
Understanding Attention for Vision-and-Language Tasks

Anonymous ACL submission

Abstract

Attention mechanism has been used as001
an important component across Vision-and-002
Language(VL) tasks in order to bridge the se-003
mantic gap between visual and textual features.004
While attention has been widely used in VL005
tasks, it has not been examined the capabil-006
ity of different attention alignment calculation007
in bridging the semantic gap between visual008
and textual clues. In this research, we con-009
duct a comprehensive analysis on understand-010
ing the role of attention alignment by looking011
into the attention score calculation methods and012
check how it actually represents the visual re-013
gion’s and textual token’s significance for the014
global assessment. We also analyse the condi-015
tions which attention score calculation mech-016
anism would be more (or less) interpretable,017
and which may impact the model performance018
on three different VL tasks, including visual019
question answering, text-to-image generation,020
text-and-image matching (both sentence and021
image retrieval). Our analysis is the first of022
its kind and provides useful insights of the im-023
portance of each attention alignment score cal-024
culation when applied at the training phase of025
VL tasks, commonly ignored in attention-based026
cross modal models, and/or pretrained models.027

1 Introduction028

The relative maturity and flexibility of deep learn-029

ing allow us to build upon the success of com-030

puter vision and natural language processing to031

face many complex and multimodal Vision-and-032

Language (VL) tasks, such as Visual Question An-033

swering (VQA), Text-and-Image Matching (T&I034

Match), or Text-to-Image Generation (T2I Gen).035

For these VL tasks, it is crucial to effectively align036

the multimodal information in both visual and lin-037

guistic domains. For example, to pick the right038

answer in VQA, the model should empower infor-039

mation from the input image, together with aligning040

the linguistic meanings with visual clues.041

Attention mechanism (Bahdanau et al., 2015; Lu- 042

ong et al., 2015a) has been used as an important 043

component across a wide range of VL models; from 044

the early-stage attention-based fusion VL models 045

(Xu et al., 2018a; Wang et al., 2019; Yang et al., 046

2016; Shih et al., 2016) to the recent VL multi- 047

modal transformer-based pretrained models (Lu 048

et al., 2019; Li et al., 2020b; Hu et al., 2021). Those 049

attention-based VL models mainly focus on 1) ex- 050

ploring new features to represent visual and lin- 051

guistic information as an input of attention layer, 2) 052

deciding the position or the number of attentions in 053

the model, or 3) investigating the interpretability of 054

attention distribution on VL tasks by emphasising 055

the specific image regions or textual tokens. 056

While such approaches and investigations have 057

resulted in interesting findings in different aspects 058

of VL tasks, the attention alignment calculation 059

between vision and language modalities has been 060

less explored. However, the alignment calcula- 061

tion is directly linked to the main purpose of us- 062

ing attention mechanisms in VL tasks, which is 063

to effectively bridge and align two different visual 064

and linguistic informations. In other words, the 065

essence of the attention mechanism in VL tasks 066

is the alignment score calculation, as it quantifies 067

the amount of “Attention” that the visual features 068

would place on each of the language representa- 069

tions (or linguistic features would empower on the 070

specific visual regions) when bridging the semantic 071

gap between visual and language features. Most 072

existing VL models directly apply the two attention 073

alignment functions, a general and a dot-product 074

(Luong et al., 2015a), which are commonly used in 075

several NLP tasks. Since Vaswani et al. (2017) pro- 076

posed a scaled dot-product for the transformer with 077

full attention, almost every VL paper has directly 078

applied those three attention alignment score func- 079

tions. Instead, little work has been done towards 080

understanding the role of attention alignment calcu- 081

lation methods applied to bridge visual and linguis- 082
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tic features, and exploring the impact on different083

VL model performance.084

In order to address this limitation, the overarch-085

ing goal of this research is to perform an exten-086

sive and systematic assessment of the effect of a087

range of attention alignment mechanisms pertain-088

ing to VL tasks, including three major VL tasks: Vi-089

sual Question Answering (VQA), Text-and-Image090

Matching (T&I Match), and Text-to-Image Gener-091

ation (T2I Gen). Towards that end, we systemat-092

ically analyse the impact of the position of query093

and key in attention alignment on VL tasks. We in-094

vestigate the following three questions: i) Which at-095

tention alignment score calculation yields the most096

benefit in VL tasks? ii) What if we linearly trans-097

form the query Q instead of the key K (or vice098

versa) before the multiplication? For example, as-099

sume the textual feature T is a query Q, and the100

image feature I is a key K. We analyse the impact101

of linear transforming Q or K in alignment score102

calculation. iii) Do the attention alignment calcu-103

lation techniques with better performance provide104

better attention distribution interpretability?105

In brief, our main contributions are as follows:106

1) We conduct a comprehensive analysis of the role107

of attention alignment score calculation in VL tasks108

(including three widely-used VL tasks, such as Vi-109

sual Question Answering, Text-and-Image Match-110

ing, and Text-to-Image Generation). 2) We perform111

a comparative analysis of the position of query and112

key (language and visual feature) for the alignment113

calculation. 3) We evaluate the interpretability of114

the best and worst attention alignment calculation115

models. 4) We make the code and the data publicly116

available to encourage reproducibility of results.117

2 Related Works118

Several NLP research efforts investigate the in-119

terpretability of attention mechanisms; Jain and120

Wallace (2019) assessed the interpretability by em-121

pirically inspecting the learned attention weights122

in NLP models, and Sun and Lu (2020) explored123

the internal mechanism of attention for text clas-124

sification by analyzing gradient update process.125

Multimodal VL models directly adopted the atten-126

tion mechanism to bridge the visual and linguistic127

modal information. In this section, we describe an128

overview of related workS on the role of attention129

mechanisms on different VL tasks, including Text-130

to-Image Generation, Text-and-Image Matching,131

Visual Question Answering, and Text-based Visual132

Question Answering. 133

Text-to-Image Generation AttnGAN (Xu et al., 134

2018a) first proposed word-level attention with iter- 135

ative image generation. They used dot-product for 136

measuring the alignment between visual subregions 137

and word tokens, based on which the word-context 138

vector for each image subregion was produced to 139

guide its generation process. Many of the later ap- 140

proaches directly adapted the dot-product attention 141

from AttnGAN while focusing on improving other 142

components in the architecture (Zhu et al., 2019; 143

Yin et al., 2019; Qiao et al., 2019b,a; Li et al., 2019, 144

2020a; Han et al., 2020; Pande et al., 2021). A 145

few models apply an element-wise multiplication 146

(Qiao et al., 2019a,b) or cosine similarity (Zhang 147

et al., 2021a) as an attention alignment measure- 148

ment. However, none of those models explore any 149

alternatives by a comparative analysis. 150

Text-and-Image Retrieval Similar to the Text- 151

to-Image generation, a cosine similarity based at- 152

tention alignment was applied by SCAN (Lee et al., 153

2018), the most widely-used baseline model in 154

Text-and-Image Retrieval. Since then, many stud- 155

ies directly adapted its attention alignment calcula- 156

tion with no or minor change (Liu et al., 2019; Chen 157

and Luo, 2020; Chen et al., 2020; Diao et al., 2021; 158

Dong et al., 2021). They applied text-to-image (t2i) 159

and image-to-text(i2t) attention in two separate 160

variants to filter the cross-modal relevant represen- 161

tations for later image-sentence matching. Some 162

other approaches applied (scaled) dot-product in- 163

stead (Wang et al., 2019; Liu et al., 2020; Wei et al., 164

2020; Fei et al., 2021). However, they also do not 165

have proper justifications for selecting the align- 166

ment calculation method. 167

Visual Question Answering (VQA) Both tex- 168

tual query-guided image attention and image- 169

guided textual query attention have been commonly 170

used in VQA approaches, which utilised one modal- 171

ity to guide the focus on the other. Several cate- 172

gories of alignment calculations or their variants 173

were included, such as adapting neural networks 174

(Yang et al., 2016; Zhu et al., 2016; Patro and Nam- 175

boodiri, 2018; Anderson et al., 2018) or applying 176

(scaled) dot-product (Hudson and Manning, 2018; 177

Yu et al., 2019; Gao et al., 2019; Huang et al., 2020; 178

Rahman et al., 2021; Zhang et al., 2021b; Guo et al., 179

2021) etc. Despite lots of alignment selections, 180

their effect in VQA remains less explored. 181

Text-based Visual Question Answering Recent 182

TextVQA approaches directly augmented existing 183
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VQA models, and their cross-modal attention with184

additional OCR inputs (Singh et al., 2019; Biten185

et al., 2019a,b; Wang et al., 2020). Both early-186

stage model M4C (Hu et al., 2020) and the most187

recent pretrained model TAP (Yang et al., 2021) fed188

the question, image and OCR text together into a189

multimodal transformer and jointly encoded them190

via scaled-dot product attention in the transformer191

encoder. As with other VL tasks though, there is192

a lack of research on exploring the most effective193

cross-modal attention alignment for this task.194

Hence, we examine the impact of attention align-195

ment score calculation in different VL downstream196

tasks, including Visual Question Answering, Text-197

and-Image Matching, and Text-to-Image Genera-198

tion. We select the most widely adopted baseline199

models for each downstream task; AttnGAN for200

the Text-to-Image Generation, SCAN for the Text-201

to-Image Matching, MAC for the Visual Question202

Answering, and M4C for the Text-based Visual203

Question Answering, and evaluate the impact of204

attention alignment score measurement.205

3 Attention Alignment Mechanism206

There are various attention mechanisms applied in207

different multimodal VL downstream tasks. Two208

commonly used approaches are the cross attention209

and the self-attention. First, the cross attention is210

performed between visual and textual inputs. More211

specifically, given a sequence of textual features212

T = {t1, t2, t3, . . . , tM} and image features I =213

{i1, i2, i3, . . . , iN}, it takes T as the query Q and I214

as the key K (or vice versa) to compute attention215

and context vectors c as the attended representa-216

tions of the input elements in the following way:217

axy = f(Qx,Ky) (1)218
219

αxy =
exp(axy)∑nK
y=1 exp(axy)

(2)220

221

cKx =
nK∑
y=1

αxyKy (3)222

where f is a function to calculate attention score,223

nK is the number of elements in K, and cKx is224

the context vector of K with respect to the x-th225

element of Q. The second approach, self attention226

(Vaswani et al., 2017), is performed over all inputs227

from both modalities. In other words, the approach228

combines T and I as a complete sequence S = T ∪229

I , and converts all elements in S into Q, K and V230

via learnable matrices, which are used to compute231

attention by multiple heads in the following way: 232

Attention(Q,K, V ) = Softmax(f(Q,K))V (4) 233

where the results from different heads are combined 234

together. Then, it applies layer normalization, resid- 235

ual connections and fully connected layers in order 236

to obtain the attended representation of the input 237

tokens. With both approaches, we explore the ef- 238

fect of the attention alignment calculation f for 239

different VL tasks with the following five different 240

alignment score functions. Note that we also in- 241

clude Cosine similarity-based attention for only 242

Text-and-Image Matching as it is widely used in 243

that specific domain. 244

Dot product attention It was proposed in 245

NMT (Bahdanau et al., 2015) to compute vector 246

similarity between encoder hidden states and de- 247

coder hidden states. This function (Luong et al., 248

2015b) has been widely adopted as f in the cross 249

attention mechanism as shown in Equation 1. 250

f(Q,K) = QK (5) 251

Scaled dot product attention The higher dimen- 252

sion of data representation would lead to the 253

smaller gradient of softmax function. Hence, the 254

scaling factor was introduced by Vaswani et al. 255

(2017), and applied to the self attention-based VL 256

approaches as represented in Equation 4. 257

f(Q,K) =
QK√

d
(6) 258

General attention Along with dot product atten- 259

tion, general attention (Luong et al., 2015b) re- 260

ceived lots of interest as an alternative alignment 261

calculation method that computes attention score 262

using an extra learnable matrix to linearly trans- 263

form K into the same embedding space as Q. This 264

can be considered as one of the neural network 265

based methods mentioned in Section 2. 266

f(Q,K) = QWK (7) 267

There are several variants of neural network based 268

general attention calculation methods. First, Bi- 269

ased general attention is introduced by Sordoni 270

et al. (2016) using more bias towards more impor- 271

tant keys regardless of the query context. 272

f(Q,K) = Q(WK + b) (8) 273

Secondly, Activated general attention. Ma et al. 274

(2017) applies an additional nonlinear activation 275

term, which is able to amplify the emphasis on 276

query elements that are highly relevant to the key. 277

f(Q,K) = act(Q(WK + b)) (9) 278
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In this paper act is the ReLU activation since it is279

a widely used function in VL downstream tasks.280

4 Vision-Language Models281

We use publicly available implementations of the282

most widely adopted VL baseline models in or-283

der to train and evaluate different attention align-284

ment score calculation for three different VL tasks:285

(i) AttnGan for Text-to-Image Generation (T2I286

Gen), (ii) SCAN for Text-and-Image Matching287

(T&I Match), (iii) MAC and M4C for each Vi-288

sual Question Answering (VQA) and Text-based289

Visual Question Answering (TVQA).290

4.1 T2I Gen: AttnGAN291

The goal of text-to-image generation is to gener-292

ate a visually realistic image that matches a given293

text description. The AttnGAN (Xu et al., 2018b)294

generates images by using multiple generators with295

the attention mechanisms. To improve the image296

quality at each step, a cross attention mechanism297

is performed between caption words and image re-298

gions, and it produces the attended word context for299

each image region. Given a caption of M words,300

an image with N sub-regions would be generated301

by an upsampling network. The words and image302

regions are represented as d-dimensional vectors303

{tm} ∈ T and {in} ∈ I respectively. Then image304

representation I is applied as Q the query and cap-305

tion representation T is applied as K the key for306

the cross attention mechanism (Equations 1, 2, 3),307

where the dot product attention score calculation is308

used as f . The resultant textual context would be309

fused with word region representations as a guide310

for the generator at the next time step to focus on311

different words. Note that we evaluate different312

alignment calculation methods as f to investigate313

the impact of the image generation performance.314

We fix I as Q and T as K, and replace the dot315

product with other alignment score calculations.316

4.2 T&I Match: SCAN317

Text-and-image matching (a.k.a. Text-and-image318

retrieval) refers to measuring the visual-semantic319

similarity between a sentence and an image. The320

SCAN model (Lee et al., 2018) performs a pair-321

wise cross attention between image regions and322

caption words for fine-grained T&I Match. This323

can be done in two directions. Given a caption of324

M words and an image having N detected objects,325

d-dimensional representations {tm} and {in} are326

obtained as T and I respectively. To obtain the 327

attended image context for each caption word, the 328

cross attention mechanism (described in Equations 329

1, 2) is applied with T being the query Q and I be- 330

ing the key K, and an alignment score is measured 331

by using cosine similarity between each caption 332

word and its image context. These alignment scores 333

would be aggregated via a pooling function as the 334

final alignment score between the given image and 335

caption. Such scores can be obtained by using T as 336

K and I as Q to calculate the sentence context for 337

each image region. In experiments, we fix T as Q 338

and I as K, and replace the cosine similarity with 339

other alignment score calculations. 340

4.3 VQA 341

We explore two VQA downstream tasks, Visual 342

Question Answering with compositional reasoning 343

and Text-based Visual Question Answering. 344

4.3.1 VQA: MAC 345

First, we focus on the visual question answering 346

task that requires responding to natural language 347

questions about images, specifically with a com- 348

positional and structured nature. The MAC circuit 349

(Hudson and Manning, 2018) applies a cross atten- 350

tion mechanism to answer a question based on a 351

given image. Instead of computing attention be- 352

tween textual and visual input, MAC introduces a 353

d-dimensional learnable control state e as a guid- 354

ance for MAC cells to selectively attend to different 355

aspects of inputs at each time step. Within each 356

MAC cell, there is a control unit to attend to the 357

question words and a read unit to attend to the im- 358

age regions. Given a question of M words and an 359

image having N detected objects, d-dimensional 360

representations {tm} and {in} are obtained as T 361

and I respectively. Instead of using Equation 1, the 362

control unit applies e as Q and T as K to compute 363

the attention score in the following way: 364

ay = W ′(f(Q,Ky)) + b′ (10) 365

where f indicates element-wise dot product multi- 366

plication to obtain a d-dimensional similarity vec- 367

tor, and W ′ and b′ are learnable parameters to out- 368

put a scalar as the score. Then the control unit 369

follows Equations 2, 3 to obtain textual context 370

as an update for e. Similar to the control unit, 371

the read unit applies e as Q and I as K to obtain 372

the question-guided visual context from the im- 373

age, which is later aggregated to predict an answer. 374

Therefore the read unit can be considered as a main 375
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component in MAC that involves multimodal align-376

ment. Hence, for the evaluation, we fix the control377

state e (which majorly contains textual question in-378

formation) as Q and image-based knowledge graph379

I as K, and adapt the focused attention alignment380

calculation methods f with the element-wise mul-381

tiplication manner in the read unit.382

4.3.2 TVQA: M4C383

Secondly, Text-based visual question answering384

(TVQA) is an extension of VQA, which requires385

the model to read text over the image to answer386

the questions. The M4C model (Hu et al., 2020)387

applies a multimodal transformer over all input388

modalities to perform iterative answer prediction389

for the TextVQA task. More specifically, given a390

question of M words, an image having N detected391

objects and O detected OCR tokens, d-dimensional392

representations {squesm }, {sobjn } and {socro } are ob-393

tained as input sequence S. The self-attention394

mechanism (Equation 4) with scaled dot product395

attention is applied over S, the sequence of all396

M +N +O entities. In this way, both intra-modal397

interactions and inter-modal interactions are cap-398

tured to aggregate the input to form an answer pre-399

diction via classical transformer layers. Similarly400

to other tasks, we replace the scaled dot product401

attention calculation with the other aforementioned402

options for f to investigate the impact in TVQA.403

5 Evaluation Setup1404

5.1 Datasets405

We conducted experiments on three VL task406

datasets. The dataset statisitcs can be found in Ap-407

pendix Table 4. We followed the work of the base408

models, including AttnGAN (Xu et al., 2018b),409

SCAN (Lee et al., 2018), MAC (Hudson and Man-410

ning, 2018), M4C (Hu et al., 2020) for dataset411

preprocessing and dividing for train/dev/test sets.412

5.1.1 T2I Gen413

Two benchmark datasets are used: Caltech-UCSD414

Birds 200 (CUB)2 and MS-COCO3. CUB has415

11,788 images of 200 bird categories downloaded416

from the Flickr website, each with 10 textual cap-417

tions. MS-COCO provides 123,287 images of com-418

plex everyday scenes with 5 manually written tex-419

1The implementation details of our experiments can be
found in Appendix A.1

2http://www.vision.caltech.edu/
visipedia/CUB-200-2011.html

3https://cocodataset.org/#home

tual descriptions per image. We use a train/test split 420

of 8,855/2,933 and 82,783/15,000 images respec- 421

tively for CUB and MS-COCO. 422

5.1.2 T&I Match 423

Flickr30k4 contains around 31k images collected 424

from the Flickr website with 5 crowd-sourced cap- 425

tions per image. We test on Flickr30k with train/de- 426

v/test split of 29k/1k/1k images and on MS-COCO 427

(as described above) with 29k/1k/1k images. 428

5.1.3 VQA 429

We have two VQA tasks: 1) Visual Question 430

Answering with compositional reasoning, and 2) 431

Text-based Visual Question Answering. We used 432

CLEVR5 and TextVQA6 respectively. CLEVR 433

contains 100,000 synthetic images of 3D shapes 434

with 999,968 questions/answers in total. We use 435

a subset of 70,000 images with 699,989 QAs for 436

training, 15,000 images with 149,991 QAs for val- 437

idation and 15,000 images with 149,988 QAs for 438

test. TextVQA consists of 45,336 questions asked 439

by (sighted) humans on 28,408 images from the 440

Open Images dataset (Krasin et al., 2017). We use 441

the original split: 21,953 images with 35,602 QAs, 442

3,166 images with 5,000 QAs and 3,289 images 443

with 5,734 QAs for training, validation and test. 444

5.2 Evaluation Metrics 445

We describe evaluation metrics used for assessing 446

the impact of attention alignment mechanism for 447

each VL task. 448

5.2.1 T&I Match: R@K 449

We measure the performance of sentence retrieval 450

and image retrieval by recall at K (R@K), which 451

is defined as the percentage of queries that get the 452

correct item at the closest K points to the query. 453

The higher the value, the better the performance. 454

5.2.2 T2I Gen: Inception Score(IS) & FID 455

The evaluation measurement we use is Inception 456

Score (IS) which seeks to capture the image quality 457

and image diversity properties of a collection of 458

generated images. The higher the inception score, 459

the better the model. Frechét Inception Distance 460

(FID) measures the similarity between the gener- 461

ated images and the real images by comparing their 462

4http://shannon.cs.illinois.edu/
DenotationGraph/

5https://cs.stanford.edu/people/
jcjohns/clevr/

6https://textvqa.org/dataset

5

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://cocodataset.org/#home
http://shannon.cs.illinois.edu/DenotationGraph/
http://shannon.cs.illinois.edu/DenotationGraph/
https://cs.stanford.edu/people/jcjohns/clevr/
https://cs.stanford.edu/people/jcjohns/clevr/
https://textvqa.org/dataset


Attention
Sentence Retrieval Image Retrieval

Flickr30K MS-COCO Flickr30K MS-COCO
R@1 R@10 Rsum R@1 R@10 Rsum R@1 R@10 Rsum R@1 R@10 Rsum

cosine similarity⋄ 62.4 93.3 243.8 61.4 94.5 243 43.9 81.8 199.9 45.7 88.2 212.5
dot product 62.1 92.1 240.4 59.7 95.2 243.5 44.8 82.1 200.6 46.0 87.9 212.6
scaled dot product 63.0 93.8 244.9 59.3 95.1 243.7 44.9 81.9 200.4 45.8 88.3 213.4
general* 63.2 93.6 245.0 59.8 95.2 243.7 46.7 81.8 201.8 45.6 87.8 212.1
general† 56.6 90.1 229.9 53.8 93.1 231.5 38.4 77.0 182.0 39.3 83.4 195.3
biased general* 56.6 89.8 230.3 52.2 91.7 227.0 39.6 77.3 185.0 38.7 83.4 194.5
biased general† 55.8 89.7 228.3 52.6 93.2 231.1 39.3 77.4 184.6 39.8 84.2 197.3
activated general 56.2 90.5 229.2 53.9 92.9 231.3 39.2 77.4 184.7 39.5 84.0 195.6

Table 1: R@1, R@10 and the sum of (R@1+R@5+R@10) on Flickr30K and MS-COCO for T&I Match. The
definition of ⋄, *, † can be found in footnote 7. Q refers to caption words and K refers to image regions.

Attention Acc.
dot product⋄ 0.966
scaled dot product 0.973
general* 0.967
general† 0.962
biased general* 0.959
biased general† 0.963
activated general 0.971

(a) VQA on CLEVR

Attention Acc. ANLS
dot product 0.407 0.545
scaled dot product⋄ 0.419 0.554
general* 0.407 0.546
general† 0.416 0.554
biased general* 0.412 0.553
biased general† 0.414 0.551
activated general 0.413 0.548

(b) TVQA on Text-VQA

Table 2: Results for VQA/TVQA. The definitions of ⋄,
*, † are in footnote 7. For VQA, Q refers to the control
state and K refers to image-based knowledge graph in
read unit. For TVQA, Q and K are transformed union
of all caption words, image object and OCR features.

Frechét distance between the maximum entropy463

distribution. Lower FID indicates higher similarity.464

5.2.3 VQA465

For the VQA with compositional reasoning, over-466

all accuracy is used to measure the performance of467

the VQA models. The higher the accuracy, the bet-468

ter the performance of the model. For the TVQA, it469

is designed for the VQA context where 10 ground470

truth answers are provided for each question-image471

pair. The accuracy of a single prediction is a soft472

score obtained by a vote of the 10 ground truth473

answers. Overall accuracy is obtained by taking474

the average across all instances. In addition, we475

use the Average Normalized Levenshtein Similar-476

ity (ANLS) score (Biten et al., 2019b), which aims477

to eliminate the dropped performance caused by478

OCR recognition error by comparing the string sim-479

ilarity between the ground truth answers and the480

prediction results.481

6 Results482

We analyse the impact of attention alignment mech-483

anisms in different VL tasks, and explore the inter-484

pretability based on attention distribution.485

6.1 Test Performance 486

A primary goal of this work is to identify the most 487

effective and successful attention alignment calcu- 488

lation functions for VL tasks. Tables 1, 2, and 3 7 489

detail the results of our experiments comparing per- 490

formance of individual alignment functions with 491

each VL models. Note that each table visualises 492

the trends with a heatmap. The darker the colour 493

of the cells, the better the performance. 494

Observing the performance of the individual 495

alignment functions on the T&I Match task in Ta- 496

ble 1, we note that the original calculation function, 497

cosine similarity, achieved quite good performance. 498

However, scaled dot product and general* appears 499

to be consistently the most effective function in 500

both two Flickr30K and MS-COCO, indicating its 501

effectiveness in both sentence retrieval and image 502

retrieval. On the other hand, biased and activated 503

general attention produce very low results in both 504

R@K and Rsum values. 505

Table 2 details the performance of alignment 506

functions in VQA. Note that we have two types 507

of VQA, including VQA with compositional rea- 508

soning (CLEVR) and TVQA (Text-VQA). Surpris- 509

ingly, both VQA and TVQA models produce the 510

best performance with a scaled dot product align- 511

ment, highlighting the benefit in the visual question 512

answering domain. We note that the activated gen- 513

eral attention (ReLU activation) with the VQA per- 514

formed well in the answer prediction, whereas the 515

same function with the TVQA model produced one 516

of the lowest ANLS scores. The general attention 517

alignment function also provides opposite perfor- 518

mance trends in two tasks; the detailed analysis for 519

the position of key and query will be discussed in 520

7⋄ indicates the original attention alignment function used
by the base models. * indicates f(K,Q) (swapping query and
key), and † indicates f(Q,K) (without swapping query and
key) for Equations 7 and 8
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Attention CUB MS-COCO
IS FID IS FID

dot product⋄ 4.32 25.72 23.28 40.19
scaled dot product 4.31 25.74 23.84 42.33
general* 4.36 28.21 24.28 40.82
general† 4.26 26.94 24.63 42.45
biased general* 4.13 26.97 23.05 43.10
biased general† 4.30 25.89 25.24 43.64
activated general 4.41 28.39 23.56 42.65

Table 3: Results on CUB and MS-COCO for T2I Gen.
The definitions of ⋄, *, † are in footnote 7. Q refers to
caption words and K refers to image subregions.

Section 6.2. Considering that the nature of general521

VQA is different from that of TVQA, which mainly522

focus on OCR text input, it is unsurprising that the523

impact of alignment mechanism is opposite. Hence,524

it is remarkable to find that the scaled dot product525

achieved the best in both domains.526

The result of T2I Gen presented in Table 3 pro-527

duces quite different trends compared to other two528

tasks, including T&I Match and VQA. First, there529

is no alignment function that produces a consistent530

better performance in both evaluation metrics, IS or531

FID. While neural network-based alignment func-532

tions (i.e. general, biased and activated general)533

achieved higher IS scores than others, the dot prod-534

uct produced better FID scores than others. This535

trend can be seen in both CUB and MS-COCO. The536

scaled dot product obtains comparably good FID537

results, not in IS. The reason can be easily found if538

we understand the nature of IS and FID. IS focuses539

on the diversity of image, whereas FID measures540

the similarity between the ground-truth images and541

the generated images based on the textual descrip-542

tion. Hence, if the alignment function between543

visual and textual information successfully works,544

it produces a better FID score. However, the better545

alignment function does not necessarily produce546

diverse objects in the image.547

Based on all three downstream tasks, we can find548

the scaled dot product can be the best alignment549

calculation function that can successfully bridge550

the visual and textual information and can effec-551

tively work in both cross attention and self attention552

model, as it produces considerably and consistently553

better results across all six VL datasets.554

6.2 Impact of Key and Query555

We also investigated the impact of position of query556

and key in the attention alignment calculation pro-557

cess, especially when extra learnable weights and558

biases are involved. We explore the difference be-559

tween linearly transforming the key K to multiply560

Figure 1: Qualitative examples of T&I Match-
MSCOCO with SCAN by different attention functions.

Figure 2: Qualitative examples of VQA-CLEVR from
the MAC trained by different attention functions.

with the query Q (f(K,Q) = KWQ) and trans- 561

forming the query Q to multiply with the key K 562

(f(Q,K) = QWK) in general attention and bi- 563

ased general attention calculation. Specifically, we 564

initially fixed the textual information as a query Q 565

and visual information as a key K (stated in Equa- 566

tion 7 and 8) and swapped the position in different 567

general attention alignment score measurements. 568

In Table 1, 2, and 3, * indicates the functions with 569

f(K,Q), whereas † refers to those with f(Q,K). 570

Table 1 shows that Flickr30K performed bet- 571

ter with general* or biased general*, whereas MS- 572

COCO does not have obvious trends. Similar pat- 573

terns can be found in both cross attention mecha- 574

nisms (VQA models, T2I Gen models), and self 575

attention mechanism TVQA models. Interestingly 576

but unsurprisingly, we note that there is no obvious 577

and consistent performance improvement pattern 578

in different positions of textual information (query 579

Q) and visual information (key K) when it cal- 580

culates the alignment. It depends on the specific 581

downstream tasks and dataset. We can conclude 582

that the way of calculating alignment is the crucial 583

point in VL tasks, compared to the position/order 584

of different modal information. 585
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Figure 3: Qualitative examples of Text-VQA from the
M4C trained by different attention alignment functions.
Question words that receive attention weights greater
than 0.01 are indicated in bold and coloured in blue.

Figure 4: Qualitative examples of T2I Gen-MSCOCO
with AttnGAN by different attention functions.

6.3 Qualitative analysis586

We also evaluated and visualised the prediction in-587

terpretability of the best and worst attention align-588

ment calculation functions for different VL tasks.589

Figure 1 shows some examples for T&I Match.590

With general attention* and scaled dot product, the591

SCAN model is able to include 4 correct captions592

among the top 5 retrieved captions, while biased593

general attention can only extract 3 correct cap-594

tions. With respect to the helmet indicated by the595

blue box in the image, both general attention and596

scaled dot product can put more focus on the words597

red/helmet/hat from the caption, whereas the bi-598

ased general attention would rather focus on prepo-599

sitions, determinants or other objects.600

For VQA, Figure 2 shows a picture featuring601

several cubes and spheres. With a scaled dot prod-602

uct for attention score calculation, when the model603

focuses on the keyword metal cubes from the tex-604

tual question, the only metal cube in the image605

is emphasized during the first two steps. Then, it606

correctly detects 4 objects from the image by high-607

lighting the keywords objects and either objects.608

Additionally, the model looks for the purple metal609

cube from the picture as asked by the question, but610

it does not exist in the picture so none of the ob-611

jects are highlighted at step 4. However, the model 612

with the biased general attention tries to count the 613

number of objects on the right of the metal cube 614

in step 3 but it inaccurately focuses on the metal 615

cube itself in addition to the correct ones. In the 616

last step the model puts more focus on the farthest 617

right objects, resulting in a wrong prediction of 618

3. The qualitative analysis of TVQA is in Figure 619

3. The model with scaled dot product focused on 620

the keywords what, word and handwritten to focus 621

on the handwritten word jesus in the image and 622

retrieved the correct OCR token with highest atten- 623

tion weight. However, with dot product attention, 624

all the question words received little attention by 625

the model (< 0.01), failing to find the appropriate 626

OCR token in the image. 627

Figure 4 shows the images generated by At- 628

tnGAN using both the best and the worst attention, 629

dot product and biased general† respectively. At- 630

tnGAN with a dot product, can generate a relatively 631

more realistic image. From a low resolution picture, 632

the model focuses on the words based on the fol- 633

lowing order, television, flat, old, screen, console, 634

in order to refine the image to include the objects 635

and corresponding features gradually. Compared to 636

that, the biased general attention model generates a 637

surrealistic image by focusing on flat, screen, top, 638

console, television in the first step. 639

Overall, based on the qualitative analysis in dif- 640

ferent VL tasks, we reveal that the better attention 641

alignment calculation function can produce better 642

interpretability in terms of the prediction. 643

7 Conclusion 644

We systematically examined the role of attention 645

alignment score calculation in vision-and-language 646

tasks, including visual question answering, text- 647

and-image matching, and text-to-image genera- 648

tion. We found that the scaled dot product function 649

can be the best attention alignment calculation for 650

either cross or self-attention in overall VL tasks 651

while the appropriate position of visual and textual 652

information may vary from different VL tasks/- 653

datasets. In conclusion, we note that better vision- 654

and-language information alignment leads to better 655

task performance and interpretability. It is hoped 656

that our analysis can provide a great insight for 657

selection of the most effective attention alignment 658

calculation for different VL benchmark tasks. We 659

leave the systematical exploration of visual-textual 660

attention interpretability to our future work. 661
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A Appendix 932

A.1 Experimental Settings 933

For T&I Match: SCAN (t-i) AVG models, all set- 934

tings of hyper-parameters follow the configuration 935

of the SCAN (Lee et al., 2018). The batch size 936

is 128, the margin of triplet loss α is 0.2 and the 937

threshold of maximum gradient norm for gradient 938

clipping is 2. For Flickr30k models, the learning 939

rate is set as 0.0002 for the first 15 epochs and then 940

lowered to 0.00002 for another 15 epochs. Total 941

training epochs are 30 and the best model is se- 942

lected with the highest sum of R@K score. For 943

MS-COCO models, we trained with a learning rate 944

of 0.0005 for 10 epochs and then lowered the learn- 945

ing rate to 0.00005. The best model is selected with 946

the highest sum of R@K score. Training epochs are 947

20. For T2I Gen: AttnGan model on CUB dataset, 948

the batch size is set to be 20 and we trained with 949

400 epochs in total. On the MS-COCO dataset, the 950

batch size is 14 and total epochs are 90. In addition 951

to this, all settings are the same as the AttnGan 952

(Xu et al., 2018b). For VQA: MAC models, the 953

training epoch is set to be 8 and other hyperparam- 954

eter settings are consistent with MAC(Hudson and 955

Manning, 2018). More specifically, the batch size 956

is 128, the learning rate is 0.0001 with 0.5 learning 957

decay rate and the threshold of maximum gradient 958

norm for gradient clipping is 8. For TVQA: M4C 959

model on the Text-VQA dataset, we followed the 960

exact same setting as M4C (Hu et al., 2020), ap- 961

plying the batch size of 128 and 100 epochs for 962

training, All model variants would train to conver- 963

gence within 80 epochs. 964

Tasks Dataset Train Dev Test

T2I Gen CUB 8,855 - 2,933
MS-COCO 82,783 - 15,000

T&I Match Flickr30k* 29,000/145,000 1,000/5,000 1,000/5,000
MS-COCO* 29,000/145,000 1,000/5,000 1,000/5,000

VQA CLEVR* 70,000/699,989 15,000/149,991 15,000/149,988
Text-VQA* 21,953/34,602 3,166/5,000 3,289/5,734

Table 4: Details of train/dev/test split for each dataset.
Note that * indicates the dataset having different num-
bers for visual and textual inputs. It reports the num-
ber of images followed by the number of captions or
question-answer pairs, separated by backslash (/).

In addition, we show the dataset split details in 965

Table 4 and state the licenses of used assets in Ta- 966

ble 5. All the artifacts we used either did not specify 967

terms of use or limited the use to non-commercial 968

research purpose. Since we conduct a systematic 969

research study which is not for commercial pur- 970

pose or application, our work is consistent with the 971

11



terms of use of these assets.972

Asset License
Datasets
CUB CC BY 4.0
MS-COCO CC BY 4.0
Flickr30k Unknown
CLEVR CC BY 4.0
Text-VQA CC BY 4.0
Base Model Codes
MAC Apache License 2.0
SCAN Apache License 2.0
M4C BSD
AttnGAN MIT

Table 5: Licenses of the assets used by the study.

A.2 Computing Infrastructure973

All experiments for T2I Gen, T&I Match and VQA974

are conducted on a variety of cloud instances from975

Google Colab, with each utilising an NVIDIA976

Tesla T4 GPU of 16GB RAM. For TVQA the ex-977

periments are conducted utilising NVIDIA Titan978

RTX GPU with 24GB RAM, 16 Intel(R) Core(TM)979

i9-9900X CPU @ 3.50GHz with 128GB RAM, and980

the operating system of Ubuntu 20.04.1.981

A.3 Additional Qualitative Examples - VQA982

We include more comparison examples for MAC983

model in this section to show the difference be-984

tween scaled dot product and biased general* in985

the VQA context. In Figure 5, a question what num-986

ber of small metallic things are left of the brown987

matte object in front of the brown thing on the right988

side of the gray ball is raised towards an image989

with several cylinders, cubes and spheres. The990

MAC model with scaled dot product attention is991

able to correctly focus on the brown matte object992

from both the question and the image, while putting993

slight attention on the brown thing on the right side994

as mentioned in the question. Then in step 3 and 4995

the model is able to locate the small metallic thing996

on the left in the image as guided by the question997

context, giving a correct prediction of 1. However,998

the MAC model trained with biased general* atten-999

tion slightly focuses on the target metallic object1000

at the very beginning, and shifts its main attention1001

to the brown matte object in the consecutive steps,1002

which is not the final target the question is asking1003

for, therefore it fails to make a correct prediction.1004

In Figure 6, a question what number of objects1005

are big brown balls or big things that are to the1006

left of the green cube is asked. MAC model us-1007

ing scaled dot product attention approaches this1008

question by firstly attending to what number and or1009

Figure 5: Extra qualitative examples of VQA-CLEVR
from the MAC trained by different attention alignment
functions.

Figure 6: Extra qualitative examples of VQA-CLEVR
from the MAC trained by different attention alignment
functions.

to understand the key concept that the question is 1010

asking for - the number of the union of two groups 1011

of objects. Then in the consecutive steps it focuses 1012

on the key objects green cube, brown balls, and 1013

remaining big things on the left of the green cube, 1014

so it can successfully give the correct answer 3. 1015

However the model trained with biased general* at- 1016

tention focused on the big things before noting the 1017

condition left of the green cube, and failed to filter 1018

out irrelevant objects, giving a wrong prediction 4. 1019

In Figure 7, a question are there the same num- 1020

ber of green blocks that are to the left of the pur- 1021

ple metal object and big brown rubber objects is 1022

asked. MAC model using scaled dot product atten- 1023

tion approaches this question by firstly attending to 1024

same number to count and compare relevant targets. 1025

Then it focuses on the key objects purple metal ob- 1026

ject, brown rubber objects, and green blocks on the 1027
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Figure 7: Extra qualitative examples of VQA-CLEVR
from the MAC trained by different attention alignment
functions.

Figure 8: Extra qualitative examples of VQA-CLEVR
from the MAC trained by different attention alignment
functions.

left of the purple metal object in both question and1028

the image, so it can successfully give the correct1029

answer yes. However the model trained with biased1030

general* attention focused on green blocks in the1031

question in the last two steps but failed to find the1032

target in the image, thus giving a wrong prediction1033

no.1034

In Figure 8, a question what number of objects1035

are either gray rubber spheres or rubber things be-1036

hind the green metal cylinder is asked. MAC model1037

using scaled dot product attention approaches this1038

question by firstly attending to what and or in the1039

question. Then it focuses on the relevant objects1040

green metal cylinder, gray rubber spheres, and re-1041

maining rubber things in both question and the1042

image, so it can successfully give the correct an-1043

swer 3. However the model trained with biased1044

Figure 9: Extra qualitative examples of TVQA-
TextVQA from the M4C trained by different attention
alignment functions. Question words that receive atten-
tion weights greater than 0.01 are indicated in bold and
coloured in blue.

Figure 10: Extra qualitative examples of TVQA-
TextVQA from the M4C trained by different attention
alignment functions. Question words that receive atten-
tion weights greater than 0.001 are indicated in bold and
coloured in blue.

general* attention firstly focused on the number of 1045

rubber things before noting the condition behind 1046

the green metal cylinder, so it failed to filter out 1047

irrelevant objects, giving a wrong prediction 4. 1048

A.4 Additional Qualitative Examples - TVQA 1049

We also include more qualitative examples for M4C 1050

model in this section to show the difference be- 1051

tween scaled dot product and dot product attention 1052

in the context of TVQA. In Figure 9, all the three 1053

words from the question who must survive received 1054

attention > 0.01 in the scaled dot product model, 1055

and the target OCR answer in the image received 1056

top attention among all OCR tokens. However the 1057

dot product model put much less attention on all 1058

question words, instead the OCR tokens for must 1059

and survive in the image were receiving top atten- 1060

tion weights, followed by OCR token winter which 1061

is irrelevant to the question. Therefore scaled dot 1062

product model predicted correctly but dot product 1063

model did not. 1064

In Figure 10, keywords what’s the name from 1065

the question what’s the name of the store received 1066
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Figure 11: Extra qualitative examples of TVQA-
TextVQA from the M4C trained by different attention
alignment functions. Question words that receive atten-
tion weights greater than 0.001 are indicated in bold and
coloured in blue.

Figure 12: Extra qualitative examples of T&I Match-
MSCOCO from the SCAN trained by different align-
ment functions.

attention > 0.001 in the scaled dot product model,1067

similarly the dot product model put much less atten-1068

tion on all question words, and none of the question1069

words received attention > 0.001. Both models put1070

most attention weights on the OCR token gift from1071

the image, but scaled dot product managed to put1072

more focus on the store name tanamera than the1073

coffee brand name nespresso, which is the opposite1074

case of the dot product model. Therefore scaled dot1075

product model predicted correctly but dot product1076

model did not.1077

In the example shown by Figure 11, there are1078

lots of OCR tokens present in the image, making it1079

more difficult to retrieve the correct answer tokens.1080

As we can see from the picture, the model learned1081

using dot product attention diverted its top attention1082

to unrelated OCR token cola, and the top 3 OCR1083

tokens receiving highest attention (mike, cola and1084

petition) are not aligned with the predicted answer1085

tokens (senator mike lee), while the model learned1086

using scaled dot product attention put highest at-1087

tention to expected or related OCR tokens that are1088

aligned with the ground truth answers.1089

Figure 13: Extra qualitative examples of T&I Match-
Flickr30k from the SCAN trained by different alignment
functions.

Figure 14: Extra qualitative examples of T&I Match-
Flickr30k from the SCAN trained by different alignment
functions.

A.5 Additional Qualitative Examples - T&I 1090

Match 1091

In this section we visualize some examples for T&I 1092

Match models that show the attention received by 1093

retrieved captions with respect to the selected ob- 1094

ject region. In Figure 12 we can see that the best 1095

two models (i.e. models trained with general* atten- 1096

tion or scaled dot product attention) can capture all 1097

key elements, man, bicycle/bike, riding, as the top 1098

attended words from the retrieved captions most of 1099

the time. However, the model trained using biased 1100

general* attention would capture at most one key 1101

element from each retrieved caption, and pay high 1102

attention to preposition, determinants or words re- 1103

lated to other object regions. In the example shown 1104

by Figure 13, the model trained with scaled dot 1105

product attention can always capture the main ob- 1106

ject hat from all the retrieved captions, while the 1107

other two models sometimes fail to do so. In Fig- 1108

ure 14, all three models sometimes wrongly recog- 1109

nise the dog’s color (i.e. brown dog in wrongly 1110

retrieved captions). However, the best two models 1111

can retrieve the caption that is not in the ground 1112

truth list but also semantically matched to the given 1113

image (i.e. A dog running through a grassy field). 1114

The worst model trained with biased general† at- 1115

tention fails to do so, and it sometimes attends to 1116
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objects from the caption that is not actually in the1117

image (e.g. red ball).1118

A.6 Additional Qualitative Examples - T2I1119

Gen1120

In this section we visualize and compare the best1121

and the worst T2I Gen model. In Figure 15, the1122

images generated by two models are highly similar1123

but the worst model trained with activated general1124

attention fails to attend to the key word white, so1125

the bird it generated in the picture does not clearly1126

have a white throat and chest.1127

Figure 15: Extra qualitative examples of T2I Gen-CUB
from the AttnGAN trained by different attention align-
ment functions.

Figure 16: Extra qualitative examples of T2I Gen-CUB
from the AttnGAN trained by different attention align-
ment functions.

Figure 17: Extra qualitative examples of T2I Gen-CUB
from the AttnGAN trained by different attention align-
ment functions.

In Figure 16 and Figure 17, the activation func-1128

tion used in the attention mechanism of the worst 1129

model makes it difficult to differentiate among the 1130

caption words when their attention weights are all 1131

very low. Therefore the model fails to attend to any 1132

useful facts in each attention layer, which makes it 1133

impossible to provide interpretability of model de- 1134

cision, despite generating an image that can roughly 1135

match the description in Figure 17. In Figure 16 1136

the quality of the generated image is even worse - 1137

the feature of the bird does not match with the key 1138

phrases in the description (i.e. red with white, short 1139

beak). 1140
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