
What’s in Phishers: A Longitudinal Study of Security
Configurations in Phishing Websites and Kits

Anonymous Author(s)∗

Abstract
Phishing attacks pose a significant threat to Internet users. Under-
standing the security posture of phishing infrastructure is crucial
for developing effective defense strategies, as it helps identify po-
tential weaknesses that attackers might exploit. Despite extensive
research, there may still be a gap in fully understanding these secu-
rity weaknesses. To address this important issue, this paper presents
a longitudinal study of security configurations and vulnerabilities in
phishing websites and associated kits. We focus on two main areas:
(1) analyzing the security configurations of phishing websites and
servers, particularly HTTP headers and application-level security,
and (2) examining the prevalence and types of vulnerabilities in
phishing kits. We analyze data from 906,731 distinct phishing web-
sites collected over 2.5 years, covering HTML headers, client-side
resources, and phishing kits. Our findings suggest that phishing
websites often employ weak security configurations, with 88.8% of
the 13,344 collected phishing kits containing at least one potential
vulnerability, and 12.5% containing backdoor vulnerabilities. These
vulnerabilities present an opportunity for defenders to shift from
passive defense to active disruption of phishing operations. Our
research proposes a new approach to leverage weaknesses in phish-
ing infrastructure, allowing defenders to take proactive actions to
disable phishing sites earlier and reduce their effectiveness.

1 Introduction
Phishing, a type of social engineering attack, has emerged as a
major security risk to billions of Internet users [56]. In a typical
phishing campaign, attackers craft deceptive phishing websites that
masquerade as legitimate websites, such as financial institutions or
social media platforms (e.g., PayPal and Facebook), to allure victims
and steal sensitive information (e.g., login credentials).

To launch phishing attacks, attackers need to build and host
a phishing website. In particular, the building process includes
creating client-side (e.g., HTML, JavaScript, and CSS) and server-
side resources (e.g., PHP [42]). Attackers can utilize phishing kits
that contain pre-configured server-side and client-side resources
for phishing websites. Phishing kits have become popular as they
significantly ease the development and deployment of phishing
websites [7, 13, 26, 51]. Regarding launching phishing websites,
attackers may have two options based on how they create them.
As the first option, attackers also leverage web content publishing
services such as website builders (e.g., wix.com [58]) and blogging
services (e.g., blogger.com [9]) as they provide a convenient way
to create and host web content. As the second option, attackers
may run standalone web servers running Apache [55], with the
pre-configured phishing kits.

Understanding phishing websites is crucial for advancing phish-
ing detection because these sites are central to attackers’ efforts
to deceive victims and steal sensitive information [38, 39, 41]. As
phishing tactics continually evolve, attackers devise new evasion

techniques to bypass detection, resulting in a cat-and-mouse game
with detection systems. These detection systems often rely on lists
of known phishing sites, which, while effective, may not keep up
with the latest tactics [33, 59]. To improve detection methods and
better protect users, it is essential to deeply understand the phish-
ing ecosystem, including how phishing websites are constructed
and maintained. Previous studies have examined various aspects,
such as the visual characteristics and use of client-side resources
like JavaScript, HTML, and CSS [3, 26, 32, 38, 39, 41], evasion tech-
niques [38, 39, 41], and the role of phishing kits in building these
sites [7, 13, 26, 40, 51].

Despite significant research on phishing attacks, the security
configurations of phishing websites and servers remain underex-
plored. To address this gap, we focus on observable artifacts such as
(1) identifying vulnerable points in phishing websites by analyzing
insecure server configurations, such as missing or improperly set
security headers; (2) detecting vulnerabilities within phishing kits
that can be exploited; and (3) leveraging these insecure configura-
tions and vulnerabilities to actively exploit phishing kits and disrupt
their operations. Analyzing these areas helps us identify common
weaknesses that can serve as features for detecting phishing sites.
This knowledge also enables us to develop effective tools that not
only detect phishing sites but also exploit these identified vulner-
abilities to actively disrupt their operations. This approach shifts
the paradigm from a purely defensive stance—such as detecting
phishing websites and educating users to avoid them—to a proac-
tive one where we actively seek out phishing sites and use their
weaknesses to neutralize them [10, 21, 29]. These investigations
have contributed to understanding the phishing ecosystem and
developing countermeasures against phishing attacks by exploiting
a phishing ecosystem.

We conduct a systematic analysis of security configurations in
phishing servers and the security implications of phishing kits by
collecting HTTP headers, screenshots, client-side resources (e.g.,
HTML, JavaScript, images), and phishing kits. This data is collected
between Jul. 2021 and Jan. 2024 (2 years and 7 months) by accessing
16.7 million distinct phishing URLs and refining the dataset. To
identify potential exploit points in phishing websites, we begin by
analyzing their security configurations, focusing on HTTP headers
(e.g., Content-Security-Policy (CSP), Set-Cookie) and vul-
nerabilities in web server program versions. Then, we compare
our findings with the security configurations of benign websites
(Tranco top 10K websites [52]) to accommodate our analysis.

We observe that security-related HTTP headers are barely em-
ployed, or even when used, they are often improperly configured
in phishing websites. For example, only 5.4% of phishing websites
utilize CSP, while most benign websites (75.2%) use it. Moreover,
over 98% of the phishing websites, which specify the Set-Cookie
header, use the improper directive and its value ‘Set-Cookie=/,’

1

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

allowing all directories to access the cookie. Also, 14.3% of the phish-
ing websites are hosted on web servers with known vulnerabili-
ties (e.g., Apache/2.4.6, PHP/7.4.33). These insecure configurations
and unpatched systems present further exploitation opportunities,
which can be potential avenues for disrupting phishing operations.

Furthermore, we analyze our collected 13,344 distinct phish-
ing kits (2.68M PHP scripts) using two static analysis tools
(Semgrep [47] and progpilot [50]), identifying a wide range of
security issues, including vulnerabilities that can be immediately
exploitable (e.g., backdoors) by security entities. Specifically, we
find 689,963 CommonWeakness Enumerations (CWEs) from 11,853
phishing kits (88.8% out of 13,344). In particular, we find poten-
tially exploitable security weaknesses, such as CWE-79 (Cross-site
scripting) [18] and CWE-89 (SQL injection) [19], are commonly
observed in our dataset as well as readily exploitable vulnerabilities
(or backdoors) in 1,668 (12.5% out of 13,344) phishing kits.

Our contributions are summarized as follows:
• We conduct a longitudinal analysis of the security configurations
of the phishing websites and vulnerabilities within phishing kits
by investigating our collected dataset of HTTP headers, client-
side resources, and phishing kits for 31 months (Jul. 15, 2021, to
Jan. 31, 2024).

• We discover that phishing websites have relatively weak secu-
rity configurations from their HTTP headers (e.g., CSP and Set-
Cookie). In particular, we find that self-hosted phishing websites
often misconfigure security-related headers.

• We find 689,963 CWEs (Common Weakness Enumerations) and
1,668 backdoors (or readily exploitable vulnerabilities) in our
phishing kit dataset. Additionally, our analysis shows that the
phishing kit examined in the case study, which was involved
in 204 phishing campaigns, can be easily exploited, suggesting
inadequate attention to security measures.

• We publicly share our source code and the collected phishing
dataset to facilitate future phishing research upon acceptance.

2 Background
Phishing attacks represent a sophisticated social engineering attack
where cybercriminals fool victims into disclosing sensitive infor-
mation. In this section, we introduce how a phishing ecosystem
can be configured using HTTP headers and phishing kits.

2.1 HTTP Headers and Security Configurations
HTTP Headers. HTTP headers transmit additional information
between clients and servers during requests and responses, spec-
ifying details about the requested resource or desired behaviors.
For example, a request header may include the resource’s location
(e.g., ‘GET /index.html’) and acceptable data formats (‘Accept:
text/html’). Similarly, response headers provide details about
the server’s response, such as status codes (‘200 OK’), content
types (‘Content-Type: application/json;’), and content en-
coding (‘Content-Encoding: gzip’). This information, format-
ted as key-value pairs, helps ensure accurate data handling by the
client. Standard header fields are defined in the IANA registry [37].
Non-standard Headers. Non-standard HTTP headers are custom
headers not included in the official HTTP/1.1 specification [23] or
the IANA registry [37]. Although they were once recommended
to be prefixed with ‘X-,’ this practice was deprecated in 2012 [46].

Browser Server

GET /index.html HTTP/1.1
Host: example.com
Accept : text/html,application/xhtml+xml,…

HTTP Request Headers

Connection: Keep-Alive
Content-Encoding: gzip
Content-Type: text/html; charset=utf-8
Date: Mon, 26 Jul 1997 05:00:00 GMT
Last-Modified: Sun, 05 Feb 2023 03:00:28 GMT
Server: Apache/2.4.6
X-Content-Type-Options: nosniff
Content-Security-Policy: default-src 'self'

HTTP Response Headers

facebook

background.png

favicon.ico

adminpanel

Plugin.php
manual.txt

CSP.php
index.html
login.php

Phishing Kits
(A) (B)

Figure 1: Example of (A) HTTP Header and (B) Phishing Kit.

For instance, modern browsers support the non-standard header
X-Content-Type-Options, which instructs clients to strictly fol-
low the MIME types specified in the Content-Type header, pre-
venting MIME type sniffing.
Security Configuration in HTTP Headers. HTTP headers help
enhance web application security, particularly against Cross-site
Scripting (XSS) attacks [14], where attackers inject malicious scripts
(e.g., JavaScript) into trusted web pages. For end-users, these scripts
appear as legitimate content, leading to the execution of malicious
code within the trusted site. Once executed, the scripts can access
sensitive information, such as session cookies, potentially hijack-
ing sessions, defacing websites, or redirecting users to harmful
sites. To prevent XSS attacks, the CSP header is used to control the
sources of permitted content. For example, the directive “Content-
Security-Policy: default-src ‘self’” restricts content to
the local origin, as shown in Figure 1–(A).
Security Configuration in HTML. HyperText Markup Language
(HTML) is the standard language for structuring web pages using
tags, elements, and attributes. It can also help mitigate web security
attacks, such as XSS. For instance, a Content-Security-Policy
(CSP) can be defined in the HTML ‘<head>’ to restrict scripts to the
same origin, using a directive like <meta http-equiv=“Content-
Security-Policy” content=“default-src ‘self’;”>.

2.2 Phishing Kit
Phishing kits serve as comprehensive toolsets for deploying phish-
ing sites on web servers [35]. While some creators closely guard
their kits, others offer them as part of the cybercrime-as-a-service
ecosystem [34]. Specialized criminals develop and sell these kits,
often accommodating custom requests [8].

As shown in Figure 1–(B), these kits generally include: (1) the
template mimicking the legitimate website’s resources (e.g., HTML,
images, fonts), (2) pre-compromised web servers (referred to as
“shells” or “cpanels”) for capturing and transmitting submitted data,
and (3) optional features to filter unwanted traffic or implement anti-
detection measures. These help significantly lower entry barriers
for attackers, enabling individuals with minimal technical expertise
to engage in successful phishing operations.

A typical phishing operation involves purchasing a kit, customiz-
ing it with a designated email address, uploading and extracting it
on a pre-compromised server, and using spam tools to distribute
pre-crafted messages to target email lists. The phisher then awaits
the influx of stolen credentials.

2

What’s in Phishers: A Longitudinal Study of Security Configurations in Phishing Websites and Kits WWW ’25, April 28–May 2, 2025, Sydney, Australia.

Data Collection HTTP Headers & Phishing Kits Extraction

Directive
Extraction

Deduplicated
Phishing Kits

HTTP
Headers

APWG URL
Collection

Access
Phishing Webpages

Remove Error
via Clustering

2 years and 7 months of Headers & Kit

Server: text/html; charset=utf-8
Content-Security-Policy: default-src
Set-Cookie: default-src
X-XSS-Protection: default-src

Kit Fingerprinting
(Hash, Structure)

Categorization & Analysis

Host-level
Investigation

Vulnerability
Identification

Backdoor Access
Investigation

Header Directive
Examination

Figure 2: Overview of Our Systematic Measurement Study.

3 Motivation
The motivation for our research is to identify and exploit weak-
nesses in phishing infrastructure to actively disrupt and neutralize
phishing operations. By analyzing vulnerabilities in phishing web-
sites and kits, we uncover common flaws that can be used not only
as indicators for detecting phishing sites but also as entry points for
taking direct action against them. This approach moves beyond tra-
ditional defensive strategies—such as detecting phishing sites and
raising user awareness—toward a more proactive stance. Instead of
merely reacting to phishing threats, we aim to leverage the attack-
ers’ own weaknesses to interfere with their operations, effectively
turning the tables and neutralizing the threat at its source. This
shift in strategy aims to significantly reduce the impact of phishing
attacks by disrupting them before they can exploit victims.

4 Crawler Design & Dataset Collection
As shown in Figure 2, our systematic measurement study com-
prises three phases: data collection, HTTP headers and phishing
kits extraction, and categorization and analysis. We designed a web
crawler that systematically accesses real-world phishing websites,
gathering APWG URLs and removing errors via clustering. The
crawler collects HTTP response headers, client-side resources (e.g.,
HTML), screenshots, and phishing kits. Deployed from July 2021
to January 2024 (931 days), it accessed 16,742,415 (16.7M) phishing
websites. The extraction phase focuses on HTTP headers (e.g., CSP)
and kit fingerprinting. The analysis phase involves host-level inves-
tigation, header examination, vulnerability identification (focusing
on PHP), and backdoor access investigation. This approach enables
in-depth analysis of phishing techniques and infrastructure.

4.1 Phishing Crawler Design
Phishing Website Resource Crawler Design. We design a web
crawler that periodically (every 10 minutes) collects phishing web-
site resources such as images, DOM, and HTTP response headers.
Our crawler also captures screenshots of the phishing websites after
fully loading and executing client-side resources. These screenshots
help validate the authenticity of reported phishing URLs and detect
potential access errors. We implement the crawler using Google Se-
lenium ChromeDriver [12], which simulates real user interactions
with phishing websites. This approach provides a comprehensive
view of the phishing webpages by fully rendering all client-side
resources and helps evade anti-bot techniques that might otherwise
block our crawler [5, 31].
Phishing Kit Crawler Design. In addition to collecting phishing
websites’ client-side resources (e.g., HTML) and HTTP header in-
formation, our approach also focuses on gathering phishing kits
actively used in real-world attacks. However, identifying these kits

Table 1: Overview of Our Collected Dataset from July 2021
to January 2024 (31 months).

Type # of URLs # of Websites∗

Total APWG Phishing Reports 16,742,415 1,845,523
Successfully Accessed URLs 7,807,532 1,466,343
Screenshots 6,832,416 1,221,807
Final Refined Dataset 3,543,349 906,731

of Clusters from Refined = 544,173;
of Total Kits = 18,865; # of Refined Kits = 13,344;
∗ Distinct phishing websites;

poses a significant challenge due to the lack of specific information
about their locations (i.e., paths) and filenames on phishing web
servers. To address this issue, our approach leverages the observa-
tion that phishing attackers may leave their kits publicly accessible
and downloadable at certain URL paths, even after deploying the
phishing websites using these kits [13, 51].

The attackers’ oversight enables our crawler to discover and
download phishing kits from publicly accessible locations on com-
promised web servers. Specifically, the crawler visits each phishing
URL and checks if directory listing (or directory indexing) is en-
abled. If it is, the crawler initiates a recursive process to download
all files, including compressed archives (e.g., zip, rar, tar, 7z) and
other resources such as images, HTML, and JavaScript within the
directory structure. When directory listing is not enabled, or no
files are found in the initial directory, the crawler systematically
navigates to the parent directory of the phishing URL in an attempt
to locate accessible files.

4.2 Phishing Data Collection
Collecting Phishing Website Resources. Our crawler is fed
real-world phishing URLs from the APWG eCrime Exchange (eCX)
in real time [6]. eCX is one of the largest phishing attack report
repositories containing reliable real-world phishing attack reports.
This repository has been widely used to better understand the
phishing attack ecosystem [28, 38–40, 60]. As illustrated in Figure 2,
our crawler runs every 10 minutes from July 15th, 2021 to January
31st, 2024 (2 years and 7 months). During the collection period,
our crawler is fed a total of 16,742,415 (16.7M) real-world phishing
URLs from APWG eCX. Out of 16.7M phishing URLs, only 46.6%
(7.81M) are accessible; the others are inaccessible due to network
errors (e.g., DNS), web servers being offline, etc.
Refining Collected Phishing Websites Dataset. We leverage
screenshots to identify and filter out internal errors from the dataset.
These errors could bias our analysis since error pages may have
HTML content and HTTP headers different from those of the origi-
nal phishing sites. To achieve this, we apply a conservative filtering
approach, removing clusters that contain error pages, such as empty

3

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

screens, client errors (e.g., error codes 400–499), or server errors (e.g.,
error codes 500–599). Our dataset initially included 6.8M screen-
shots from 7.8M accessible phishing websites, with 975K (12.8%)
missing due to redirections or ChromeDriver issues.

To efficiently eliminate error pages without manually reviewing
all 6.8M screenshots, we employ Fastdup [4], an unsupervised
tool for analyzing image datasets. This tool helps identify dupli-
cates, outliers, and related images by clustering them. We generate
569,994 clusters, enabling us to target groups containing error mes-
sages. For validation, two security researchers manually reviewed
23,579 clusters (those with more than seven screenshots), covering
over 90% of the dataset, to ensure accurate filtering. After filtering,
we retain 544,173 clusters, representing 906,731 distinct phishing
websites, which are used for our analysis, as shown in Table 1.
Refining Collected Phishing Kit Dataset. Our phishing kit
crawler is also fed real-world phishing URLs from the eCX platform,
visiting each URL every 10 minutes during the same collection
period as our phishingwebsite resource collection.We collect 18,865
compressed (e.g., .zip, .7z, .rar) or archived files (e.g., .tar) from
1.2M distinct phishing websites.

To prevent duplicate phishing kits from skewing our analysis,
we implement a two-step process to ensure dataset uniqueness.
First, we calculate cryptographic hash values for each kit using the
Blake2 algorithm to identify duplicates. Second, we compare the
directory structures and script file names (e.g., PHP, JavaScript, CSS,
images) within each kit as illustrated in Figure 1–(B). If both the
hash and structure match, we classify the kits as duplicates and
remove them. This approach, used in prior works [7, 51], validates
the uniqueness of the phishing kit samples in our collection.

We identify and remove 5,521 duplicate phishing kits (29.3% of
18,865) from our initial collection, averaging 4.4 duplicates per kit
(𝜎 = 6.28), with a maximum of 97 duplicates. Our final dataset
includes 13,344 unique phishing kits, significantly larger than prior
work (more than 160 times), which analyzed only 70 kits [7]. These
distinct kits are used for security analysis with two static analyzers,
Semgrep [47] and progpilot [50].

5 HTTP Response Headers
We conduct a comprehensive analysis of the HTTP response head-
ers of our collected phishing websites. Specifically, we first analyze
the overall landscape of phishing website headers, with a particular
emphasis on 11 commonly used security-related headers. Then, we
conduct an in-depth analysis of headers related to Cross-site miti-
gation headers, server information contains vulnerabilities using
Common Vulnerabilities and Exposures (CVE) information, and
misconfiguration.
Categorization of Hosting PhishingWebsites. Recall that there
are two different ways phishing websites are managed from the web
server’s perspective, i.e., using web content publishing service or
self-hosting, which may affect how the servers are configured sub-
stantially. Specifically, if usingweb content publishing services, phish-
ing attackers use the pre-built website templates, functionalities,
and often their hosting facilities offered by these services. In other
words, attackers do not have access to the underlying web server’s
configurations. On the other hand, if they choose the self-hosting op-
tion, attackersmay havemore control over theweb server, including

the ability to configure various settings, including HTTP headers.
Therefore, our analysis focuses merely on self-hosting option.

As the two types have substantially different controllabilities,
we categorize our data according to the types. Specifically, we
identify which group each website belongs to using the Public
Suffix List [43], a resource that identifies common domain suffixes
associated with website creation platforms (e.g., wix.com, github.io).
Essentially, websites using these suffixes in their domain names
likely rely on content publishing services, while others fall into
the self-hosting category. To this end, we identify that 38.4% of
the phishing websites in our dataset rely on (1) content publishing
services and 61.6% of the phishing websites serve on (2) self-hosting
web servers, as detailed in Table 6.
Security-relatedHeader Types. We first identify security-related
headers and categorize them into two groups: those that can ac-
tively prevent security vulnerabilities and those that can introduce
vulnerabilities if misconfigured. As shown in Table 2, eight head-
ers (highlighted in orange) fall into the first category, while the
remaining four headers (highlighted in cyan) belong to the second
category. The ‘Security’ column of Table 2 describes the types of
attacks, vulnerabilities, or mitigation associated with each header.
Collecting Benign Website Resources. To further compare the
security configurations of phishing websites, we collect benign data
from the top 10K domains on the Tranco 1M list [52], gathered on
August 28, 2024. Using the same crawler employed for phishing
websites, we collect resources from these benign domains, including
HTTP header information.

5.1 Overview of HTTP Header Usage
General Usage of HTTP Headers. The top three headers used
by phishing websites are Content-Type (99.9%), Date (99.9%), and
Server (94.6%), similar to benign sites. Other common headers in-
clude Content-Encoding (86.5%), Transfer-Encoding (77.8%),
and Connection (69.9%). Security-related headers are much less
common, with Set-Cookie at 35.5%, X-Content-Type-Options
at 33.2%, and Strict-Transport-Security at 11.4%. Referrer-
Policy is used the least, at just 3.1%. Compared to benign websites,
the general usage of headers is similar (within a 0.1 margin), ex-
cept for the Server header. In benign websites, only 78.4% use the
Server header, likely to reduce the risk of information leakage and
prevent potential vulnerabilities
Content Publishing Service vs. Self-hosting Server. Phishing
websites on content publishing services use more security-related
headers than self-hosted sites, such as X-Content-Type-Options
(67.5% vs. 12.0%) and X-XSS-Protection (65.2% vs. 9.8%). How-
ever, Set-Cookie is more common on self-hosted servers (53.4%
vs. 6.5%).
Adoption Trend of Security-related Headers. Figure 3
shows the overall trend of phishing websites and the usage of
security-related headers. Headers like Set-Cookie, X-Powered-
By, and X-Frame-Options have risen significantly, while oth-
ers, such as Content-Type, Server, and Strict-Transport-
Security, have slight increases. Expect-CT declined after Septem-
ber 2022, while X-Content-Type-Options, X-XSS-Protection,
and Content-Security-Policy remained steady.
Comparison with Benign Domain. Previous studies [25, 30,
45, 54] highlight the growing adoption of security headers such

4

What’s in Phishers: A Longitudinal Study of Security Configurations in Phishing Websites and Kits WWW ’25, April 28–May 2, 2025, Sydney, Australia.

Table 2: Top 12 Security-related HTTP Headers Used in Content Publishing Service and Self-hosting.
Total Usage Content Publishing Service Self-hosting

Security-related Header
Value Usage (%) Value Usage (%) Value Usage (%)

Security Issues

utf-8∗ 788,996 (87.1%) utf-8∗ 323,495 (93.5%) utf-8∗ 465,501 (83.1%)
text/html 112,912 (12.5%) text/html 22,101 (6.4%) text/html 90,811 (16.2%)Content-Type
iso-8859-1∗ 616 (0.1%) iso-8859-1∗ 35 (0.1%) iso-8859-1∗ 581 (0.1%)

A resource might be read
as HTML, creating potential
for XSS vulnerabilities

Cloudflare 227,984 (26.6%) GSE 220,319 (69.8%) Cloudflare 201,063 (37.1%)
GSE 220,615 (25.7%) Cloudflare 26,921 (8.5%) Apache 161,709 (29.8%)Server
Apache 184,004 (21.5%) Apache 19,624 (6.2%) Nginx 78,532 (14.5%)

Information leak

Path 318,337 (98.9%) Path 22,330 (98.5%) Path 296,047 (98.9%)
HTTPOnly 199,334 (61.9%) HTTPOnly 13,358 (58.9%) HTTPOnly 185,976 (62.1%)Set-Cookie
Secure 162,386 (50.4%) Secure 10,764 (47.5%) Secure 151,622 (50.7%)

Cookie transmission

X-Content-Type-Options nosniff 300,064 (99.7%) nosniff 233,664 (99.9%) nosniff 66,420 (98.7%) Malicious content can be sent
1;mode=block 272,931 (97.2%) 1;mode=block 223,846 (99.2%) 1;mode=block 49,085 (89.2%)
0 5,836 (2.1%) 0 1,781 (0.8%) 0 4,055 (7.4%)X-XSS-Protection
1 918 (0.4%) 1 56 (0.1%) 1 862 (1.6%)

XSS attacks

PHP 111,864 (86.1%) PHP 7,028 (70.8%) PHP 104,836 (87.3%)
Plesklin 9,898 (7.6%) Plesklin 2,298 (23.1%) Plesklin 7,600 (6.3%)X-Powered-By
ASP.NET 6,961 (5.4%) express 1,451 (14.6%) ASP.NET 6,265 (5.2%)

Information leak

max-age 102,720 (99.0%) max-age 55,009 (99.9%) max-age 47,711 (97.9%)
includeSubDomains 52,435 (50.6%) includeSubDomains 29,864 (54.1%) includeSubDomains 22,571 (46.3%)Strict-Transport-Security
preload 36,249 (34.9%) preload 26,906 (48.9%) preload 9,343 (19.2%)

Can prevent HTTPS
downgrade attacks

max-age 51,452 (99.9%) max-age 41,031 (99.9%) max-age 41,029 (99.9%)
report-uri 51,249 (99.6%) report-uri 10,408 (99.8%) report-uri 40,841 (99.5%)Expect-CT†

enforce 170 (0.3%) enforce 50 (0.5%) enforce 120 (0.3%)

Can prevent the use of
misissued certificates

sameorigin 41,164 (80.3%) sameorigin 4,083 (70.9%) sameorigin 37,081 (81.5%)
deny 6,972 (25.7%) deny 1,543 (26.9%) deny 5,430 (11.9%)X-Frame-Options
allowall 2,302 (21.5%) allowall 107 (1.9%) allowall 2,195 (4.8%)

Can prevent iframe attacks

upgrade‡ 23,736 (48.3%) upgrade‡ 11,841 (55.4%) upgrade‡ 11,895 (55.6%)
script-src 18,562 (37.8%) script-src 7,590 (35.5%) script-src 10,972 (51.3%)Content-Security-Policy
frame-ancestors 12,046 (24.5%) report-uri 6,523 (30.5%) default-src 9,125 (42.7%)

Prevent cross-site-scripting
attacks

char (∗) 42,893 (87.4%) char (∗) 21,105 (99.9%) char (∗) 21,788 (78.0%)
<origin> 6,064 (12.4%) <origin> 14 (0.1%) <origin> 6,050 (21.7%)Access-Control-

Allow-Origin null 30 (0.1%) null 2 (0.1%) null 28 (0.1%)

Extends cross-origin
resource sharing

strict-origin§ 9,267 (54.1%) strict-origin§ 4,726 (84.8%) strict-origin§ 4,541 (39.3%)
when-downgrade∥ 3,493 (20.4%) same-origin 315 (5.7%) when-downgrade∥ 3,424 (29.7%)Referrer-Policy
same-origin 2,003 (11.7%) unsafe-url 274 (4.9%) same-origin 1,688 (14.6%)

Restrict the exposed
referrer information

Orange-colored headers that can directly mitigate attacks; Cyan-colored headers can introduce vulnerabilities if misconfigured; ∗: ‘text/html charset=html’ is also included;
†: This header is deprecated due to the lack of support by browsers; ‡: upgrade-insecure-requests; §: strict-origin-when-cross-origin; ∥: no-referrer-when-downgrade;

as CSP and Set-Cookie to enhance website security in benign
websites. To compare trends, we analyze the top 10K domains from
the Tranco 1M list [52]. Our findings show that benign websites
have higher adoption rates of security headers compared to phish-
ing websites: Set-Cookie (67.5% vs. 35.5%), CSP (75.2% vs. 5.4%),
X-XSS-Protection (75.8% vs. 31.0%), and Strict-Transport-
Security (15.9% vs. 11.4%).

Takeaway: Phishing websites often lack proper security head-
ers, with content publishing services generally implementing
more safeguards than self-hosted sites. However, self-hosted
servers use Set-Cookie more frequently (53.4% vs. 6.5%), im-
plying more persistent user tracking or malicious monitoring
of victim behavior. While the use of some security headers has
increased, overall adoption remains low. These patterns not only
expose vulnerabilities but also provide valuable indicators for
detecting and analyzing phishing infrastructure, aiding in the
development of more effective anti-phishing strategies.

5.2 Cross-site Mitigation Headers
HTTP headers play a critical role in preventing cross-site attacks
such as XSS and CSRF. This analysis focuses on two key headers,
CSP and Set-Cookie, highlighting significant gaps between security
best practices and their implementation in phishing websites.

Content Security Policy (CSP). Although CSP has been a stan-
dard since 2010, its adoption among phishing websites remains
surprisingly low, with only 5.4% of sites implementing it. Con-
tent publishing services show slightly higher adoption rates (6.2%)
compared to self-hosted servers (4.9%). The upgrade-insecure-
requests directive is found in only 2.6% of sites, while the frame-
ancestors directive, which is critical for framing control, appears
in just 1.3%. Additionally, 74.4% of domains use the <meta> tag for
setting HTTP headers, but just 0.8% of those set the CSP header via
<meta>.

Most phishing sites are misconfigured, likely because they do
not require robust security. This may result from outdated phishing
kits or automated tools that have not integrated modern security
standards. Among self-hosted phishing sites, 98.3% still specify
unsafe-inline in the script-src directive, effectively negat-
ing the intended protections of CSP. Additionally, 21.1% misuse
the default-src directive. Reporting mechanisms, crucial for de-
tecting violations, are also neglected, with only 3,439 sites using
report-uri and just 93 using report-to, none of which are cor-
rectly configured.

Regarding TLS enforcement, 48.3% of phishing sites imple-
ment upgrade-insecure-requests, but only 9.7% of self-hosted
websites combine it with the recommended Strict-Transport-
Security header. Additionally, only 46.3% of the applications in-
clude subdomains to secure their subdomains.

5

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

For framing control, our data indicates a preference for the out-
dated X-Frame-Options header over CSP’s frame-ancestors direc-
tive. Furthermore, 21.5% of websites misuse the invalid allowall
directive, and 93.5% misconfigure the allow-from directive.
Set-Cookie Header. The Set-Cookie header is more commonly
used in phishing websites, but often with broad settings. Over 98%
of these sites set the Path directive to ‘/,’ making cookies accessible
across all directories. Only 61.9% use the HttpOnly attribute and
50.4% implement the Secure directive.

The Set-Cookie header also includes the SameSite direc-
tive, crucial for preventing CSRF attacks. However, its adoption is
particularly low, with only 11.8% of self-hosted sites and 16.9% of
all sites implementing it.

TLS enforcement via the Secure directive shows a somewhat
higher adoption rate, with 50.4% of websites using it alongside Set-
Cookie headers. This pattern mirrors the emphasis on HTTPS
adoption among phishing sites. However, with 37.9% of sites failing
to implement HttpOnly, a significant proportion remain vulnerable
to XSS attacks.

Takeaway: Phishing websites demonstrate limited and often
misconfigured use of security headers. CSP implementation is
rare and frequently ineffective due to misconfigurations. While
the adoption of Set-Cookie headers is more widespread, criti-
cal security directives are omitted. The higher rate of TLS adop-
tion likely serves to enhance the perceived legitimacy of phishing
sites. These distinct patterns in security header usage can serve
as indicators for detecting and analyzing phishing infrastructure.

5.3 Vulnerabilities in Phishing Websites
The Server header frequently discloses information about web
server software and its versions, potentially exposing vulnerabili-
ties. Our data shows that phishing websites are more than twice as
likely to expose version information compared to benign domains
(14.3% vs 6.5%). This increased exposure significantly expands the
attack surface of phishing sites. RFC 2616 [44] explicitly states that
revealing server details poses a security risk.
Vulnerable Server Version Exposure. Apache versions 2.4.6
and 2.4.41 contain 21 and 23 known vulnerabilities, respectively.
Critical vulnerabilities, such as CVE-2023-25690 [2] (severity score
9.8), affect Apache versions 2.4.0 to 2.4.55. Nginx also has 75
identified vulnerabilities, with versions 1.18.0 and 1.19.10 being
the most common. Even displaying server names alone poses a risk,
as most Apache versions have publicly reported vulnerabilities.
Server Fingerprinting through Headers. The X-Powered-By
header further exposes server-side technologies. PHP is most com-
mon, with outdated versions like 5.4.16 (containing 42 known vul-
nerabilities) widely used. This raises concerns about the potential
secondary exploitation of phishing sites.
Cloud andHosting ServicesUsage. Cloudflare and GSE (Google’s
servers) are widely used, with GSE serving Blogger.com, accounting
for 99.9% of its usage. Cloudflare’s services complicate detection,
as our crawler cannot identify additional hosting layers.

Takeaway: Phishing websites often expose server information
through Server and X-Powered-By headers (14.3% vs 6.5% in

Table 3: Top 10 CWEs in Phishing Kits.

ID Type LoE∗ Severity Semgrep
Vuln. (%)

Progpilot
Vuln. (%)

CWE-79 XSS M M 507,244 (73.71%) 101,589 (38.56%)
CWE-89 SQL Injection H M 88,426 (12.85%) 43,183 (16.38%)
CWE-95, 918 SSRF L H 49,755 (7.23%) 5,398 (2.05%)
CWE-23 Path Traversal H M 22,254 (3.27%) 16,932 (6.42%)
CWE-295, 319 Cleartext Trans. L M 9,484 (1.38%) 14,827 (5.63%)
CWE-98, 489 Leftover Debug L L 3,265 (0.47%) 12,209 (4.63%)
CWE-94, 601 Code Injection L H 2,244 (0.33%) 23,221 (8.81%)
CWE-470, 1333 Unsafe Redirect M M 1,544 (0.22%) 207 (0.08%)
CWE-78 OS Command Inj. L H 1,286 (0.19%) 1,035 (0.39%)
CWE-614, 1004 Cookies Set L L 1,245 (0.18%) 45,319 (17.19%)
∗ LoE = Likelihood of Exploit; H = High;M = Medium; L = Low;
† Ordered by Semgrep’s number of Vulnerabilities

benign sites), revealing software versions with known vulnera-
bilities in Apache, Nginx, and PHP. Cybersecurity professionals
can leverage this information to enhance phishing detection,
develop mitigation strategies, and potentially infiltrate phish-
ing operations for intelligence gathering. These vulnerabilities
present opportunities for counter-phishing efforts.

5.4 Misconfiguration
Using Ineffective Directives. Headers enhance functionality
but can pose security risks if misconfigured. For example, setting
X-XSS-Protection to “0” disables XSS protection, yet 2.1% of web-
sites in our dataset still use it. Similarly, 87.4% of websites use the
wildcard (*) in Access-Control-Allow-Origin, allowing any
origin access, with nearly all phishing sites (99.9%) on content pub-
lishing services doing so. Additionally, 11.7% of websites use the
risky unsafe-url value in Referrer-Policy, exposing them to
data leaks and security vulnerabilities.
Vulnerability ofNon-standardHeader. The X-XSS-Protection
header, though intended to enable browser XSS filtering, can in-
troduce XSS vulnerabilities under certain configurations. Despite
its risks, usage has stabilized at 31.0% across phishing sites, with a
particularly high prevalence (65.2%) on Content Phishing Services.

Takeaway:Amisconfigured X-XSS-Protection header can in-
troduce vulnerabilities, while common configurations in Access-
Control-Allow-Origin expose websites to unauthorized ac-
cess and data leaks.

6 Vulnerabilities in Phishing Kits
In this section, we look at CWE vulnerabilities and backdoors to
code in phishing kits. We conducted penetration testing to scruti-
nize the level of vulnerability of phishing kits in a local environment,
adhering to ethical considerations.

6.1 CWE in Phishing Kits
Overview of Vulnerabilities. 13,344 distinct phishing kits in-
clude 2,685,201 PHP scripts, each containing 205.93 PHP files on
average. We run the two static analysis tools, Semgrep [47] and
progpilot [50], on all the PHP scripts we collect. The result shows
that phishing kits contain a wide range of vulnerabilities, which
are categorized under the Common Weakness Enumeration (CWE)
system. Specifically, out of 13,344 kits, 11,853 kits (88.8%) have more
than one CWE reported. The result essentially shows that phishing
kits might be vulnerable to various attacks.

6

What’s in Phishers: A Longitudinal Study of Security Configurations in Phishing Websites and Kits WWW ’25, April 28–May 2, 2025, Sydney, Australia.

As shown in Table 3, the top three CWE categories identified
by Semgrep are CWE-79 [18] (XSS, 73.71%), CWE-89 [19] (SQL
Injection, 12.85%), and CWE-918 [20] (SSRF, 7.23%), accounting for
93.79% of the total CWEs detected. On the other hand, the top three
CWE categories identified by progpilot are CWE-79 (XSS, 38.56%),
CWE-1004 [15] (Insecure Cookie, 17.19%), and CWE-89 (SQL Injec-
tion, 16.38%), representing 72.13% of the total CWEs reported.
Severity of CWEs. To better understand the severity of the CWEs
we found, we leverage semgrep’s Likelihood metric [48], which
aims to reflect the impact and ramification of the CWE and focus
on the cases with high severity scores. Specifically, CWE-89 (SQL
injection) and CWE-502 [17] (deserialization of untrusted data)
are the two highly severe CWEs. CWE-79 (XSS) and CWE-22 [16]
(path traversal) are of medium and low severity, respectively. While
they are not highly severe, they can still lead to significant security
breaches. Note that the weaknesses of phishing kits are likely to
be reflected in the phishing websites they create.

6.1.1 Case Study of XSS Vulnerabilities. Listing 1 shows a code
snippet from the darkx.zip This shows a code snippet from the
phishing kit. It was found to be part of a family of duplicate phishing
kits found on at least 70 hosted phishing campaigns. When unpro-
cessed input from HTTP parameters on the login page is passed to
an echo statement, the statement renders an HTML page and re-
turns it to the user. It contains XSS vulnerability in the verify.php
page (lines 1-5), part of a fake Microsoft sign-in UI designed to steal
user credentials. When the sign-in form is submitted, the user’s
email and password are passed directly into a redirect URL without
proper validation or encoding. The unsanitized echo (line 3) in
verify.php is the entry point for the XSS payload. By crafting a
malicious URL with JavaScript injected into the email parameter
(line 4), a malicious code can be executed in the victim’s browser
when the page is loaded. Then, the stolen credentials are sent to
the next.php page (lines 6-19), where they are logged and exfil-
trated. The next.php script retrieves the compromised email and
password from the GET parameters (lines 7-8) and logs them for
the attacker (line 11).

Note that if the verify parameter is 0, the script redirects the
user back to verify.php with the email from the GET request
and error=true&verify=1 (lines 13-15). This redirection uses
window.location without proper encoding, allowing a further
XSS attack. If verify is 1, the script starts a new session and
redirects to the legitimate Microsoft login page using a meta refresh
tag, likely to avoid detection (lines 16-19). Observe that the code
lacks input validation and output encoding, making the websites
they created vulnerable to various attacks. For example, an attacker
can manipulate the parameters of the verification and email
to perform additional attacks or bypass checks in the phishing flow.

6.1.2 Case Study of SQL Injection Vulnerabilities. Listing 2 shows
an SQL injection vulnerability that we manually verify. Specifically,
in the esestandard.zip phishing kit, the $_POST[‘username’]
and $_POST[‘password’] are directly concatenated into the SQL
query without proper sanitization (lines 2-3). A maliciously crafted
input containing malicious SQL commands can be injected and
executed as part of the query. This allows the attacker to modify
the query’s logic, bypass authentication, or extract sensitive data
from the database. In addition, the use of the deprecated functions

1 <?php
2 if (isset($_POST['signin'])) {
3 echo "<script>window.location='next.php?
4 email=".$_GET['email']."&password=".$_POST['password']
5 ."&verify=0'</script>";} ?>
6 <?php
7 $message .= "Email: ".$_GET['email']."\n";
8 $message .= "Password: ".$_GET['password']."\n";
9 // ... collect location info and user agent ...
10 $fp = fopen('.error.htm', 'a');
11 fwrite($fp, "\n".$message); fclose($fp);
12 // ... send email to attacker ...
13 if ($_GET['verify'] == 0) {
14 echo "<script>window.location='verify.php?
15 email=".$_GET['email']."&error=true&verify=1'</script>";
16 } elseif ($_GET['verify'] == 1) {
17 session_start();
18 echo "<meta http-equiv='refresh' content='0;
19 url=https://login.live.com/'/>"; } ?>

verify.php

next.php

Listing 1: Two Examples of XSS Vulnerability.

1 <?php require_once('Connections/conn.php');
2 $user = $_POST['username'];
3 $pass = $_POST['password'];
4 $result = mysql_query("SELECT * FROM login WHERE
5 username='$user' AND password='$pass'") or die(mysql_error());
6 $row = mysql_fetch_array($result);
7 // ... rest of the code ...; ?>

Listing 2: Example of SQL Injection Vulnerability.

(e.g., mysql_fetch_array()) further increases the risk (lines 4-6).
These codes are most often found in the code where the phisher
sends information to the server and on the redirect page when the
victim clicks the website’s login button.

Takeaway:We find a number of XSS and SQL injection weak-
nesses in the phishing kits, suggesting that phishing websites
created by them might also be vulnerable. We manually verified
the vulnerabilities in the phishing kits and presented them in the
case study, demonstrating that these weaknesses can actively
disrupt phishing attackers and neutralize them.

6.2 Backdoor in Phishing Kits
We further analyze the phishing kits to check whether there are po-
tential backdoors (i.e., intentional vulnerabilities) that adversaries
can exploit (against the phishing websites). Specifically, we focus on
files containing XSS vulnerabilities, which can be exploited to allow
unauthorized access. We use shellray [49] and VirusShare [53]
to identify known patterns of malware and web shells using key-
words such as shell_exec and pcntl. The analysis shows 1,668
phishing kits (12.5% out of 13,344 kits) contain web shell backdoors
and 135 known malware. The keywords used in this analysis are
listed in Table 5. To scrutinize, we activated and penetration-tested
the phishing kit in our controlled local environment, adhering to
ethical considerations.

Figure 4(a) shows a backdoor we found in the phishing kit called
pki-validation.zip, which is found in 204 hosted phishing cam-
paigns. It uses a multi-step execution process to maintain persistent
access to phishing sites. When we deobfuscate the script, it deter-
mines the execution context using isCli(). If it is not running
in CLI mode, it bypasses potential restrictions by identifying PHP
functions that can be used to execute system commands. Then, it
attempts to access the ‘/robots’ URL using curlRobots() to eval-
uate the server configuration. If successful, runCmd() executes the

7

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

command in the background (via shell_exec() or passthru()),
creating a persistent backdoor.

In addition, the backdoor is stealthy. Once the backdoor is estab-
lished, the script deletes itself using unlink() to cover its tracks.
It then calls lockFile(), which enters an infinite loop to mon-
itor and modify sensitive files. The lockFile() checks for the
existence of files like ‘.htaccess,’ ‘robots.txt,’ and ‘sitemap.xml’ us-
ing get_contents(), and then calculates the SHA1 hash of each
file using hash(). If changes are detected, the script uses create-
File() to overwrite the files with attacker-controlled content. By
monitoring and modifying these critical files, the backdoor can be
persistent. Note that it can cause “the theft chain of victims’ infor-
mation” where other attackers exploit the backdoors and steal the
stolen victims’ information from the phishing attackers. However,
as shown in Figure 4(b), this backdoor control panel does not have
proper traversal settings and can be easily accessed via subdirectory
recursion (e.g., ffuf [1]) with the wordlist. In the case of an actual
phishing campaign, the control panel may also be able to look up
information about that server. We note that those phishing kits are
vulnerable. Moreover, law enforcement may take immediate action
to disrupt phishing attacks by exploiting the backdoors.

Takeaway:We find that 12.5% of phishing kits contain readily
exploitable vulnerabilities, which might be abused by other ad-
versaries who are aware of their existence. We speculate that
both defenders and offenders can also leverage them.

7 Discussion
Limitations. Identifying content publishing services and server
owners is difficult when phishing attackers use redirects. To address
this, we manually verified 100 phishing websites from content
publishing services, comparing provider names from domains and
HTML files, and confirming full consistency in the results.
Recommendations.
• Detection Improvement with Fingerprinting. Improving phishing
detection through fingerprinting misconfigured headers like CSP
or Set-Cookie can enhance accuracy beyond current meth-
ods based on visual similarities and suspicious URLs. This ap-
proach increases detection reliability and reduces false positives,
strengthening defenses against phishing attacks.

• Understand Taken Information. Identifying and exploiting security
vulnerabilities on phishing servers, such as insecure header con-
figurations or flaws within phishing kits, can provide critical in-
sights into phishing attackers’ operations. Accessing the servers
or databases of confirmed phishing websites allows attackers to
analyze the types of information collected. This analysis enables
the development of enhanced defense mechanisms targeted at the
most compromised data categories (i.e., the geo-locations, IP ad-
dresses, credit card details, and login credentials). Under legal and
ethical guidelines, retrieving crucial data can help categorize the
victims’ profiles and understand the scope of the phishing attack.

Ethics. Our methods prioritize ethical considerations while main-
taining scientific rigor in the analysis of real-world phishing web-
sites and kits. We have implemented strict protocols to ensure that
no victims’ information was collected, compliance with the General
Data Protection Regulation (GDPR). Moreover, all experimental
analyses were conducted within a controlled virtual environment.

This approach allows us to examine the intricacies of phishing op-
erations without risking unauthorized access to active malicious
servers. Lastly, to address ethical concerns surrounding the analy-
sis of phishing kit backdoors, we performed these investigations
locally rather than on active phishing servers. While this method-
ology may not perfectly replicate the exact configurations of live
servers, it provided a safe and responsible means of studying these
malicious tools.

8 Related Work
Previous research has largely overlooked the analysis of header
information in phishing threats. Earlier studies have focused on
understanding HTTP headers in benign websites and their role in
mitigating security attacks.
Server Information inWebHeaders. Research on security head-
ers hasmainly focused on benignwebsites [11, 24, 30, 36, 57], aiming
to understand HTTP response header implementation. Although
some studies, such as [11, 24], address security-related headers,
their analyses lack depth and are limited to benign sites. Our work
stands apart by providing an in-depth analysis of security-related
headers used in real-world phishing attacks.
Measurement of Web Security. Previous studies have primar-
ily concentrated on benign websites, with works such as [45] ex-
amining how developers implement Content-Security-Policy
and [36] exploring security issues arising from inconsistent HTTP
header implementation across different device versions. Unlike
these studies, our research focuses on phishing websites, using
real-world data to uncover how attackers configure HTTP headers.
Phishing Ecosystem. Research efforts such as [38, 39, 41] have ex-
plored phishing techniques through controlled experiments, while
other studies[3, 26, 32] have investigated existing mitigation strate-
gies and detection mechanisms. These works tend to emphasize the
general structure of phishing websites and evasion tactics. In con-
trast, our study dives deeper into the phishing ecosystem, analyzing
configurations through HTTP response headers and phishing kits
to better understand attackers’ security practices.
Phishing Kit. While studies like [51] have focused on analyz-
ing phishing kits to understand their design, and others [40] have
examined their use in attacks and current mitigation strategies,
our approach aims to identify vulnerabilities within phishing kits
and measure how they configure HTTP headers. We also highlight
the presence of backdoors in phishing kits, shedding light on how
attackers maintain control over compromised sites and exfiltrate
sensitive information. Through this analysis, we provide insights
into the tactics attackers use to sustain their malicious activities
and exploit unsuspecting users.
9 Conclusion
Our measurement study provides crucial insights into the security
configurations of real-world phishing websites and the vulnerabil-
ities within phishing kits for 31 months. Despite the prevalence
of HTTP headers, our findings reveal that they are frequently un-
derutilized or incorrectly configured on phishing websites, high-
lighting substantial deficiencies in security practices. Our in-depth
analysis of 13,344 phishing kits using advanced static analyzers
uncovered a high number of vulnerabilities, with almost 90% of the
kits exhibiting multiple CWE vulnerabilities.

8

What’s in Phishers: A Longitudinal Study of Security Configurations in Phishing Websites and Kits WWW ’25, April 28–May 2, 2025, Sydney, Australia.

References
[1] Fast web fuzzer. (Accessed on 09/19/2024).
[2] Nvd - cve-2023-25690. https://nvd.nist.gov/vuln/detail/CVE-2023-25690. (Ac-

cessed on 09/30/2024).
[3] Zainab Alkhalil, Chaminda Hewage, Liqaa Nawaf, and Imtiaz Khan. Phishing

attacks: A recent comprehensive study and a new anatomy. Frontiers in Computer
Science, 2021.

[4] Amir Alush, Dickson Neoh, and Danny Bickson et al. Fastdup. GitHub.Note:
https://github.com/visuallayer/fastdup, 2024. (Accessed on 09/13/2024).

[5] Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, and Nick Nikiforakis. Web
runner 2049: Evaluating third-party anti-bot services. In Proc. of the Detection of
Intrusions and Malware, and Vulnerability Assessment: 17th International Confer-
ence, 2020.

[6] The APWG eCrime Exchange (eCX). https://apwg.org/ecx/, 2024. (Accessed on
09/13/2024).

[7] Hugo Bijmans, Tim Booij, Anneke Schwedersky, Aria Nedgabat, and Rolf van
Wegberg. Catching phishers by their bait: Investigating the dutch phishing land-
scape through phishing kit detection. In Proc. of the USENIX security symposium,
2021.

[8] Dominik Birk, Sebastian Gajek, Felix Grobert, and Ahmad-Reza Sadeghi. Phishing
phishers-observing and tracing organized cybercrime. In Second International
Conference on Internet Monitoring and Protection (ICIMP 2007), pages 3–3. IEEE,
2007.

[9] Blogger: Posts. https://www.blogger.com/. (Accessed on 09/07/2024).
[10] Juan Caballero, Pongsin Poosankam, Stephen McCamant, Domagoj Babi ć, and

Dawn Song. Input generation via decomposition and re-stitching: Finding bugs
in malware. In Proceedings of the 17th ACM conference on Computer and commu-
nications security, pages 413–425, 2010.

[11] Maria Carla Calzarossa and Luisa Massari. Analysis of header usage patterns
of http request messages. In Proc. of the IEEE Intl Conf on High Performance
Computing and Communications. IEEE, 2014.

[12] ChromeDriver - WebDriver for Chrome - Getting started. https : / /
chromedriver.chromium.org/getting-started, 2024. (Accessed on 09/13/2024).

[13] Marco Cova, Christopher Kruegel, and Giovanni Vigna. There is no free phish:
An analysis of" free" and live phishing kits. Proc. of the WOOT, 2008.

[14] Cross Site Scripting (XSS) | OWASP Foundation. https://owasp.org/www-
community/attacks/xss/. (Accessed on 09/07/2024).

[15] CWE - CWE-1004: Sensitive Cookie Without ’HttpOnly’ Flag. https : / /
cwe.mitre.org/data/definitions/1004.html. (Accessed on 09/14/2024).

[16] CWE - CWE-22: Improper Limitation of a Pathname to a Restricted Directory
(’Path Traversal’). https://cwe.mitre.org/data/definitions/22.html. (Accessed on
09/14/2024).

[17] CWE - CWE-502: Deserialization of Untrusted Data. https://cwe.mitre.org/data/
definitions/502.html. (Accessed on 09/14/2024).

[18] CWE - CWE-79: Improper Neutralization of Input During Web Page Generation
(’Cross-site Scripting’). https://cwe.mitre.org/data/definitions/79.html. (Accessed
on 09/14/2024).

[19] CWE - CWE-89: Improper Neutralization of Special Elements used in an SQL
Command (’SQL Injection’). https://cwe.mitre.org/data/definitions/89.html.
(Accessed on 09/14/2024).

[20] CWE - CWE-918: Server-Side Request Forgery (SSRF). https://cwe.mitre.org/
data/definitions/918.html. (Accessed on 09/14/2024).

[21] Birhanu Eshete, Abeer Alhuzali, MalihehMonshizadeh, Phillip A Porras, Venkat N
Venkatakrishnan, and Vinod Yegneswaran. Ekhunter: A counter-offensive toolkit
for exploit kit infiltration. In NDSS, 2015.

[22] Expect-CT - HTTP | MDN. https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Expect-CT. (Accessed on 09/08/2024).

[23] Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230, June 2014.

[24] Pascal Gadient, Oscar Nierstrasz, and Mohammad Ghafari. Security header fields
in http clients. In Proc. of the IEEE International Conference on Software Quality,
Reliability and Security, 2021.

[25] Roberto Gonzalez, Lili Jiang, Mohamed Ahmed, Miriam Marciel, Ruben Cuevas,
Hassan Metwalley, and Saverio Niccolini. The cookie recipe: Untangling the
use of cookies in the wild. In 2017 Network Traffic Measurement and Analysis
Conference (TMA), pages 1–9. IEEE, 2017.

[26] Xiao Han, Nizar Kheir, and Davide Balzarotti. Phisheye: Live monitoring of
sandboxed phishing kits. In Proc. of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 2016.

[27] HTTP headers - HTTP | MDN. https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers. (Accessed on 09/07/2024).

[28] Doowon Kim, Haehyun Cho, Yonghwi Kwon, Adam Doupé, Sooel Son, Gail-Joon
Ahn, and Tudor Dumitras. Security analysis on practices of certificate authorities
in the https phishing ecosystem. In Proc. of the ACM Asia Conference on Computer
and Communications Security, 2021.

[29] Paul Knickerbocker, Dongting Yu, and Jun Li. Humboldt: A distributed phishing
disruption system. In 2009 eCrime Researchers Summit, pages 1–12. IEEE, 2009.

[30] Arturs Lavrenovs and F Jesús Rubio Melón. Http security headers analysis of top
one million websites. In Proc. of the International Conference on Cyber Conflict.
IEEE, 2018.

[31] Xigao Li, Babak Amin Azad, Amir Rahmati, and Nick Nikiforakis. Good bot, bad
bot: Characterizing automated browsing activity. In Proc. of the IEEE symposium
on security and privacy, 2021.

[32] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang Ng, Qing Zhou Chan, Yiwen
Lu, Yuxuan Si, Fan Zhang, and Jin Song Dong. Phishpedia: A hybrid deep learning
based approach to visually identify phishing webpages. In Proc. of the USENIX
Security Symposium, 2021.

[33] Ruofan Liu, Yun Lin, Xiwen Teoh, Gongshen Liu, Zhiyong Huang, and Jin Song
Dong. Less defined knowledge and more true alarms: Reference-based phishing
detection without a pre-defined reference list.

[34] Derek Manky. Cybercrime as a service: a very modern business. Computer Fraud
& Security, 2013(6):9–13, 2013.

[35] Heather McCalley, Brad Wardman, and Gary Warner. Analysis of back-doored
phishing kits. In Advances in Digital Forensics VII: 7th IFIP WG 11.9 International
Conference on Digital Forensics, Orlando, FL, USA, January 31–February 2, 2011,
Revised Selected Papers 7, pages 155–168. Springer, 2011.

[36] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. Uncovering http
header inconsistencies and the impact on desktop/mobile websites. In Proc. of
the International World Wide Web Conference, 2018.

[37] IANA Message Headers. https://www.iana.org/assignments/message-headers/
message-headers.xhtml. (Accessed on 09/19/2024).

[38] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Kevin Tyers. Phishfarm: A scalable framework for measuring the effectiveness
of evasion techniques against browser phishing blacklists. In Proc. of the IEEE
Symposium on Security and Privacy, 2019.

[39] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan
Shoshitaishvili, and Adam Doupé. {PhishTime}: Continuous longitudinal mea-
surement of the effectiveness of anti-phishing blacklists. In Proc. of the USENIX
Security Symposium, 2020.

[40] Adam Oest, Yeganeh Safei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. Inside a phisher’s mind: Understanding the anti-phishing ecosys-
tem through phishing kit analysis. In Proc. of the APWG Symposium on Electronic
Crime Research, 2018.

[41] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. Sunrise to sunset: Analyzing
the end-to-end life cycle and effectiveness of phishing attacks at scale. In Proc. of
the {USENIX} Security Symposium ({USENIX} Security 20), 2020.

[42] PHP: Hypertext Preprocessor. https://www.php.net/. (Accessed on 09/13/2024).
[43] publicsuffix/list: The Public Suffix List. https://github.com/publicsuffix/list?tab=

readme-ov-file. (Accessed on 09/18/2024).
[44] RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1. https://datatracker.ietf .org/

doc/html/rfc2616#section-15.1.1. (Accessed on 09/08/2024).
[45] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben

Stock. Complex security policy? a longitudinal analysis of deployed content
security policies. In Proceedings of the 27th Network and Distributed System
Security Symposium (NDSS), 2020.

[46] Peter Saint-Andre, Dave Crocker, and Mark Nottingham. Deprecating the "X-"
Prefix and Similar Constructs in Application Protocols. RFC 6648, June 2012.

[47] Semgrep — Find bugs and enforce code standards. (Accessed on 09/06/2024).
[48] Contributing rules | Semgrep. https : / / semgrep.dev / docs / contributing /

contributing-to-semgrep-rules-repository. (Accessed on 05/15/2024).
[49] shellray - a PHP webshell detector powered by nimbusec. https://shellray.com/.

(Accessed on 09/13/2024).
[50] designsecurity/progpilot. (Accessed on 09/06/2024).
[51] Bhaskar Tejaswi, Nayanamana Samarasinghe, Sajjad Pourali, Mohammad Man-

nan, and Amr Youssef. Leaky kits: The increased risk of data exposure from
phishing kits. In Proc. of the APWG Symposium on Electronic Crime Research
(eCrime), 2022.

[52] Tranco. A research-oriented top sites ranking hardened against manipulation -
tranco. https://tranco-list.eu/, 09 2024. (Accessed on 09/19/2024).

[53] VirusShare.com. https://virusshare.com/. (Accessed on 09/13/2024).
[54] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. Csp

is dead, long live csp! on the insecurity of whitelists and the future of content
security policy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1376–1387, 2016.

[55] Welcome! - The Apache HTTP Server Project. https://httpd.apache.org/. (Ac-
cessed on 09/07/2024).

[56] Suzanne Widup, Alex Pinto, David Hylender, Gabriel Bassett, and Philippe lan-
glois. Verizon Data Breach Investigations Report, 2021.

[57] Craig E Wills and Mikhail Mikhailov. Towards a better understanding of web
resources and server responses for improved caching. Computer Networks, 1999.

[58] Wix.com. https://ko.wix.com/. (Accessed on 09/07/2024).
[59] Peng Yang, Guangzhen Zhao, and Peng Zeng. Phishing website detection based

onmultidimensional features driven by deep learning. IEEE access, 7:15196–15209,
2019.

9

https://nvd.nist.gov/vuln/detail/CVE-2023-25690
GitHub.Note:https://github.com/visuallayer/fastdup
GitHub.Note:https://github.com/visuallayer/fastdup
https://apwg.org/ecx/
https://www.blogger.com/
https://chromedriver.chromium.org/getting-started
https://chromedriver.chromium.org/getting-started
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/1004.html
https://cwe.mitre.org/data/definitions/1004.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/918.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expect-CT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expect-CT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://www.iana.org/assignments/message-headers/message-headers.xhtml
https://www.iana.org/assignments/message-headers/message-headers.xhtml
https://www.php.net/
https://github.com/publicsuffix/list?tab=readme-ov-file
https://github.com/publicsuffix/list?tab=readme-ov-file
https://datatracker.ietf.org/doc/html/rfc2616#section-15.1.1
https://datatracker.ietf.org/doc/html/rfc2616#section-15.1.1
https://semgrep.dev/docs/contributing/contributing-to-semgrep-rules-repository
https://semgrep.dev/docs/contributing/contributing-to-semgrep-rules-repository
https://shellray.com/
https://tranco-list.eu/
https://virusshare.com/
https://httpd.apache.org/
https://ko.wix.com/

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

[60] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun, RC Johnson, Brad Ward-
man, Shaown Sarker, Alexandros Kapravelos, Tiffany Bao, Ruoyu Wang, Yan
Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. Crawlphish: Large-scale analy-
sis of client-side cloaking techniques in phishing. In Proc. of the IEEE Symposium
on Security and Privacy, 2021.

A Additional Security Headers
Deprecated Headers. Once a header is deprecated, browsers
discontinue support for it. This leads to compatibility issues with
newer browser versions, as included headers may not function
correctly when deprecated headers are used. The two deprecated
headers (Expect-CT and X-Frame-Options) are found in our list
of the top 30 most used headers.
Expect-CT. The Expect-CT header allows websites to opt into
reporting and/or enforcing Certificate Transparency (CT) require-
ments. Although the Expect-CT header was deprecated in June
2021 [22], its usage only significantly declined in Sept. 2022, more
than a year after it became obsolete, as depicted in Figure 3(h).
X-Frame-Options. The CSP includes the frame-ancestors di-
rective, which replaces X-Frame-Options header. The X-Frame-
Options header indicates whether a browser should allow a page
to render within a <frame>, <iframe>, <embed>, or <object>,
helping websites prevent clickjacking attacks and ensuring their
content isn’t embedded within other sites. Although it’s used in
5.7% of domains, its usage is rising, as shown in Figure 3(i).
Deprecated Directives. Moreover, the allowall directive in the
X-Frame-Options header is not valid. If browsers encounter an
invalid directive, it will not be effective, potentially causing the
browser to block <iframe> elements. In our dataset, allowall is
the third most used directive, accounting for 21.5% of X-Frame-
Options usage, despite its ineffectiveness.
Content-Security-Policy Configuration inHTML. HTTP head-
ers can also be configured using the <meta> tag in HTML, though
this practice has been relatively uncommon in the past, as noted in
previous research by Roth et al [45]. We investigate further how
phishing websites configure headers via the <meta> tag and found
that 74.4% of the domains (674,661) utilize this tag to set HTTP head-
ers. However, only 0.8% of these domains (5,337) use the <meta>
tag to set the Content-Security-Policy header.

B Headers in Phishing Kits
As summarized in Table 4, we analyze the PHP script files included
in the phishing kits and find HTTP header configurations in 10.73%
scripts (324,071 out of 3,019,018.
Cache-control. Pragma: no-cache or Cache-Control:
no-store, no-cache, must-revalidate are used to prevent
caching of sensitive pages. This ensures that potential victims
constantly receive the latest version of the phishing page, making
it easier for attackers to update and modify their phishing kits
without the risk of serving outdated content. We find that 3,292
PHP files use the Pragma: no-cache header, while 3,001 PHP
scripts employ the more comprehensive Cache-Control header
with multiple directives.
Redirection. Redirection is a method where headers like Loca-
tion and Expires control the navigation flow within the phishing
kit. Expires header contains a specific date and time when the page
should be considered expired. If the victim tries to access the same

phishing page again after the specified expiration time, the browser
will consider the cached version as expired and send a new request
to the server to fetch an updated version of the page.

Our analysis reveals that 7,778 PHP files within the phishing
kits utilized relative URL paths in Location headers, such as Loca-
tion: ../../, allowing attackers to redirect victims to different
pages within the phishing kit. This tactic enables the creation of
elaborate phishing campaigns that guide victims through pages
designed to harvest sensitive information, increasing the chances
of successful attacks. We note that dynamic redirection, exempli-
fied by variables like location: $dst, adds an additional layer
of complexity to phishing kits. By enabling personalized naviga-
tion based on specific conditions or user interactions, attackers
can create highly targeted and adaptive phishing experiences. In
addition, we discover that 12,283 PHP files employed the Expires
header to set expiration dates in the past, such as Expires: Mon,
26 Jul 1997 05:00:00 GMT. By explicitly telling the browser
that the phishing page has already expired, attackers force a reload
of the latest version, ensuring that victims interact with the most
up-to-date iteration of the phishing kit.
Content-Security-Policy in PhishingKits. Content-Security-
Policy headers are rarely utilized within the analyzed phishing
kit, with only 10 out of the total PHP script files implementing
strict CSP rules. The lack of widespread adoption of defensive CSP
configurations suggests that the phishing kit’s authors have not
given much importance to security measures to safeguard their
content from detection or analysis by security tools.

Our analysis of 711 PHP script files from various phishing kits
reveals that attackers are actively exploiting and manipulating CSP
headers to create more permissive and evasive environments for
their phishing pages, effectively undermining the security benefits
of CSP. One particularly insidious method phishing kits employ
is the dynamic generation of CSP headers based on configuration
values. As illustrated in Listing 3, attackers can dynamically spec-
ify the allowed websites for framing the phishing page using the
frame-ancestors directive.

1 public function removeCspHeader(ResponseEvent $event): void{
2 if ($this->debug && $event->getRequest()
3 ->attributes->get('_remove_csp_headers', false)){
4 $event->getResponse()->headers
5 ->remove('Content-Security-Policy'); } }

Listing 3: Example of Header Manipulation in PHP.

Cloaking. Cloaking is a common method used in phishing kits
to serve different content based on the characteristics of the in-
coming request. Our analysis reveals that 7,367 distinct PHP files
within the phishing kits contained conditional HTTP responses,
enabling attackers to deliver tailored content based on the requests’
properties. By analyzing headers like User-Agent and Referer,
phishing kit authors implement cloaking mechanisms that respond
with deceptive error statuses. When a request originates from a
suspicious source (e.g., bots, crawlers, detectors), the phishing kit
responds with deceptive error statuses like HTTP/1.0 404 Not
Found. This cloaking behavior aligns with CWE-601, as it involves
redirecting victims to malicious pages while showing benign con-
tent to security scanners. In addition, phishing kit authors may
resort to obfuscation methods to conceal the cloaking logic and

10

What’s in Phishers: A Longitudinal Study of Security Configurations in Phishing Websites and Kits WWW ’25, April 28–May 2, 2025, Sydney, Australia.

content-type

of

 D
om

ai
ns

0

50,000

100,000

150,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(a) Content-Type

server

of

 D
om

ai
ns

0

20,000

40,000

60,000

80,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(b) Server

set-cookie

of

 D
om

ai
ns

5,000

10,000

15,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(c) Set-Cookie
x-content-type-options

of

 D
om

ai
ns

0

20,000

40,000

60,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(d) X-Content-Type-Options

x-xss-protection

of

 D
om

ai
ns

0

20,000

40,000

60,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(e) X-XSS-Protection

x-powered-by

of

 D
om

ai
ns

2,000

4,000

6,000

8,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(f) X-Powered-By
strict-transport

of

 D
om

ai
ns

2,000

4,000

6,000

8,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(g) Strict-Transport-Security

expect-ct

of
 D

om
ai

ns

0

2,000

4,000

6,000

8,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(h) Expect-CT

x-frame-options

of

 D
om

ai
ns

1,000

2,000

3,000

4,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(i) X-Frame-Options
csp

of

 D
om

ai
ns

0

2,000

4,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(j) Content-Security-Policy

access-control-allow-origin

of

 D
om

ai
ns

0

2,000

4,000

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(k) Access-Control-Allow-Origin

referrer-policy

of

 D
om

ai
ns

0

500

1,000

1,500

Time

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2021 2022 2023

(l) Referrer-Policy

Figure 3: Top 12 Security-related Headers Usage

Table 4: Headers in PHP Phishing Kits.

Type Header Description

Cache
-Control

‘Pragma: no-cache’ Prevents caching of sensitive pages in phishing kits, ensuring the latest version is served to victims. An
HTTP/1.0 header is still supported for backward compatibility.

‘no-store, no-cache,
must-revalidate,
max-age=0’

Combines multiple cache-control directives to prevent caching of the phishing page and ensure that the content
is always revalidated. This is crucial in phishing kits to ensure that the victim always sees the latest version of
the phishing page and cannot access cached versions.

Redirection

‘Expires: Mon, 26 Jul 1997
05:00:00 GMT’

Sets an expiration date in the past, effectively telling the browser that the phishing page has already expired
and should not be cached. This ensures that the victim always sees the latest version of the phishing page.

“Location: ../../../../” Redirects the victim to a different URL within the phishing kit. Instructs the browser to navigate the specified
relative path, which could lead to another phishing page or a page designed to collect sensitive information.

“location: $dst”
Performs a dynamic redirection to a URL specified by the variable $dst. Phishing kits may use this to redirect
victims to different pages based on certain conditions or to navigate them through a series of pages to trick
them into providing sensitive information.

Content
-Security
-Policy

“frame-ancestors”.
$cfg->getAllowIframes().“;”

Sets the CSP to restrict which sources can embed the phishing page in an iframe. Phishing kits may use this to
control where the phishing page can be embedded, potentially limiting the ability of security researchers or
anti-phishing tools to analyze the kit.

“script-src ‘self’;
connect-src ‘none’;
font-src ‘none’;
style-src ‘self’ ”

Defines a strict CSP that only allows scripts from the same origin (‘self’), disables external connections (connect-
src ‘none’), disables external fonts (font-src ‘none’), and only allows stylesheets from the same origin (style-src
‘self’). Phishing kits use this to restrict the resources that can be loaded by the phishing page, making it harder
for security tools to detect or analyze the kit.

Cloaking

“User-Agent: HTTP/1.0
404 Not Found”

Checks the User-Agent header of the incoming request and responds with a 404 Not Found status if the
User-Agent doesn’t match the expected value. Phishing kits may use this technique to serve different content
or responses based on the User-Agent, potentially hiding the phishing page from web crawlers.

“Referer: HTTP/1.0
403 Forbidden”

Checks the Referer header of the incoming request and responds with a 403 Forbidden status if the Referer
doesn’t match the expected value. Phishing kits may use this to prevent access to the phishing page if the
request comes from an unknown or suspicious referrer, making it harder for security researchers to investigate.

11

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Anon.

bypass detection. These involve encoding header directives using
hex or octal representations.

C Phishing CPanel and Backdoor in Kits

main

unlink($currentFile)

lockFile($currentDir, $file)

createFile($file, $content)

runCmd($cmdStr, $method)

curlRobots()

isCli()
createFile($file, $content)

hash($sha1)

get_contents()

Passthru($cmdStr)

shell_exec($cmdStr)

(a) Reverse Shell Call Tree.

(b) Example of Phishing Campaign Control Panel.

Figure 4: Phishing Control Panel and Backdoor Call Tree.

Figure 4 presents two key components of a phishing operation: a
reverse shell call tree and a phishing campaign control panel. These
elements provide insight into the technical infrastructure and user
interface employed by threat actors in sophisticated phishing at-
tacks. The reverse shell call tree, shown in Figure 4(a), illustrates the
structure of a backdoor program. This program appears designed
for remote access and control of a compromised system. The main
function serves as the entry point, calling various specialized func-
tions. These functions perform tasks such as checking the execution
environment, manipulating files, executing system commands, and
potentially interacting with web servers. Notable functions include
deleting files (possibly to hide evidence), locking files, creating new
files, and executing shell commands through different methods.
This structure allows the attacker to maintain access and perform
a wide range of actions on the infected system.

Figure 4(b) displays an example of a phishing campaign control
panel labeled “Mad Tools Shell”. This web-based interface, albeit in a
beta version, provides attackers a user-friendly way to manage their
phishing infrastructure. The panel allows for directory navigation
and file management on the compromised server. It lists files and
directories with their permissions and modification dates and offers
options to delete, rename, compress, and, in some cases, edit or
download files. This interface streamlines the process of managing
stolen data and maintaining the phishing site, making it easier for
attackers to operate their campaigns efficiently.

Table 5: Web Shell & System Access Keywords in Kits.

Type Keyword Value

Shell

“angel”; “b374k”; “bv7binary”; “c99”; “c100”; “r57”; “webroot”; “kacak”; “sym-
link”; “h4cker”; “webadmin”; “gazashell”; “locus7shell”; “syrianshell”; “injec-
tion”; “cyberwarrior”; “ernebypass”; “g6shell”; “pouyaserver”; “saudishell”;
“simattacker”; “sosyeteshell”; “tryagshell”; “uploadshell”; “wsoshell”; “wee-
vely”; “zehir4shell”; “lostdcshell”; “commandshell”; “mailershell”; “cwshell”;
“iranshell”; “indishell”; “g6sshell”; “sqlshell”; “simshell”; “tryagshell”; “zehir-
shell”; “unknown”; “k2ll33d”; “b1n4ry”;

System

“pcntl”; “assert”; “passthru”; “shell_exec”; “exec”; “base64_decode”;
“edoced_46esab”; “eval”; “system”; “proc_open”; “popen”; “curl_exec”;
“php_uname”; “tcpflood”; “udpflood”; “curl_multi_exec”; “parse_ini_file”;
“gzinflate”; “show_source”; “phpinfo”; “readfile”; “fclose”; “fopen”; “mkdir”;
“gzip; “python_exec”; “str_rot13”; “chmod”;

To further understand the components of these backdoors and
web shells, Table 5 provides a comprehensive list of keywords com-
monly associated with backdoors and web shells found in phishing
kits. The table is divided into two main categories: “Shell” and “Sys-
tem.” The “Shell” category lists various names and types of web
shells that attackers might use to maintain unauthorized access to
compromised web servers. These include well-known shells like
“c99,” “r57,” and “b374k,” and region-specific shells such as “syrian-
shell” and “indishell.”

The "System" category enumerates PHP functions and com-
mands often used in malicious scripts to execute system-level op-
erations. These include functions for executing shell commands
(e.g.“shell_exec,” “exec”), file manipulation (“fopen,” “mkdir”), and
potentially harmful operations like “eval” that can execute arbitrary
PHP code. This table is a valuable reference for security profession-
als and researchers who want to identify potential backdoors in
web applications and phishing kits.

D PHP Code Analysis of a Phishing Kit

1 <?php
2 require_once('geoplugin.class.php');
3 $geoplugin = new geoPlugin();
4 $geoplugin->locate();
5 $date = gmdate ("Y-n-d");
6 $time = gmdate ("H:i:s");
7 $browser = $_SERVER['HTTP_USER_AGENT'];
8 $message .= "=============+ LOGS +=============\n";
9 $message .= "Email: ".$_POST['email']."\n";
10 $message .= "Password: ".$_POST['pass']."\n";
11 $message .= "Referer: ".$_POST['referer']."\n";
12 $message .= "Host: ".$_POST['host']."\n";
13 $message .= "============= [ip] =============\n";
14 $message .= "IP: {$geoplugin->ip}\n";
15 $message .= "City: {$geoplugin->city}\n";
16 $message .= "Region: {$geoplugin->region}\n";
17 $message .= "Country Name: {$geoplugin->countryName}\n";
18 $message .= "Country Code: {$geoplugin->countryCode}\n";
19 $message .= "User-Agent: ".$browser."\n";
20 $message .= "Date Log : ".$date."\n";
21 $message .= "Time Log : ".$time."\n";
22 $domain = "AUTO Logs";
23 $subj = "DOPE LOG !";
24 $from = "From: $domain<west>\n";
25 mail("[AttackerID]@gmail.com, [AttackerID]@yandex.com",
26 $subj,$message,$from,$domain);
27 header("Location: http://www.aliyun.com/");
28 ?>

Listing 4: Example of PHPUsed in a Phishing Kit to Exfiltrate
Victim Data.

Listing 4 presents a PHP script commonly found in phishing kits
designed to capture and exfiltrate victim data. This code snippet
provides valuable insights into the mechanics of data theft and

12

What’s in Phishers: A Longitudinal Study of Security Configurations in Phishing Websites and Kits WWW ’25, April 28–May 2, 2025, Sydney, Australia.

Table 6: Top 30 Most Used Headers by Phishing Websites.

Total Usage Content Publishing Service Self-hosting Server
Rank

Header Usage (%) Header Usage (%) Header Usage (%)

1 Content-Type 905,666 (99.9%) Date 346,118 (99.9%) Content-Type 559,549 (99.8%)
2 Date 905,471 (99.9%) Content-Type 346,116 (99.9%) Date 559,352 (99.8%)
3 Server 857,669 (94.6%) Server 315,632 (91.1%) Server 542,036 (96.7%)
4 Content-Encoding 784,233 (86.5%) Content-Encoding 313,239 (90.4%) Connection 520,838 (92.9%)
5 Transfer-Encoding 705,081 (77.8%) Transfer-Encoding 290,673 (83.9%) Content-Encoding 470,993 (84.0%)
6 Connection 633,548 (69.9%) Cache-Control 281,289 (81.2%) Transfer-Encoding 414,408 (73.9%)
7 Cache-Control 586,096 (64.6%) Etag 266,892 (77.1%) Vary 414,313 (73.9%)
8 Vary 494,607 (54.5%) Alt-Svc 262,513 (75.8%) Cache-Control 304,806 (54.4%)
9 Expires 482,550 (53.2%) Last-Modified 260,415 (75.2%) Set-Cookie 299,240 (53.4%)
10 Alt-Svc 475,520 (52.4%) Expires 239,165 (69.0%) Expires 243,384 (43.4%)
11 Last-Modified 349,289 (38.5%) X-Content-Type-Options 233,683 (67.5%) Pragma∗ 224,195 (40.0%)
12 Etag 338,112 (37.3%) X-XSS-Protection 225,737 (65.2%) Alt-Svc 213,007 (38.0%)
13 Set-Cookie 321,920 (35.5%) Connection 112,709 (32.5%) CF-Ray 201,163 (35.9%)
14 X-Content-Type-Options 300,980 (33.2%) Vary 80,293 (23.2%) CF-Cache-Status 197,460 (35.2%)
15 X-XSS-Protection 280,758 (31.0%) Content-Length 55,473 (16.0%) Report-To 191,950 (34.2%)
16 Pragma∗ 242,841 (26.8%) Strict-Transport-Security 55,010 (15.9%) NEL 190,722 (34.0%)
17 CF-Ray 228,085 (25.2%) Accept-Ranges 41,147 (11.9%) Keep-Alive 183,300 (32.7%)
18 CF-Cache-Status 217,813 (24.0%) X-Cache 30,108 (8.7%) Content-Length 145,055 (25.9%)
19 Report-To 212,972 (23.5%) X-Served-By 27,319 (7.9%) X-Powered-By 120,063 (21.4%)
20 Keep-Alive 207,735 (22.9%) X-Cache-Hits 27,233 (7.9%) Last-Modified 88,874 (15.9%)
21 NEL 207,342 (22.9%) X-Timer 27,228 (7.9%) Etag 71,220 (12.7%)
22 Content-Length 200,529 (22.1%) CF-Ray 26,922 (7.8%) X-Content-Type-Options 67,297 (12.0%)
23 X-Powered-By 129,992 (14.3%) Keep-Alive 24,435 (7.1%) Accept-Ranges 64,675 (11.5%)
24 Accept-Ranges 105,822 (11.7%) Set-Cookie 22,680 (6.5%) X-XSS-Protection 55,021 (9.8%)
25 Strict-Transport-Security 103,724 (11.4%) Content-Security-Policy 21,384 (6.2%) Strict-Transport-Security 48,714 (8.7%)
26 Expect-CT 51,454 (5.7%) Access-Control-Allow-Origin 21,126 (6.1%) X-Request-ID 48,090 (8.6%)
27 X-Frame-Options 51,280 (5.7%) Report-To 21,022 (6.1%) X-Frame-Options 45,520 (8.1%)
28 Content-Security-Policy 49,130 (5.4%) CF-Cache-Status 20,353 (5.9%) Expect-CT 41,031 (7.3%)
29 Access-Control-Allow-Origin 49,061 (5.4%) Age 19,872 (5.7%) Upgrade 37,045 (6.6%)
30 X-Cache 48,817 (5.4%) Pragma∗ 18,645 (5.4%) X-Host 33,783 (6.0%)

Total 906,731 (100%) 346,366 (100%) 560,538 (100%)
∗ = Deprecated headers [27]; Insecure HTTP headers are highlighted in Red .

transmission in phishing attacks. The script begins by utilizing the
geoPlugin class to gather geographical information based on the
victim’s IP address. It then collects various data points, including
the current date and time and the user’s browser information.

A formatted message is constructed, incorporating sensitive in-
formation stolen from the victim. This includes the user’s email ad-
dress and password, likely obtained through a deceptive login form.
The script also captures referrer information and the host, which
can help attackers understand the effectiveness of their phishing
campaign. Geographical data obtained from geoPlugin is appended
to the message, providing attackers with detailed location informa-
tion about their victims. This includes the IP address, city, region,
country name, and country code. The script uses PHP’s mail() func-
tion to send the collected data to the attacker’s email addresses.
Notable security issues include the hardcoding of attacker email
addresses directly in the script, making it easier to trace the attack
back to its source. Finally, the script redirects the victim to a legiti-
mate website (in this case, Alibaba Cloud), likely in an attempt to
avoid suspicion after the data theft has occurred.

13

	Abstract
	1 Introduction
	2 Background
	2.1 HTTP Headers and Security Configurations
	2.2 Phishing Kit

	3 Motivation
	4 Crawler Design & Dataset Collection
	4.1 Phishing Crawler Design
	4.2 Phishing Data Collection

	5 HTTP Response Headers
	5.1 Overview of HTTP Header Usage
	5.2 Cross-site Mitigation Headers
	5.3 Vulnerabilities in Phishing Websites
	5.4 Misconfiguration

	6 Vulnerabilities in Phishing Kits
	6.1 CWE in Phishing Kits
	6.2 Backdoor in Phishing Kits

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Additional Security Headers
	B Headers in Phishing Kits
	C Phishing CPanel and Backdoor in Kits
	D PHP Code Analysis of a Phishing Kit

