PARTIAL CHANNEL DEPENDENCE WITH CHANNEL MASKS FOR TIME SERIES FOUNDATION MODELS

Anonymous authors

004

006

008 009

010

011

012

013

014

015

016

017

018

019

021

023

025

Paper under double-blind review

ABSTRACT

Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily focused on designing model architectures to address explicit heterogeneity among datasets such as various numbers of channels, while often overlooking implicit heterogeneity such as varying dependencies between channels. In this work, we introduce the concept of *partial* channel dependence (PCD) for models capturing channel dependencies (CDs) via attention, which enables a more sophisticated adjustment of CDs based on datasetspecific information. To achieve PCD, we propose a channel mask that captures the relationships between channels within a dataset using two key components: 1) a correlation matrix that encodes relative dependencies between channels, and 2) **domain parameters** that learn the absolute dependencies specific to each dataset, refining the correlation matrix. We validate the effectiveness of PCD across four tasks in TS including forecasting, classification, imputation, and anomaly detection, under diverse settings, including few-shot and zero-shot scenarios with both TS foundation models and single-task models.

1 INTRODUCTION

Multivariate time series (MTS) forecasting has been explored with two different strategies: the channel-dependent (CD) strategy and the channel-independent (CI) strategy, with the former emphasizing inter-channel dependencies, while the latter ignoring these dependencies and dealing with channels individually. However, most previous works have focused on the model architecture to either capture or disregard CD, often overlooking the potential differences in CD across datasets.

Foundation models (FMs) have emerged in various domains (Touvron et al., 2023; Rombach et al., 2022; Kirillov et al., 2023), including the time series (TS) domain (Goswami et al., 2024; Liu et al., 2024b). These models are pretrained on diverse datasets and are designed to solve multiple tasks using a single model. However, directly applying FMs to TS is challenging due to the heterogeneity across TS datasets, which can be categorized into two types: explicit and implicit heterogeneity.

Explicit heterogeneity arises from observable differences across 037 datasets, such as varying sequence lengths and the number of channels. This poses challenges for a time series foundation model (TSFM), as it must accommodate these varying input 040 shapes within a single model. In contrast, *implicit heterogeneity* 041 stems from unobservable differences, such as varying CD, with 042 some datasets exhibiting strong CD and others showing weak 043 CD. This variability poses a challenge for a TSFM, as it assumes 044 a uniform CI (Goswami et al., 2024) or CD (Woo et al., 2024) model across all datasets, even though each dataset may benefit from a distinct approach (CI or CD), as shown in Figure 1. 046

047 Despite the importance of addressing both types of heterogeneity, previous TSFMs have primarily concentrated on *explicit heterogeneity* by focusing on the model architecture to accommodate TS inputs with varying shapes (Liu et al., 2024b; Woo et al., 2024), often overlooking implicit heterogeneity. In this

Figure 1: PCD aims to capture the varying CD across datasets.

paper, we focus on *implicit heterogeneity*, particularly the varying CD across datasets, when building
 TSFMs. To address this, we consider TSFMs not only in terms of the model architecture for explicit heterogeneity, but also in terms of the *dataset itself*.

054 To this end, we introduce the concept of *partial channel dependence* (PCD) which adjusts the 055 CD estimated by the Transformer-based model by leveraging the characteristics of the dataset, as 056 capturing the varying CD across datasets with a single model can be challenging. Specifically, we 057 propose a channel mask (CM) that adjusts the dependencies between channels to achieve PCD. A 058 CM consists of 1) a correlation matrix to encode relative dependencies between channels and 2) domain parameters that learn the absolute dependencies specific to each dataset to refine the correlation matrix. The proposed CM, constructed using dataset-specific information, is multiplied 060 to the (channel-wise) attention matrix (i.e., CD estimated by the model). We conduct extensive 061 experiments to validate the effectiveness of CMs with task-specific models and TSFMs on various 062 tasks including forecasting, classification, imputation, and anomaly detection, under various settings 063 such as few-shot and zero-shot. The main contributions are summarized as follows: 064

- We introduce the concept of partial channel dependence (PCD), where the channel dependence (CD) captured by the model is adjusted based on the characteristics of the TS dataset.
- We propose a channel mask (CM) to achieve PCD, which is a matrix that captures 1) relative dependencies between channels with a correlation matrix, and 2) absolute dependencies specific to each dataset with domain parameters that refine the correlation matrix. The proposed CM is a plug-and-play method applicable to any model that captures CD using an attention mechanism.
- We present extensive experiments with both TSFMs and single-task models across four different tasks under various settings, demonstrating consistent performance gains. For example, applying CMs to TSFMs, e.g., UniTS (Gao et al., 2024), and to single-task models, e.g., iTransformer (Liu et al., 2024a), yields performance gains across all 20 and 13 forecasting tasks, respectively.

2 RELATED WORKS

065

066

067

068

069

075

076

077 MTS forecasting models can be categorized into CI and CD models, where CI models process channels independently without accounting for dependencies between them, whereas CD models account for these dependencies. For CI models, DLinear (Zeng et al., 2023) and RLinear (Li et al., 079 2023) employ linear models along the time dimension, PatchTST (Nie et al., 2023) divides TS into patches and feeds them into a Transformer (Vaswani et al., 2017) in a CI manner, and PITS (Lee et al., 081 2024) combines CI and patch independent architectures with multi-layer perceptrons (MLPs). For CD models, Crossformer (Zhang & Yan, 2023) employs a two-stage attention mechanism to capture 083 both temporal dependencies (TD) and CD, TSMixer (Chen et al., 2023) utilizes MLPs with patching 084 to capture both dependencies, and CrossGNN (Huang et al., 2023) employs a linear complexity graph 085 neural network to refine the CD. Recently, iTransformer (Liu et al., 2024a) inverts the traditional Transformer framework in TS domain by treating each channel as a token instead of each patch, 087 thereby shifting the focus from capturing TD to CD, LIFT (Zhao & Shen, 2024) captures the lead-lag 088 relationship between channels, and CDAM (Qi et al., 2024) minimizes redundant information while enhancing relevant mutual information between channels to effectively capture CD. Among these 089 two frameworks, we highlight the importance of CD, as CI can be achieved with CD by disregarding 090 dependencies between irrelevant channels when well captured (Nie et al., 2023). Nonetheless, 091 most CD models primarily focus on architectural solutions for handling CD and often overlook the 092 characteristics of TS datasets, motivating us to consider CD varying across datasets.

TS foundation models often borrow knowledge from other fields, such as natural language processing, 094 primarily due to the lack of large-scale datasets in the TS domain. In response to this challenge, 095 there have been efforts to adapt large language models (LLMs) for TS tasks: GPT4TS (Zhou et al., 096 2023) fine-tunes the embedding layers of LLMs and Time-LLM (Jin et al., 2024) aligns TS data with LLM-based text prototypes to address TS tasks. Recent works have focused on pretraining TSFMs 098 exclusively on TS datasets from various sources. MOMENT (Goswami et al., 2024) and Timer (Liu et al., 2024b) collect extensive and heterogeneous sets of TS datasets to pretrain Transformer-based 100 TSFMs, while MOIRAI (Woo et al., 2024) enhances the Transformer architecture to address domain-101 specific challenges in constructing TSFMs. UniTS (Gao et al., 2024) proposes a TSFM that handles 102 various tasks with a single architecture through prompt-tuning. These TSFMs either adopt a CI 103 or CD architecture, and we argue that the CD architecture, which is mostly based on the attention 104 mechanism of Transformers, is crucial for TSFMs. This is due to the capacity-robustness trade-off 105 of architectures (Han et al., 2023), with the higher capacity of the CD architecture benefiting larger datasets used for training TSFMs. However, these TSFMs based on CD architectures do not account 106 for the heterogeneity among datasets in terms of CD, while different TS datasets exhibit varying 107 degrees of CD. This motivates us to adjust CD in TSFMs based on the characteristics of each dataset.

Figure 2: **CM for PCD.** To achieve PCD, we propose a CM, which consists of a correlation matrix between channels and domain parameters that refine the matrix based on the dataset.

Figure 3: Domain parameters to adjust correlation matrix. As correlation is a relative measure depending on the dataset, we refine the correlation matrix using the domain parameters. First, we normalize $|\mathbf{R}|$ by subtracting its mean, resulting in $\mathbf{\bar{R}}$. We then scale and shift $\mathbf{\bar{R}}$ using domain parameters α and β , respectively, and apply a sigmoid function, resulting in $\mathbf{M} = \sigma(\alpha \cdot \mathbf{\bar{R}} + \beta)$.

3 Methodology

In this section, we introduce a channel mask (CM), a simple yet effective method for achieving PCD.
A CM employs a correlation matrix to capture relative dependencies between channels and adjusts it
with domain parameters to learn absolute dependencies specific to each dataset. We also introduce a
new metric, the channel dependence ratio (CD ratio), which uses a CM to quantify the degree of CD
for each dataset. The overall framework of a CM is illustrated in Figure 2.

136 137 3.1 Components of Channel Mask

As shown in Figure 2, a CM consists of two components: 1) correlation matrix (**R**) between channels, and 2) domain parameters (α and β), which scale and shift the matrix according to the dataset's characteristics, along with a sigmoid function to normalize the values between 0 and 1.

Correlation matrix. Correlation measures the relationships between channels and has been used in previous works to analyze CD (Yang et al., 2024; Zhao & Shen, 2024). Building on these approaches, we employ a correlation matrix (\mathbf{R}) between channels to create a CM. However, high correlation does not always indicate a strong positive relationship, as the values range from -1 to 1, with strong negative relationships near -1. To address this issue, we use the absolute value of the matrix $|\mathbf{R}|$.

146 **Domain parameters.** We argue that $|\mathbf{R}|$ alone might be insufficient for modeling a CM for the 147 following reasons: First, correlation is a relative measure that depends on the dataset. As shown in 148 the first panel of Figure 3, different datasets exhibit different distributions of the elements of $|\mathbf{R}|$. To 149 align these differences, we normalize $|\mathbf{R}|$ by subtracting the mean value, resulting in \mathbf{R} , as shown in 150 the second panel of Figure 3. Second, the relationship between correlation and CD may vary across 151 datasets (i.e., the same correlation can correspond to different levels of CD depending on the dataset). To deal with this discrepancy among datasets, we introduce two learnable domain parameters, α 152 and β , which scale and shift $|\mathbf{R}|$, respectively, as shown in the third panel of Figure 3. Using these 153 parameters along with a sigmoid function, we model a CM for achieving PCD as $\mathbf{M} = \sigma(\alpha \cdot \mathbf{R} + \beta)$. 154

155 156

114

115

116 117

118

119

120

121

122

123

125

126

127

128 129

130

3.2 CHANNEL MASK WITH ATTENTION MATRIX

The proposed CM adjusts the CD estimated by the model by performing element-wise multiplication with the attention matrix of Transformers, with the general adjustment modeled by A:

159 160

161

 $\operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{Softmax}\left(\mathbf{A} \odot \frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}}\right) \cdot \mathbf{V}, \text{ where } \mathbf{A} = \begin{cases} \mathbf{I}_{C \times C} & \text{if CI,} \\ \mathbf{1}_{C \times C} & \text{if CD,} \\ \mathbf{M} = \sigma(\alpha \cdot \bar{\mathbf{R}} + \beta) & \text{if PCD,} \end{cases}$ (1)

163

164

166

167

168 169

170

171

172

173 174

175

176

177

200

201

202

203

204

205

206

207

208

Figure 4: **Global and local dependencies.** (a) shows a CM and an attention matrix, which capture the global and local dependencies between channels, respectively. (b) illustrates the global and local correlations between two channels of ETTh1 (Zhou et al., 2021).

and *C* is the number of channels. Note that Equation 1 incorporates both CI and CD frameworks within a single expression: As shown in Figure 2, **A** is the identity matrix $(\mathbf{I}_{C \times C})$ in the CI framework, while **A** is a matrix of ones $(\mathbf{1}_{C \times C})$ in the CD framework. In contrast, our PCD framework represents **A** as $\mathbf{M} = \sigma(\alpha \cdot \mathbf{\bar{R}} + \beta)$, enabling a more refined adjustment of CD tailored to the dataset.

Global and local CD. As a correlation matrix is calculated based on the entire TS dataset, a CM captures the global CD, which represents the CD shared across all time steps. This complements the local CD captured by the conventional attention matrix, which represents the CD that varies by input time step. As shown in Figure 4(a), our PCD framework captures both global and local CDs through the element-wise multiplication of a CM and an attention matrix ($\mathbf{QK}^{\top}/\sqrt{d_k}$). Furthermore, Figure 4(b), which illustrates two channels of ETTh1 (Zhou et al., 2021), shows that the dependency can differ across time steps even within the same dataset, underscoring the need to capture both global and local CDs. Further analysis on the necessity of capturing both CDs is discussed in Table 12.

186 187 3.3 CHANNEL DEPENDENCE RATIO

To quantify the degree of CD for each dataset, we propose to measure the *channel dependence ratio* (CD ratio), a metric based on a CM. The CD ratio of M, denoted as r(M), is the average of the off-diagonal elements of M, excluding the autocorrelations of their respective channels. This metric yields a value of 0 for CI cases and 1 for CD cases, with higher values indicating a greater preference

Figure 5: **CD ratio.** CD ratio of $\mathbf{I}_{C \times C}$ for CI, $\sigma(\alpha \cdot \mathbf{\bar{R}} + \beta)$ for PCD, and $\mathbf{1}_{C \times C}$ for CD.

for interaction between channels. Figure 5 shows the visualization of M and its corresponding CD ratio for ETTh1 (Zhou et al., 2021), with a ratio of 0.717 for PCD. We find that M effectively captures the degree of CD for each dataset, as datasets with higher $r(\mathbf{M})$ tend to have greater performance gains with CD architecture compared to CI architecture, as illustrated in Figure 7.

4 EXPERIMENTS

We demonstrate the effectiveness of our method in both single-task and multi-task scenarios under supervised (SL) or self-supervised (SSL) settings, where we employ iTransformer (iTrans.) (Liu et al., 2024a) for single-task SL, TimeSiam (Dong et al., 2024) for single-task SSL, and UniTS (Gao et al., 2024) for multi-task SSL. As shown in Table 1, we consider four different tasks: forecasting (FCST), classification (CLS), imputation (IMP), and anomaly detection (AD), across various dataset sizes including few-shot and zero-shot settings. As evaluation metrics, we use the mean squared error (MSE) and mean absolute error (MAE) for FCST and IMP, accuracy (Acc.) for CLS, and F₁ score for AD. Dataset statistics and implementation details can be found in Appendix A and B, respectively.

	Mada	1	TS o	lownstr	eam tas	ks	Data 01	Section		
	Mode	1	FCST	CLS	IMP	AD	Data %	Summary	Full	
Single test	SL	iTransformer	1	-	-	-	Enll	Section 4.1	Appendix C	
Single-task	SSL	TimeSiam	1	-	-	-	Full	-	Appendix E	
	ilti-task (FM) SSL			1	1	-	-	Full	Section 4.2.1	Appendix D.1
Multi-task (FM)		UniTS	1	1	1	1	Few-shot	Section 4.2.2	Appendix D.2	
()				-	-	-	Zero-shot	-	Section 4.2.3	

Table 1: Summary of experiments.

						Shared (1 model)						Tasl	c-specific	e (20 mo	iels)		
	20 Tasl	cs		UniTS	+ CM			Un	iTS		iTrans	former	Time	esNet	Patel	nTST	GPT	'4TS
216			Su	ıp.	Р	Т	Sı	ıp.	Р	Т			Sı	ıp.			F	Т
217	Dataset	H	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
218	NN5	112	0.641	0.568	0.586	0.536	0.635	0.556	<u>0.611</u>	<u>0.552</u>	0.623	0.554	0.629	0.541	0.634	0.568	0.623	0.545
219 220	ECL	96 192 336	0.176 0.188 <u>0.199</u>	0.278 0.287 0.295	0.168 0.184 0.199	0.272 0.286 0.301	0.172 0.185 0.196	0.273 0.284 0.297	0.174 0.189 0.205	0.277 0.289 0.304	0.204 0.208 0.224	0.288 0.294 0.310	0.184 0.204 0.217	0.289 0.307 0.320	0.212 0.213 0.228	0.299 0.303 0.317	0.198 0.200 0.214	0.285 0.288 0.302
221		720	0.230	0.321	0.231	<u>0.326</u>	0.238	0.321	0.251	0.340	0.265	0.341	0.284	0.363	0.270	0.348	0.254	0.333
222 223	ETTh1	96 192 336 720	0.388 0.438 0.478 0.483	0.405 0.436 0.455 0.472	0.389 0.432 <u>0.475</u> 0.515	$ \begin{array}{r} 0.408 \\ \underline{0.432} \\ \underline{0.451} \\ 0.492 \end{array} $	0.390 0.428 0.462 0.489	$ \begin{array}{r} 0.408 \\ \underline{0.432} \\ 0.451 \\ \underline{0.476} \end{array} $	0.390 0.432 0.480 0.532	0.411 0.439 0.460 0.500	0.382 0.431 0.476 0.495	0.399 0.426 0.449 0.487	0.478 0.561 0.612 0.601	0.448 0.504 0.537 0.541	0.389 0.440 0.482 <u>0.486</u>	0.400 0.43 0.453 <u>0.479</u>	0.396 0.458 0.508 0.546	0.413 0.448 0.472 0.503
224	Exchange	192 336	0.231 0.431	0.340 0.472	0.210 0.387	0.330 0.451	0.239 0.479	0.342 0.486	0.221 0.387	0.337 0.453	0.175 0.322	0.297 0.409	0.259 0.478	0.370 0.501	$\frac{0.178}{0.328}$	$\frac{0.301}{0.415}$	0.177 0.326	0.300 0.414
225	ILI	60	<u>2.02</u>	0.885	2.15	0.923	2.48	0.944	2.45	0.994	1.99	<u>0.905</u>	2.37	0.966	2.31	0.970	1.90	0.868
226 227 228	Traffic	96 192 336 720	0.486 0.492 0.506 0.523	0.322 0.325 <u>0.331</u> 0.340	0.483 0.500 0.520 0.575	0.324 0.330 0.337 0.362	$\begin{array}{r} 0.496 \\ \underline{0.497} \\ \underline{0.509} \\ \underline{0.525} \end{array}$	0.325 <u>0.327</u> 0.328 <u>0.350</u>	0.502 0.523 0.552 0.626	0.330 0.331 0.338 0.369	0.606 0.592 0.600 0.633	0.389 0.382 0.384 0.401	0.611 0.643 0.662 0.678	0.336 0.352 0.363 0.365	0.643 0.603 0.612 0.652	0.405 0.387 0.389 0.406	0.524 0.519 0.530 0.562	0.351 0.346 0.350 0.366
229 230	Weather	96 192 336 720	0.165 0.210 0.266 0.342	0.211 0.254 0.294 0.343	0.166 0.216 <u>0.273</u> 0.350	0.219 0.261 0.300 0.349	0.161 0.212 0.266 0.343	0.211 0.255 0.295 0.344	0.175 0.226 0.280 0.352	0.214 0.266 0.303 0.350	0.193 0.238 0.291 0.365	0.232 0.269 0.306 0.354	0.169 0.223 0.279 0.359	0.220 0.264 0.302 0.355	0.194 0.238 0.290 0.363	0.233 0.268 0.304 0.35	0.182 0.228 0.282 0.359	0.222 0.261 0.299 0.349
231	Best Count	(/20)	8	11	4	2	5	4	0	0	4	5	0	0	0	0	-	-
232	Averag	;e	0.445	0.382	<u>0.452</u>	<u>0.384</u>	0.469	0.386	0.478	0.393	0.466	0.394	0.525	0.412	0.488	0.401	0.449	0.386

Table 3: **Results of multi-task forecasting.** Applying a CM to UniTS results in SOTA performance, outperforming standard UniTS and other task-specific models. In particular, it brings improvements across all 20 forecasting tasks under prompt-tuning settings.

4.1 SINGLE-TASK MODEL: APPLICATION TO ITRANSFORMER

239 To demonstrate the effectiveness of our method, we apply our method to iTransformer (Liu et al., 240 2024a) to solve TS forecasting tasks on 13 datasets. 241 Table 2 presents the average MSE and MAE 242 across four different horizons (H), showing con-243 sistent improvement across all datasets. Specifi-244 cally, the performance gains in MSE on the PEMS 245 datasets (Liu et al., 2022) (03, 04, 07, 08) are sig-246 nificantly large (12.7%, 19.0%, 19.6%, 40.2%), 247 whereas the gains on the ETT datasets (Zhou et al., 248 2021) (h1, h2, m1, m2) are relatively small (2.8%, 249 0.3%, 2.5%, 1.4%), suggesting a potential varia-250 tion in the need for a CM across different datasets. 251 Full results are described in Appendix C.1.

Dataset	iTrans	former	+ (СМ	Im	ıpr.
Dataset	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.457	0.449	0.444	0.441	2.8%	1.8%
ETTh2	0.384	0.407	0.383	0.406	0.3%	0.2%
ETTm1	0.408	0.412	0.398	0.406	2.5%	1.5%
ETTm2	0.293	0.337	0.289	0.335	1.4%	0.6%
PEMS03	0.142	0.248	0.124	0.231	12.7%	6.9%
PEMS04	0.121	0.232	0.098	0.210	19.0%	9.5%
PEMS07	0.102	0.205	0.082	0.183	19.6%	10.7%
PEMS08	0.254	0.306	0.152	0.231	40.2%	24.5%
Exchange	0.368	0.409	0.363	0.406	1.4%	0.7%
Weather	0.260	0.281	0.250	0.275	3.8%	2.1%
Solar	0.234	0.261	0.228	0.258	2.6%	1.1%
ECL	0.179	0.270	0.168	0.262	6.1%	3.0%
Traffic	0.428	0.282	0.422	0.281	1.4%	0.4%
Avg.	0.279	0.315	0.261	0.302	6.3%	4.3%

Table 2: FCST on single-task model.

4.2 MULTI-TASK MODEL: APPLICATION TO UNITS

To validate the effectiveness of our method on a TS foundation model, we apply it to UniTS (Gao et al., 2024) which solves diverse tasks without the need for fine-tuning, relying solely on prompt-tuning.

255 256 257 258

259

252

253 254

233

234

235

236 237

238

4.2.1 FORECASTING AND CLASSIFICATION TASKS

Table 4 presents a summary of the results from 20 fore-260 casting tasks and 18 classification tasks under both su-261 pervised (Sup.) and prompt-tuning (PT) settings, with 262 the full results for both tasks provided in Table 3 and 263 Appendix D.1, respectively. The results indicate that 264 applying our method improves performance in all 20 265 FCST and 13 CLS tasks. Notably, our method outper-266 forms task-specific models that are individually trained 267 for each task, while our model remains a single shared

		UniTS	+ CM	Impr.
FCST	Sup.	0.469	0.445	5.1%
(MSE)	PT	0.478	0.452	5.4%
CLS	Sup.	80.6	82.0	1.7%
(Acc.)	РТ	75.1	78.3	4.3%

Table 4: 20 FCST and 18 CLS tasks.

model capable of solving various tasks without fine-tuning. Additionally, compared to GPT4TS (Zhou et al., 2023), which is a TSFM that reprograms the pretrained GPT-2 model (Radford et al., 2019), our method achieves superior performance with less than 1% of the parameters (164.5M vs. 1.57M).

	Ratio Model MSE Acc. Ratio		Mo	dei	MSE																						
	iTransforme	r FT	0.598	51.4		TimesN	et ET	0.246		Mode	el		F ₁														
5%	UniTS	PT FT	0.549 0.505	49.4 53.8		iTransfor	mer	0.191	A	a alter T			70.2														
	UniTS + CN	⊿ PT	0.546	54.9			PT	0.179	Anon	haly Ira	ins.	-	79.2 74.2														
		FT	0.489	<u>54.8</u>	25%	UniTS	FT	<u>0.167</u>	11 Do	tohTST			74.2 84 3														
	Transforme	r FT	0.524	53.2		UniTS + (CM PT	0.179	га iTra	nsform	er	FT	83 1														
15%	UniTS	FT	<u>0.487</u>	<u>59.7</u>			FT	0.158	1110				05.1														
	UniTS + CN	A PT	0.522	55.4		PatchTS	et T FT	0.292	τ	JniTS		PT	81.7														
	iTransforme	r FT	0.510	59.9		iTransfor	mer	0.226				FT	85.6														
	LL-:TC	PT	0.525	58.9	50%	UniTS	PT	0.232	Uni		м	PT	82.0														
20%	0m15	FT	0.486	<u>63.6</u>			FT	0.213	UIII	15 + C	IVI	FT	86.6														
	UniTS + CN	1 PT FT	0.453 0.425	60.0 64.8		UniTS + 0	CM FT	0.225 0.201		(c) 5	AD tas	sks.															
(a) 9 FCST and 6 CLS tasks. (b) 6 IMP tasks.																											
Table 5: Four tasks under few-shot settings.																											
Deter	Uni	TS	4	- CM	In	npr.		Uni	TS	+ C	М]	Impr.														
	MSE	MAE	MSE	E MAE	MSE	MAE	Dataset	MSE	MAE	MSE	MAE	MSE	E MAE														
Solar	0.597	0.607	0.586	6 0.585	1.9%	3.6%	ECL	0.237	0.329	0.231	0.323	2.5%	1.8%														
River Hospit	1.374 al 1.067	0.698	1.374	1 0.686	0.0%	1.7%	ETTh1	0.495	0.463	0.492	0.463	0.6%	0.0%														
Avo	1 013	0.701	0.993	3 0.683	2.0%	2.6%	Traffic Weather	0.632	0.372	0.335	0.369	0.0%	5 0.8%														
) Zer	a shot	dataset) Zero	shot hor	rizon																
	(a) Zert	5-51101	ualasel.				(<i>J)</i> ZC 10 ⁻	-51101 1101	IZOII.																
Table 6: Zero-shot FCST tasks.																											
4.2.2	FEW-SI	1 тоғ	EARN	JING																							
For the	e tasks ur	nder tl	he fev	v-shot se	ettings	s, we cor	nduct for	ır differ	ent tas	ks (FCS	ST, CI	LS, IN	MP, AD),														
follow	ing the ex	cperin	nental	settings	s of Ui	niTS. Fu	ll results	are des	cribed	in Appe	endix	D.2.															
Few-s	hot FCS	F and	CLS	Weex	nerime	ent nine	forecasti	no tasks	and si	x classi	ficatio	n tas	ks under														
the fey	w-shot se	ttings	with	data rat	ios of	5%. 159			ble 5a	present	s the 1	JII tub	s. which														
indicat	tes that or		1l		100 01	0,0, 10,	%. and 2	0%. Ta		01000110		result															
setting	indicates that our method outperforms both iTransformer and UniTS in both PT and fine-tuning (FT)																										
_ 2	(S.	ir met	.nod o	utperfor	ms bo	th iTrans	%, and 2 sformer a	0%. Ta and Uni	rS in b	oth PT a	and fir	result ne-tur	ning (FT)	settings.													
Few-shot IMP. We experiment six imputation tasks under the few-shot setting with a data ratio																											
Few-s	s. hot IMP	we of the c	experi	utperfor	ms bo x imp	th iTrans	%, and 2 sformer a tasks und	der the f	FS in b	oth PT a	and fir	result ne-tur h a d	ata ratio														
Few-s of 10%	s. hot IMP %, where	We of the grant the	experioal is	utperfor iment si to impu	ms bo x imp ite 25°	th iTrans utation t % and 50	%, and 2 sformer a tasks und 0% of m	der the fuissing d	FS in b few-she lata po	oth PT a ot settir ints. Ta	and fir ng wit able 51	h a d b pres	ata ratio sents the														
Few-s of 109 results model	s. hot IMP , where , indications (Wu et a	We of the grant when	experi oal is t our 1	utperfor iment si to impu method ie et al	ms bo x imp ite 25 ^o outper 2023	th iTrans utation t % and 50 forms U	%, and 2 sformer a casks und 0% of m niTS and 1 2024	der the f der the f der the f d other s d other s	FS in b few-shata po tate-of h PT at	oth PT a ot settir ints. Ta -the-art	ng wit and fir ble 51 (SOT	result ne-tur h a d b pres (A) sin	ata ratio sents the ngle-task														
Few-s of 10% results model	s. hot IMP %, where , indications s (Wu et a	We of the grad with the grad w	experioal is oal is tour 1 23; N	utperfor iment si to impu method ïe et al.,	ms bo x imp ite 25° outper 2023	th iTrans utation t % and 50 forms U ; Liu et a	%, and 2 sformer a tasks und 0% of m niTS and 1., 2024a	der the f der the f dissing d d other s a) in bot	FS in b few-she lata po tate-of h PT at	oth PT a ot settir ints. Ta the-art nd FT s	ng wit and fir able 51 (SOT ettings	result he-tur h a d b pres (A) sin s.	ata ratio sents the ngle-task														
Few-s of 10% results model Few-s	s. hot IMP %, where h, indications s (Wu et a hot AD.	We of the grant whether the gr	experi oal is it our 1 23; N	utperfor iment si to impu method ie et al., nent five	x imp ite 259 outper 2023 e anom	th iTrans utation t % and 50 forms U ; Liu et a naly dete	%, and 2 sformer a casks und 0% of m niTS and il., 2024a ection tas	der the f der the f dissing d d other s a) in bot	FS in b few-sho lata po tate-of h PT an er the f	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot	and fir ng wit uble 51 (SOT ettings t settin	h a d b pres A) sin s.	ata ratio sents the ngle-task th a data														
Few-s of 10% results model Few-s ratio o	s. hot IMP , where , indicatin s (Wu et a hot AD. of 5%, wh	We of the generation of the ge	experi oal is it our 1 23; N xperin ne ress	utperfor iment si to impu method ie et al., nent five ults in T	ms bo x imp ite 25 outper 2023 e anom Fable 5	th iTrans utation t % and 50 forms U ; Liu et a naly dete 5c indica	%, and 2 sformer a casks und 0% of m niTS and d., 2024a ection tas the that o	der the f der the f dissing d d other s a) in bot sks unde	FS in b few-she ata po tate-of h PT a er the f od out	oth PT a ot settir ints. Ta t-the-art nd FT s ew-shot perforn	ng wit ng wit nble 51 (SOT ettings t settin ns Un	h a d b pres A) sin s. ng wi iTS a	ata ratio sents the ngle-task th a data nd other														
Few-s of 10% results model Few-s ratio of SOTA	s. hot IMP %, where , indicating s (Wu et a hot AD. of 5%, why methods	We of the g ng tha al., 20 We ex- nere th in bo	experi oal is t our 1 23; N xperin ne res th PT	utperfor iment si to impu method ie et al., nent five ults in T and FT	ms bo x imp ite 25 ⁶ outper 2023: e anon Table 5 setting	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs.	%, and 2 sformer a casks und 0% of m niTS and l., 2024a ection tas ate that o	der the f der the f dissing d d other s a) in bot sks unde	FS in b few-sh- lata po tate-of h PT at er the f od out	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perforn	ng wit ng wit nble 51 (SOT ettings t settin ns Un	result he-tur h a d b pres (A) sin s. ng wi iTS a	ata ratio sents the ngle-task th a data nd other														
Few-s of 10% results model Few-s ratio o SOTA	s. hot IMP %, where , indicating s (Wu et a hot AD. of 5%, why methods	We determine the generation of the generation of the generation of the second s	experio oal is it our 1 23; N xperin ne res th PT	utperfor iment si to impu method ie et al., nent five ults in T and FT	ms bo x imp ite 25° outper 2023 e anon Table 5 setting	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs.	%, and 2 sformer a casks und 0% of m niTS and l., 2024a ection tas the that o	der the f ind Uni der the f issing d d other s a) in bot sks unde	TS in b few-sh lata po tate-of h PT a er the f od out	oth PT a ot settin ints. Ta -the-art nd FT s ew-shot perforn	ng wit ng wit nble 51 (SOT ettings t settin ns Un	result he-tur h a d b pres A) sin s. ng wi iTS a	ata ratio sents the ngle-task th a data nd other														
Few-s of 10% results model Few-s ratio of SOTA 4.2.3	s. hot IMP %, where , indicatin s (Wu et a hot AD. of 5%, wh methods ZERO-8	We define the generation of the generation of the generation of the second seco	experio oal is it our 1 23; N xperin ne res th PT LEAR	utperfor iment si to impu method ie et al., nent five ults in T and FT	ms bo x imp ite 25 ⁴ outper 2023: e anon Table 5 setting	th iTrans utation t % and 50 forms U ; Liu et a naly dete 5c indica gs.	%, and 2 sformer a casks und 0% of m niTS and l., 2024a ection tas the that o	der the f ind Uni der the f issing d d other s a) in bot sks unde	FS in b few-sh- lata po tate-of h PT ar er the f od out	oth PT a ot settin ints. Ta the-art nd FT s ew-shot perforn	ng wit nble 51 (SOT ettings t settin	result ne-tur h a d b pres A) sin s. ng wi iTS a	ata ratio sents the ngle-task th a data nd other														
Few-s of 10% results model Few-s ratio of SOTA 4.2.3	s. hot IMP %, where , indicatin s (Wu et a hot AD. of 5%, wh methods ZERO-S rform TS	We experience the the generation of the generation of the generation of the texperience of texperience	experi oal is it our p 23; N sperin ne res th PT LEAR	utperfor iment si to impu method ie et al., nent five ults in T and FT ENING	ms bo x imp ite 25° outper 2023: e anon Table 5 setting	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs.	%, and 2 sformer a casks und 0% of m niTS and il., 2024a ection tas the that o	der the f der the f dissing d d other s a) in bot sks unde our meth	TS in b few-sh- lata po tate-of h PT ar er the fr od out	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perforn	ng wit and fir able 51 (SOT ettings t settin ns Un	t dat	lata ratio sents the ngle-task th a data nd other														
Few-s of 10% results model Few-s ratio c SOTA 4.2.3 We pe	s. hot IMP 6, where 1, indicatin s (Wu et a hot AD. of 5%, wh methods ZERO-S rform TS te our methods	We of the ging that al., 20 We example the finite the formation of the for	experi oal is it our 1 23; N cperin ne res th PT LEAR casting	utperfor iment si to impu method ie et al., nent five ults in T and FT and FT and FT	ms bo x imp tte 25° outper 2023 e anon Table 5 setting	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs. two type	%, and 2 sformer a casks und 0% of m niTS and il., 2024a ection tas the that o	0%. Tai and Uni der the f issing d d other s a) in bot sks under our meth	rS in b few-sh- lata po tate-of h PT ab er the f od out	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perforn : 1) Zer	ng wit and fir uble 51 (SOT t setting t settin ns Un	t data	lata ratio sents the ngle-task th a data nd other <i>aset</i> : We														
Few-s of 10% results model Few-s ratio c SOTA 4.2.3 We pe evalua	s. hot IMP 6, where 1, indicatin s (Wu et a hot AD. of 5%, wh methods ZERO-S rform TS te our mages the p	We denote the generation of the generation of the second s	experi oal is it our 1 23; N cperin he res th PT LEAR casting on an 1 s abil	utperfor iment si to impu method ie et al., nent five ults in T and FT 2NING g tasks u unseen o	ms bo x imp ite 25° outper 2023 e anon Table 5 setting under latase	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs. two type t that wa	%, and 2 sformer a casks und 0% of m niTS and d., 2024a ection tas the that o es of zero is not ind recasting	0%. Tai and Uni der the f issing d d other s a) in bot sks unde our meth	FS in b few-sh- lata po tate-of h PT ar er the f od out	oth PT a ot settin ints. Ta -the-art nd FT s ew-shot perform : 1) Zen training	ng wit and fir uble 51 (SOT) (SOT) t settings t setting	t data teresult re-turn h a d b pres (A) sin s. hg wi iTS a t data	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during														
Few-s of 109 results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass training	s. hot IMP 6, where 1, indicatin s (Wu et a hot AD . of 5%, wh methods ZERO-S rform TS te our mosess the n g by add	We explored the grang that al., 20 We explored the the grand that al., 20 We explored the	experi oal is t our p 23; N cperin he res th PT LEAR casting on an p	utperfor iment si to impu method ie et al., nent five ults in T and FT NING g tasks u unseen o ity to pr	ms bo x imp ite 254 outper 2023 e anon Table 5 setting under latase edict a s at the	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs. two type t that wa a new for e end of	%, and 2 sformer a casks und 0% of m niTS and d., 2024a ection tas the that of es of zero as not ind recasting the TS for	der the f ind Uni der the f issing d d other s a) in bot sks unde our meth o-shot se cluded d g horizon	FS in b few-shata po tate-of h PT at er the f od out ettings luring t that y	oth PT a ot settin ints. Ta -the-art nd FT s ew-shot perforn : 1) Zen training vas not	ro-sho g. 2) Z encou	t data tree turn the a d b pres (A) sin s. ag wi iTS a t data tero-s untere	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps														
Few-s of 109 results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin	hot IMP 6, where 1, indicatin s (Wu et a hot AD. of 5%, wh methods ZERO-s rform TS the our mosess the n g, by add	We experience of the generation of the generation of the generation of the experience of the	experin oal is it our r 223; N cperin he res th PT LEAR casting on an u s abili- he mas	utperfor iment si to impu method ie et al., nent five ults in T and FT xNING g tasks u unseen o ity to pr sk token	ms bo x imp ite 254 outper 2023: e anon Table 5 setting inder datase edict a s at the	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs. two type t that wa a new for e end of	%, and 2 sformer a casks und 0% of m niTS and d., 2024a ection tas the that o es of zero as not ind recasting the TS to	der the f ind Uni der the f issing d d other s a) in bot sks unde our meth o-shot se cluded d g horizon o predic	FS in b few-shi lata po tate-of h PT at er the f od out ettings luring n that v t the de	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perforn : 1) Zer training vas not	ng wit and fir ble 51 (SOT ettings t settin ns Un ro-sho g. 2) Z encou	t data time s	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps.														
Few-s of 109 results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin Zero-s	s. hot IMP 6, where 1, indicating s (Wu et a hot AD. f 5%, when methods ZERO-S rform TS te our most sess the n g, by add shot data	We experience of the generation of the generation of the second s	experi oal is tour 1 23; N perin th PT LEAR casting on an u s abil- ne mas For the	utperfor iment si to impu method ie et al., nent five ults in T and FT xNING g tasks u unseen o ity to pr sk token e TS for	ms bo x imp ite 254 outper 2023: e anon Table 5 setting inder datase edict a s at the ecasti	th iTrans utation t % and 50 forms U ; Liu et a haly dete 5c indica gs. two type t that wa a new for e end of ng task o	%, and 2 sformer a casks und 0% of m niTS and d., 2024a ection tas the that o es of zero as not ind recasting the TS to on unsee	0%. Tal and Uni7 der the f dissing d d other s a) in bot sks unde our meth o-shot se cluded d g horizon o predic n datase	FS in b few-shi lata po tate-of h PT at er the f od out ettings luring n that v t the de ets, we	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perforn : 1) Zer training vas not essired fu	ro-sho g, 2) Z encou	t data cero-s ime s method	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps. od using														
Few-s of 109 results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin Zero-s three of	ss. hot IMP %, where , indicating s (Wu et a hot AD. of 5%, why methods ZERO-S rform TS te our more sess the n ng, by add shot data latasets (1)	We experience of the generation of the generation of the set of th	experi oal is tour p 23; N perin ne rest th PT LEAR casting on an o s abili- ne mas For the	utperfor iment si to impu method ie et al., nent five ults in T and FT 2NING g tasks to unseen o ity to pr sk token e TS for 5; McLe	ms bo x imp ite 25% outper 2023: e anon Cable 5 setting inder datase edict a s at the ecasti od & 0	th iTrans utation t % and 50 forms U ; Liu et a naly dete 5c indica gs. two type t that wa a new for e end of ng task of Gweon, 2	%, and 2 sformer a casks und 0% of m niTS and d., 2024a ection tas the that o es of zero is not indo recasting the TS to on unsee 2013; Hy	0%. Tai and Uni7 der the f dissing d d other s a) in bot sks unde our meth our meth our meth opredic g horizon o predic n datase	FS in b few-shi lata po tate-of h PT at er the f od out ettings luring n that v t the de ets, we et al., 2	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perforn : 1) Zer training vas not esired fu evaluat 2008). T	ng wit and fir able 51 (SOT ettings t settin ns Un <i>ro-sho</i> g. 2) Z encou ature t ce our Cable 6	t data cero-s intere ime s methos	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps. od using sents the														
Few-s of 10% results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin Zero-s three of results	s. hot IMP %, where , indicating s (Wu et a hot AD. of 5%, why methods ZERO-S rform TS te our most sess the n ng, by add shot data latasets (N s, demons	We explored the grang that al., 20 We explored the the grand that al., 20 We explored the	experi oal is tour p 23; N perin ne rest th PT LEAR casting on an p 's abili- ne mas For the , 2006 g cons	utperfor iment si to impu- method ie et al., nent five ults in T and FT 2NING g tasks to unseen of ity to pr sk token e TS for 5; McLe sistent ir	ms bo x imp ite 25° outper 2023: e anon Table 5 setting datase edict a s at the recasti od & 0 nprove	th iTrans utation t % and 50 forms U ; Liu et a naly dete 5c indica gs. two type t that wa a new for e end of ng task of Gweon, 2 ements b	%, and 2 sformer a casks und 0% of m niTS and d., 2024a ection tas the that o es of zero is not ind recasting the TS to on unsee 2013; Hy by incorp	o-shot se co-shot se co-shot se cluded d copredic n datase vorating	FS in b few-shi lata po tate-of h PT at er the fr od out ettings luring to that v t the de ets, we et al., 2 CMs.	oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perforn : 1) Zer training vas not esired fu evaluat 2008). T	ng wit and fir able 51 (SOT ettings t settin ns Un ro-sho g. 2) Z encou ature t cable 6	t data cero-s intere ime s methos	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps. od using sents the														
Few-s of 10% results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin Zero-s three of results	s. hot IMP %, where i, indicating s (Wu et a hot AD. of 5%, why methods ZERO-S rform TS te our mos- sess the n ing, by add shot data latasets (1 i, demons shot horitigneric shot horitigneric shot horitigneric hot horitigneric shot horitigneric hot hot horitigneric hot hot horitigneric hot hot horitigneric hot h	We explored the group of the gr	experi oal is tour 1 23; N perin he rest th PT LEAR casting on an t s abili- ne mas For the g cons For the	utperfor iment si to impu- method ie et al., nent five ults in T and FT and FT and FT and FT stasks u unseen o ity to pr sk token e TS for 5; McLe sistent in	ms bo x imp tte 25° outper 2023: e anon Cable 5 setting datase edict a s at the recasti od & 0 nprove	th iTrans utation t % and 50 forms U ; Liu et a naly dete 5c indica gs. two type t that wa a new for e end of ng task of Gweon, 2 ements b	%, and 2 sformer a casks und 0% of m niTS and il., 2024a ection tas the that o recasting the TS to on unsee 2013; Hy by incorp	0%. Tai and Uni der the f issing d d other s a) in bot sks unde our meth our meth our meth our meth our meth n datase n datase	FS in b few-sh- lata po tate-of h PT at er the fr od out ettings h that v t the de ets, we et al., 2 CMs.	toth PT a oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perform : 1) Zer training vas not esired fu evaluat 2008). T	ro-sho and fir uble 51 (SOT) ettings t settings t settin ns Un ro-sho g. 2) Z encou uture t re our Table 6	t data cero-s intere ime s metho a pre- dict ad	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps. od using sents the dditional														
Few-s of 10% results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin Zero-s three of results Zero-s 384 th	s. hot IMP %, where indicating s (Wu et a hot AD. of 5%, why methods ZERO-S rform TS te our mos- sess the n ng, by add shot data latasets (1 a, demons shot horiz- me steps	We explored the group of the gr	experi oal is tour 1 23; N perin he rest th PT LEAR casting on an t 's abili- he mas For the , 2006 g cons For the ding	utperfor iment si to impu- method ie et al., nent five ults in T and FT 2NING g tasks u unseen o ity to pr sk token e TS for 5; McLe sistent ir e TS for 24 mas	ms bo x imp tte 25° outper 2023: e anon Cable 5 setting under datase edict a s at the recasti od & 0 nprove ecastinked to	th iTrans utation t % and 50 forms U ; Liu et a naly dete 5c indica gs. two type t that wa a new for e end of ng task of Gweon, 2 ements b ng task w kens of	%, and 2 sformer a casks und 0% of m niTS and il., 2024a ection tas the that o es of zero s not ind recasting the TS to on unsee 2013; Hy by incorp	0%. Tai and Uni der the f issing d d other s a) in bot sks unde our meth our meth our meth our meth n datase n datase n datase	FS in b few-she lata po tate-of h PT a er the f od out ettings h that v t the de ets, we et al., 2 CMs. ng hor end of	toth PT a oth PT a ot settir ints. Ta -the-art nd FT s ew-shot perform : 1) Zer training vas not estred fu evaluat 2008). T izons, w	and fir ng with ble 51 (SOT) ettings t settings t setti	t data cero-s intere ime s metho a pre- dict ac	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps. od using sents the dditional the base														
Few-s of 10% results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin Zero-s three of results Zero-s 384 th foreca	s. hot IMP %, where , indicating s (Wu et a hot AD. of 5%, why methods ZERO-S rform TS te our most sess the n ng, by add shot data latasets (1 a, demons shot horiz me steps sting hori	We explore the group of the gro	experi oal is tour 1 23; N perin ne res th PT LEAR casting on an o s abili- ne mas For the g cons For the dding f 96, 1	utperfor iment si to impu- method ie et al., nent five ults in T and FT 2010 g tasks u unseen o ity to pr sk token e TS for 5; McLe sistent ir e TS for 24 mas fable 6b	ms bo x imp tte 25° outper 2023: e anon Table 5 setting under datase edict a s at the recasti od & 0 nprove ecastin ked to preser	th iTrans utation t % and 50 forms U ; Liu et a haly dete to indica gs. two type t that wa a new for e end of ng task of Gweon, 2 ements b ag task w kens of 1 hts the re	%, and 2 sformer a casks und 0% of m niTS and il., 2024a ection tas the that of es of zero s not ind recasting the TS to on unsee 2013; Hy by incorp the new filength 10 sults wit	0%. Tai and Uni der the f issing d d other s a) in bot sks unde our meth our meth our meth our meth our meth d horizon o predic n datase vndman forecasti 6 at the h four d	FS in b few-shata po tate-of h PT at er the f od out ettings luring t n that v t the de ets, we et al., 2 CMs. ng hor end of	toth PT a oth PT a ot settin ints. Ta -the-art nd FT s ew-shot perform training vas not esired fu evaluat 2008). T izons, w the TS dataset	<i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co</i>	t data cero-s intere ime s meth- ba pre- dict ac op of ou et s	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps. od using sents the dditional the base al., 2021														
Few-s of 10% results model Few-s ratio of SOTA 4.2.3 We pe evalua We ass trainin Zero-s three of results 384 tin foreca: Wu et	s. hot IMP 6, where 1, indicatin s (Wu et a hot AD. f 5%, wh methods ZERO-S rform TS te our mo sess the n ng, by add shot data latasets (N c, demons shot horiz me steps sting hori al., 2021	We determine the generation of the generation of the second secon	experi oal is tour 1 023; N aperin th PT LEAR casting on an 1 s abili- the mas For the g cons For the dding f 96. T	utperfor iment si to impu- method ie et al., nent five ults in T and FT and FT and FT and FT and FT staks u unseen of ity to pr sk token e TS for 5; McLe sistent ir e TS for 24 mas fable 6b	ms bo x imp ite 25° outper 2023 e anon Table 5 setting datase edict a s at the recasti od & 0 nprove ecastim ked to preser	th iTrans utation t % and 50 forms U ; Liu et a haly dete for indica gs. two type t that wa a new for e end of ng task of Gweon, 2 ements b ng task w kens of 1 hts the re ains on t	%, and 2 sformer a casks und 0% of m niTS and il., 2024a ection tas the that of es of zero s not ing the TS to on unsee 2013; Hy by incorp ith new f length 10 sults with	0%. Tai and Uni der the f issing d d other s a) in bot sks unde our meth our meth our meth our meth our meth our meth forecasti forecasti 6 at the h four di	FS in b few-shata po tate-of h PT at er the f od out ettings luring t n that v t the de ets, we et al., 2 CMs. ng hor end of ifferent dataset	toth PT a oth PT a ot settin ints. Ta -the-art nd FT s ew-shot perform training vas not esired fu evaluat 2008). T izons, w the TS dataset s.	<i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co-sho</i> <i>co</i>	t data cero-s intere ime s metho a pre- dict ac op of ou et a	ata ratio sents the ngle-task th a data nd other <i>aset</i> : We <i>hot task</i> : d during teps. od using sents the dditional the base al., 2021;														

Domain pa	rams.	X	1
Dataset	C	$r(\mathbf{R})$	$r(\mathbf{M})$
Weather	21	0.296 (2)	0.587(1)
ILI	7	0.708 (7)	0.706 (2)
ETTh1	7	0.222 (1)	0.717 (3)
Exchange	8	0.513 (4)	0.749 (4)
ECL	321	0.489 (3)	0.800 (5)
Traffic	862	0.564 (5)	0.808 (6)
NN5	111	0.584 (6)	0.857 (7)

337 338

339 340

341 342

343

Figure 7: Performance gain by CD vs. CD ratio.

Figure 6: TS visualization by $r(\mathbf{M})$.

Method	Dataset	MSE	MAE
١	UniTS	1.006	0.701
+ CM	FCST + CLS FCST Closest	<u>0.995</u> 0.993 0.993	<u>0.684</u> 0.683 0.683

Table 9: Domain params for unseen datasets.

5 ANALYSIS

Effectiveness of CM. To demonstrate the effec-344 tiveness of a CM, we conduct an ablation study 345 using the correlation matrix (Corr.) and the do-346 main parameters (Dom.). Table 7 presents the 347 result with 20 forecasting tasks and 18 classifica-348 tion tasks with UniTS under the prompt-tuning 349 setting, indicating that incorporating both compo-350 nents yields the best performance. Note that, to 351 isolate the effect of the domain parameters, we

Comp	onents	٨	FCST	Г (20)	CLS (18)
Corr.	Dom.	A	MSE	MAE	Acc.
		I	0.502	0.408	75.4%
		1	0.478	0.393	75.1%
1		$ \mathbf{R} $	0.474	0.390	78.8%
1		Ā	0.471	0.388	78.1%
	1	$\sigma \left(\alpha \cdot \mathbf{I} + \beta \right)$	0.497	0.406	76.2%
1	1	$\sigma\left(\boldsymbol{\alpha}\cdot\mathbf{\bar{R}}+\boldsymbol{\beta}\right)$	0.452	0.384	80.6%

isolate the effect of the domain parameters, we Table 7: Ablation study of CM. replace $\bar{\mathbf{R}}$ with the identity matrix (I) in the forth row of Table 7.

353 **CD ratio comparison.** Table 8 presents the CD ratios of CMs with and without¹ domain parameters 354 $(r(\mathbf{M}) \text{ and } r(|\mathbf{R}|))$, when using UniTS. The results show that while datasets with higher $r(|\mathbf{R}|)$ 355 generally have higher $r(\mathbf{M})$, this relationship is not consistent; for instance, Weather (Wu et al., 356 2021) exhibits lower CD despite having a stronger correlation compared to ETTh1 (Zhou et al., 2021). 357 Figure 6 supports these findings by visualizing the channels of the datasets, revealing that the channels 358 of ETTh1 tend to be more dependent on each other than those of Weather. These results underscore 359 the importance of using domain parameters to adjust $|\mathbf{R}|$ for learning absolute dependencies specific to each dataset. Furthermore, datasets with a larger number of channels (C) tend to have higher 360 $r(\mathbf{M})$, which aligns with the prior work (Ahamed & Cheng, 2024) emphasizing CD over CI for 361 datasets with more channels. 362

Effectiveness of domain parameters. To demonstrate the importance of domain parameters in reflecting the degree of CD, we compare the CD ratio and the performance gain achieved with the CD framework against the CI framework with UniTS. Figure 7 shows that the gain is highly correlated with the CD ratio of a CM with the domain parameters $(r(\mathbf{M}))$, but less so without them $(r(|\mathbf{R}|))$.

367 **Domain parameters for unseen dataset.** For an unseen dataset, selecting the appropriate domain 368 parameters is challenging, as these parameters are not learned during training. To address this 369 issue, we propose three strategies: 1) averaging the parameters across all datasets, 2) averaging the 370 parameters from the forecasting datasets, and 3) selecting parameters from the dataset with the closest 371 $r(\bar{\mathbf{R}})$. Table 9 demonstrates the robustness of these strategies, consistently outperforming UniTS.

Visualization of CM. Figure 8 shows the CMs of ECL (Wu et al., 2021) and ETTh1 (Zhou et al., 2021), illustrating the dependencies between the channels of each dataset. The CM of ETTh1 reveals a hidden relationship between the first and fifth channels when using domain parameters, which is not identified by the correlation matrix alone.

¹For a CM without domain parameters, we use the absolute correlation matrix ($|\mathbf{R}|$) instead of its zerocentered scaled version ($\mathbf{\tilde{R}}$) to ensure a fair comparison with \mathbf{M} , which is also scaled between 0 and 1.

Figure 8: Visualization of CMs w/ and w/o domain parameters. The figure shows the correlation matrices and the CMs of two datasets, with each color scaled from 0 (light) to 1 (dark).

386 387

389

390

391

392

397

399

418 419

	H	PEMS	S04 (C =	= 307)	PEM	S08 (C =	170)
	11	iTrans.	+ CM	Impr.	iTrans.	+ CM	Impr.
	12	0.549	0.300	45.4%	0.628	0.200	68.1%
	24	0.718	0.351	51.1%	0.678	0.241	64.5%
	48	0.750	0.409	45.5%	1.197	1.059	11.5%
	96	0.758	0.513	32.3%	1.375	1.217	11.5%
-	Avg.	0.694	0.393	43.3%	0.970	0.679	29.9%

Figure 9: Masked channel prediction.

Table 11: Results of masked channel prediction.

-	Compo	onents		Average MSE across four horizons												
	Global	Local	ETTh1	ETTh2	ETTm1	ETTm2	PEMS03	PEMS04	PEMS07	PEMS08	Exchange	Weather	Solar	ECL	Traffic	Avg.
_	1		0.466	0.383	0.398	0.289	0.206	0.116	0.101	0.162	0.363	0.259	0.233	<u>0.176</u>	0.429	<u>0.275</u>
_		1	<u>0.457</u>	0.384	0.408	0.293	0.142	0.121	0.102	0.254	0.368	0.260	0.234	0.179	0.428	0.279
_	1	1	0.444	0.383	0.398	0.289	0.124	0.098	0.082	0.152	0.363	0.250	0.228	0.168	0.422	0.261

Table 12: Effect of capturing global and local CD.

Various TS metrics. To demonstrate the effectiveness 400 of CMs using metrics beyond (Pearson) correlation, we 401 apply CMs to iTransformer with three different metrics: 402 1) Euclidean distance (Euc.), which we min-max normal-403 ize to the range (0,1) and subtract from 1 to convert it 404 into a similarity metric; 2) cosine similarity (Cos.), for 405 which we take the absolute value, following the same 406 intuition as correlation; and 3) dynamic time warping 407 (DTW), where we apply the same process as with the 408 Euclidean distance. Table 10 presents the TS forecast-409 ing result in terms of average MSE for four different horizons, indicating that CMs yield a performance gain 410 regardless of the metric used, with the best performance 411 achieved with correlation. Note that we use DTW only 412

Dotocot	w/a CM		w/ (СМ	
Dataset	W/O CM	Euc.	Cos.	DTW	Corr.
ETTh1	0.457	0.445	0.446	0.444	0.444
ETTh2	0.384	0.384	0.384	0.385	0.383
ETTm1	0.408	0.402	0.403	<u>0.401</u>	0.398
ETTm2	0.293	0.292	0.290	0.292	0.289
PEMS03	0.142	0.146	0.134	-	0.124
PEMS04	0.121	0.111	0.105	-	0.098
PEMS07	0.102	0.092	0.087	-	0.082
PEMS08	0.254	0.163	0.179	-	0.152
Exchange	0.368	0.364	0.363	0.364	0.363
Weather	0.260	0.256	0.255	0.254	0.250
Solar	0.234	0.232	0.229	-	0.228
ECL	0.179	0.173	0.171	-	0.168
Traffic	<u>0.428</u>	0.432	0.443	-	0.422
Avg.	0.279	0.269	<u>0.268</u>	-	0.261

achieved with correlation. Note that we use DTW only Table 10: Various metrics for CMs. for datasets with fewer than 100 channels due to its computational complexity.

413 for datasets with lewer than 100 channels due to its computational complexity.
 414 Masked channel prediction. To evaluate the model's ability to capture CD, we introduce a novel

evaluation method, *masked channel prediction*, which involves predicting the future values of the
masked channel using the historical values of the unmasked channels. Specifically, we calculate the
average loss for each channel when masked once, with the loss for the *c*-th channel expressed as:

$$L_{(c)}(y,\hat{y}) = \mathsf{MSE}(y[:,c],\hat{y}_{(c)}[:,c]), \quad \text{where } \hat{y}_{(c)} = f(x_{(c)}), \tag{2}$$

where $x_{(c)}$ is x with the c-th channel masked, and $\hat{y}_{(c)}$ is the predicted output using $x_{(c)}$ as the input. Note that masked channel prediction is an *evaluation method* that does not require additional training, and instead uses a model pretrained without any masking.

To assess the effectiveness of CMs in capturing CD, we experiment masked channel prediction with
iTransformer with and without CMs, imputing the historical values of the masked channels with there
average values, which are essentially zero with normalization. The results in Table 11 demonstrate
significant improvements by incorporating CMs. Furthermore, Figure 9 visualizes the predicted
results for PEMS08 (Liu et al., 2022), where models with CMs predict masked channels better than
models without CMs. We provide more results in Appendix H.

429 Global & local CD. To demonstrate the effect of attention matrices capturing the local CD of the 430 input TS and CMs capturing the global CD of the entire TS, we conduct an ablation study, as shown 431 in Table 12. Specifically, to observe the local, global, and combined effects, we use the attention weights W in Attn(Q, K, V) = Softmax (W) · V in the following manner: $QK^{\top}/\sqrt{d_k}$ for local

436

447

448

449

450

	Average MSE across four horizons													
	ETTh1	ETTh2	ETTm1	ETTm2	PEMS03	PEMS04	PEMS07	PEMS08	Exchange	Weather	Solar	ECL	Traffic	Avg.
α, β	0.444	0.383	0.398	0.289	0.124	0.098	0.082	0.152	0.363	0.250	0.228	0.168	0.422	0.261
E	0.452	0.391	0.402	0.291	0.150	0.106	0.096	0.202	0.364	0.255	0.234	0.177	0.416	0.272
E_1, E_2	0.452	0.391	0.402	0.291	0.152	0.105	0.095	0.205	0.364	0.255	0.233	0.177	0.415	0.272
Α	0.454	0.391	0.402	0.291	<u>0.138</u>	<u>0.099</u>	0.102	<u>0.182</u>	0.364	0.259	0.226	0.177	0.418	<u>0.269</u>
-	0.457	0.384	0.408	0.293	0.142	0.121	0.102	0.254	0.368	0.260	0.234	0.179	0.428	0.279

Table 13: **Results of various domain parameters.** Using scalar domain parameters (α, β) which scale and shift the correlation matrix yields the best results.

	1 11 00	Weather $(C = 21)$		ECL ($C = 321$)		0.425 -	← H=96	**	0.40		
	L, H = 96	iTrans.	-	+ CM	iTrans.	-	+ CM	0.400 -	-•- H=192 •- H=336		- 0.38
-	Attention matrix			 ✓ 			 ✓ 	بي ^{0.375 -}	- ● - H=720	••	- 0.36 - 0.36
	Channel mask		1	1		1	1	≥ 0.350 -	*	<u> </u>	0.34
-	Train (sec/epoch)	26.2	24.1	26.7	33.2	26.0	36.4	0.325 -	*		- 0.32
_	Inference (ms)	11.1	11.1	11.2	12.4	11.0	13.2	0.300 -	• •	• • • • •	
	Avg. MSE	0.260	<u>0.259</u>	0.250	0.179	<u>0.176</u>	0.168		0.00 0.10	0.25 0.50 0.7 Missing ratio	5

Table 14: Efficiency analysis.

Figure 10: Robustness to missingness.

CD, M for global CD, and $\mathbf{M} \odot \mathbf{Q} \mathbf{K}^{\top} / \sqrt{d_k}$ for both. The results show the average MSE for four different horizons, indicating that using both components yields the best results. Additionally, using only CMs provides better performance than attention matrices in some datasets.

Extending domain parameters. The proposed domain parameters α and β are scalars that adjust $\overline{\mathbf{R}}$ by changing its elements monotonically. For further flexibility, we design alternative options for the parameters: 1) a vector \mathbf{E} for each channel and 2) a matrix \mathbf{A} for each dataset. Both options are used to construct an adjustment matrix that is element-wise multiplied to $\overline{\mathbf{R}}$, as shown in Table 15. The first

Domain parameters		Channel mask (M)	Asym.
Scalar	$\pmb{lpha}, \pmb{eta} \in \mathbb{R}^1$	$\sigma\left(\boldsymbol{\alpha}\cdot\mathbf{\bar{R}}+\boldsymbol{\beta}\right)$	×
Vector	$\mathbf{E} \in \mathbb{R}^d$ $\mathbf{E}_1, \mathbf{E}_2 \in \mathbb{R}^d$	$\operatorname{Norm}(\mathbf{E}\mathbf{E}^T) \odot \bar{\mathbf{R}}$ $\operatorname{Norm}(\mathbf{E}_1\mathbf{E}_2^T) \odot \bar{\mathbf{R}}$	×
Matrix	$\mathbf{A} \in \mathbb{R}^{C \times C}$	$\mathbf{A}\odot ar{\mathbf{R}}$	~

Table 15: Extension of domain parameters.

option serves as identifiable vectors for each channel, with the adjustment matrix constructed based on the inner product between these vectors and normalized with $Norm(\cdot) = Softmax$ (ReLU (·)), while the second option acts as the adjustment matrix itself. For the vector parameters, we also implement an asymmetric matrix version that requires two different vectors for each channel: one for the inner vector (E_1) and the other for the outer vector (E_2), as described in the previous work (Wu et al., 2019). Table 13 shows that using scalar parameters achieves the best performance, demonstrating the efficiency of CMs by requiring only two additional parameters per dataset.

Efficiency analysis. To demonstrate the efficiency of CMs, we compare the training and inference
times of iTransformer on two datasets (Wu et al., 2021) with varying numbers of channels, using
only attention matrices, only CMs, and both. Table 14 indicates that incorporating CMs does not
significantly impact computational time, even with datasets containing a large number of channels,
with training time measured per epoch and inference time measured per data instance. It is important
to note that correlation matrices can be precomputed offline, making CMs practical for use.

Robustness to missing values. To demonstrate the robustness of our method to missing values, we analyze scenarios where some TS values are randomly missing at ratios of 10%, 25%, 50%, and 75%, with the missing values linearly interpolated using adjacent values. Figure 10 shows the result on ETTh2 (Zhou et al., 2021) using iTransformer, indicating that both $r(|\mathbf{R}|)$ and the performance remain robust despite the missing values, making our method applicable in real-world scenarios.

476 477 6 CONCLUSION

478 In this work, we introduce the concept of PCD to adjust the CD estimated by the model using a CM, a 479 plug-and-play method that captures both relative and absolute dependencies between channels using 480 dataset-specific information. Our results demonstrate that incorporating prior knowledge of datasets 481 is crucial when building TSFMs, leading to superior performance across various models and settings. However, since our method can only be applied to Transformer-based methods, which are the most 482 widely used architecture for FMs, we aim to develop a novel approach to achieve PCD without 483 relying on Transformer-based methods in the future. We hope our work highlights the importance of 484 utilizing dataset-specific information when building FMs across different domains. 485

486 REFERENCES

488 489 490	Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous multivariate time series anomaly detection and localization. In <i>Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining</i> , pp. 2485–2494, 2021.
491 492 492	Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term forecasting. <i>arXiv preprint arXiv:2403.09898</i> , 2024.
493 494 495 496	Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. <i>arXiv</i> preprint arXiv:1811.00075, 2018.
497 498	Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp architecture for time series forecasting. <i>TMLR</i> , 2023.
499 500 501 502	Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive. <i>IEEE/CAA Journal of Automatica Sinica</i> , 6(6):1293–1305, 2019.
503 504	Jiaxiang Dong, Haixu Wu, Yuxuan Wang, Yunzhong Qiu, Li Zhang, Jianmin Wang, and Mingsheng Long. Timesiam: A pre-training framework for siamese time-series modeling. In <i>ICML</i> , 2024.
505 506 507	Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and Marinka Zitnik. Units: Building a unified time series model. In <i>NeurIPS</i> , 2024.
508 509	Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo Montero- Manso. Monash time series forecasting archive. <i>arXiv preprint arXiv:2105.06643</i> , 2021.
510 511	Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. Moment: A family of open time-series foundation models. In <i>ICML</i> , 2024.
512 513 514 515	Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting the chan- nel independent strategy for multivariate time series forecasting. <i>arXiv preprint arXiv:2304.05206</i> , 2023.
516 517 518	Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement. <i>NeurIPS</i> , 36:46885–46902, 2023.
519 520 521 522	Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. De- tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In <i>Proceedings</i> of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 387–395, 2018.
523 524 525	Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. <i>Forecasting with exponential smoothing: the state space approach</i> . Springer Science & Business Media, 2008.
526 527 528	Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux- uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming large language models. In <i>ICLR</i> , 2024.
529 530 531	D Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In <i>ICLR</i> , volume 5, pp. 6. San Diego, California;, 2015.
532 533 534	Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In <i>ICCV</i> , pp. 4015–4026, 2023.
535 536 537	Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In <i>The 41st international ACM SIGIR conference on research & development in information retrieval</i> , pp. 95–104, 2018.
538 539	Seunghan Lee, Taeyoung Park, and Kibok Lee. Learning to embed time series patches independently. In <i>ICLR</i> , 2024.

540 541 542	Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation on linear mapping. <i>arXiv preprint arXiv:2305.10721</i> , 2023.
543 544	Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution and interaction. In <i>NeurIPS</i> , 2022.
545 546 547	Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. In <i>ICLR</i> , 2024a.
548 549	Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer: Generative pre-trained transformers are large time series models. In <i>ICML</i> , 2024b.
550 551 552 553	Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training on ics security. In 2016 international workshop on cyber-physical systems for smart water networks (CySWater), pp. 31–36. IEEE, 2016.
554 555	AI McLeod and Hyukjun Gweon. Optimal deseasonalization for monthly and daily geophysical time series. <i>Journal of Environmental statistics</i> , 4(11):1–11, 2013.
556 557 558 559	Matthew Middlehurst, Patrick Schäfer, and Anthony Bagnall. Bake off redux: a review and exper- imental evaluation of recent time series classification algorithms. <i>Data Mining and Knowledge</i> <i>Discovery</i> , pp. 1–74, 2024.
560 561	Yushan Nie, Nam H Nguyen, Pattarawat Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In <i>ICLR</i> , 2023.
562 563 564	NREL. Solar power data for integration studies. https://www.nrel.gov/grid/ solar-power-data.html, 2006.
565 566 567	Shiyi Qi, Liangjian Wen, Yiduo Li, Yuanhang Yang, Zhe Li, Zhongwen Rao, Lujia Pan, and Zenglin Xu. Enhancing multivariate time series forecasting with mutual information-driven cross-variable and temporal modeling. <i>arXiv preprint arXiv:2403.00869</i> , 2024.
568 569 570	Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. <i>OpenAI blog</i> , 1(8):9, 2019.
571 572	Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In <i>CVPR</i> , pp. 10684–10695, 2022.
573 574 575 576 577	Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In <i>Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining</i> , pp. 2828–2837, 2019.
578 579 580	Souhaib Ben Taieb, Gianluca Bontempi, Amir F Atiya, and Antti Sorjamaa. A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition. <i>Expert systems with applications</i> , 39(8):7067–7083, 2012.
581 582 583 584	Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. <i>arXiv preprint arXiv:2302.13971</i> , 2023.
585 586	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In <i>NeurIPS</i> , 2017.
587 588 589	Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified training of universal time series forecasting transformers. In <i>ICML</i> , 2024.
590 591	Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In <i>NeurIPS</i> , 2021.
592 593	Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for general time series analysis. In <i>ICLR</i> , 2023.

594 595 596	Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-temporal graph modeling. In <i>IJCAI</i> , 2019.
597 598 599	Yingnan Yang, Qingling Zhu, and Jianyong Chen. Vcformer: Variable correlation transformer with in- herent lagged correlation for multivariate time series forecasting. <i>arXiv preprint arXiv:2405.11470</i> , 2024.
600 601	Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In AAAI, 2023.
602 603 604	Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In <i>ICLR</i> , 2023.
605 606	Lifan Zhao and Yanyan Shen. Rethinking channel dependence for multivariate time series forecasting: Learning from leading indicators. In <i>ICLR</i> , 2024.
607 608 609	Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, 2021.
610 611	Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained lm. In <i>NeurIPS</i> , 2023.
612	
61/	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
640	
040	
041 640	
6/2	
644	
645	
646	
647	

648 A DATASET DESCRIPTION 649

A.1 DATASET FOR SINGLE-TASK MODEL: ITRANSFORMER

For TS forecasting in a single-task setting, we evaluate the effectiveness of our proposed method using 13 datasets, with their statistics described in Table A.1. We adhere to the same data processing and train-validation-test split protocol as iTransformer (Liu et al., 2024a), ensuring that the training, validation, and test sets are separated in chronological order. The input length is consistently set to 96 across all datasets. Note that N and C denote the size of the dataset and number of channels in a dataset, respectively.

Dataset	C	Prediction Length	$(N_{\mathrm{train}}, N_{\mathrm{val}}, N_{\mathrm{test}})$
ETTh1 (Zhou et al., 2021)	7	{96, 192, 336, 720}	(8545, 2881, 2881)
ETTh2 (Zhou et al., 2021)	7	{96, 192, 336, 720}	(8545, 2881, 2881)
ETTm1 (Zhou et al., 2021)	7	{96, 192, 336, 720}	(34465, 11521, 11521)
ETTm2 (Zhou et al., 2021)	7	{96, 192, 336, 720}	(34465, 11521, 11521)
Exchange (Wu et al., 2021)	8	{96, 192, 336, 720}	(5120, 665, 1422)
Weather (Wu et al., 2021)	21	{96, 192, 336, 720}	(36792, 5271, 10540)
ECL (Wu et al., 2021)	321	{96, 192, 336, 720}	(18317, 2633, 5261)
Traffic (Wu et al., 2021)	862	{96, 192, 336, 720}	(12185, 1757, 3509)
Solar-Energy (Lai et al., 2018)	137	{96, 192, 336, 720}	(36601, 5161, 10417)
PEMS03 (Liu et al., 2022)	358	{12, 24, 48, 96}	(15617, 5135, 5135)
PEMS04 (Liu et al., 2022)	307	{12, 24, 48, 96}	(10172, 3375, 3375)
PEMS07 (Liu et al., 2022)	883	{12, 24, 48, 96}	(16911, 5622, 5622)
PEMS08 (Liu et al., 2022)	170	{12, 24, 48, 96}	(10690, 3548, 3548)

Table A.1: Single-task forecasting datasets.

A.2 DATASET FOR MULTI-TASK MODEL: UNITS

The datasets used in the experiment are aggregated from the Monash Forecasting Repository (Godahewa et al., 2021), the Time Series Classification Website (Middlehurst et al., 2024), and the Time Series Library (Wu et al., 2023). The combined training set includes more than 35 million time steps and over 6,000 variables (channels). Note that N, L, C denote the training size, input length, and number of channels in a dataset, respectively.

710 A.2.1 Multi-task Learning

For TS forecasting and classification in a multi-task setting, we evaluate the effectiveness of our
proposed method using 20 datasets for forecasting and 18 datasets for classification. The statistics of
these datasets are summarized in Table A.2 and A.3, respectively.

Category	Dataset	Prediction Length	N	L	C
	NN5 (Taieb et al., 2012)	112	409	112	111
Finance	Exchange (Wu et al., 2021)	192 336	5024 4880	96	8
Electricity	ECL (Wu et al., 2021)	96 192 336 720	18221 18125 17981 17597	96	321
Licenterty	ETTh1 (Zhou et al., 2021)	96 192 336 720	8449 8353 8209 7825	96	7
Illness	ILI (Wu et al., 2021)	60	581	36	7
Traffic	Traffic (Wu et al., 2021)	96 192 336 720	12089 11993 11849 11465	96	862
Illness Traffic Weather	Weather (Wu et al., 2021)	96 192 336 720	36696 36600 36456 36072	96	21

5.
5

Category	Dataset	# classes	N	L	C
Finance	SharePriceIncrease (Dau et al., 2019)	2	965	60	
Audio	Japanese Vowels (Bagnall et al., 2018) Spoken Arabic Digits (Bagnall et al., 2018) Harethoat (Bagnall et al., 2018)	9 10 2	270 6599 204	29 93	1
ECG	ECG5000 (Dau et al., 2019) NonInvasiveFetalECGThorax1 (Dau et al., 2019)	5 52	500 1800	140 750	
EEG	Blink (Bagnall et al., 2018) FaceDetection (Bagnall et al., 2018) SelfRegulationSCP2 (Bagnall et al., 2018)	2 2 2	500 5890 200	510 62 1152	1
Sensors	ElectricDevices (Dau et al., 2019) Trace (Dau et al., 2019) FordB (Dau et al., 2019)	7 4 2	8926 100 3636	96 275 500	
Human Activity	MotionSenseHAR (Bagnall et al., 2018) EMOPain (Bagnall et al., 2018) UWaveGestureLibrary (Bagnall et al., 2018)	6 3 8	966 968 120	200 180 315	1
Traffic	Chinatown (Dau et al., 2019) MelbournePedestrian (Dau et al., 2019) PEMS-SF (Bagnall et al., 2018)	2 10 7	20 1194 267	24 24 144	9

Table A.3: Multi-task classification datasets.

756 A.2.2 FEW-SHOT LEARNING

For TS forecasting, classification, imputation, and anomaly detection in a few-shot setting, we
evaluate the effectiveness of our proposed method using nine datasets for forecasting, six datasets for
classification, four datasets for imputation, and five datasets for anomaly detection. The statistics of
these datasets related to forecasting and classification are summarized in Table A.4, Table A.5, A.6,
and A.7, respectively.

Category	Dataset	Prediction Length	N	L	C
	ETTh2 (Zhou et al., 2021)	96 192 336	8449 8353 8209	96	7
ETTh2 (Zhou et al., 2021) Electricity ETTm1 (Zhou et al., 2021)	ETTm1 (Zhou et al., 2021)	96 192 336 720	7825 34369 34273 34129 33745	96	7
Weather	SaugeenRiverFlow (McLeod & Gweon, 2013)	24	18921	48	1

Table A 4	· Few-shot	forecasting	datasets
14010 11.4	. I CW Shot	Torecasting	ualasets.

Category	Dataset	# classes	N	L	C
ECG	ECG200 (Dau et al., 2019)	2	100	96	1
EEG	SelfRegulationSCP1 (Bagnall et al., 2018)	2	268	896	6
Human Activity	RacketSports (Bagnall et al., 2018) Handwriting (Bagnall et al., 2018) Epilepsy (Bagnall et al., 2018)	4 26 4	151 150 137	30 152 207	6 3 3
Sensor	StarLightCurves (Dau et al., 2019)	3	1000	1024	1

Table A.5: Few-shot classification datasets.

Category	Dataset	L	C	Category	Dataset	L	C
Flactricity	ETTm1 (Zhou et al., 2021)		7	Machine	SMD (Su et al., 2019) PSM (Abdulaal et al., 2021)	96 96	38 25
Electricity	ECL (Wu et al., 2021)	90 96	321	Spacecraft	MSL (Hundman et al., 2018) SMAP (Hundman et al., 2018)	96 96	55 25
Weather	Weather (Wu et al., 2021)	96	21	Infrastructure	SWaT (Mathur & Tippenhauer, 2016)	96	51

Table A.6: Few-shot imputation datasets.

Table A.7: Few-shot anomaly detection datasets.

810 A.2.3 ZERO-SHOT LEARNING

822 823

824

For TS forecasting in a zero-shot setting, we evaluate the effectiveness of our proposed method using six datasets. Three of these datasets are used for the zero-shot setting with unseen datasets, while the remaining four datasets are used for the zero-shot setting with new prediction lengths. The statistics for the three unseen datasets are summarized in Table A.8.

-	Category	Dataset	Prediction Length	L	C
	Electricity	Solar (NREL, 2006)	64	128	137
	Weather	SaugeenRiverFlow (McLeod & Gweon, 2013)	128	256	1
	Healthcare	Hospital (Hyndman et al., 2008)	16	32	767

Table A.8: Zero-shot forecasting datasets.

B IMPLEMENTATION DETAILS

825 It is important to note that we follow the experimental settings of iTransformer for single-task 826 and UniTS for multi-task settings, respectively. For the implementation, we use the official code 827 repositories of both methods, running the provided scripts without modifications. However, for UniTS 828 in the prompt tuning setting, we encountered an issue where the model failed to converge using the 829 provided script. This was resolved by setting the hidden dimension to D = 32, which we applied 830 uniformly across both UniTS and its integration with our method. The following sections outline the 831 specific settings we adhered to.

832 B.1 IMPLEMENTATION FOR SINGLE-TASK MODEL: ITRANSFORMER 833

Following iTransformer (Liu et al., 2024a), we use the Adam optimizer (Kinga et al., 2015) and L2
loss for model optimization. The batch size is consistently set to 32, and the number of training
epochs is fixed at 10. Since our approach is plug-and-play, we do not adjust any hyperparameters for
our method; instead, we use the same hyperparameters employed by iTransformer.

838 B.2 IMPLEMENTATION FOR MULTI-TASK MODEL: UNITS 839

Model architecture. In a multi-task setting, the UniTS network consists of three UniTS blocks, along with one GEN tower and one CLS tower. For each data source, specific prompt and task tokens are assigned, with forecasting tasks on the same source but with varying forecast lengths using the same prompt and GEN token. To enable zero-shot learning on new datasets, a shared prompt and GEN token are applied across all data sources. The embedding dimensions are set to 64 for the supervised version, and 32 for the prompt-tuning version, and all blocks in UniTS retain the same feature shape.

Model training. In multi-task settings, models are trained jointly on multiple tasks following a unified protocol. To match the largest dataset, samples from each dataset are repeated within each epoch. Supervised training is conducted over 5 epochs with gradient accumulation, yielding an effective batch size of 1024. The initial learning rate is set at 3.2e-2 and is adjusted using a multi-step decay schedule. For self-supervised pretraining, the models training with an are trained for 10 epochs with effective batch size of 4096, starting with a learning rate of 6.4e-3, which is adjusted using a cosine decay schedule.

853 B.3 CONSTRUCTION OF CORRELATION MATRIX

For constructing the correlation matrix for CM, we used the datasets corresponding to the training period for forecasting datasets and the training instances for classification datasets. Specifically, for a forecasting dataset with shape $(C, L_{\text{train}} + L_{\text{val}} + L_{\text{test}})$, we compute the correlation matrix with shape (C, C) using only the training period with shape (C, L_{train}) . For a classification dataset with shape $(N_{\text{train}} + N_{\text{val}} + N_{\text{test}}, C, L)$, we compute the correlation matrix with shape (C, C) using only the training instances with shape (N_{train}, C, L) by averaging across the instances.

- 000
- 861 862
- 863

C APPLICATION TO ITRANSFORMER

 To demonstrate the effectiveness of our method on a model with a single-task setting, we apply it to the TS forecasting task using iTransformer (Liu et al., 2024a) on 13 datasets, with the results shown in Table C.1.

870	Motri	0	iTrans	former	+ (СМ						
871	wicur		MSE	MAE	MSE	MAE			iTrans	former	+ (
872		96	0.387	0.405	0.385	0.404	Metri	c				
873		192	0.441	0.436	0.438	0.434		1.0	MSE	MAE	MSE	MAE
874	Ellhl	720	0.509	0.402	0.473	0.434		12	0.071	0.174	0.063	0.168
875		Ανσ	0.457	0 4 4 9	0.444	0.441	PEMS03	48	0.161	0.208	0.087	0.157
876		06	0.157	0.350	0.205	0.347	1 EM303	96	0.240	0.338	0.212	0.316
8//		192	0.301	0.399	0.380	0.397		Avg.	0.142	0.248	0.124	0.231
878	ETTh2	336	0.423	0.432	0.427	0.434		12	0.081	0.188	0.075	0 181
879		720	0.430	0.446	0.432	0.445		24	0.099	0.211	0.086	0.196
088		Avg.	0.384	0.407	0.383	0.406	PEMS04	48	0.133	0.246	0.108	0.222
000		96	0.342	0.377	0.331	0.369		96	0.172	0.283	0.125	0.242
002		192	0.383	0.396	0.372	0.390		Avg.	0.121	0.232	0.098	0.210
003	ETTm1	720	0.418	0.418	0.412	0.414		12	0.067	0.165	0.061	0.157
004		Δνσ	0.408	0.412	0 398	0.406		24	0.088	0.190	0.076	0.179
226		06	0.100	0.272	0.570	0.400	PEMS07	48	0.113	0.218	0.086	0.188
997	ETTm2	190	0.180	0.314	0.164	0.272		90	0.140	0.240	0.104	0.200
007		336	0.317	0.353	0.312	0.350		Avg.	0.102	0.205	0.082	0.183
880		720	0.416	0.409	0.412	0.408		12	0.088	0.193	0.085	0.190
800		Avg.	0.293	0.337	0.289	0.335		24 48	0.138	0.243	0.126	0.234
801		96	0.086	0.206	0.085	0.205	PEMS08	48 96	0.354	0.333	0.178	0.241
892		192	0.181	0.303	0.180	0.302		Δνα	0.254	0.306	0.152	0.231
893	Exchange	720	0.338	0.422	0.337	0.421		06	0.234	0.300	0.132	0.231
894		Δνσ	0.368	0.409	0.363	0.406		90 192	0.148	0.240	0.140	0.255
895		06	0.500	0.405	0.505	0.400	ECL	336	0.179	0.272	0.172	0.267
896		190	0.174	0.213	0.105	0.209	LeL	720	0.220	0.310	0.202	0.295
897	Weather	336	0.281	0.298	0.274	0.296		Avg.	0.179	0.270	0.168	0.262
898	Weather	720	0.359	0.351	0.350	0.346		96	0.395	0.268	0.391	0.266
899	-	Avg.	0.260	0.281	0.250	0.275		192	0.417	0.277	0.409	0.275
900		96	0.201	0.234	0.197	0.231	Traffic	336	0.433	0.283	0.426	0.282
901		192	0.238	0.263	0.232	0.260		720	0.467	0.300	0.460	0.300
902	Solar	336	0.248	0.273	0.241	0.270		Avg.	0.428	0.282	0.422	0.281
903		120 Ava	0.249	0.275	0.241	0.275						
904		Avg.	0.234	0.201	0.228	0.230						

Table C.1: TS forecasting results with 13 datasets.

D APPLICATION TO UNITS

To demonstrate the effectiveness of our method on a TS foundation model, we apply it to four different TS tasks using UniTS (Gao et al., 2024) on datasets from various domains, under multiple settings, including multi-task, few-shot, and zero-shot settings. All experimental settings follow those outlined in UniTS (Gao et al., 2024). The sections and tables outlining the full experiment results are listed in Table D.1.

Settings	Section		TS downstream tas	sks	
Settings	Section	FCST	CLS	IMP	AD
Multi-task	D.1	Table 3	Table D.2	-	-
Few-shot	D.2	Table D.3, D.4, D.5	Table D.6, D.7, D.8	Table D.9	Table D.10
Zero-shot	4.2.3	Table 3	-	-	-

Table D.1: Summary of experiments.

D.1 MULTI-TASK LEARNING

For experiments under multi-task settings, we perform 20 TS forecasting and 18 classification tasks, where the full results are shown in Table 3 and Table D.2, respectively.

	5	Shared (1	model)			Task-specific	(18 models)		
18 Tasks	UniTS	S + CM	Un	iTS	iTransformer	TimesNet	PatchTST	Pyraformer	Autoformer	GPT4TS
	Sup.	PT	Sup.	PT			Sup.			FT
Heartbeat	67.3	70.2	59.0	69.3	66.8	72.7	65.9	72.7	71.7	69.8
JapaneseVowels	94.1	93.2	93.5	90.8	<u>95.9</u>	97.6	94.1	85.4	94.1	94.6
PEMS-SF	<u>83.2</u>	82.1	<u>83.2</u>	85.0	83.2	77.5	83.8	83.2	79.2	79.2
SelfRegulationSCP2	58.3	51.7	47.8	53.3	48.9	52.8	48.9	56.7	45.0	45.6
SpokenArabicDigits	97.1	93.5	97.5	92.0	97.8	98.7	97.5	92.1	97.3	97.5
UWaveGestureLibrary	84.4	83.8	79.1	75.6	82.2	84.4	81.9	72.2	42.2	81.9
ECG5000	93.4	93.4	92.6	93.4	93.3	92.6	94.3	91.4	91.9	93.0
NonInvasiveFetalECGThorax1	89.5	55.2	90.5	27.1	88.2	88.9	86.5	21.4	21.7	89.7
Blink	99.1	<u>95.6</u>	99.1	91.1	93.3	87.6	89.6	88.2	63.1	92.4
FaceDetection	64.7	54.6	64.1	57.6	66.0	66.2	63.9	67.3	59.2	66.1
ElectricDevices	62.4	60.5	60.3	55.4	57.3	49.5	59.5	65.4	56.1	62.9
Trace	99.0	93.0	91.0	82.0	79.0	91.0	77.0	74.0	60.0	96.0
FordB	76.2	64.2	<u>76.0</u>	62.8	72.7	68.9	61.4	55.3	66.4	77.7
MotionSenseHAR	92.8	94.3	92.8	93.2	93.6	90.6	75.8	88.7	30.2	96.2
EMOPain	75.5	80.8	78.0	80.3	79.4	78.0	79.2	81.4	69.9	79.4
Chinatown	97.7	98.0	97.7	98.0	97.4	97.7	97.7	27.4	96.8	96.5
MelbournePedestrian	89.3	78.3	87.3	77.0	89.3	95.7	80.4	52.3	75.0	94.0
SharePriceIncrease	62.9	66.6	61.9	68.4	61.9	65.0	<u>68.0</u>	63.1	61.5	63.7
1st Count (/18)	5	2	2	2	0	5	2	4	0	-
2nd Count (/18)	6	5	3	1	5	2	2	2	1	-
Average Score	82.0	78.3	80.6	75.1	80.3	<u>80.9</u>	78.1	68.8	65.6	82.0

Table D.2: Results of multi-task classification.

972 D.2 FEW-SHOT LEARNING

For the few-shot tasks, we conduct four distinct tasks: forecasting (FCST), classification (CLS),
imputation (IMP), and anomaly detection (AD), which are discussed in Sections D.2.1, D.2.2, D.2.3,
and D.2.4, respectively.

D.2.1 FEW-SHOT FORECASTING

The results of few-shot forecasting with data ratios of 5%, 15%, and 20% are shown in Tables D.3, D.4, and D.5, respectively.

507		iTrans	former		Un	iTS			UniTS	+ CM	
3%		F	FT		PT		Т	Р	Т	FT	
Data	H	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh2	96 192 336 720	$\begin{array}{c} 0.554 \\ 0.440 \\ 0.478 \\ 0.483 \end{array}$	0.500 0.438 0.467 0.480	0.405 0.400 0.425 0.446	0.417 0.406 0.433 0.457	$ \begin{array}{r} \underline{0.418} \\ 0.377 \\ \underline{0.420} \\ 0.439 \\ \end{array} $	0.424 0.397 0.433 0.452	0.421 0.386 0.423 0.424	$\begin{array}{r} 0.427 \\ \underline{0.402} \\ \underline{0.431} \\ \underline{0.444} \end{array}$	0.421 0.370 0.416 <u>0.428</u>	0.425 0.389 0.425 0.443
RiverFlow	24	1.141	0.514	1.115	0.504	1.112	0.504	1.097	<u>0.503</u>	1.097	0.500
ETTm1	96 192 336 720	0.504 0.555 0.567 0.659	0.462 0.485 0.496 0.539	0.436 0.462 0.560 0.703	$\begin{array}{c} 0.434 \\ 0.448 \\ 0.494 \\ 0.558 \end{array}$	$\begin{array}{r} \underline{0.384}\\ \underline{0.414}\\ \underline{0.453}\\ \underline{0.526} \end{array}$	$\begin{array}{r} \underline{0.404}\\ \underline{0.418}\\ \underline{0.442}\\ \underline{0.483}\end{array}$	0.428 0.475 0.550 0.689	0.436 0.458 0.493 0.554	0.354 0.393 0.420 0.483	0.384 0.405 0.423 0.455
Average		0.598	0.487	0.549	0.461	<u>0.505</u>	<u>0.440</u>	0.546	0.462	0.489	0.429

Table D.3: Results of few-shot forecasting (5%).

1501		iTrans	former		Un	iTS			UniTS	+ CM	
15%		FT		Р	Т	F	Т	Р	Т	FT	
Data	H	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.441	0.440	0.403	0.412	0.399	0.409	0.416	0.423	0.403	0.411
ETTh2	192	0.398	0.410	0.396	0.404	0.394	0.399	0.388	0.403	0.387	0.399
	336	0.436	0.441	0.432	0.435	0.441	0.435	0.419	0.435	0.430	0.431
	720	0.438	0.453	0.448	0.457	0.449	0.453	0.415	0.442	0.433	<u>0.446</u>
RiverFlow	24	1.067	0.467	1.077	0.492	<u>1.069</u>	0.489	1.073	0.492	1.072	<u>0.487</u>
	96	0.423	0.419	0.407	0.420	0.353	0.386	0.408	0.426	0.342	0.380
ETT 1	192	0.464	0.439	0.434	0.432	0.384	0.400	0.449	0.447	0.377	0.399
EIImi	336	0.492	0.457	0.490	0.464	0.416	0.420	0.502	0.475	0.406	0.148
	720	0.558	0.493	0.641	0.537	0.480	0.455	0.621	0.530	0.470	0.451
Average		0.524	0.450	0.525	0.450	<u>0.487</u>	0.428	0.522	0.452	0.481	0.425

Table D.4: Results of few-shot forecasting (15%).

2007		iTrans	former		Un	iTS			UniTS	+ CM	
20%		F	FT		Т	F	т	Р	Т	FT	
Data	H	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh2	96 192 336 720	0.418 0.395 0.431 0.431	0.426 0.407 0.438 0.449	0.411 0.383 0.419 0.440	0.414 0.398 <u>0.431</u> 0.453	0.391 0.395 0.430 0.444	0.405 0.403 0.430 0.449	0.411 0.381 <u>0.423</u> 0.418	0.422 <u>0.400</u> 0.430 0.422	0.395 0.390 0.438 0.456	0.409 0.400 0.433 0.456
RiverFlow	24	1.056	0.462	1.069	<u>0.487</u>	1.069	0.489	1.071	0.487	<u>1.067</u>	0.489
ETTm1	96 192 336 720	0.408 0.444 0.471 0.536	0.410 0.428 0.445 0.482	0.409 0.443 0.505 0.648	0.421 0.439 0.472 0.536	$ \begin{array}{r} $	$ \begin{array}{r} \underline{0.379} \\ \underline{0.397} \\ \underline{0.418} \\ \underline{0.453} \end{array} $	0.403 0.450 0.507 0.621	0.425 0.450 0.481 0.531	0.339 0.375 0.403 0.466	0.376 0.396 0.415 0.448
Averag	Average		0.438	0.525	0.450	<u>0.486</u>	<u>0.425</u>	0.521	0.453	0.482	0.425

Table D.5: Results of few-shot forecasting (20%).

1026 D.2.2 Few-shot Classification

The results of few-shot classification with data ratios of 5%, 15%, and 20% are shown in Tables D.6,D.7, and D.8, respectively.

50%	iTransformer	Un	iTS	UniTS + CM		
570	FT	РТ	FT	PT	FT	
ECG200	78.0	67.0	77.0	80.0	77.0	
Handwriting	<u>5.4</u>	4.6	4.7	4.8	5.5	
SelfRegulationSCP	1 62.8	66.2	<u>74.7</u>	77.8	73.7	
RacketSports	37.5	31.6	35.5	<u>39.5</u>	47.4	
Epilepsy	39.9	44.9	<u>47.1</u>	44.9	57.2	
StarLightCurves	85.1	82.3	83.8	86.3	<u>85.4</u>	
Average	51.4	49.4	53.8	54.9	<u>54.8</u>	

Table D.6: Results of few-shot classification (5%).

1501	iTransformer	Un	iTS	UniTS + CM		
15%	FT	РТ	FT	PT	FT	
ECG200	81.0	74.0	78.0	73.2	82.0	
Handwriting	9.8	7.3	8.1	<u>9.2</u>	8.5	
SelfRegulationSCP1	67.9	59.0	76.5	<u>69.3</u>	68.6	
RacketSports	54.6	40.1	50.7	44.7	<u>51.3</u>	
Epilepsy	41.3	52.9	58.0	<u>61.6</u>	68.1	
StarLightCurves	84.2	85.8	87.1	<u>85.9</u>	85.5	
Average	56.5	53.2	59.7	55.4	60.4	

Table D.7: Results of few-shot classification (15%).

200	iTransformer	Un	iTS	UniTS + CM		
20%	FT	PT	FT	РТ	FT	
ECG200	81.0	76.0	77.0	85.0	82.0	
Handwriting	11.8	8.0	8.5	7.6	9.8	
SelfRegulationSCP1	<u>77.1</u>	68.6	70.6	77.8	74.4	
RacketSports	<u>54.6</u>	51.3	57.9	38.8	50.7	
Epilepsy	62.3	<u>81.9</u>	72.5	84.1	61.6	
StarLightCurves	84.8	87.3	86.0	90.0	<u>87.8</u>	
Average	59.9	58.9	<u>63.6</u>	60.0	64.8	

Table D.8: Results of few-shot classification (20%).

1080 D.2.3 FEW-SHOT IMPUTATION

1082 The results of few-shot imputation with data ratios of 25% and 50% are shown in Table D.9

1084	Ratio			ECL	ETTh1	ETTh2	ETTm1	ETTm2	Weather	Avg.
1085 1086 1087 1088		TimesNet PatchTST iTransformer	FT	0.245 0.195 0.174	0.369 0.315 0.301	0.193 0.147 0.185	0.442 0.309 0.254	0.119 <u>0.092</u> 0.113	0.106 0.089 0.087	0.246 0.191 0.186
1089 1090	25%	UniTS	PT FT	0.139 0.160	0.311 <u>0.284</u>	0.178 <u>0.150</u>	0.268 <u>0.241</u>	0.102 0.090	0.078 <u>0.077</u>	0.179 <u>0.167</u>
1091 1092		UniTS + CM	PT FT	0.139 0.129	0.310 0.275	0.176 0.149	0.262 0.231	0.100 0.090	0.078 0.073	0.179 0.158
1093 1094 1095	50%	TimesNet PatchTST iTransformer	FT	0.258 0.230 0.203	0.412 0.353 0.332	0.211 0.175 0.205	0.607 0.442 0.372	0.140 0.111 0.136	0.125 0.105 0.106	0.292 0.236 0.226
1096 1097		UniTS	PT FT	0.172 0.191	0.352 <u>0.322</u>	0.251 <u>0.198</u>	0.380 <u>0.352</u>	0.134 0.118	0.103 0.095	0.232 <u>0.213</u>
1098 1099 1100		UniTS + CM	PT FT	0.162 0.151	0.353 0.307	0.240 0.197	0.370 0.345	0.128 <u>0.116</u>	0.097 0.093	0.225 0.201

Table D.9: Results of few-shot imputation.

1103 D.2.4 FEW-SHOT ANOMALY DETECTION

The results of few-shot anomaly detection with data ratio of 5% are shown in Table D.10.

		MSL	PSM	SMAP	SMD	SWAT	Avg.
Anomaly Trans.	-	78.0	90.2	68.3	77.8	81.5	79.2
TimesNet	FT	33.9	91.0	68.5	84.0	93.4	74.2
iTransfomer	FT	<u>80.4</u>	96.5	67.2	82.4	89.0	83.1
PatchTST	FT	79.9	<u>96.6</u>	68.7	83.8	92.6	84.3
11: 70	PT	73.2	95.5	65.9	81.2	92.9	81.7
Units	FT	81.3	97.3	<u>71.6</u>	<u>85.5</u>	92.5	<u>85.6</u>
UniTS + CM	PT	73.7	95.5	66.0	82.0	<u>92.9</u>	82.0
	FT	81.3	97.3	75.9	86.2	92.6	86.6

Table D.10: Results of few-shot anomaly detection.

1	1	2	0
1	1	2	1

APPLICATION TO TIMESIAM Ε

To demonstrate the effectiveness of our proposed model on TimeSiam (Dong et al., 2024), which uses a self-supervised pretraining framework for TS with Siamese networks, we conduct experiments using iTransformer (Liu et al., 2024a) as the backbone, with two datasets that vary in channel size: Exchange, with a small number of channels (8), and ECL, with a large number of channels (321). Specifically, we apply variants of our method by using the domain parameter only during the fine-tuning stage and during both pretraining and fine-tuning stages. The results, shown in Table E.1, validate both components of our method, with the best performance achieved when using domain parameters at both pretraining and fine-tuning stages.

44 45		TimeSiam		+ CM						
6	Correlation matrix		-		1		1		1	
	Domain parameters	Pretrain Fine-tune	-		-		-		<i>J</i> <i>J</i>	
	Dataset	Н	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
) 	Exchange $(C = 8)$	96 192 336 720	0.092 0.182 0.341 0.806	0.215 0.306 0.426 0.679	0.089 0.182 0.336 0.792	0.207 0.304 0.422 0.670	0.088 0.182 0.332 0.788	0.207 0.303 0.417 0.668	0.088 0.182 0.329 0.783	0.209 0.305 0.417 0.666
		Avg.	0.356	0.407	0.350	0.401	<u>0.349</u>	<u>0.399</u>	0.346	0.398
	$\begin{array}{c} \text{ECL} \\ (C = 321) \end{array}$	96 192 336 720	0.147 0.162 0.175 0.215	0.239 0.253 0.269 0.304	0.140 0.157 <u>0.173</u> 0.203	0.236 0.251 0.268 0.297	0.140 0.157 <u>0.173</u> 0.203	0.236 0.251 0.268 0.297	0.141 0.157 0.172 0.203	0.237 0.250 0.267 0.296
		Avg.	0.175	0.266	0.168	0.263	0.168	0.263	0.168	0.262

Table E.1: Results of TS forecasting with TimeSiam.

F LOOKBACK WINDOW SIZE VS. PERFORMANCE

Following the previous work (Liu et al., 2024a), we conduct an experiment to evaluate the effect of varying the lookback window size (L) on performance, using three datasets: ECL (Wu et al., 2021), Traffic (Wu et al., 2021), and PEMS03 (Liu et al., 2022) with iTransformer (Liu et al., 2024a) as the backbone. The results, shown in Figure F.1, indicate that the effectivness of CM remains robust to the choice of L for all three datasets.

Figure F.1: Effect of CM under various lookback window sizes. Forecasting performance with the lookback length $L \in \{48, 96, 192, 336, 720\}$, with forecast horizon H = 12 for PEMS03 and H = 96 for other datasets.

CM UNDER EXTREME CASES G

To evaluate the effectiveness of CM under extreme cases, we design a scenario where the channels in TS exhibit no correlation. Specifically, we generate a synthetic TS dataset with two channels using sine waves oscillating at frequencies of 0.5 and 2.0 over a length of 18,000 (similar to ETTh (Zhou et al., 2021)), as shown in Figure G.1. We conduct TS forecasting using this dataset with iTransformer (Liu et al., 2024a) as the backbone, with an input window size and forecasting horizon of 96, following the experimental protocol used in ETTh1. The result yields a CD ratio of CM approximately 0.018 and a forecasting MSE of around 0.0014, confirming strong channel independence and demonstrating the effectiveness of our method even under extreme CI conditions.

MASKED CHANNEL PREDICTION Η

Tables H.1 and H.2 show the results of masked channel prediction for five datasets (Wu et al., 2021; Liu et al., 2022), indicating significant improvement when a CM is applied to iTransformer compared to when it is not used.

	E	Exchange		ECL				
Horizon	Avg. 1	MSE(C1	~C8)	Avg. MSE(C1~C321)				
	iTrans. + CM		Impr.	iTrans.	+ CM	Impr.		
96	0.139	0.138	1.2%	0.846	0.526	37.8%		
192	0.236	0.232	1.5%	0.849	0.563	33.7%		
336	0.383	0.374	2.4%	0.861	0.594	31.0%		
720	0.934	0.917	1.8%	0.891	0.741	16.8%		
Avg.	0.423	0.415	1.8%	0.862	0.606	29.7%		

Table H.1: Results of masked channel prediction (Exchange, ECL).

:5 26		PEMS04			PEMS07			PEMS08		
,	Horizon	Avg. MSE(C1~C307		-C307)	Avg. N	ASE(C1~	-C883)	Avg. MSE(C1~C170)		
}		iTrans.	+ CM	Impr.	iTrans.	+ CM	Impr.	iTrans.	+ CM	Impr.
	12	0.549	0.300	45.4%	0.835	0.343	58.9%	0.628	0.200	68.1%
	24	0.718	0.351	51.1%	0.865	0.448	48.1%	0.678	0.241	64.5%
	48	0.750	0.409	45.5%	1.038	0.511	50.8%	1.197	1.059	11.5%
	96	0.758	0.513	32.3%	1.040	0.640	38.5%	1.375	1.217	11.5%
	Avg.	0.694	0.393	43.3%	0.945	0.486	48.6%	0.970	0.679	29.9%

Table H.2: Results of masked channel prediction (PEMS datasets).