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Abstract

To manage and optimize constantly evolving wire-
less networks, existing machine learning (ML)-
based studies operate as black-box models, lead-
ing to increased computational costs during train-
ing and a lack of transparency in decision-making,
which limits their practical applicability in wire-
less networks. Motivated by recent advancements
in large language model (LLM)-enabled wireless
networks, this paper proposes ProWin, a novel
framework that leverages reinforced in-context
learning to design task-specific demonstration
Prompts for Wireless Network optimization, re-
lying on the inference capabilities of LLMs with-
out the need for dedicated model training or fine-
tuning. The task-specific prompts are designed
to incorporate natural language descriptions of
the task description and formulation, enhancing
interpretability and eliminating the need for spe-
cialized expertise in network optimization. We
further propose a reinforced in-context learning
scheme that incorporates a set of advisable exam-
ples into task-specific prompts, wherein informa-
tive examples capturing historical environment
states and decisions are adaptively selected to
guide current decision-making. Evaluations on
a case study of base station power control show-
cases that the proposed ProWin outperforms re-
inforcement learning (RL)-based methods, high-
lighting the potential for next-generation future
wireless network optimization.

1. Introduction

The envisioned 6G network is expected to become increas-
ingly complex, encompassing diverse application scenarios
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and advanced signal processing techniques such as mmWave
and THz networks, reconfigurable intelligent surfaces, near-
field communications, and movable antennas, among oth-
ers (Zhang et al.). To optimize such constantly evolving
networks, convex optimization-based methods commonly
formulate a dedicated problem for each specific task and
transform the objective functions or constraints into a con-
vex form (Liu et al., 2024). On the other hand, although ma-
chine learning (ML)-based methods, such as reinforcement
learning (Zhou et al., 2023; Burkart & Huber, 2021), require
less stringent problem formulations and exhibit impressive
performance across diverse tasks, the tedious model training
and fine-tuning demand extensive computational resources,
making them impractical for wireless networks, particu-
larly in resource-constrained environments. Additionally,
existing ML-based methods operate as black boxes, lack-
ing interpretability and transparency in the decision-making
process, which poses challenges in wireless network-related
applications. Hence, the above challenges, including re-
dundant problem formulation, computationally intensive
demands, and lack of transparency, are calling for more
advanced methods to optimize and manage next-generation
wireless networks.

Generative Al (GenAl), particularly large language mod-
els (LLMs), has recently attracted considerable attention in
the field of natural language processing, offering promis-
ing opportunities to develop LLM-enabled wireless net-
works across diverse tasks, including edge intelligence (Lin
et al., 2023), semantic communication (Park et al., 2024,
Chen et al., 2024), and network design (Qiu et al., 2024),
among others. Specifically, in-context learning leverages
the inference capabilities of LLMs by incorporating nat-
ural language-based demonstration prompts to guide task
execution (Dong et al., 2022). By following task-specific
descriptions within demonstration prompts, LLMs can iden-
tify the task type using knowledge embedded in pre-trained
corpora and adopt effective task-solving strategies (Wies
et al., 2023; Xue & Salim, 2023; Ouyang et al., 2022).
Given the high computational efficiency without dedicated
model training or fine-tuning, in-context learning presents
a promising method in wireless networks, particularly in
resource-constrained environments, by reducing the energy
consumption and alleviating computational burden on net-
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work resources. Moreover, in-context learning enables natu-
ral language-based task design and implementation through
demonstration prompts, allowing operators to easily formu-
late problems using human language and instructions (Min
et al., 2022). This user-friendly method holds great potential
to reduce human effort and lower the need for specialized
expertise in wireless networks. In-context learning also
offers a distinct advantage in explainable decision-making
process by generating natural language-based justifications
for outputs (Bariah et al., 2023), thereby enhancing the
transparency and interpretability of the reasoning process
and enabling operators to clearly understand and manage
wireless networks in the 6G era (Maatouk et al., 2024).

To this end, this paper proposes ProWin, a framework
that leverages reinforced in-context learning to design task-
specific demonstration Prompts for Wireless Network op-
timization, eliminating the need for model training or fine-
tuning. Compared to existing LLM-enabled wireless net-
work studies (Su et al., 2024; Yan et al., 2025; Park et al.,
2024; Qiu et al., 2024), our proposed ProWin addresses a
more complex and dynamic network optimization problem,
enabling the LLM to make informed decisions by learning
from and adapting to varying network observations. The
task-specific prompts are first designed to incorporate nat-
ural language descriptions of task description related to
task objectives, definitions, and rules, making it efficient
to formulate tasks while reducing the need for specialized
knowledge in network optimization. To better optimize
dynamically evolving network environments, we further
propose a reinforced in-context learning scheme that adap-
tively embeds a set of advisable examples into task-specific
prompts. Specifically, each example comprises a historical
environment state, the decision made in that state, and the
corresponding reward evaluated after the decision. More-
over, to effectively select relevant examples for the current
task, we introduce state-based and ranking-based schemes
for discrete and continuous states, respectively, ensuring
that the most informative past examples are selected to pro-
vide valuable guidance for current decision-making. In this
way, the LLM is expected to make decisions based on task-
specific prompts embedded with relevant examples. The
resulting decision, current environment state, and corre-
sponding evaluated reward are then stored as a new example
in an experience pool, serving as a reference for future
decision-making. In this paper, we consider base station
(BS) power control as a case study, which is a fundamental
and critical optimization task in wireless networks that has
been extensively studied with diverse algorithms, including
convex optimization, game theory, and reinforcement learn-
ing, among others. To summarize, the main contributions
of our work are provided as follows:

* We propose ProWin, a novel LLM-enabled method
that designs task-specific demonstration prompts for

wireless network optimization, eliminating the need
for model training or fine-tuning, and enabling efficient
task formulation with reduced reliance on specialized
expertise in network optimization.

* We introduce a reinforced in-context learning scheme
that adaptively selects and embeds a set of advisable
examples into task-specific prompts, ensuring effective
network optimization in dynamically evolving environ-
ments through guidance from the selected examples.

* We conduct comprehensive experiments on the case
study of base station power control, demonstrating the
consistent superiority of the proposed across ProWin
various LLMs.

2. System Model

2.1. Problem Formulation

This section introduces a BS power control problem, serv-
ing as a case study to demonstrate the application of the
proposed ProWin for wireless network optimization. Con-
sidering a BS with U}, users, the achievable data rate Cj, ,,
between BS b and user v is defined by (Zhou et al., 2022)

Ky
Chu = dilog(1 + Po,kPb kb, u Yo,k u (D
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where K, is the total number of resource blocks (RBs) in BS
b, dy, is the bandwidth of RB £, p 1, indicates the transmis-
sion power of BS b on RB k, hy 1, ,, defines the channel gain
between BS b and user w on RB k&, and N, is the noise power
density. For the RB allocation, 7y ., € {0,1} indicates
whether RB £k is allocated to the transmission for user w.
For the interference, B_; represent the set of adjacent BSs
except for BS b, py i i 12 Yo k7w defines the inter-cell
interference, and we assume orthogonal frequency-division
multiplexing is applied to eliminate intra-cell interference.

This work aims to minimize the BS transmission power and
meanwhile satisfy the average data rate constraint (Chiang
et al., 2008):
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where P, is the total transmission power of BS b and P, =
ZkK:bl Db.k» Db,k has been defined in equation (1) as the
transmission power of RB k, P, is the maximum power,
Uy is the total number of users, and C,,;, is the average
achievable data rate constraint. We assume P, is equally
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allocated to all RBs, and a proportional fairness method
is used for RB allocation, which has been widely used as
a classic approach. Then we can better focus on LLM
features.

2.2. Language-based Power Control Task Description

Problem (2) has been extensively investigated in existing
studies, but this work differs from previous works by pre-
senting a unique view from the perspective of LLM-enabled
network optimization. Instead of defining specific equa-
tions as in (2), here we use natural language to describe the
optimization task: 1) Firstly, it inherently avoids the com-
plexity of defining dedicated problem formulations, which
is usually time-consuming; 2) Secondly, language-based
task description is a user-friendly approach, and network
operators can easily formulate the task without requiring
any professional optimization-related knowledge.

In this power control case study, the task description
involves “Task_goal”, “Task_definition”, and extra
“Rules”. The defined task description is shown below,
which will further be used to prompt LLMs:

Task description for BS transmission power control

Task goal: You have a decision-making task for
base station power control, and you need to select
between 4 power levels from 1 to 4.

Task definition: You have to consider the specific
user number of each case, which is the “base station
user number”.

Following are some examples { Example_set}.
Now I will give you a new condition to solve, the
current BS user number is { Num_BS_user}.
Rules: Now please select from “level 17, “level 27,
“level 37, and “level 4” based on the above examples.

In particular, the Task_goal first specifies a “decision-
making task for base station power control’, and the
goal is to “select between 4 power levels”!. Then the
Task_definition introduces the environment states we
need to consider. For example, this work assumes the total
user numbers may change dynamically, and then the LLM
has to consider the “user number” of each case. After that,
the example set &; is included by “Following are some ex-
amples....”, and we provide a new condition for the LLM to
solve with the current user number U,. Finally, we set extra
reply rules such as “select from ... based on the above exam-
ples”, indicating the LLM to focus on decision-making.

"Here we select 4 power levels as an example, which can be
changed to any number of levels

3. In-context Learning-based Optimization
Algorithm

This section will introduce the proposed in-context learn-
ing algorithm, aiming to optimize power control by using
natural language-based task descriptions in Section 2.2.

3.1. In-context Learning

In-context learning refers to the process that LLMs can learn
from formatted natural language such as task descriptions
and task solution demonstrations, to improve the perfor-
mance on target tasks. In-context learning can be defined as
(Dong et al., 2022)

Digsr X E X 8¢ X LLM = ag, 3)

where Dy, is the task description and query, &; is the set
of examples at time ¢, s; is the environment state at time ¢
that is associated with the target task, £L£M indicates the
LLM model, and a; is the LLM output. Here we expect
the LLM can utilize the initial task description Dy, learn
from the example set &, and then make decision a; based
on current environment state s; of the target task.

The LLM’s in-context learning capabilities can be consid-
ered as implicit fine-tuning according to (Dai et al., 2022).
LLMs will produce meta-gradients based on given exam-
ples &€ by forward computation, and then the meta-gradients
are applied by using the attention mechanism to build an
in-context learning model. Specifically, consider x as the
input representation of a query token ¢, and q = W as the
query vector in the attention mechanism. Then the attention
of a head is formulated as

fICL (q) :attention((L K? V)

q(Wk[2;€)T o @
T)WV[Q’S}

where Wq, Wx and Wy, represent the weight matrices of
attention queries, keys, and values, respectively; d is the
scaling factor; Q and £ denote the input representations of
query tokens and demonstration tokens, respectively, and
[Q; £] is the concatenated matrix of Q and £. For ease of
qualitative analysis, we relax the standard attention to linear
attention by removing the softmax operation and the scaling
factor from equation (4):

=softmax(

fren(@) ~q(Wi([Q; )T Wy [Q; €]
=q(Wk Q)" Wy Q+qWg&)"WyvE (5
ZfICL(Q)

We define Wzsr = (W Q)T Wy, Q for ease of notations,
since the Wy g, parameters include the query token Q only.
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Task goal: You have a decision-making task for base station power control,
and you need to select between 4 power levels from 1 to 4.

Task definition: You have to consider the specific user number of each case,
which is the “base station user number™.

Following are some examples: {Example . set}

Now I will give you a new condition to solvé the current BS user number is
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Rules: Now please select from “level l"‘ ‘le\ el 27, “level 37, and “level 4™
based on the above examples. 4
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i Here are some examples I recommend: :
Example 1: Environment state: 5, Decision: @y, Reward: ry, Evaluation: good, }
Example 3: Environment state: 53, Decision: a3, Reward: 73, Evaluation: good, |

Then some examples I do not recommend: H
i Example 5: Environment state: 55, Decision: a5, Reward: rs, Evaluation: bad,

______________________ @) Selected new examples

Figure 1. Overall design of the proposed LLM-enabled in-context learning for transmission power control.

Therefore, Wz s, indicates the zero-shot learning case with-
out examples. Then we can rewrite equation (5) as

ficr(@) = aWazse +q (Wx&)" Wi €
= qWgsL + LinearAttention (q, Wi &, Wy E)

= qWzsL + qz ((WKEi)T WVEi)

(6)
= qWzsL + qz (Wi E;) @ (Wy Ey))

= qWzsL + qAWicL
=q (Wzs, + AWicr) .

Here AWic = >, (WkE;) ® (Wy Ej)), which indi-
cates the updated weight when examples E € £ are pro-
vided. q (Wzs + AWjcL) also aligns with the weight up-
dating of back-propagation algorithm. It proves that the ex-
amples £ will affect the in-context learning weight AWy,
and therefore LLMs can learn from examples and generate
replies.

3.2. Examples and Optimization Framework Design

The analyses in Section 3.1 show that examples are of great
importance in in-context learning, which will directly affect
the AWjcr values. However, many network optimization
problems have continuous environment states, e.g., adjust-
ing the BS transmission power based on user-BS distance.
Such cases mean that there may be an infinite number of
examples, and therefore identifying the most relevant and
useful examples becomes challenging. Here we define an
example by

E={s,a,r(s,a)},E €€, @)

where s and a are environment state and decision, respec-
tively. Inspired by reinforcement learning, we further define
a reward value to evaluate the decision a by

r:Ptarget_Pb_Ba (®)

where Pjqygc¢ 1s a target power consumption, and P, has
been defined in problem (2) as the total power consump-
tion of BS b. [ is a penalty term, which is only applied
when constraint (2c) is not satisfied. Then, r provides a
comprehensive metric to evaluate the selected decision a
under environment state s.

Fig.1 shows the overall design of the proposed in-context
learning algorithm for transmission power control. Specifi-
cally, the above task description D, s, current environment
state s¢, and selected examples &, are integrated as input
prompt as defined in equation (3), and then the LLM will
generate a power control decision a; based on s; and the
experiences in &;. Then, the decision a; is implemented, the
achieved data rate C ,, is collected, and the reward r; is cal-
culated as equation (8). F; = {s¢, as, r(st, a;) } becomes
a new example in the accumulated experience pool &0
in Fig.1. After that, based on the next environment state
S¢+1, @a new example set &1 is selected, and the selected
examples are inserted into the task description with s, 1,
becoming a new prompt for the LLM model to generate

Ai41-

3.3. State-based Example Selection for Discrete State
Problems

Selecting appropriate examples is critical for in-context
learning(Chen et al., 2023). For problems with discrete
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Algorithm 1 Proposed In-context Learning-based Algorithm for Network Optimization

Input: Network parameters: BS and user locations, BS transmission power constraint P, ., user data rate constraint
Cimin. Optimization parameters: penalty term /3, € for epsilon-greedy policy, weighting factor 7. Initialize the experience

pool Epgor.

Designing input prompt: Task goals, task definition, and rules as in Section 2.2.

repeat
if rand(0,1) < e then
Selecting transmission power level randomly.
else
if Discrete state problem then

Given current state s, selecting relevant examples £,¢jerpqnt Using equation (9) from experience pool Epoo;-

else if Continuous state problem then

Calculating the L(E, Si4rge¢) metric of all examples in &4, using equation (11), and then selecting the top-K

relevant examples &, ¢jevant-
end if

Inserting the selected examples &,¢jcvane into the prompting template. Feeding the prompts to LLMs Dy X & X
st x LLM = a;, and generating the selected power level a;.

end if

Inserting the new example E = {s,a, (s, a)} into the accumulated experience pool ;.
until Reaching the max number of iterations or the result converges.

environment states, relevant demonstrations can be easily
identified by finding existing examples with the same states
in the accumulated experience pool &,,,. Considering a
target task with environment state value S;4,.get, the set of
relevant examples can be identified by

Erelevant = {E{Sa a, T(57 a)} S = Starget, Ee gpool}
)
where &, is the accumulated experience pool in Fig. 1.
Given & ¢jevant, We can easily select recommended exam-
ples with high reward, i.e., top-K examples, and inadvisable
examples, e.g., examples with lower reward or violating the
minimum data rate constraint.

In addition, we include a well-known epsilon-greedy policy
to balance exploration and exploitation.

if rand < ¢;

LLM-based decision-making, else,

B { Random action selection,
(10)

where € is a predefined value, and rand is a random number
between 0 and 1. Therefore, the random exploration in
equation (10) can constantly explore new examples, and
then the LLM model can learn from better relevant examples

Erelevant to improve the performance.

3.4. Ranking-based Example Selection for Continuous
State Problems

Compared with discrete-state problems, environments with
continuous states can be much more complicated. For in-
stance, when using average user-BS distance as an environ-
ment state for BS transmission power control with a target

task Siqrget, it 1s unlikely to find a specific existing example
E{s,a,r(s,a)} with s = Syqrget, SINCE Starger is a random
number within the BS maximum coverage distance. This
problem may be solved by discretizing the continuous states
into some discrete values, but this may still lead to a large
number of states or extra errors. To this end, we define a
new metric £ for example selection with continuous states:

E(E, Starget) = r(s,a) - THS - Starget||7 (11)

where L(E, Starget) is a comprehensive metric to evaluate
the usefulness of E = {s, a,7(s, a)} to the decision-making
of Stargets and |[s— Starget || is the L? norm to define the dis-
tance between s and S;4,.g¢¢- Equation (11) aims to jointly
consider the reward and states of example F, and 7 is a
weighting factor to balance the importance of higher re-
ward r (s, a) and more similar states between s and s¢qrget-
Specifically, a higher reward (s, a) indicates that E in-
cludes a good action selection a under environment state s,
and meanwhile lower ||s — S¢qrget|| Value means the envi-
ronment state s in £ is more similar to Syqrge¢. Therefore,
we use L(E, Starget) as a comprehensive metric, and then
the recommended and inadvisable examples can be selected
similarly as in Section 3.3 by selecting the top-K examples
with highest L(E, s¢qrget) value.

Finally, the proposed algorithm can be summarized as Algo-
rithm 1. With the epsilon-greedy policy, the algorithm can
try different actions by random exploration, finding better
network optimization decisions. On the other hand, LLM
can utilize the accumulated experience and examples to
make good decisions, balancing exploration and exploita-
tion. Such a design indicates that LLMs can constantly ex-
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Figure 2. The overall procedure of the example-related scheme.

plore the network environment and improve their decisions
iteratively. Compared with other ML-enabled optimization
techniques, the proposed algorithm has no need to update
LLM model parameters. Therefore, it is more efficient with
much lower complexity.

3.5. Computational Complexity Analyses

Fig. 2 summarizes the overall procedure of example-related
schemes. In particular, the LLM will receive the state from
the environment, and then use the examples provided by the
experience pool to select actions such as the transmission
power level. The implementation results will become a new
example for the pool. Meanwhile, no additional computa-
tional cost is incurred for example selection, as each new
example is simply appended to the accumulated experience
pool after implementation. Secondly, for example selection
in discrete state problems, it is easy to search the experience
pool to identify s = 5;4,-4e¢. For continuous states, we cal-
culate the L(E, S¢qrget) metric for all examples in the pool,
and then select the best examples accordingly. Therefore,
the cost of example selection follows a linear complexity.
Finally, note that the LLM inference time is affected by
model architecture, hardware constraints, and task types,
and it can also be further optimized by quantization, sparsity
exploitation, and architectural innovations.

4. Performance Evaluation
4.1. Simulation Settings

We consider three adjacent small base stations (SBSs); the
user number of each SBS randomly changes from 5 to 15,
and the SBS’s coverage is 20 meters. The channel gain
applies 3GPP urban network models, and 2 cases are eval-
uated: Case I: Discrete states defined by user numbers of
each SBS; Case II: Continuous states defined by average
user-SBS distance, which represents 2 kinds of network
optimization problems.

Then, the simulation considers 2 main approaches:

1) LLM-based method includes 3 models: Llama3-8b-
instruct, Llama3-70b-instruct, and GPT-3.5 turbo. Llama3-
8b is a small-scale LLM, while Llama3-70b and GPT-3.5
turbo are large models. Using LLM models with various
sizes can better evaluate the capabilities of our proposed al-
gorithms(Oh et al., 2024). The first 40% episodes in the sim-
ulation are exploration phases, while the rest of the episodes
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Figure 3. Discrete state space: System reward and service quality
comparison of various LLMs.
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Figure 4. Continuous state space: System reward comparison of
various LLMs.

are the exploitation phase.

2) DRL-based method: with dedicated model training, here
we consider DRL as an optimal baseline since its capabil-
ity has been demonstrated in many existing studies (Zhang
& Liang, 2020; Zhou et al., 2022). The Markov decision
process (MDP) for deep Q-learning is: states can be easily
defined by considering discrete/continuous states as intro-
duced above, actions indicate the BS transmission power
levels, and rewards are defined as equation (8).

4.2. Simulation Results

Fig. 3 to 8 show the simulation results and comparisons.

1) Discrete State Problems: Firstly, for discrete state prob-
lems, Fig. 3 presents the system reward and service quality
of different LLMs. One can observe that both Llama3 LLMs
achieve a comparable reward and service quality as the DRL
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Figure 5. Continuous state space: Power consumption comparison
of various LLMs.

baseline, while GPT-3.5 shows a lower reward and service
quality. Fig. 3 demonstrates that the proposed in-context
learning algorithm can provide satisfactory performance for
problems with a limited number of environment states.

2) Continuous State Problems: Then, we consider more
complicated scenarios with continuous states defined by the
average user-BS distance. Fig. 4 and 5 show that all LLM
models achieve higher rewards and lower power consump-
tion as the number of episodes increases and finally converge
to stable values, e.g., reward value 4 and 3 Watts average
power consumption. Specifically, with the epsilon-greedy
policy, the LLM can randomly explore different actions and
meanwhile make optimal decisions based on existing knowl-
edge. The results demonstrate that LLMs can learn from
previously accumulated examples and then improve their
performance on target tasks. Such an iterative optimization
approach is a crucial skill in addressing many real-world
problems.

3) Changed Environment and Simulation Settings: In
addition, we observe the algorithm’s performance under
different minimum data rate constraints. Fig. 6, 7, and 8
present the average reward, power consumption, and service
quality, respectively. Here, every value in the following
Fig. 6 to 8 is obtained by taking the average performance
of converged episodes of corresponding LLMs as in Fig. 4
and 5. As expected, the simulation results show that increas-
ing the minimum data rate constraint leads to lower reward,
lower service quality, and higher power consumption. They
demonstrate that the proposed in-context learning can adapt
to different optimization settings and then adjust their poli-
cies to improve the performance of target tasks. Under
various environment requirements, the proposed technique
can maintain a reasonable performance compared with the
existing baseline DQN.
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Figure 6. Continuous state space: Average reward comparison un-
der different data rate constraints.
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Figure 7. Continuous state space: Average power consumption
comparison under different data rate constraints.

4) Scalability of the Proposed Algorithm: Fig. 9 evaluates
the scalability of the proposed algorithm by increasing net-
work size, e.g., the number of optimized BSs. It shows that
the proposed techniques can maintain satisfactory perfor-
mance with increasing base station numbers. LLM-based
techniques have the potential for large-scale network man-
agement and optimization. The huge number of parameters
of LLMs allows for large-scale information extraction, input
and processing, and then generates the desired output.

5) Effect of the number of examples: In Fig. 10, we
evaluated the system performance with enlarged state space
and changing number of examples in the prompt. Firstly,
one can observe that increasing the number of examples
can constantly improve the average reward. However, such
improvement becomes less obvious when plenty of exam-
ples are provided. On the other hand, increasing the state
space means that more examples are needed in the prompt
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Figure 9. Continuous state space: Average service quality compar-
ison with increasing number of BSs.

to achieve a satisfactory performance, e.g., more references
and experience are needed to make proper decisions. How-
ever, it is worth noting that the overall performance is still
constantly improving by increasing the number of provided
examples, and it finally achieves a comparable performance
as the exhaustive search method.

In summary, the above simulation results from Fig. 3 to
Fig. 8 demonstrate that the proposed in-context learning
technique can learn from previous explorations, optimize
network performance iteratively, and adapt to different net-
work environments. It achieves comparable performance as
existing benchmarks DQN, and avoids the complexity of
dedicated model parameter updating. In-context learning is
considered a promising technique for future network opti-
mization and management. The simulation results demon-
strate that the algorithm’s performance is closely related to
the capabilities of specific LLMs. For instance, Llama3 rep-

—— Llama3-70-Instruct

Average reward
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---m--- Increased space: Llama3-8b-Instruct
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Figure 10. Reward performance with increasing number of exam-
ples and larger spaces.

resents state-of-the-art LLM designs, while GPT-3.5 is an
early LLM model. Therefore, it is reasonable that Llama3-
8b and Llama3-70b maintain comparable performance as
the DRL baseline, while GPT-3.5 turbo presents a worse
performance in different tasks. It highlights the importance
of selecting appropriate LLMs to handle various tasks.

5. Conclusion

LLM is a promising technique for future wireless networks,
and this work proposes an LLM-enabled in-context learning
algorithm for BS transmission power control. The proposed
algorithm can handle both discrete and continuous state
problems, and the simulations show that it achieves compa-
rable performance as conventional DRL algorithms. This
work demonstrates the great potential of in-context learning
for handling network management and optimization prob-
lems. In the future, we will consider more complicated
network optimization tasks and involve more control vari-
ables and decisions.
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A. Input Prompt and LLM Replies Analyses

The following presents some supplementary experiment results and discussions, including detailed input prompts and
different LLMs’ replies, DRL algorithm design and implementation comparisons. Below is our designed prompt input to
LLMs.

Prompt input of LLMs for BS power control

You have a decision-making task for Base Station power control.
Task goal: You need to select between 4 power levels from 1 to 4.

Task description: You have to consider the specific average user distance of each case.

Following are some good examples I recommend:

Example 49: Average user distance to the Base station: 8.78, your selected power level: 1.0, reward: 4.0, evaluation = good.
Example 85: Average user distance to the Base station: 9.24, your selected power level: 1.0, reward: 4.0, evaluation=good.
Example 58: Average user distance to the Base station: 9.19, your selected power level: 1.0, reward: 4.0, evaluation=good.
Example 67: Average user distance to the Base station: 9.15, your selected power level: 1.0, reward: 4.0, evaluation=good.
Example 13: Average user distance to the Base station: 9.15, your selected power level: 1, reward: 4, evaluation=good.
Example 49: Average user distance to the Base station: 8.96, your selected power level: 1.0, reward: 4.0, evaluation=good.

Following are some bad examples I do not recommend:

Example 21: Average user distance to the Base station: 10.05, your selected power level: 3, reward: 2, evaluation=bad.
Example 40: Average user distance to the Base station: 9.28, your selected power level: 4, reward: 1, evaluation=bad.
Example 120: Average user distance to the Base station: 9.9, your selected power level: 3, reward: 2, evaluation=bad.
Example 12: Average user distance to the Base station: 9.8, your selected power level: 3, reward: 2, evaluation=bad.
Example 39: Average user distance to the Base station: 10.02, your selected power level: 2, reward: 3, evaluation=bad.
Now I will give you a new condition to solve: Average user distance to the Base station: 8.72.

Please select from “level 17, “level 27, “level 3”, and “level 4” based on the above examples. Please explain the reasons for your
selection.

Reply Sample 1 of Llama3-8b instruct.

Based on the provided examples, I notice that when the average user distance is around 9.2, the recommended power
level is consistently level 1. This is evident from examples 85, 58, 67, and 13, where the average user distance is
between 9.15 and 9.24, and the selected power level is always 1.

Given the new condition: Average user distance to the Base station: 9.22, I will select ’level 1’ as the recommended
power level. My reasoning is that the average user distance is very close to the distances in the good examples
(9.15-9.24), and the recommended power level in those cases was always level 1. Therefore, I believe that level 1 is
the most suitable choice for this condition.

I do not recommend selecting higher power levels (2, 3, or 4) because they were not chosen in the good examples,
and selecting them may result in a lower reward or evaluation, as seen in the bad examples.

Reply Sample 2 of Llama3-8b instruct.

Based on the provided examples, I notice that when the average user distance to the Base station is relatively short
(around 8-9 units), the recommended power level is always 1.0, which corresponds to a ”good” evaluation.

In the new condition, the average user distance to the Base station is 8.72, which is even shorter than the distances in
the ”good” examples. Therefore, I will select power level 1.0 for this condition.

I reason that since the average user distance is relatively short, it’s likely that the users are closer to the Base station
and require less power to maintain a good connection. Power level 1.0 has been consistently recommended in similar
scenarios, so I believe it’s the most suitable choice for this condition as well.
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Reply Sample 3 of GPT-3.5 Turbo.

Based on the provided examples and conditions:

- Power level 1 (low power) was used in all the good examples where the average user distance ranged from 8.78 to
9.24, resulting in a reward of 4.0 in each case.

- Power levels 2, 3, and 4 (higher power levels) were used in the bad examples where the average user distance was
greater than 9.28, leading to lower rewards ranging from 1 to 3.

Given that the new condition has an average user distance of 8.72, which falls within the range of the distances in
the good examples, it would be advisable to select **level 1** for the power control. This choice is based on the
pattern observed in the examples where lower power levels were more effective for shorter user distances, resulting
in higher rewards and positive evaluations.

By selecting level 1 for this new condition, you are likely to achieve a good performance outcome similar to the
ones observed in the good examples provided.

The above reply samples demonstrate that LLMs have the following capabilities:

¢ LLMs can indeed learn from examples and then solve the target tasks. For instance, all three reply samples start by
“Based on the provided examples, I notice that....” and “Based on the provided examples and conditions”. Sample 1 also
provides detailed example numbers: “This is evident from examples 85, 58, 67, and 13”. All three models immediately
frame their decision around the provided examples (‘“Based on the provided examples. .. "), showing they can ingest
few-shot demonstrations and abstract a decision rule. Even Llama3-8B (Sample 1) pulls out specific indices (85, 58,
67, 13), evidencing a capacity to reference and align with particular data points.

¢ LLMs can clearly understand the relationship between control variables, environment states, and rewards in
wireless network optimization problems. For example, in reply sample 3 of GPT-3.5 turbo, it first analyzes the
selection of power level 1 and 2, 3, 4, then explains the “Given that the new condition has an average user distance
of...”, and finally make the decision by “it would be advisable to select **level 1** for the power control”. Each reply
articulates how the state variable (user distance) maps to the control variable (power level) and ultimately to the reward.
GPT-3.5 Turbo (Sample 3) explicitly contrasts the “good” vs. “bad” examples based on distance thresholds before
recommending level 1, underscoring an understanding of the underlying optimization structure.

¢ LLM can provide useful explanations for their decisions. One of the key advantages of LLMs is to provide
detailed explanations of their selections. For instance, sample 2 shows that “I reason that since the average user
distance is relatively short, it’s likely that the users are closer to the Base station and require less power to maintain a
good connection”. Such a capability is crucial when facing more complicated scenarios, providing useful references
for human understanding. This is also far beyond the capabilities of existing ML techniques. Beyond selecting an
action, the models generate coherent justifications. Sample 2’s justification (“users are closer. . . require less power”)
demonstrates how LLMs can produce intuitive, domain-relevant reasoning in human-readable form—an advantage
over opaque “black-box” predictors.

Structured presentation and clarity. Finally, GPT-3.5’s bullet-point format lays out observations, contrasts, and
conclusions in digestible steps, highlighting the models’ ability to organize complex decision logic in a clear, hierarchical
manner—which is essential for system-level reporting and auditability.

B. Potential Issues and Hallucination

We also observed other replies from the Llama3-8b instruct model, and noticed some potential issues. For instance, the text
box below shows the LLM replies when given another task, in which the average user distance is 8.72.

Similar to previous replies, the LLM also clearly understands the key is to “the relationship between the average user
distance and the selected power level”. Then it analyzes the good and bad examples provided by “From the good examples”
and “From the bad examples”. After that, it compares the target condition (average user distance is 8.72) with the good
examples by “the average user distance to the Base station is 8.72, which is closer to...”. Finally, it explains the reasons why
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selecting power level 1, e.g., “the average user distance is relatively close to the Base station, a lower power level (1) would

be...”.

Although the LLM model made a good decision and obtained a satisfactory reward, it is worth noting that there is a problem
when analyzing the distance. It claims that “when the average user distance is farther away, e.g., 7.76, 8.12,”. However,
7.76 and 8.12 are obviously closer than the above distance of 8.72.

On the one hand, this experiment shows that hallucination is still one of the main problems for LLM implementations;
on the other hand, in this task, we also noticed the importance of “good examples”, which have a great impact on LLM’s
decision-making. For example, the 4th paragraph demonstrates that LLM considers good examples as critical references
when selecting the power level.

Problematic Replies of Llama3-8b instruct.

Based on the provided examples, I will analyze the relationship between the average user distance and the selected
power level.

From the good examples, I notice that when the average user distance is close to 8.78-8.94, the selected power level
is always 1.0, which results in a high reward (4.0) and a good evaluation.

From the bad examples, I see that when the average user distance is farther away (e.g., 7.76, 8.12, or 9.71), the
selected power level is higher (3 or 4), which results in a lower reward (1 or 2) and a bad evaluation.

Considering the new condition, the average user distance to the Base station is 8.72, which is closer to the range of
the good examples (8.78-8.94). Therefore, I recommend selecting power level 1.

My reason is that since the average user distance is relatively close to the Base station, a lower power level (1) would
be more suitable to maintain a good connection and achieve a high reward.
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