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Abstract—Accurate cancer survival prediction enables clin-
icians to tailor treatment regimens based on individual pa-
tient prognoses, effectively mitigating over-treatment and inef-
ficient medical resource allocation. Recently, the integration of
histopathological images and multi-omics data, together with
deep learning, has become increasingly applied to predict can-
cer survival. However, current deep learning-based integration
methods ignore the spatial relationships across various fields
of view within gigapixel histopathological images, since they
mainly focus on a specific field of view. Inspired by the
hierarchical image pyramid transformer (HIPT), we propose
a hierarchical cross-attention masked autoencoder (HC-MAE)
to integrate histopathological images and multi-omics data for
cancer survival prediction. Specifically, HC-MAE aggregates the
representations learned from different fields of view, effectively
capturing the fine-grained details and the spatial relationships
within histopathological images. We conduct experiments to
compare the HC-MAE method with current state-of-the-art
methods on six cancer datasets sourced from The Cancer Genome
Atlas (TCGA). The experimental results demonstrate that HC-
MAE achieves superior performance on five out of six cancer
datasets, significantly outperforming the compared methods. The
code is available at https://github.com/SuixueWang/HC-MAE.

Index Terms—Hierarchical Cross-attention, Masked Autoen-
coder, Histopathological Image, Multi-omics, Survival Prediction

I. INTRODUCTION

Cancer is widely acknowledged as a significant global
public health threat, with increasing incidence and mortality
rates. In 2020, it was reported that there were 19.3 million
newly diagnosed cancer cases and approximately 10.0 million
cancer-related deaths [1]. Among them, lung cancer was

the most common cause of cancer mortality, accounting for
approximately 1.8 million deaths, followed by cancers of the
colorectum, liver, and stomach, as well as the breast in women
[1]. Currently, surgery, radiotherapy, chemotherapy, and im-
munotherapy are the primary treatment regimens for cancer
[2]. Generally, accurate survival prediction plays a crucial role
in assisting clinicians to select the most effective treatment
regimen, which prevents over-treatment and optimizes the
allocation of medical resources. However, cancer is a complex
disease that poses a substantial challenge toward achieving
precise diagnoses and accurate prognoses [3].

In recent years, deep learning-based methods have made
great progress in cancer survival prediction, some of which
utilize the abundant and intricate details extracted from gi-
gapixel whole-slide images (WSIs). For example, Lu et al.
[10] developed an attention-based deep-learning approach,
CLAM, which employs weakly-supervised learning to au-
tonomously recognize subregions with high diagnostic value,
this is followed by introducing instance-level clustering in the
identified regions to achieve improved performance. Chen et
al. [11] proposed a HIPT, an enhanced vision transformer
(ViT) architecture that utilizes hierarchical patch structures
and employs two stages of DINO-based [12] self-supervised
learning to capture high-resolution image representations.

Moreover, some deep learning-based integration methods
that incorporate histopathological images and multi-omics
data such as RNA-Seq, miRNA, and DNA methylation, have
been proposed for predicting survival outcomes [4]. Due to
differences among image feature extraction techniques, deep
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learning methods are primarily categorized into two subtypes:
hand-crafted and deep learning-based approaches. The former
methods typically utilize the CellProfiler tool to extract image
features such as sizes, shapes, brightness levels, textures, and
intensity distributions [7]. For instance, Wang et al. [5] and
Wu et al. [6] extracted image features through the CellPro-
filer tool first and then feed the image features to the deep
learning-based framework for integrating with genomics data.
In comparison with handcrafted methods, deep learning-based
methods are garnering increasing attention. For example, Yao
et al. [8] proposed a deep correlational survival model, Deep-
CorrSurv, which consists of two sub-networks for integrating
multi-omics and pathological images, where image patches
with 1024 × 1024 pixels are fed into a CNN for learning
the representations. Chen et al. [9] developed a more efficient
framework named MCAT, which divides WSIs into small
patches of size 256 × 256 and attains initial representations
via a pre-trained ResNet50 model, subsequently, the genomic-
guided co-attention and attention pooling mechanisms are
adopted for the integration of multimodal data.

Most of the current deep learning-based integration ap-
proaches primarily focus on a single perspective within gi-
gapixel WSIs, failing to make full use of the information
contained in complete WSIs. Aiming at this drawback, we
propose a hierarchical cross-attention masked autoencoder
(HC-MAE) to integrate histopathological images and multi-
omics data for cancer survival prediction. Specifically, the HC-
MAE hierarchically aggregates the representations obtained
from various fields of view, thereby capturing the fine-grained
details and spatial relationships within histopathological im-
ages. During the pre-training phase, we independently pre-
train two stages of MAEs, namely MAE-Patch and MAE-
Region. This involves using image patches with varying fields
of view as inputs and hierarchically merging them from the
bottom to the top. For survival prediction, we employ an
omics-guided cross-attention mechanism to fuse the represen-
tations aggregated from MAE-Region, along with slide-level
image patch embeddings and multi-omics data for computing
survival risk scores. We conduct experiments to compare the
performance of our proposed method, the HC-MAE, with that
of the state-of-the-art methods on six cancer datasets. The
experimental results demonstrate that the HC-MAE achieves
the highest C-index values among the compared methods on
five cancer cohorts, indicating significant improvement.

In summary, our contributions are as follows:
• We propose a hierarchical cross-attention masked autoen-

coder (HC-MAE) to integrate histopathological images
and multi-omics for accurate cancer survival prediction.

• To perform survival prediction, we present an omics-
guided cross-modal attention mechanism that simulta-
neously attends to the representations aggregated from
lower levels, the current slide-level image patch embed-
dings, and multi-omics data.

• We carry out complete ablation experiments to analyze
the survival prediction performance achieved with dif-
ferent pathological image fields of view, multi-omics,

and multimodal data, proving the effectiveness of our
proposed HC-MAE in terms of capturing image repre-
sentations and integrating multimodal data.

II. METHOD

The overview of our proposed HC-MAE is shown in Fig. 1.
We start by pre-training two stages of MAEs to learn high-
quality image representations with sizes of 256 × 256 and
4096 × 4096. To perform survival prediction, we integrate
the representations aggregated from lower levels, along with
slide-level image patch embeddings and multi-omics data, to
compute a survival risk score for survival prediction. The
following subsections describe the HC-MAE in detail.

A. Problem formulation

Given a gigapixel WSI, CLAM [10] is utilized to auto-
matically filter out the background area, segment the tissue
region of the WSI, and then crop it into many sub-regions with
sizes of 4096×4096. A WSI with sub-regions possessing high
diagnostic value can be expressed as ISlide. ISlide is cropped
in a layer-by-layer manner into patches of various scales,
including region-level (4096× 4096), patch-level (256× 256),
and cell-level (16× 16) patches, this is written as:

ISlide =
{
I
(i)
4096

}M

i=1
, I

(i)
4096 ∈ R4096×4096×3

I
(i)
4096 =

{
I
(j)
256

}256

j=1
, I

(j)
256 ∈ R256×256×3

I
(j)
256 =

{
I
(k)
16

}256

k=1
, I

(k)
16 ∈ R16×16×3

(1)

where M is the number of region-level patches in ISlide. I(i)4096,
I
(j)
256, and I

(k)
16 represent the image patches at the region-level,

patch-level, and cell-level, respectively. The sequence lengths
of both I

(i)
4096 and I

(j)
256 are 256.

Furthermore, we employ a lightweight CNN to embed
the image patches of I

(k)
16 , I

(j)
256 and I

(i)
4096. The kernel size

of the lightweight CNN is set to the corresponding patch
size, and the number of channels is equal to the dimen-
sionality of the embedding, which is set to 384 in our
case. Due to the computational consumption incurred when
embedding I

(i)
4096, we downsample I

(i)
4096 by a factor of 16

to I
(i)
Down−4096 ∈ R256×256×3 before feeding it into the

lightweight CNN. Despite the reduced resolution of I(i)P−4096,
it still captures coarse-grained spatial information in this field
of view. Therefore, the patch embeddings with added position
embeddings corresponding to various fields of view, I16,
I256, and IDown−4096, are written as xP−16 ∈ R256×384,
xP−256 ∈ R256×384, and xP−4096 ∈ RM×384, respectively. In
addition, xomics ∈ R3×300 is used to denote the multi-omics
data after preprocessing.

B. Hierarchical cross-attention pre-training

In this study, we pre-train two stages of MAEs, including
MAE-Patch and MAE-Region, where MAE-Patch has the
same model structure as the standard MAE [13] and MAE-
Region is a variant of the base MAE.
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Fig. 1. The framework of the hierarchical cross-attention masked autoencoder integrating histopathological images and multi-omics.

1) Stage 1 with MAE-Patch: A given patch-level image
patch I

(j)
256 is divided into 256 cell-level patches I16 and

further embedded as xP−16. Moreover, the cell-level patches
are used to pre-train the MAE-Patch module by randomly
masking 75% of the tokens and reconstructing the original
image. Specifically, MAE-Patch contains two asymmetrical
sub-modules, a ViT encoder, and a ViT decoder, both of which
consist of a series of Transformer blocks. After pre-training,
the ViT encoder in MAE-Patch generates a representation for
each patch-level image I

(j)
256, which is calculated as follows:

x
(j)
A−256 = AvgPool (ViT-P (xP−16)) (2)

where ViT-P (·) is the ViT encoder in MAE-Patch, and
AvgPool (·) signifies the average pooling operation.

2) Stage 2 with MAE-Region: Similarly, a region-level
image I

(i)
4096 is divided into 256 patch-level patches I256 and

embedded as xP−256. Different from MAE-Patch, the MAE-
Region module introduces a region-guided cross-attention
behind the ViT encoder to attend to the representations ag-
gregated at the patch-level xA−256, along with the current
region-level unmasked patch embeddings xP−256. Essentially,
the fine-grained information obtained from MAE-Patch plays
a complementary role in reconstructing the masked image
patches. As a result, this process enhances the ability of
the ViT encoder in MAE-Region to learn a more effective
representation. The formulations of the encoding and region-
guided cross-attention steps are written as follows:

xE−256 = ViT-R (xP−256) (3)

xC−256 = CrossAtt (wqxP−256,wkxE−256,wvxE−256)

= Softmax

(
wqxP−256x

T
E−256w

T
k√

dk

)
wvxE−256

(4)

where ViT-R (·) is the ViT encoder in MAE-Region.
wq,wk,wv ∈ Rdk×dk are trainable weight matrices mul-
tiplied by the queries xP−256 and key-value pair (xE−256,
xE−256), where dk is the dimensionality of xE−256, 384.

After finishing pre-training, the aggregated representation
of image I

(i)
4096 is produced via the operations of the ViT

encoder in MAE-Region, cross-attention, and average pooling.
The average pooling process is shown as follows:

x
(i)
A−4096 = AvgPool (xC−256) ,xA−4096 ∈ RM×384 (5)

C. Survival prediction

Initially, we use a fully-connected layer to map the given
multi-omics data xomics to a dimension that aligns with the
dimensions utilized in the ViT encoder and Transformer, as
shown below:

xO = MLP (xomics) (6)

For each whole-slide image ISlide, we utilize an omics-
guided cross-attention mechanism to integrate the multi-omics
data xO, along with the current slide-level patch embeddings
xP−4096 and the representations aggregated from the region-
level xA−4096, which is written as:

xC = CrossAtt (wqxO,wkxP−4096,xvxA−4096)

= Softmax

(
wqxOx

T
P−4096w

T
k√

dk

)
wvxA−4096

(7)

where wq,wk,wv ∈ Rdk×dk are trainable weight matrices
multiplied by the queries xO, keys xP−4096, and values
xA−4096, respectively. dk is set to the dimensionality of
xP−4096, which is 384. The integrated result xC ∈ R3×384.

To learn the multimodal integrated features between WSIs
and multi-omics data in depth, we input xC into the WSI
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Transformer and xO into the omics Transformer, both con-
sisting of 12 blocks, as follows:

xCT = TransformerWSI (xC) (8)

xOT = TransformerOmics (xO) (9)

Following the Transformer, we employ a global attention
pooling layer to aggregate the embedding vectors in xCT and
xOT respectively. In detail, xCT and xOT are fed to a fully
connected layer and a softmax operator, respectively, adap-
tively calculating a weighted sum of all embedding vectors to
form bag-level representations:

xCT−global = Softmax (MLP (xCT )) · xCT (10)

xOT−global = Softmax (MLP (xOT )) · xOT (11)

In the last integration step, we concatenate the bag-level rep-
resentations xCT−global and xOT−global to produce the final
representation that represents the overall integration features of
the input multimodel data, including histopathological images
and multi-omics data, this is shown as follows:

x = xCT−global ⊕ xOT−global (12)

where ⊕ signifies the concatenation operator.
When learning the final multimodal representation x(i) for

the i-th patient sample, we send x(i) to a sigmoid-activated
fully-connected layer, generating a survival risk score βx(i)

for survival analysis, where β is a trainable weight in the fully-
connected layer. Furthermore, we adopt the average negative
log partial likelihood as the objective function of our proposed
HC-MAE, which is written as:

loss = − 1

nE

∑
i:Ei=1

βx(i) − log
∑

j:Tj>Ti

eβx(j)

 (13)

where the values of Ei and Ti are survival status and survival
time for each patient, respectively, while βx(i) is the fully-
connected layer used to predict the survival risk score. nE

represents the total number of uncensored samples.

III. EXPERIMENTS AND RESULTS ANALYSIS

TABLE I
THE NUMBER OF PATIENTS, REGION-LEVEL IMAGES (4096 × 4096 SIZE),

AND PATCH-LEVEL IMAGE PATCHES (PIXEL OF 256 × 256).

Dataset # Patients # Region-level # Patch-level (million)

LIHC 323 65,549 16.8
BRCA 724 92,634 23.7
LUAD 374 59,148 15.1
COAD 250 37,582 9.6
LGG 451 60,804 15.6
STAD 298 50,047 12.8
Total 2,420 365,764 93.6

A. Data description and implementation details

We utilize cancer datasets sourced from The Cancer
Genome Atlas (TCGA) [14], a public consortium for cancer
data that provides high-resolution WSIs and multi-omics data,
with annotated censorship statuses and survival durations.
In this work, we conduct experiments on the following six
cancer types: hepatocellular carcinoma (LIHC), breast invasive
carcinoma (BRCA), lung adenocarcinoma (LUAD), colon
adenocarcinoma (COAD), lower grade glioma (LGG), and
stomach adenocarcinoma (STAD). When dealing with patient
samples, we only consider a sample if it contains both a WSI
and corresponding multi-omics data. In addition, patients with
survival times of less than 30 days and those with missing
follow-up data are excluded. For each patient sample, if there
is more than one WSI, we randomly select one for our work.
For all the collected gigapixel WSIs, we start by cropping each
WSI into patches with 4096 × 4096 pixels, subsequently, we
employ the CLAM model to filter meaningless background
regions and identify sub-regions with high diagnostic value.
We divide each identified sub-region with 4096× 4096 pixels
(region-level image patches) into 256 small patches with
256×256 pixels (patch-level image patches). After performing
preprocessing, the numbers of patients, identified sub-regions,
and small patches are shown in Table I.

Additionally, when working with multi-omics data including
RNA-Seq, miRNA, and DNA methylation, for each omics
type, we first employ the K-nearest neighbor interpolation
method [15] to fill in missing values. Afterward, we calculate
the variance of each gene across all patient samples and re-
move the genes with zero variance. Subsequently, we perform
differential gene expression analysis using the pydeseq2 pack-
age [16] to select the genes that exhibit significant changes.
Finally, we use the random survival forest (RSF) to calculate
the feature importance of each gene across all patient samples
and retrain only the top 300 genes for survival analysis.

The HC-MAE is implemented in PyTorch and runs on a
workstation equipped with 2 80-GB NVIDIA A100 GPUs.
The ViT encoders used in the MAE-Patch and MAE-Region
modules, along with the Transformers employed for survival
prediction, consist of 12 transformer blocks, 12 heads, and
384-dimensional embeddings. During pre-training, we adopt
Adam optimization with a weight decay of 1e-2 and a learning
rate of 1e-3. The batch size in MAE-Patch is 500, while in
MAE-Region, the batch size is 10 with 50 gradient accumu-
lation steps. The epochs in MAE-Patch and MAE-Region are
set to 10. During survival prediction, the learning rate and the
epoch are set to 6e-4 and 80, respectively. Since the samples
have different bag sizes, we set the batch size to 1, with 60
gradient accumulation steps.

B. Evaluation metric

We use the concordance index (C-index) as the metric and
train all methods with 5-fold cross-validation on each cancer
dataset [5] [6]. A higher C-index indicates better predictive
performance, while a C-index of 0.5 suggests that predictions
are equivalent to those produced by random chance.
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TABLE II
PERFORMANCE COMPARISON OF OUR PROPOSED HC-MAE WITH STATE-OF-THE-ART METHODS USING THE C-INDEX VALUE ON SIX CANCER DATASETS

Feature extraction of WSI Method LIHC BRCA LUAD COAD LGG STAD

Hand-craft GPDBN 0.643±0.019 0.636±0.047 0.615±0.053 0.593±0.081 0.844±0.025 0.587±0.025
CAMR 0.691±0.052 0.656±0.072 0.647±0.059 0.606±0.074 0.803±0.044 0.587±0.029
DeepCorrSurv 0.700±0.048 0.659±0.018 0.662±0.032 0.549±0.026 0.828±0.034 0.609±0.049
MCAT 0.711±0.029 0.663±0.041 0.664±0.026 0.691±0.132 0.844±0.032 0.622±0.034

Deep Learning HIPT (WSI only) 0.668±0.031 0.640±0.055 0.635±0.045 0.612±0.033 0.810±0.031 0.612±0.053
HIPT (Integration) 0.694±0.042 0.651±0.075 0.653±0.042 0.635±0.026 0.842±0.028 0.631±0.048
HC-MAE (Ours) 0.737±0.031 0.695±0.026 0.691±0.044 0.703±0.083 0.851±0.033 0.623±0.045

C. Comparison with the state-of-the-art methods

To assess the performance of our proposed HC-MAE, we
conducted a comparative analysis with two types of state-
of-the-art methods: GPDBN and CAMR, which are based
on hand-crafted image feature extraction methods, and Deep-
CorrSurv, MCAT, and HIPT, which employ deep learning-
based extraction methods. Additionally, the original HIPT only
supports WSIs as input, so we add a few operations, such
as omics-guided cross-attention, a Transformer, and attention
pooling, to integrate WSIs with multi-omics data.

The C-index values produced by all methods on all six
cancer datasets are shown in Table II. In terms of the C-
index values, the integration methods that use deep learning
for image feature extraction generally perform better than
those using hand-crafted extraction. Comparing HC-MAE with
the state-of-the-art models, HC-MAE demonstrates superior
performance with the highest C-index values for 5 out of 6
cancer datasets. Especially on the BRCA dataset, HC-MAE
attains the top C-index value of 0.695 ± 0.026, outperforming
the second-best method, MCAT, by 3.2% and exceeding the
lowest-performing method, GPDBN, by 5.9%.

Furthermore, the BRCA patients are stratified into low-risk
and high-risk groups using the median of the predicted risk
scores as a risk indicator. The Kaplan-Meier curves produced
by all investigated methods, along with their corresponding
log-rank test p-values, are presented in Fig. 2. Among the
methods utilizing hand-crafted extraction, CAMR yields a
superior log-rank test p-value of 0.0035 compared to that
of GPDBN (0.0048). However, the low-risk and high-risk
curves of the CAMR method intersect and are not clearly
distinguishable. Among the integration methods utilizing deep
learning-based image feature extraction, a similar intersec-
tion phenomenon is observed for DeepCorrSurv. In addition,
MCAT, HIPT, and our proposed HC-MAE obtain log-rank test
P-values of 0.0056, 0.0079, and 2.1e-7, respectively. Notably,
HC-MAE achieves superior performance to that of all other
investigated methods, exhibiting the greatest capability to
distinguish between the low-risk and high-risk groups.

D. Ablation study of the HC-MAE

To evaluate the effectiveness of our proposed HC-MAE, we
conduct a complete ablation study to compare the performance
achieved for various module configurations. The module con-
figurations are described below:

• MAE-Pat: This is the ViT encoder used in MAE-Patch.
• MAE-Reg: The ViT encoder used in MAE-Region uses

only region-level images for pre-training.
• MAE-PatReg: The ViT encoder used in MAE-Region,

aggregates region-level patch embeddings with the repre-
sentations gathered from the MAE-Patch module.

• HC-RegSli: Hierarchically cross-attending the slide-level
patch embeddings with the representations aggregated
from MAE-Reg.

• HC-PatRegSli: Hierarchically cross-attending the slide-
level patch embedding with the representations aggre-
gated from MAE-PatReg.

• Trans-MO: The Transformer uses only multi-omics data.
• HC-MAE: This is our proposed complete model.

TABLE III
ABLATION EXPERIMENTS OF THE HC-MAE ON LIHC DATASET

Data type Method C-index

Image MAE-Pat 0.649±0.055
MAE-Reg 0.614±0.025
MAE-PatReg 0.674±0.042
HC-RegSli 0.641±0.066
HC-PatRegSli 0.711±0.032

Multi-omics Trans-MO 0.700±0.045
Multimodal HC-MAE 0.737±0.031

Table III shows the C-index values produced by the mod-
ule configurations on the LIHC dataset. In comparison with
MAE-Pat (0.649±0.055) and MAE-Reg (0.614±0.025), MAE-
PatReg (0.674±0.042) attains a superior performance, which
means that the cross-attention mechanism we introduce to the
MAE can adequately capture the spatial relationship across
different fields of view. Comparing MAE-Pat with MAE-
Reg, MAE-Pat has a higher C-index value. Additionally, a
similar observation is also obvious when contrasting HC-
PatRegSli with HC-RegSli, indicating that patch-level im-
ages can provide fine-grained cell-level information and that
the corresponding MAE-Patch method can produce high-
quality image patch representations. Additionally, the Trans-
MO method (0.700±0.045), which utilizes multi-omics data,
produces a result close to that of the HC-PatRegSli method
which is only based on entire WSIs. Notably, the complete
model, the HC-MAE, achieves the best C-index value of
0.737±0.031, demonstrating the effectiveness of our proposed
method fusing histopathological images and multi-omics data.
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Fig. 2. Performance comparison of HC-MAE and other methods using Kaplan–Meier curve on BRCA dataset.

IV. CONCLUSIONS

In this work, we propose a hierarchical cross-attention
masked autoencoder to integrate histopathological images
and multi-omics for cancer survival prediction. The notable
property of our proposed HC-MAE is that it hierarchically
aggregates the representations learned from different fields
of view, effectively capturing the fine-grained details and
spatial relationships within histopathological images. During
pre-training, we pre-train two stages of MAEs, namely MAE-
Patch and MAE-Region. Especially in MAE-Region, we adopt
a region-guided cross-attention mechanism that leverages two
levels of representations for reconstructing the masked images,
allowing the ViT encoder in the MAE to capture high-quality
region-level representations. During survival prediction, the
representations aggregated from MAE-Region are fused with
slide-level image patch embeddings and multi-omics data by
using an omics-guided cross-attention mechanism, to produce
the survival risk scores. The comparison experiment proves
that our proposed HC-MAE model outperforms the state-
of-the-art methods in terms of cancer survival prediction,
while the ablation experiment validates the effectiveness of
HC-MAE with regard to capturing image representations and
integrating multimodal data.
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