage, the model is prone to confu-
sion, causing instability and slow convergence. Conversely, when ¢ approaches 1, the PSNR usually
exceeds 50, indicating that the learning complexity is too low, resulting in reduced learning effi-
ciency. We argue that this instability and inefficiency hinder the overall learning process of the CM
model.

We further explore the effect of distillation step [ = u — ¢, and present the results in Figure
The value of [ typically serves as a hyperparameter in the CM model, and greatly influences the
effectiveness of the model’s learning. In Figure|3| it can be observed that different values of [ yield
consistent results across timesteps.

Can we mitigate this imbalance in learning complexity to enhance the effectiveness of CM learning?
In this paper, we attempt to present a feasible solution by proposing an adaptive method named the
Curriculum Consistency Model (CCM) which will be elaborated in the following section.

4 METHOD

4.1 CURRICULUM CONSISTENCY MODEL

Our goal is to design an algorithm that ensures a stable and balanced learning complexity for the
model under different noise intensities and at various training iterations. To achieve this, we should
see further when clear, thus, we propose the Curriculum Consistency Model (CCM). CCM incor-
porates three key designs, which are 1. A reliable metric for measuring the difficulty of learning,
2. Dynamic adjustment of learning objectives based on the difficulty of learning, and 3. Multi-step
iterative generation to ensure the quality of learning objectives.

Measuring the difficulty of learning. We directly use PSNR to measure the learning complexity
according to Eq. [I2] We have shown the stability and generaliability of PSNR across different
datasets, different noise intensity and different training periods in Section 3.

Dynamic adjustment of learning objectives. In order to adjust the learning complexity, we
change the output of teacher model Z,,4c¢. At €ach training step, we cycle between estimating the
learning complexity and modifying « until the learning complexity exceeds a certain fixed value. At
different values of ¢ and during various training steps, we may obtain different values of u, showing
the adaptive nature of CCM.

Multi-step iterative generation. There are various methods for generating x,,. A straightforward
approach is to estimate wu directly from ¢ without regard for the magnitude of the difference between
u and t. However, CCM may select a v that is significantly greater than ¢ to ensure a stable learning
complexity, which could lead to the teacher model making inaccurate predictions due to a large
timestep size. Consequently, this may result in the student model learning targets that are vague or
inaccurate. Therefore, we propose a multi-step iterative generation method where the teacher model
will iterate one step forward each time until the estimated model difficulty meets the requirements,
which are currently unknown.

For clarity, we have written the CCM algorithm’s procedure in pseudocode and presented it in AlgdT]
4.2 IMPLEMENTATION

CCM focuses on addressing general issues in CM, thus making it applicable to a variety of common
denoising-based generative models, including diffusion and flow matching.
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Algorithm 1 PSNR-Adjusted Target Computation

1: Input: noisy input x;, timestep size s, condition ¢, threshold Tpsng, teacher model ¢, target
model 6, student model 6

2: Output: PSNR-Adjusted target et

3: Sample t ~ 1(0,1)

4: Calculate v; = Gy(t, x4, ¢)

5: Calculate xey = Solver(vy, x4, t, 1)

6: repeat

7. Calculate v = Gy(t, x4, ¢)

8:  Update u + min(¢ + s,1)

9:  Calculate 2, = Solver(v{, z,t, u)

10:  Compute v, = Gg- (u, Ty, C)

11:  Compute &% = Solver(vy, @, u, 1)

12:  Compute 6 = PSNR(Zest, Trarget)

13:  Update t < u, Ty < xy,

14: until § < Tpsnr Or u == 1

CCM with diffusion models. In diffusion models, we compute the target as
‘CCCM (9, ¢) = EO’G[E,T]ETE[E,O’)E(ESEIU|QJ€ [d(f()* (SOIVCI‘(J?T, T, 0'), 75 ¢)a fa (l‘g, U)] (13)

CCM with flow match models. In flow matching models, we compute the target as

Locm (9; @) = Ete[o,l)Eue(t,l]ExlEmt|m1 [d(G@— (SOlVeI‘(,Tt, t,u; (;5), u,1), Gy (CL‘t, t, 1)] (14)

4.3 ADVERSARIAL LOSSES

In generative modeling, student models derived from distillation often produce lower-quality sam-
ples compared to their teacher models, as they rely solely on distillation losses. To improve the stu-
dent’s performance and potentially surpass the teacher in quality, we incorporate adversarial training
into our framework. Previous work, such as [Esser et al.| (2021 and [Kim et al.| (2023)), has demon-
strated that combining reconstruction and adversarial losses significantly enhances image generation
quality.

Our Curriculum Consistency Model (CCM) framework integrates both PSNR-adjusted distillation
loss and adversarial losses into a unified training objective:

£GAN(97 77) = El‘l (lOg dn (xl) + Ete[o,l)Ea’lErt\ml [10g(1 - dn (xest (xt7 t, 1)] (15)
min max L(0,n) = Lcem(0;¢) + AaanLaan(0,1) (16)

where d,, represents the discriminator network and Agan is an adaptive weighting. Details are in
Kim et al.| (2023).

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

Datasets. For low-resolution image generation, we train models on CIFAR-10 [Krizhevsky et al.
(2009) and ImageNet 64x64 |Deng et al.|(2009) datasets and evaluate on the same datasets. For high-
resolution image generation, we train LoRA weights Hu et al.[ (2022) on the CC3M |Changpinyo
et al.|(2021) dataset and evaluate on COCO-2017 [Lin et al.|(2014)) with our chosen 5K split.

Models. We verify the image generation based on both flow match and diffusion models, includ-
ing Optimal Transport Conditional Flow Matching (OT-CFM) [Tong et al.| (2023)), Stable Diffusion
3 [Esser et al.| (2024)), and Stable Diffusion XL [Podell et al.| (2024). Our code implementation is
based on torchcfm and phased consistency model Wang et al.| (2024)).
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Evaluation Metrics. We report the FID Heusel et al.| (2017)) and CLIP score Radford et al.| (2021)
of the generated images and the validation SK-sample splits.

Our experimental parameters are shown in Appendix [A.T]

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

(a) Performance comparisons on CIFAR-10

Model Type | Method NFE (J) FID ()
GAN StyleGAN-XL(Sauer et al [(2022)) 1 1.85
DDPM(Ho et al[(2020)) 1000 3.17
DDIM(Song et al.[(2020)) 100 4.16
Score SDE(Song et al.|(2021)) 2000 2.20
Diffusion EDM(Karras et al.[(2022))) 35 2.01
2-Rectified Flow(Liu et al.[(2023)) 1 4385
CD(Song et al.|(2023)) 1 3.55
CD + GAN(Lu et al.[(2023)) 1 265
CTM(Kim et al.[(2023)) 1 1.98
OT-CFM(Tong et al.| (2023))) 100  6.29
Flow Match | PCM(Wang et al.|(2024)) 8 194
CCM (ours) 1 1.64
(b) Performance comparisons on ImageNet 64x64
Model Type | Method NFE () FID (])
EDM(Karras et al.{(2022)) 79 2.44
Diffusion CD(Song et al.| (2023)) 1 6.20
CTM(Kim et al.[(2023)) 1 1.92
OT-CFM(retrained) 100 5.36
Flow Match | oo (ours) I 2.18

(c) Performance comparisons on CoC02017-5K

Base Model | Method CLIP Score (1) Resized FID (|)
Original 28.09 99.61

SD3 LCM(Wang et al.|(2024)) 32.32 35.62
PCM(Wang et al|(2024)) 32.44 33.55
CCM(ours) 32.42 32.54
Original 30.41 70.28

SDXL Hyper-SD(Ren et al.|(2024)) 32.10 30.38
PCM(Wang et al.[(2024)) 32.47 29.89
CCM(ours) 32.60 28.90

Table 1: Performance comparisons on different datasets.

Based on the experimental results provided in Table [, we conduct a performance analysis of
the Curriculum Consistency Model (CCM) compared to existing approaches. On the CIFAR-10
dataset, CCM achieves an impressive unconditional FID of 1.64 with only one function evalua-
tion (NFE=1), outperforming other methods. CCM not only surpasses these methods in sampling
efficiency but also achieves superior image quality. On the ImageNet 64x64 dataset, CCM also per-
formed strongly: CCM’s FID (NFE=1) reaches 2.18 on conditional generation, which is also com-
petitive with the mainstream generated models. The samples generated by CCM (NFE=1) trained
on CIFAR-10 and ImageNet 64x64 are shown in Figure [d CCM show excellent acceleration that
the images generated by CCM in one step are comparable in quality to those generated by OT-CFM
in 100 steps, and at least 50x faster in inference. Additional images are provided in the appendix for
further reference [A] The training cost of CCM will be discussed in ablation studies.

When scaled to large scale methods and high resolution, CCM can still maintain advantages. Ac-
cording to Table Ekc), CCM has achieved lower FID on both FM and Diffusion-based methods, even
the CLIP score on Diffusion-based methods has improved. We compare the samples generated by
different methods and find that CCM performs better semantic comprehension (Figure. [5) and struc-
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Figure 4: Samples generated by OT-CFM and CCM on CIFAR-10 and ImageNet 64x64.

(a) A high-quality (b) an overhead view (c) a white flag with (d) Photo of a T-Rex (e) A green heart
photo of a spaceship of a pickup truck a red circle next to a wearing a cap sitting with shadow.

that looks like the with boxes in its solid blue flag. at a bonfire with his

head of a horse. flatbed. human friend.

Figure 5: Semantic comparison of images generated by PCM (up) and CCM (down). CCM shows
better semantic understanding and generates images that better fit the text.

tural rationality (Figure. [f). The results indicate that our method demonstrates strong generalization
capabilities.

5.3 ABLATION STUDIES

We perform thorough ablation studies to evaluate the impact of different modules in the method. All
ablation experiments are based on CIFAR-10, with adversarial training.

Static vs. Dynamic. We first compared different target selection strategies, namely static strategies
and dynamic strategies. Static strategies include varying numbers of iterative generation steps and
single-step timestep sizes s, while the dynamic strategy is CCM and inverse-CCM. From Table 2]
we can observe that CCM surpasses all other strategies. Moreover, when the number of iterative
steps increases from 1 to 3, the model’s performance improves. Similarly, increasing the distillation
step [ = u — t also exhibits a similar phenomenon, but a larger number of | with less iterative steps
can be detrimental. Furthermore, we experimented with varying the timestep size in accordance
with the changes in ¢. Increasing ! proportionally as ¢ increases is not a good choice since it is
almost impossible to learn when both ¢ and timestep size s are very small, which also reminds us
to balance learning complexity and model ability. A special case of the opposite is learning ground
truth directly, i.e., [ = s = 1 — ¢, which also lags behind CCM. Last, we compare the results of
using different learning complexity metrics in dynamic methods and found that using inverse-CCM
not only performs worse than CCM, but is also inferior to some static methods.

Strategies of determining Ti,g¢ We tested various methods for determining e, including
single-step iteration and multiple-steps with different timestep sizes s in Table [J] The effect of
directly generating x,, from x; is poor compared to the effect of multi-step generation. This may
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daffodil. a field of flowers. tration of white dog
driving a red pickup
truck.

Figure 6: Structure comparison of images generated by PCM (up) and CCM (down). Both models
correctly understand the text, but the structures generated by CCM are more reasonable.

Strategy | Method Steps FID (}) g;;?;gtep Tlmest_ep size Z‘él; 2(¢)
[=0.01 1 14.06 S=001 9 9'6
. [=0.03 ! 11.38 Multi-steps s =0.03 9.32
Static =01 1 16.2 s —0.05 978
1 =0.06 2 10.15 — :
; i 0'(1)9 ? 38? Table 3: Comparisons among strategies of deter-
i CCM - 1y Minng T Thswe = 40
Dynamic I—1_1¢ 1 1 O. 67 T FID ()) Training Iteration
CCM ) 9.32 PSNR (hour/100K) (FID=12)
: - 11.84 10.45 80K
Table 2: Comparison between static and ‘3“5) 50'36 2097 25K
dynamic strategies. For CCM, Tpsng = 3 18.81 32K
40, s = 0.03. Reverse-CCM adopts the 45 9.95 18.19 35K

opposite strategy of CCM. Table 4: The choice of Tpsxg, s = 0.03.

be because the quality of the directly generated x,, is relatively low, which affects the effectiveness
of CM learning. We also found that after using CCM, the model is no longer sensitive to timestep
sizes, with s = 0.03 slightly outperforming other choices.

The choice of Tpsng. Different PSNR values determine the dynamically selected number of iter-
ative steps during the training process, which is a hyperparameter in the methods presented in this
paper. We conducted experiments with different values of Tpsng, as shown in Table El It can be
observed that the FID results first decrease and then increase as the threshold value increases. How-
ever, within the range of 35-45, the results are better than the baseline, indicating that our method
is not very sensitive to PSNR. Moreover, although CCM will lead to an increase in the time of a
single iteration, the convergence rate is accelerated at the same time. Based on the same FID, the
CCM method accelerates by about 20% on average and achieves a lower FID, bringing significant
benefits.

Effect of GAN loss. It can be seen from Figuremthat either in vanilla distillation or in CCM, FID
decreases significantly benefit from the ground truth indirectly introduced by adversarial training.



Under review as a conference paper at ICLR 2025

—— CD
CD+GAN

— CCM

—— CCM+GAN

50000 100000 150000 200000 250000
training steps

Figure 7: The effect of adversarial loss.

6 RELATED WORKS

Diffusion model (DM). DMs have become a leading approach in high-fidelity image generation
Rombach et al.| (2022). Recent work focuses on improving sample quality Ho et al.[ (2020), opti-
mizing density estimation Song et al.|(2021)), and accelerating the sampling process. Some studies
explore the underlying mechanisms and design space of DMs, while others scale up DMs for text-
conditioned image synthesis Podell et al.|(2024) or improve sampling efficiency through methods in
the latent spaceSong et al.| (2020).

Consistency models (CM) The consistency model [Song et al.| (2023) represents a new family of
generative models that can be trained either via distillation or without teacher models, often surpass-
ing diffusion models in performance. The Consistency Trajectory Model (CTM) Kim et al.| (2023)
innovatively introduces trajectory consistency, offering a flexible framework for training. Recent
multistep consistency models propose splitting ODE trajectories for improved consistency learning
Wang et al.| (2024).

Flow Matching (FM) Flow Matching (FM) learns a vector field that generates an ODE for a desired
probability path, without requiring computationally intensive simulations Lipman et al.[(2023). This
flexibility has led to various efforts to improve trajectory properties, particularly straightness, which
enables efficient simulation with fewer steps. Methods like Multisample FM Pooladian et al.|(2023))
and Minibatch OT [Tong et al.| (2023 aim to straighten trajectories through optimal transport plans,
but these approaches are computationally prohibitive. Rectified Flow [Liu et al.|(2022)) and Optimal
FM offer alternatives.

7 CONCLUSION

In this article, we introduce the use of PSNR to measure the difficulty in the CM learning process and
have discovered that the distribution of difficulty is highly imbalanced under different noise intensi-
ties. To alleviate this issue, we propose Curriculum Consistency Model (CCM), an efficient method
for training models based on Neural Ordinary Differential Equations (ODEs). We design an adap-
tive noise schedule to maintain the consistency of curriculum difficulty and verify the rationality and
validity of the design. By incorporating adversarial losses, our method achieves comparable single-
step sampling Fréchet Inception Distance (FID) results on CIFAR-10 (1.64) and ImageNet64x64
(2.18). More importantly, our approach is not limited to FM, it works on diffusion models as well
and we have successfully extended the proposed method to large-scale models, such as Stable Dif-
fusion XL and Stable Diffusion 3. We hope that our paper will inspire greater attention to the issue
of difficulty in the CM learning process and attract more researchers to engage in related research
questions, such as dynamic PSNR thresholds, sampling probabilities of ¢, and so on.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 3558-3568, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873-12883, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and
Baining Guo. Efficient diffusion training via min-snr weighting strategy. arXiv preprint
arXiv:2303.09556, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. Advances in neural information processing systems, 2023.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740-755. Springer, 2014.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In International Conference on Learning Representations, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

11



Under review as a conference paper at ICLR 2025

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023.

Haoye Lu, Yiwei Lu, Dihong Jiang, Spencer Ryan Szabados, Sun Sun, and Yaoliang Yu. Cm-gan:
Stabilizing gan training with consistency models. In ICML 2023 Workshop, 2023.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In International Conference on Learning Representations, 2024.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch cou-
plings. arXiv preprint arXiv:2304.14772, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.

8748-8763. PMLR, 2021.

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng Xiao.
Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. arXiv preprint
arXiv:2404.13686, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1-10, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211-32252. PMLR, 2023.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2023.

Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, Hongsheng Li, and Xiaogang
Wang. Phased consistency model, 2024.

12



	Introduction
	Preliminaries
	Flow Matching with Optimal Transport
	Consistency Models and Consistency Distillation

	Problem Analysis
	Method
	Curriculum Consistency Model
	Implementation
	Adversarial Losses

	Experiments
	Experimental Details
	Experimental Results and Analysis
	Ablation Studies

	Related Works
	Conclusion
	Appendix
	Experimental Hyperparameters
	More Samples


