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Abstract
Assistance games are a promising alternative
to reinforcement learning from human feedback
(RLHF) for training AI assistants. Assistance
games resolve key drawbacks of RLHF, like in-
centives for deceptive behavior, by explicitly mod-
eling the interaction between assistant and user
as a two-player game where the assistant cannot
observe the user’s goal. Despite their potential,
assistance games have only been explored in sim-
ple settings. Scaling them to more complex en-
vironments is difficult because it requires both
accurately modeling human users’ behavior and
determining optimal actions in uncertain sequen-
tial decision-making problems. We tackle these
challenges by introducing a deep reinforcement
learning (RL) algorithm called AssistanceZero
for solving assistance games, and applying it to a
Minecraft-based assistance game with over 10400

possible goals. We show that AssistanceZero ef-
fectively aids simulated humans in achieving un-
seen goals and outperforms assistants trained with
imitation learning and model-free RL. Our results
suggest that assistance games are more tractable
than previously thought, and that they are an ef-
fective framework for assistance at scale.

1. Introduction
Reinforcement learning from human feedback (RLHF) and
its variants have become the dominant paradigm for training
general AI assistants. RLHF involves fine-tuning pre-trained
foundation models to take actions (i.e., produce responses)
that are preferred by human annotators according to criteria
like helpfulness and harmlessness (Bai et al., 2022).
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However, RLHF-trained assistants have a number of draw-
backs. In particular, the objective in RLHF—generating sin-
gle actions preferred by annotators—is not always aligned
with the overall goal of effectively assisting users. For ex-
ample, imagine a coding assistant trained with RLHF that
interacts with a user in a pair-programming setup. One
misalignment between RLHF and assisting the user is that
convincing deceptive actions may be rated highly by anno-
tators but will ultimately cause harm (Lang et al., 2024).
For example, annotators may accidentally choose subtly
buggy code, causing the assistant to introduce bugs that are
difficult to detect during deployment. This issue will only
become more significant as AI systems become more intel-
ligent, since their outputs may become harder for humans to
reliably evaluate. Furthermore, RLHF does not encourage
models to maintain uncertainty about a user’s goals. An
assistant that accounts for this uncertainty might ask clarify-
ing questions and preserve option value (the ability to help
with a variety of possible goals). Instead, since RLHF-based
models are training on single-turn responses, the primary
incentive is to immediately act based on a best-guess about
the user’s goal. For example, when considering a function
whose purpose is ambiguous, the coding assistant might
choose an incorrect interpretation and implement it without
consulting the user. Finally, RLHF does not explicitly ac-
count for the interactive, collaborative nature of assistance.
When an AI assistant and user interact in a shared environ-
ment, it is often better for the assistant to take actions that
complement the user’s actions rather than replace them. For
example, it may be more helpful for the coding assistant
to look for existing bugs or write helper functions. Instead,
current assistants like GitHub Copilot (Chen et al., 2021)
try to predict what the user will write next and write it for
them. Since RLHF does not consider the joint effects of the
assistant’s and user’s actions, or their effects on one another,
it may not produce the most helpful assistant.

An alternative paradigm for training AI assistants is assis-
tance games (Fern et al., 2014; Hadfield-Menell et al., 2016;
Shah et al., 2020). Assistance games avoid the aforemen-
tioned drawbacks of RLHF by explicitly accounting for both
the interactive nature of assistance and uncertainty about
the user’s goal. In particular, an assistance game is a two-
player game in which an assistant and a user take actions in
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a shared environment. The two agents share a reward func-
tion, but crucially the assistant is initially uncertain about it.
Assistance games remove incentives for deception since the
assistant’s performance depends on the true latent reward
function, rather than human feedback. They also incentivize
the assistant to interact with the user to resolve its uncer-
tainty about the reward function. Thus, solving an assistance
game can be viewed as a form of “meta-learning” where the
assistant learns how to learn about the user’s goals. Finally,
solving assistance games results in assistants whose actions
complement the user’s to achieve optimal joint performance.

Given the advantages of assistance games, why do they re-
main a poorly studied method for training AI assistants?
While assistance games have been used to solve very small-
scale problems, there are two major challenges in applying
them to more realistic settings. First, there are many co-
operative equilibria in an assistance game, and humans are
unlikely to exactly play any of them. If the AI assistant fails
to account for human irrationality and conventions, it could
perform poorly with real humans (Carroll et al., 2020). Sec-
ond, the AI assistant must maintain uncertainty over reward
functions and reason under that uncertainty, which deep
learning-based AI systems struggle to do (Gleave & Irving,
2022). Furthermore, solving sequential decision-making
problems with uncertainty is considered computationally
intractable in many cases (Papadimitriou & Tsitsiklis, 1987;
Madani et al., 2003). While prior work on interacting with
humans in uncertain environments has been limited to small
amounts of unstructured uncertainty (Hu et al., 2020), real
human preferences are complex and structured.

We tackle these challenges and show that complex assis-
tance games can be tractably solved. We overcome the first
challenge by fixing a reward-conditioned human policy and
seeking to find a best-response AI policy. This reduces the
assistance game to a partially-observable Markov decision
process (POMDP), which unlike a game has a well-defined
solution. We address the second challenge by developing a
hybrid learning–planning approach called AssistanceZero
to effectively solve the assistance POMDP. AssistanceZero
extends AlphaZero (Silver et al., 2017) by predicting the
unseen goal and human actions, allowing it to effectively
plan how to best assist the human.

We test AssistanceZero in a new environment, the Minecraft
Building Assistance Game (MBAG), in which an AI assis-
tant must help a human build a goal structure in a Minecraft-
based environment without prior knowledge of the goal
(Figure 1). The assistant must interact with the user to learn
about their reward function (which in this case has a one-
to-one relationship with the goal structure) and help them
optimize it. The distribution over goal structures in MBAG
is complex but structured, reflecting human preferences in
other domains. We developed MBAG to be directly analo-

Figure 1. The Minecraft Building Assistance Game (MBAG), in
which we test our AssistanceZero algorithm for scalably solving
complex assistance games. See Section 4 for a full description.

gous to real-world assistance tasks, such as helping a user
write code. A code-generating language model assistant
is initially uncertain about the user’s intent, which it must
infer by observing the user and incorporating their feedback.
Similar, an assistant in MBAG does not know the human’s
goal structure, and it must learn how to help the human build
it by observing their behavior and performing information-
gathering actions. Creating an effective assistant in MBAG
is a major challenge because it has a far larger number of
possible goals than in prior work (over 10400, compared
to less than 20). Despite this challenge, we show that as-
sistants trained with AssistanceZero are highly effective at
collaborating with simulated humans. We also compare As-
sistanceZero to other methods of solving assistance games
and other paradigms for building AI assistants. We find that
AssistanceZero greatly outperforms a highly optimized PPO
baseline and imitation learning-based methods. Finally, we
also shed light on the choice of human policy by training
a number of human models and evaluating their accuracy
at predicting real human behavior in MBAG. Our results
suggest that assistance games are tractable to scale and can
be a superior framework for training helpful assistants in
challenging environments.

Our contributions may be summarized as: we introduce
AssistanceZero for tractably solving complex assistance
games; we demonstrate that it can be used to solve MBAG,
an assistance game with exponentially more possible goals
than those in previous work; and we empirically investigate
a number of human models for MBAG.

2. Background and Related Work
We begin by introducing the assistance game formalism and
surveying related work. An assistance game is a Markov
game in which two players, the human H and the assis-
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tant R, interact to optimize a shared reward function. It
consists of a state space S, action spaces AH and AR

for the human and assistant, a set of possible reward pa-
rameters Θ, and a discount factor γ ∈ [0, 1]. Reward
parameters and an initial state are sampled from a prede-
fined distribution p(s1, θ). At each time step t = 1, . . . , T ,
both agents select actions aHt ∈ AH, aRt ∈ AR; receive
shared reward R(st, a

H
t , aRt ; θ); and the environment tran-

sitions to state st+1 according to a transition distribution
p(st+1 | st, aHt , aRt ).

A human policy πH : S × Θ → ∆(AH) defines a dis-
tribution over actions πH(aH | s, θ) given an environ-
ment state and reward parameters. An assistant policy
πR : (S × AH × AR)∗ × S → ∆(AR) defines a dis-
tribution over actions πR(aRt | ht) conditioned on the
state-action history up until the current time step: ht =
(s1, a

H
1 , aR1 , . . . , st−1, a

H
t−1, a

R
t−1, st). Note that the assis-

tant policy is not conditioned on the reward parameters
since it cannot observe them. While in general a human
policy might also depend on ht, for simplicity we assume
that πH is only conditioned on (s, θ); previous results show
there is an optimal human policy conditioned only on (s, θ)
(Hadfield-Menell et al., 2016). Given a pair of policies
(πH, πR), we can define their joint expected return as

J(πH, πR) = E
[∑T

t=1 γ
tR(st, a

H
t , aRt ; θ)

]
,

the expected discounted sum of their shared reward, where
(s1, θ) ∼ p(s1, θ); aHt ∼ πH(aH | st, θ); aRt ∼ πR(aR |
ht); and st+1 ∼ p(st+1 | st, aHt , aRt ). For a fixed human
policy πH, we define a best response to it as an assistant
policy πR that maximizes J(πH, πR).

Related work Assistance games were introduced by Fern
et al. (2014) and Hadfield-Menell et al. (2016) under the
names “hidden-goal MDPs” and “cooperative inverse re-
inforcement learning.” A few prior works have explored
small-scale assistance games (Dragan & Srinivasa, 2013;
Javdani et al., 2015; Malik et al., 2018; Fisac et al., 2020;
Woodward et al., 2020; Zhi-Xuan et al., 2024) with around
ten or fewer discrete reward parameters. We aim to scale
assistance games to much larger structured reward param-
eter spaces, similar to the goals real humans have when
interacting with assistants; in our environment |Θ| ≈ 10400.

Our approach to solving assistance games builds on tech-
niques for scalably solving games (Silver et al., 2017; Brown
et al., 2020; Hu et al., 2021a), modeling human behavior
(Carroll et al., 2020; Laidlaw & Dragan, 2021; Yang et al.,
2022; Jacob et al., 2022), and training effective collabora-
tive agents (Stone et al., 2010; Hu et al., 2020; Treutlein
et al., 2021; Strouse et al., 2021; Hu et al., 2021b; Bakhtin
et al., 2022). Minecraft and Minecraft-like environments
have been previously used as testbeds for assistance and col-
laboration (Szlam et al., 2019; Gray et al., 2019; Bara et al.,

2021; Skrynnik et al., 2022; Kiseleva et al., 2022; Zholus
et al., 2022; Mehta et al., 2024) as well as for general inter-
active learning (Kanervisto et al., 2022; Baker et al., 2022;
Fan et al., 2022; Milani et al., 2023; Wang et al., 2023).

3. Solving Assistance Games with
AssistanceZero

Solving an assistance game requires finding an assistant
policy πR that performs well with real users. Shah et al.
(2020) propose to fix a human policy πH(aH | s, θ) (i.e.,
human model) and find a best-response policy πR. They
show that this problem can be reduced to solving a POMDP,
which we call an assistance POMDP. Unfortunately, large-
scale POMDPs are notoriously difficult to solve.

We explore how to find good human models in Section 5
and focus here on solving assistance POMDPs. We aim
to do this with deep reinforcement learning (DRL) algo-
rithms, since they are a scalable technique for solving com-
plex sequential decision-making problems. We apply DRL
by following the training procedure from Woodward et al.
(2020). First, each of several episodes of data are collected
by sampling reward parameters θ ∼ p(θ) and rolling out
the remainder of the episode according to the fixed human
model πH and the current assistant policy πϕ

R with param-
eters ϕ. Next, the parameters ϕ are updated according to
some loss function defined over the episodes, and the pro-
cess repeats by collecting more data. For example, proximal
policy optimization (PPO) (Schulman et al., 2017) can be
applied to an assistance POMDP; it uses the collected data
to estimate ∇ϕJ(πH, πϕ

R) and then updates ϕ with gradient
ascent.

While PPO has shown promise in partially observable and
multi-agent settings (Yu et al., 2022), we find that it strug-
gles to solve assistance POMDPs, which require reasoning
about structured uncertainty over a potentially large space
of reward parameters θ ∈ Θ. Solving an assistance POMDP
requires balancing learning more about θ and using that
information to help the human. We generally found that
applying vanilla PPO to assistance POMDPs results in an
assistant policy that simply does nothing. Thus, we turned to
a different DRL algorithm: AlphaZero (Silver et al., 2017).
AlphaZero has achieved superhuman performance in com-
plex competitive games like Go and chess, but it is not clear
if it is applicable to solving assistance POMDPs.

We propose an extension of AlphaZero, which we call As-
sistanceZero, that can effectively solve assistance POMDPs
better than even a carefully-tuned PPO baseline trained with
auxiliary losses. Similarly to AlphaZero, AssistanceZero
chooses actions using a variant of Monte Carlo tree search
(MCTS) (Kocsis & Szepesvári, 2006). MCTS builds a
search tree by simulating the results of taking different se-
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quences of actions from the current state. It does this by
repeating a three-stage process for Nsim simulations, adding
one additional node during each simulation, where nodes
represent histories and branches are action pairs (aH, aR).
As in AlphaZero, this requires predicting promising actions
and estimating state values. To do so, AssistanceZero em-
ploys a recurrent neural network with parameters ϕ that
takes as input a state-action history h and includes a pol-
icy head πϕ(aR | h) to predict actions and a value head
V̂ ϕ(h) to predict the values of states. In addition, MCTS
requires both the reward and the next state resulting from
an action. However, in an assistance POMDP, neither is
known: the next state depends on both the assistant’s and
human’s actions, not just the assistant’s action, and the re-
ward R(s, aH, aR; θ) depends on the reward parameters θ,
which are not visible to the assistant. To overcome these
challenges, AssistanceZero also includes a reward parame-
ter prediction head p̂ϕ(θ | h) and a human action prediction
head p̂ϕ(aH | h), which predict distributions over θ and aH,
respectively. We now explain how these are used by the
MCTS variant in AssistanceZero.

In the selection stage, an assistant action aR is selected at
the current history node h that maximizes

Q(h, aR) + cPUCT πϕ(aR | h)
√∑

b∈AR N(h, b)

1 +N(h, aR)
, (1)

where N(h, aR) is the number of times action aR has pre-
viously been selected at node h, πϕ(aR | h) is the output of
the network’s policy head, and cPUCT is a tunable parameter
that balances exploration and exploitation. Q(h, aR) is an
estimate of the Q-value of aR; we describe how this is calcu-
lated later in this section. Once an assistant action is chosen,
a human action aH is sampled according to the probabili-
ties output by the human action predictor head p̂ϕ(aH | h).
Then, the state s′ resulting from taking actions (aH, aR) is
calculated, and the state and actions are appended to h to
reach a node h′. The reward associated with the transition
is estimated by marginalizing over the reward parameter
distribution produced by the reward prediction head:

R̂(h, aH, aR) =

∫
Θ

R(s, aH, aR; θ) p̂ϕ(θ | h′)dθ.

The selection process repeats until a node h is found that
has not previously been reached.

In the expansion stage, the new node is input to the network
to calculate the policy head outputs πϕ(aR | h), the value
estimate V̂ ϕ(h), the human action predictions p̂ϕ(aH | h),
and the reward parameter predictions p̂ϕ(θ | h). The pol-
icy outputs at the root node have Dirichlet noise applied,
similarly to AlphaZero.

In the backup stage, the Q-values of all ancestor nodes of h
are recursively updated with the discounted sum of rewards
along edges of the tree plus the value estimate V̂ ϕ(h). As
in MCTS, Q(h, aR) is simply the average of the Q-values

estimated over all previous simulations that have taken aR

in node h. For actions with no visits, Q(h, aR) is set to the
average of all backed-up values for node h:

Q(h, aR) =

∑
b∈AR N(h, b)Q(h, b)∑

b∈AR N(h, b)
if N(h, aR) = 0.

When selecting actions according to (1), we normalize Q-
values by the highest and lowest value seen among all vis-
its to that node, similarly to MuZero (Schrittwieser et al.,
2020).

The resulting policy from MCTS is defined as
πMCTS(aR | h) ∝ N(h, aR)τ ,

where τ is an inverse temperature parameter.

To train the AssistanceZero network, we collect episodes
by selecting assistant actions using MCTS with the current
network parameters. Then, the four heads are updated using
separate loss terms. As in AlphaZero, the policy head is
updated to minimize the KL divergence towards the policy
output from MCTS, and the value head to minimize the
squared error with the reward-to-go. The reward parameter
and human action prediction heads are trained with negative
log-likelihood loss to predict θ and aH, respectively. The
full AssistanceZero loss can be written for an episode as

L(ϕ) = 1
T

∑T
t=1

[
λpolicyDKL

(
πMCTS
t ∥πϕ(· | ht)

)
+ λvalue

(
V̂ ϕ(ht)−

∑T
t′=t γ

t′−tR(st′ , a
H
t′ , a

R
t′ ; θ)

)2

− λreward log p̂
ϕ(θ | ht)− λaction log p̂

ϕ(aHt | ht)
]
, (2)

where λpolicy, λvalue, λreward, and λaction are weights that trade
off the four loss terms, and πMCTS

t is the action distribution
output by MCTS at time step t. The technique of learning an
approximate belief distribution over the reward parameters
θ is similar to learned belief search (Hu et al., 2021a). After
a few epochs of gradient descent on L(ϕ) over the collected
episodes, AssistanceZero collects new episodes by running
MCTS with the updated network parameters and repeats the
process. See Appendix A for more details.

4. The Minecraft Building Assistance Game
To investigate whether solving complex assistance games is
possible with AssistanceZero, we introduce the Minecraft
Building Assistance Game (MBAG). MBAG mirrors the
structure and challenges of real-world assistance tasks: the
assistant must maintain uncertainty over a large space of
reward parameters and actively interact with the human to
best perform the task. Just as a language model assistant
must help a user write code despite not knowing the user’s
intent, or a robot must help a human cook a meal without
knowing the recipe, an MBAG assistant must help a human
build a house without knowing the structure of the house.

When designing MBAG, we aimed to satisfy a few desider-
ata to make it a useful environment for studying assistance
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games more broadly. First, we want the distribution over
reward parameters p(θ) to be complex but structured, simi-
larly to human preferences in other domains. As described
in the related work, most past work on assistance games has
considered only a small number of possible reward func-
tions. Second, we want there to be a variety of ways for the
assistant to help the human that require varying amounts
of information about the reward function. Finally, we want
an environment in which it is tractable for academic labs to
to train RL agents, making it feasible to empirically study
more complex assistance games. In the remainder of this
section, we describe the structure and implementation of
MBAG.

A state in MBAG consists of a 3-dimensional grid of blocks,
player locations within the grid, and player inventories.
Each location in the grid can be one of ten block types,
including air; we use an 11× 10× 10 grid for our experi-
ments. Each agent, or player, can be at any discrete location
within the 3-dimensional grid as long as that grid cell and
the one above it are air. The action space consists of a no-op,
moving in one of the six cardinal directions, placing a block,
breaking a block, or giving a block to another player. Place,
break, and give actions are parameterized by a location, and
place and give actions are additionally parameterized by a
block type. This means that in the 11 × 10 × 10 environ-
ment there are over 20,000 possible actions, although in
most states only a small subset of those can be taken.

The reward parameters θ consist of a goal grid of blocks. At
the start of an episode, the goal is sampled from a dataset
of houses based on the CraftAssist dataset (Gray et al.,
2019). To evaluate generalization, we maintain separate
train and test datasets, which have no overlap in goal struc-
tures. While the human agent can observe the goal, it is not
visible to the assistant. MBAG satisfies our first desider-
atum because there is an exponentially large number of
possible goals (on the order of 10400), making the goal
distribution much more complex than prior studies of as-
sistance games. However, due to the structured nature of
the houses, the assistant can still infer information about
the goals from human interaction. MBAG also satisfies the
second desideratum because some assistant strategies, like
collecting resources or digging a foundation, require very
little knowledge of the goal. On the other hand, adding final
decorations requires specific information. For more details
about the MBAG environment, see Appendix B.1.

5. Experiments
Human models Training and evaluating assistants in
MBAG requires a human policy πH(aH | s, θ) that selects
actions based on the current state s and the goal structure θ.
Developing robust and accurate human models is an ongo-
ing area of research, and simple models of human behavior

like Boltzmann rationality fail to predict human behavior
beyond the smallest of environments (Laidlaw & Dragan,
2021). Thus, we trained three human models for MBAG
using PPO, AlphaZero, and behavior cloning (BC) using
the same Transformer-based architecture (see Appendix B.3
for details). The reward function for PPO and AlphaZero
is based on goal similarity: the agent receives a reward of 1
(−1) for correctly (incorrectly) placing and breaking blocks,
and 0 otherwise. For BC, we collected 18 episodes of hu-
man data from 5 subjects; in half the episodes the subject
played alone and in the other half they played with a human
assistant. Subjects were able to see a “blueprint” overlay
showing the goal structure, while the human assistant was
not. The BC human model is trained to imitate human ac-
tions from the dataset of subjects playing alone, while the
PPO and AlphaZero models are trained with goal structures
sampled from the train house dataset. Besides initializing
BC from random weights, we also fine-tuned the PPO and
AlphaZero policy networks with BC; Yang et al. (2022) find
that initializing imitation learning with a near-optimal policy
can improve human modeling.

We evaluate each model’s accuracy at predicting human
actions and performance at building goal structures in the
test dataset. We evaluate the human models on the first
objective by measuring the cross-entropy (CE) between the
model’s predicted actions and human actions in the dataset;
we use 5-fold cross-validation for the BC policies. For
the second objective, we report the percentage of the goal
structure completed after 5, 10, and 20 minutes of acting in
the environment, where one time step is 0.8 seconds.

Table 1 shows the results of the evaluating the five human
models. As expected, the BC models achieve the lowest
CE since they are trained solely to imitate human actions;
in contrast, the RL-based models are poor predictors of hu-
man behavior. Initializing BC from the PPO policy network
results in slightly lower CE compared to initializing from
AlphaZero. We also compare each model’s goal percent-
ages with those of the human subjects during data collection.
The PPO and AlphaZero models are significantly better at
building the goal structure than real humans. BC with ran-
dom initialization performs worse than the human subjects,
while BC models initialized from PPO and AlphaZero per-
form better. Overall, we found the BC model initialized
from PPO to be the most human-like when considering both
the CE and goal completion metrics. For this reason, we
use this as the human policy πH for the remainder of the
experiments.

AI assistant policies We now turn to developing effective
AI assistant policies. In particular, we aim to find an as-
sistant policy that performs well in the assistance POMDP
defined using our fixed BC human model πH. We explore
two methods of explicitly solving the assistance POMDP.
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Model Cross- Goal percentage
entropy 5 min. 10 min. 20 min.

AlphaZero 5.70 85.56 95.24 95.85
PPO 9.40 85.34 92.11 94.45
BC (random init) 2.32 22.96 41.51 58.33
BC (AlphaZero init) 2.41 49.86 79.39 91.69
BC (PPO init) 2.38 41.98 68.50 83.33

Human subjects – 27.54 55.71 87.87

Table 1. We evaluate five policies as human models based on their
accuracy at predicting human actions (cross-entropy) and perfor-
mance at building goal structures (goal percentage).

First, we train a policy using AssistanceZero, as described
in Section 3. To compare to a model-free baseline, we also
train an assistant with PPO that uses the same policy net-
work architecture and size (see Appendix B.3 for details).
Our PPO baseline incorporates two auxiliary losses, with-
out which we found training an even marginally effective
PPO assistant was impossible; see Appendix B.4 for more
information.

Besides assistants which explicitly solve the assistance
POMDP, we also compare to baselines based on imitation
learning. Assistants like GitHub Copilot (Chen et al., 2021)
work by predicting human actions based on a large dataset
of human behavior (e.g., all open source repositories on
GitHub) and then taking those actions more quickly than
a human can. To train an equivalent assistant in MBAG,
we create a non-goal-conditioned (NGC) human model π̃H

based on πH, which marginalizes over the hidden goal θ:
π̃H(at | ht) =

∫
Θ
p(θ | ht)πH(at | st, θ)dθ. In practice,

we approximate this integral by sampling 10,000 goal struc-
tures from the CraftAssist dataset, generating rollouts using
πH, and training π̃H with BC to imitate these rollouts with-
out observing the goal. Similarly to how Copilot only makes
a suggestion when it is sufficiently sure about which code
to suggest, we also explore thresholding π̃H’s actions based
on their probability. In particular, if an action a sampled
from π̃H has π̃H(a | h) < c, then it is replaced with a
no-op, where c is a tunable confidence threshold. Our third
imitation learning-based assistant is trained by fine-tuning
π̃H on actions taken by the real human assistant during data
collection. This assistant is analogous to the one produced
by the supervised fine-tuning (SFT) phase of RLHF, so we
call it the SFT assistant.

Table 2 shows the goal percentage achieved after 5, 10, and
20 minutes by each assistant paired with πH, evaluated over
100 episodes with goal structures from the test set. For
reference, we show the performance of πH alone and of real
human subjects both with and without a human assistant.
The confidence-thresholded non-goal-conditioned BC, SFT,
and PPO assistant policies all appear to slightly outperform
πH alone at 5 and 10 minutes, although the results are not

Assistant 5 min. 10 min. 20 min.

None 42.0 ± 0.9 68.5 ± 1.0 83.3 ± 0.9
Pretrained 32.6 ± 1.2 49.0 ± 1.4 61.2 ± 1.5

(w/ conf. threshold) 44.4 ± 0.9 72.0 ± 1.0 84.9 ± 0.9
SFT 46.2 ± 0.8 72.2 ± 0.8 81.5 ± 0.8
PPO 46.4 ± 0.9 73.3 ± 1.0 85.6 ± 0.8
AssistanceZero (ours) 64.8 ± 0.9 83.9 ± 0.8 90.2 ± 0.6

Human subjects (alone) 27.5 ± 5.6 55.7 ± 12 87.9 ± 12
(w/ human assistant) 34.4 ± 10 63.1 ± 17 88.5 ± 10

Table 2. The goal percentage achieved by AI assistant policies
paired with the human model πH after 5, 10, and 20 minutes (each
time step is 0.8 seconds) with 90% confidence intervals.

statistically significant. On the other hand, AssistanceZero
significantly boosts performance, achieving 17 and 11 more
goal percentage points at 5 and 10 minutes, respectively.
This is greater than the performance increase in our human
study between humans playing alone versus with a human
assistant. Our results show that AssistanceZero is effective
at solving complex assistance games. See this video link of
AssistanceZero playing with a real human.
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Appendix
A. AssistanceZero Details
Training procedure As described in Section 3, AssistanceZero alternates between rolling out episodes in the environment
by selecting actions with MCTS and updating the network according to the loss function in (2). In practice, we found that
using a replay buffer to store rollouts improves performance and stability. After storing a certain number of new rollouts, we
randomly sample a number of episodes from the replay buffer to train the network.

Reward estimation As described in Section 3, we marginalize over the distribution predicted by the reward prediction
head to estimate the reward associated with a transition in MCTS. The reward is defined as the change in goal distance after
taking an action (see Appendix B.1.1). Therefore, the reward is only nonzero for place and break actions, and it is fully
determined by the current and goal block types at the location of the action. Therefore, we can calculate the expected reward
by summing over all possible block types under the marginal reward parameter distribution at that location, for both the
human’s and assistant’s place/break actions (if applicable). Concretely, let lH and lR be the locations of the human’s and
assistant’s actions, respectively, B = {b1, · · · , b10} the set of all 10 block types, and θlH=b a goal state where location lH

has block type b. Then, the expected reward is

R̂(h, aH, aR) = 1
{
aH ∈ {place, break}

}∑
b∈B

R(s, aH,∅; θlH=b) [p̂
ϕ(θlH=b | h′)]lH

+ 1
{
aR ∈ {place, break}

}∑
b∈B

R(s,∅, aR; θlR=b) [p̂
ϕ(θlR=b | h′)]lR ,

where [p̂ϕ(θlH=b | h′)]lH is the probability of block type b being present at location lH as predicted by the reward prediction
head (similarly for lR), and ∅ is the no-op action.

B. Experimental Details
B.1. Environment

We make MBAG tractable to train and plan in by implementing it in a mix of pure Python and C, with no dependency on
Minecraft for training. However, we also provide an interface with the Microsoft Malmo (Johnson et al., 2016) mod that
allows the Python environment to sync with Minecraft. This can be used for video visualization of policies. It also enables
human-AI play, in which human actions detected in Minecraft are translated into their equivalents in MBAG, and AI actions
taken in MBAG are translated into actions in Minecraft.

We provide two versions of MBAG: one where the players must collect resources by breaking a regenerating “palette” of
blocks located on one side of the environment, and one where the players have unlimited blocks. For the purposes of this
paper, we investigate the second version. This version of the environment is more difficult to build an assistant for, since the
assistant cannot simply collect resources to help the human. Instead, the assistant must reason about the goal structure based
on the human’s actions and place or break blocks to aid in constructing the goal.

B.1.1. REWARD FUNCTION

The human policy and the AI assistant policy receive the same shared reward at each time step primarily based on goal
distance, which is the fewest number of place and break actions needed to reach the goal from the current state. The joint
reward is equal to the goal distance before the actions were taken minus the goal distance after. That is, letting d(s, θ) be the
goal distance,

R(s, aH, aR; θ) = d(s, θ)− d(s′, θ),

where s′ is the state reached by taking actions (aH, aR) in state s. This definition of reward means that the maximum reward
achievable starting in a state s is always d(s, θ).
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B.1.2. GOAL STRUCTURES

We base the goal structures for MBAG on the CraftAssist houses dataset, which was collected by Gray et al. (2019). They
gave study participants the open-ended task of building any house in Minecraft and recorded the resulting structure. We
require that goal structures in MBAG have a one-block gap on all sides to allow the agents to move around it effectively, so
the houses must have dimensions at most 9× 8× 8. However, many of the goal structures in the CraftAssist dataset are
much larger. For houses in the dataset that are no more than twice the desired dimensions, we scale them down to fit.

B.2. Data Collection

To train the human models, we collect 18 episodes of 5 human subjects building goal structures. For half of the total
episodes, the subject is given a goal structure and is instructed to build it quickly and efficiently without assistance. For the
other half, a single experienced human Minecraft player acts as the assistant to help build the house. The human assistant is
instructed to help the human subjects build their goal structures, but they are not shown the goal structure themselves. While
the human agent and assistant can observe each other’s actions, there is otherwise no communication between them.

B.3. Network Architecture

For both the human models and AI assistant policies, we use a Transformer architecture with 6 spatial layers, 64 hidden
units, and 4 heads. Each of the 1,100 blocks in the environment is a separate “token”, which are identified by 12-dimensional
positional embeddings. Due to the large world size, training would be computationally prohibitive if each spatial layer
attended across all 1,100 blocks. Instead, we restrict attention in each layer to blocks in a slice along only a single dimension.
Layers 1 and 4 only allow attention along the X direction, layers 2 and 5 along the Y direction, and layers 3 and 6 along Z.
The input to the Transformer at each block location is the concatenation of:

• an embedding representing the current block type at that location,

• an embedding representing the goal block type at that location (if the goal is visible to the agent),

• an embedding representing which player, if any, is standing at that location,

• an embedding representing which player, if any, was the last to place or break a block at that location (this allows the
agents’ actions to be visible to each other),

• the counts of each type of block in the player’s inventory (divided by 64 for normalization),

• and the current time step (divided by 1,000 for normalization).

For recurrent policies, we add two additional layers after the 3rd and 6th transformer layers. Each of these layers consists of
LSTM cells at each block location that share weights; these enable memory across time.

B.4. Training Details

We develop different human and AI assistant policies using model-based RL, model-free RL, behavior cloning, and
combinations of these methods. Each policy uses similar model architectures (described in B.3) and is trained for an episode
length of 1,500.

During training, we randomize the starting location of the human policy to improve generalization. Since some RL
algorithms sample experience in fragments shorter than a full episode, we randomize the length of the first episode in the
environment. This avoids the situation where in one iteration all fragments are from the beginning of episodes and in the
next they are all from the end, which could result in training instability.

Data augmentation We apply data augmentation during behavior cloning for only the goal-conditioned human models.
The data augmentation consists of choosing a random permutation of block types for each state and applying it to the current
blocks in the world, the block types in the goal structure, the players’ inventories, and any place or give actions. We found
that using data augmentation led to improved generalization in cross-validation.

PPO human model (single-agent) The hyperparameters used to train the PPO human model are shown in Table 3.
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AlphaZero human model (single-agent) The hyperparameters used to train the AlphaZero human model are shown in
Table 4.

We observed that the AlphaZero human policy could not successfully construct the goal structure when trained directly with
the full 1,500 episode length. We hypothesize this is because, early in training, the policy gets stuck after the beginning of
the episode and thus does not collect useful experience for the remainder oft he episode. As the episode length increases,
the useless experience where the policy is stuck becomes a greater proportion of the training data and leads to decreased
performance. To address this issue, we terminate the episode if the policy does achieve a lower minimum goal distance for
100 time steps. This allows us to train with the full episode length while skipping less useful experience.

We found it helpful to add a penalty of −0.2 for no-ops to the reward function to the encourage the policy to act and explore.

Behavior cloning human model (single-agent) We train three main BC human model variants: 1) initialized from scratch,
2) initialized from a checkpoint of the PPO human model, and 3) initialized from a checkpoint of the AlphaZero human
model. We use data from human subjects building goal structures on their own, as described in B.2. Hyperparameters are
shown in Table 5.

PPO assistant To effectively train a PPO assistant, we added two auxiliary loss terms and modified the reward function.
The first loss term, which we call the “block-placing loss,” is the cross-entropy between the block type placed by the assistant
and the goal block type at that location, if there is one. This loss provides some training signal when the assistant places a
block in a location that is part of the goal structure, even if the block type is incorrect. Without this loss, placing an incorrect
block type would simply result in a reward of 0, making it more challenging for the assistant to learn to place blocks at all.
We linearly decay this loss coefficient from 1 to 0 over the first 2× 106 time steps.

For the second loss, we add a goal prediction head similar to that used in AssistanceZero, which is trained with the same
loss function.

Finally, we modify the reward function for PPO to only give reward directly attributable to the place/break actions of the
assistant and disregard any place/break actions taken by the human. This means that PPO’s goal is not perfectly aligned with
the assistance game objective. However, without this modification, we found that the PPO assistant just learned to take
no-op actions constantly.

All the hyperparameters for the PPO assistant are shown in Table 3. The number of training iterations was chosen based on
the performance on a validation set. We found that training for more iterations decreased performance.

AssistanceZero assistant For the first 25 iterations of AssistanceZero, we “pre-train” the assistant’s value, human action
prediction, and reward parameter prediction heads by having it only take no-op actions while observing the human policy.
This provides good initialization of all three heads without requiring the expense of running MCTS during these initial
iterations. After the pre-training iterations, we start using MCTS and training the policy head as well. We use the same
interleaved transformer-LSTM model architecture for the AssistanceZero’s network as for the PPO assistant.

Hyperparameters are shown in Table 4.

Imitation learning assistants We train two main imitation learning assistants: 1) a non-goal-conditioned BC assistant,
and 2) a BC assistant fine-tuned on human assistant data. Hyperparameters are shown in Table 5.

The network architecture is the same as the recurrent network used for the PPO and AssistanceZero assistants.

B.5. Evaluation

We evaluate each human model’s single-agent performance on 1,000 episodes with goal structures sampled from a held-out
test set which are not seen during training. We then evaluate each assistant policy’s performance by pairing it with a human
model and evaluating for 100 episodes with goal structures from the same test set. The episode terminates when the goal
structure is fully built or 1,500 time steps have passed. When evaluating AlphaZero, we use 30 MCTS simulations for
computational reasons and to match the maximum number of simulations that can be executed in real-time.
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Hyperparameter Human model Assistant

Training iterations 150 100
Rollout length 512 512
Number of environments 125 64
SGD minibatch size 512 512
SGD epochs per iteration 3 3
Optimizer Adam Adam
Learning rate 3× 10−4 3× 10−4

Discount factor (γ) 0.95 0.95
GAE coefficient (λ) 0.95 0.95
Entropy coefficient (horizon) 0.03 1 → 0.01 (2× 106)
Clipping parameter 0.2 0.2
Grad clip norm threshold 10 10
Recurrent network No Yes
KL target 0.01 0.01
KL coefficient 0.2 0.2
Value function coefficient (λvalue) 0.01 0.01
Goal loss coefficient (λreward) 0 3
Place block loss coefficient (horizon) 0 1 → 0 (2× 106)

Table 3. PPO hyperparameters for the human model (single-agent) and assistant training. Hyperparameters that follow a linear schedule
are shown with their initial and final values and the number of time steps over which the schedule is applied.

Hyperparameter Human model Assistant

Training iterations 70 55-70
Rollout length per iteration 512 512
Number of environments 64 64
Time steps sampled from replay buffer per iteration 261,632 131,072
SGD minibatch size 512 512
SGD epochs per iteration 1 2
Optimizer Adam Adam
Learning rate 3× 10−3 3× 10−3

Discount factor (γ) 0.95 0.95
Grad clip norm threshold 10 10
Recurrent network No Yes
Value function coefficient (λvalue) 0.01 0.01
Goal loss coefficient (λreward) 0.5 3
Other agent action prediction loss coefficient (λaction) N/A 1
No-op reward -0.2 -0.2
Number of MCTS simulations 100 100
Inverse temperature (τ ) 1.5 1.5
Dirichlet noise (high-level action) 0.25 0.25
Dirichlet noise (low-level action) 10 10
Dirichlet epsilon 0.25 0.25
Prior temperature 1 1
PUCT coefficient (cPUCT) 1 1
Replay buffer capacity 5,232,640 131,072
Terminate episode if no progress (steps) 100 N/A

Table 4. Hyperparameters for the AlphaZero human model (single-agent) and AssistanceZero assistant training.
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Hyperparameter Human model Non-goal-conditioned assistant Fine-tuned assistant

Training iterations 20 20 20
Training batch size 9642 8192 9642
SGD minibatch size 128 512 512
SGD epochs per iteration 1 1 1
Optimizer Adam Adam Adam
Learning rate 1× 10−3 → 1× 10−4 (10 iters) 1× 10−3 1× 10−3

Grad clip norm threshold 10 10 10
Interleave spatial/temporal layers No Yes Yes

Table 5. BC hyperparameters for the human model (single-agent), non-goal-conditioned assistant, and fine-tuned assistant.

14


