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Abstract

Large-scale deep learning models are known for their
large amount of parameters, weighing down on the
computational resources. The core of the Lottery
Ticket Hypothesis showed us the potential of pruning
to reduce such parameters without a significant drop
in accuracy. Quaternion neural networks achieve
comparable accuracy to equivalent real-valued net-
works on multi-dimensional prediction tasks. In our
work, we implement pruning on real and quaternion-
valued implementations of large-scale networks in
the task of image recognition. For instance, our im-
plementation of the ResNet-101 architecture on the
CIFAR-100 and ImageNet64x64 datasets resulted
in pruned quaternion models outperforming their
real-valued counterparts by 4% and 7% in accuracy
at sparsities of about 6% and 0.4%, respectively. We
also got quaternion implementations of ResNet-101
and ResNet-152 on CIFAR-100 with steady Lottery
tickets, whereas the Real counterpart failed to train
at the same sparsity. Our experiments show that the
pruned quaternion implementations perform better
at higher sparsity than the corresponding real-valued
counterpart, even in some larger neural networks.

1 Introduction

In the realm of large-scale and complex learning
tasks, the presence of a higher number of trainable
parameters within deep learning networks is highly
sought after. Notably, numerous cutting-edge deep
learning networks, as evidenced by works of Nitta [1],
Devlin et al. [2], and Li et al. [3], boast millions of
parameters, if not more. However, it is crucial to
acknowledge that such parameter-rich networks also
impose significant strain on computational resources
and expenses. Consequently, we have been pursu-
ing the ideal of developing low-parameter efficient
models that incur minimal costs.

Pruning done on neural networks has been focused
on maintaining accuracy on par with the original
network as their core objective [4]. It is essential to
understand that the pruned model can lose accuracy
after extreme levels of sparsity [5, 6]. Still, the mod-
els pruned to higher sparsities as much as 90-98%
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is also interesting as they can outperform smaller
dense models with comparable size (same number
of parameters) [7–9]. This motivates the pruning
of large-scale models regardless of the dropping ac-
curacies. The quaternion-valued implementation of
neural networks used in hyperdimensional data em-
beddings [10] has been found to have as much as
75% parameter reduction (explained in section 3.2)
without significant loss of accuracy [10–13]. Quater-
nion networks for various ML tasks already exist [11,
14–17] and have proved to be a worthy competitor.

2 Background

2.1 Pruning

Modern neural network architectures often use an
excessive parameter count [6], leading to increased
computational and memory demands during infer-
ence. Weight pruning has gained attention as a
means to reduce model complexity without sacrific-
ing accuracy [4, 18, 19], with successful applications
across various network architectures like VGG [20]
and ResNet [6, 9, 21]. Weight magnitude pruning [5],
a prominent approach, removes redundant and less
influential connections, resulting in streamlined mod-
els. However, careful reinitialization techniques are
required to mitigate initial performance degradation
after pruning [6].

Pruning techniques can be categorized into struc-
tured and unstructured pruning. Structured prun-
ing removes entire structured components like fil-
ters, channels, or layers for higher inference speed,
while unstructured pruning eliminates individual
weights, often outperforming structured pruning in
reducing model complexity. Advancements in sparse
operations [22] and specialized hardware for sparse
multiplication [23] have improved the computational
efficiency of pruned models.

One compelling aspect of pruned networks is their
ability to outperform small dense models with the
same number of weights [9]. This makes them prefer-
able under resource constraints, even if their per-
formance doesn’t match with the unpruned model
across various model architectures and tasks [7–9,
24]. This highlights the potential of pruned models
to balance model size and performance.
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Figure 1. Quaternion matrix representation and pa-
rameter reduction illustration

2.2 Quaternion

The realm of multidimensional data embeddings
starts with complex numbers and has been applied
in music transcription tasks [12]. However, higher-
dimensional data types are needed in scenarios in-
volving data types like images with three channels.
The question of whether Quaternion data embed-
ding is optimal or not has been explored by Parcollet
et al. [10], shedding light on the potential benefits of
employing such techniques. Zhu et al. [25] compared
real and quaternion neural networks with similar
architectures and the same parameter count on the
CIFAR10 dataset, which showed the superiority of
quaternion neural networks in both training loss
convergence and performance. Quaternion embed-
dings have also shown promise in various domains,
including image classification [11] and speech recogni-
tion [14], demonstrating their potential for effectively
capturing and representing complex data structures.
A quaternion q can be defined as a+ bi+ cj + dk.
The Hamilton product of two Quaternions is defined
as:

q1 ⊗ q2 =(a1a2 − b1b2 − c1c2 − d1d2)

(a1b2 + b1a2 + c1d2 − d1c2)i

(a1c2 − b1d2 + c1a2 + d1b2)j

(a1d2 + b1c2 − c1b2 + d1a2)k

(1)

where q1 = a1 + b1i+ c1j + d1k and q2 = a2 + b2i+
c2j + d2k. Furthermore, the matrix representation
of such a Quaternion can be formed, making sure
the matrix multiplication of such is consistent with
the Hamilton product.

q =


a −b −c −d
b a −d c
c d a −b
d −c b a

 (2)

Conventional neural networks are built using real
numbers, where each neuron and weight are repre-
sented as real values. In these networks, each layer
needs p× n weights, where p denotes the number of
weights in the preceding layer, and n represents the

number of weights in the subsequent layer. In the
case of Quaternion networks, four neurons can be
represented using one quaternion represented in Fig-
ure 1. Therefore, only p

4 ×
n
4 quaternion weights are

left. It should be noted that all of these weights must
be Quaternions rather than real numbers. Thus,
four numbers are required, resulting in a total of of
4× p

4 × n
4 = p×n

4 number of weights. Thus, quater-
nion offers a 75% reduction in weight. Even though
the parameters get reduced, the number of calcula-
tions remains the same due to the properties of the
matrix representation.

3 Method

3.1 Terminology

Throughout this paper, we adopt some abbrevia-
tions and terms to refer to different aspects of our
work. ‘Quat’ or ‘Q ’ denotes quaternion-valued im-
plementations of neural networks, while ‘Real’ or ‘R’
denotes real-valued implementations. ‘ImageNet64’
or just ‘ImageNet’ to refer to the downsized 64x64
version of the ImageNet dataset mentioned below,
and ‘ILSVRC’ to refer to the full version of the Im-
ageNet Large Scale Visual Recognition Challenge
(ILSVRC) dataset. ‘ResNet’ or ‘RN’ is short for
Residual Network, a deep convolutional neural net-
work architecture used in our experiments. ‘BN’
refers to Batch Normalization, and ’n% sparsity’
refers to weight matrix sparsity at which n% train-
able weights are left.

3.2 Datasets and models

For the experiments, we used the CIFAR100 [26] and
the ImageNet64 [27] datasets. ImageNet64 was con-
structed by applying cropping and other transforma-
tions to the original images from the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [28]
dataset, resulting in a dataset of 64x64 colored im-
ages. The training set consists of approximately 1.28
million images of various sizes and resolutions, la-
beled over 1,000 classes, and there are 50,000 images
in the validation set.

To ensure compatibility with quaternion layers, it
is necessary to have an image with a channel count
that is a multiple of 4. Previous attempts to address
this requirement have involved various approaches,
such as setting the last channel to all zeros or in-
corporating dedicated layers to learn the content of
the last channel [11]. In our work, we adopted the
utilization of grayscale values as the fourth channel,
as also used by Iqbal and Mishra [29]. However, it
is worth noting that they exclusively used 4-channel
images for quaternion models, whereas we extended
the use of 4-channel images to both quaternion and
real models for easier comparison.
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Table 1. Hyperparameters for the experiment

Datasets CIFAR100 ImageNet64 ImageNet64
Models All ResNet models ResNet18, ResNet34,

ResNet50
ResNet101,
Resnet152

Training epochs/batch size 100/100 15/256 15/256
Optimizer SGD SGD SGD
Learning Rate Schedule (epochs) 0.1 (1-100) 0.1 (1-10), 0.01 (11-

12), 0.001 (13-15)
0.1 (1-10), 0.01 (11-
12), 0.001 (13-15)

Momentum / Weight decay 0.9/0.0001 0.9/0.0001 0.9/0.0001
% Pruned per pruning iteration 70% 70% 50%

In terms of architecture, the Real ResNet architec-
tures from the repository of Liu et al. [30] was uti-
lized, with a modification to accommodate 4-channel
input and included an adaptive average pooling layer
before the final linear layer. This pooling layer
served the purpose of handling varying resolutions
across datasets, namely 32x32 CIFAR100 and 64x64
ImageNet64. To create the Quaternion models, the
real layers, both linear and convolutional, were re-
placed with quaternion layers. We retained the BN
(Batch Normalization) layers in real value, as im-
plementing BN in quaternion form didn’t reduce
parameter count but had a massive negative effect
on training speed. Our experiments employed stan-
dard architectures, including ResNet18, ResNet34,
ResNet50, ResNet101, and ResNet152, with the
number of trainable parameters detailed in Table 2.

3.3 Setup

For the CIFAR100 experiments,a computer with
one NVIDIA A100 Server Grade Tensor Core GPU
with 80GB VRAM and 512GB RAM was used. All
the ImageNet (except the RN101) experiments were
run on a computer with four NVIDIA A100 80GB
GPUs and 1TB RAM. The ResNet101 ImageNet
experiments were run on a computer with 1 NVIDIA
A6000 48GB GPU and 125GB RAM. All the exper-
iments were run on a Linux operating system. The
code was written using PyTorch library [31] and ran
in Python 3.10.6. No sort of multi-GPU or multi-
node parallelization was used for the experiments.
For the quaternion layers, the hTorch library1 has
been referred and used. Our codes are available at
our Github repository2.

3.4 Experiments

We used different hyperparameters over different
datasets and models, but we always used the same
hyperparameters for the Real and Quat versions of
the same model-dataset pair. The hyperparameters
for the experiment are summarized in Table 1.

1https://github.com/ispamm/hTorch
2https://github.com/smlab-niser/quatLT23

Table 2. Table showing trainable parameter count for
different models

Model arch Real Models Quat models

ResNet18 11.68M 2.93M
ResNet34 21.79M 5.46M
ResNet50 25.55M 6.43M
ResNet101 44.54M 11.22M
ResNet152 60.19M 15.16M

3.4.1 Training

For the most part, we stuck to the widely used,
popular set of hyperparameters used for ResNet ar-
chitectures. For the CIFAR100 dataset, we utilized a
learning rate scheduler with a cosine decay strategy,
incorporating a warmup period of 10 epochs. For
the ImageNet one, we reduced the learning rate by a
factor of 10 at epochs 11 and 13 each time, as it was
advantageous in performance. This is similar to the
strategy employed in the original ResNet paper [21].
This choice was provoked by our observations that
the accuracy of the model started to plateau around
the 10th epoch and these ”shocks” helped prevent
significant overfitting and resulted in an additional
increase of approximately 11% in accuracy. Follow-
ing these adjustments, we concluded our training
process at the 15th epoch.

3.4.2 Pruning

Our method of pruning can be briefly summarized as
’rest-train-prune’ loops. After making the model in-
stance, we initialize the weights with uniform Xavier
initialization. Then, we train the full model as men-
tioned in Section 3.4.1. Then, we use L1 unstruc-
tured pruning to prune the weights of the linear and
the convolutional layers in the model. We didn’t
prune the biases or the BN layers. This is because
they all combined constituted less than 0.1% of the
weights. Pruning is done by the creation and ap-
plication of a mask matrix as the same size as the
weight matrix, but kept separate.

In the next iteration, we reinitialize the weights
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(a) ResNet18 on CIFAR100
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(d) ResNet101 on CIFAR100
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(e) ResNet152 on CIFAR100
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(f) All Quat models on CIFAR100

Figure 2. Validation (top 1) accuracy vs pruning results of all ResNet models on CIFAR100 dataset.
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(a) ResNet18 on ImageNet64
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(b) ResNet34 on ImageNet64
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(c) ResNet50 on ImageNet64
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(d) ResNet101 on ImageNet64
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Figure 3. Validation (top 1) accuracy vs pruning results of all ResNet models on ImageNet64 dataset.
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Table 3. Complete pruning results of experiments with pruning proportions mentioned in Table 1 per iteration i.
The percentage of weights left can be found as N×(pruning proportion)i where N = 100 for Real and 25 for Quat
(Quat models start with 25% weights). This table contains the detailed values depicted in Figures 2 and 3.

pruning
iteration

CIFAR100 on Real CIFAR100 on Quat ImageNet64 on Real ImageNet64 on Quat ImageNet64 on Real ImageNet64 on Quat
RN18 RN34 RN50 RN101 RN152 RN18 RN34 RN50 RN101 RN152 RN18 RN34 RN50 RN18 RN34 RN50 RN101 RN152 RN101 RN152

0 64.42 67.16 62.84 56 57.86 60.77 60.74 60.51 54.39 54.67 62.35 64.63 62.4 53.64 57.06 60.01 65.42 66.82 63.48 65.06
1 63.4 64.24 63.78 64.6 64.81 60.93 58.58 61.92 63.12 62.67 61.28 63.99 62.74 51.42 56.16 57.71 64.76 65.76 60.86 62.48
2 64.75 64.65 64.97 64.81 64.83 61.22 60.61 62.26 62.42 62.01 60.21 63.01 61.71 49.34 54.04 56.54 63.63 63.9 57.7 58.44
3 63.56 64.94 64.2 65.64 68.82 59.9 60.08 60.58 61.72 61.8 58.87 62.33 61.5 47.66 52.3 54.3 61.1 61.29 52.82 54.38
4 63.08 64.8 64.44 71.72 65 60 60.44 61.82 66.22 60.24 57.02 61.03 59.91 44.99 50.35 51.46 57.23 58.05 47.35 49.3
5 63.21 63.28 64.99 64.48 64.21 58.49 60.58 60.69 61.18 59.34 55.12 59.8 57.97 42.06 48.16 48.89 52.6 54.21 41.05 43.61
6 61.24 63.07 63.32 65.03 64.4 57.06 59.26 60.41 60.68 60.88 52.89 57.76 55.77 38.61 45.26 45.8 46.58 48.64 34.11 36.31
7 61.82 62.94 63.72 63.43 64.31 56.54 58.1 59.9 60.18 59.62 50.12 55.4 53.53 35.09 42.35 42.68 39.26 42.04 23.34 27.04
8 61.47 62.82 61.7 62.22 62.43 54.28 56.14 58.61 58.22 57.82 46.87 52.91 51.59 31.91 38.88 39.49 27.08 31.84 15.81 0.1
9 59.04 60.81 61.16 61.61 60.9 52.66 54.8 50.44 57.26 55.88 43.56 50.05 48.77 28.01 35.55 36.03 14.51 17.99 0.1 8.37
10 57.76 60.06 59.96 59.11 61.26 47.6 53.17 52.44 54.89 54.02 39.85 46.82 45.44 24.35 31.79 33.15 2.48 0.1 - -
11 55.52 57.89 58.22 58.36 58.12 44.93 52.72 50.38 50.7 51.64 35.38 43.46 42.34 20.42 27.88 29.22 1.18 0.1 - -
12 49.8 57.32 55.62 27.24 1 42.97 49.13 47.13 24.53 1 31.09 39.28 38.26 17.88 24.6 25.46 - - - -
13 48.77 54.43 27.27 1 1 34.33 46.36 22.05 1 1 26.73 34.74 34.51 14.22 20.53 20.49 - - - -
14 41.92 49.96 1 1 - 33.6 42.96 1 1 - 21.68 30.27 30.29 12.02 17.39 16.77 - - - -
15 40.94 42.28 1 1 - 16.04 37.89 1 1 - 17.96 24.85 25.28 10.05 14.21 12.85 - - - -
16 31.63 37.9 1 1 - 28.42 34.02 1 1 - 14.5 20.17 20.1 8.58 11.91 10.28 - - - -
17 31.37 18.03 1 1 - 22.69 16.31 1 1 - 10.92 15.33 15.92 6.38 9.92 7.31 - - - -
18 12.46 14.86 1 1 - 22.69 16.31 1 1 - - - - - - - - - - -
19 9.07 1 1 - - 10.44 11.14 1 - - - - - - - - - - - -
20 1 1 1 - - 6.44 1 1 - - - - - - - - - - - -

with uniform Xavier initialization using the same
seed and train the model with the mask matrix
applied over the weight matrix. The pruning applied
in this iteration is also added to the mask matrix.
This process of ’reset-train-prune’ is repeated till
the model accuracy reduces to 20% and a few more
iteration to observe any further significant changes
in the curve.

4 Results

4.1 CIFAR100

When applying ResNet to the CIFAR100 dataset,
we obtained similar results to those reported by Sa-
hel et al. [29] when they used Conv-6 models on
the same dataset. However, due to ResNet’s larger
size compared to Conv-6 models, we had to perform
more aggressive pruning to achieve a similar level
of accuracy degradation. The results obtained are
given in Figure 2, and detailed values on our pruning
results are compiled in Table 3. Our Quat models
performed almost as well as our original unpruned
Real counterparts (slightly 2-3% less). Upon ana-
lyzing the graphs in Figures 2(a) through 2(e), we
observed that the difference between the highest
accuracy obtained by the Real and Quat models de-
creased as we moved to higher-capacity models. For
the comparison of the original model’s performance
both on CIFAR100 and ImageNet64, we used the
works by Shahadat and Maida [32] as a reference
point.

As seen in Figure 2(d),all the Quat models pruned
to about 6.25% sparsity have similar or significantly
higher accuracies than the full model, i.e., they con-
tain Lottery Tickets. For example, Quat RN101 had
an accuracy of 66.22%, whereas its unpruned version
had 54.4%, a rise of 11.8% in accuracy. Similar lot-
tery tickets can be seen in RN50, and RN152, with
an accuracy bump of 1.3%, and 5.6% respectively,

at the same sparsity. This confirms the existence of
lottery tickets even in large quaternion networks.

On further pruning, we found that at 1% sparsity,
RN101 Real failed to train and gave 1% accuracy,
but Quat counterpart gave 57.26%. We can also see
similar trends in the other models where in Real
RN50 and Real RN152, the accuracy started drop-
ping steeply after 1.4% and 2% sparsities, their Quat
counterparts retained accuracies till 0.3% and 0.5%
sparsities respectively. This empirically validates
that the quaternion consistently performs better
than the real at high sparsities.

4.2 ImageNet64

In this particular phase of the experiment, we ob-
served distinct differences in the graphs compared to
the CIFAR100 dataset. From the very first pruning
iteration, the ImageNet networks exhibited an im-
mediate and consistent decline in accuracy, as shown
in Figures 3(a) through 3(e). Further discussion on
this is given in the next section. The graphs pro-
duced with the Real and Quat models are given in
Figure 3. Specifically, in models such as RN18 and
RN34, the Quat model’s accuracy was consistently
lower than the Real model’s at lower sparsity levels.

However, as we progressed to higher-capacity mod-
els such as RN50 and RN101, the Quat graph closely
overlapped with the Real graph at higher levels of
accuracy, especially at RN152; the quaternion model
consistently outperformed the real model at all spar-
sity levels, indicating a clear advantage.
Unfortunately, we didn’t find any lottery tickets

for this due to the aforementioned consistent perfor-
mance decline from the initial pruning. On pruning,
we found that at 0.39% sparsity, RN101 Real gave
27.08% accuracy, and Quat gave 34.11% accuracy,
which is 7% higher. We can also see similar trends
in the other models where in RN18, we have a gain
of about 3.4%, RN34 a gain of 4.4%, RN50 a gain
of 5.4%, and so on.
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If we compare the unpruned Real and Quat mod-
els, we can see that in RN18 and RN34, the Real
outperforms Quat with a very high accuracy differ-
ence (8.71% and 7.57%, respectively). But, the per-
formance gap decreased in the rest of RN50, RN101,
and RN152 (the difference is 2.04%, 1.94%, and
1.76%, respectively), and thus, Quat comes close to
Real in terms of performance in higher complexities.

The accuracy obtained at different pruning itera-
tions is given in detail in Table 3.

5 Discussions

The observation that quaternion models, despite hav-
ing one-fourth of the parameters compared to real
models, achieved comparable accuracies challenges
the conventional understanding of model complexity
and parameter count. It suggests that the real mod-
els in this study were over-parameterized, exceeding
the necessary capacity for learning the dataset.

CIFAR100 Real vs. Quat: The CIFAR100
results indicate that in the case of RN18 real and
RN101 quaternion models, their parameter counts
are nearly equal, and the corresponding graphs ex-
hibit significant overlap. This observation suggests
that the claim of Quaternion models outperforming
Real models holds true primarily when the dataset
size is relatively small compared to the model’s ca-
pacity.

ImageNet64 Real vs. Quat: Figure 3(a)
and 3(b) provide clear evidence that quaternion
models, despite having a sufficient number of pa-
rameters, do not yield satisfactory accuracy. This
discrepancy might be attributed to the phenomenon
where larger models tend to perform well across
a wide range of hyperparameters, whereas smaller
models excel within a narrow set of values, as demon-
strated by Taylor et al. [33]. It is possible that the
hyperparameters used in our experiments were more
suitable for real models rather than quaternion mod-
els. However, to ensure a fair comparison, we did not
conduct specific hyperparameter tuning experiments
for quaternion models.

Why do the accuracies for ImageNet
dataset decline from the beginning?: This ob-
servation, made in Figures 3(a) through 3(e), leads
us to believe that the models were inadequately
equipped with parameters, failing to achieve an op-
timal level of over-parameterization necessary for
effectively comprehending and mastering the intri-
cacies of the ImageNet dataset containing a rich
source of information. With more parameters (in
RN101 and RN152), we can see that the accuracies
are almost same in the first one or two iterations,
indicating a possibility of Lottery Ticket under the
right hyperparameter tuning.

6 Conclusion

Our study sought to determine the suitability of
pruned quaternion networks over pruned real mod-
els in resource-constrained settings. Through the
successful training of pruned quaternion networks to
achieve accuracy levels comparable to the original
models, We validated the Lottery Ticket Hypothesis
in large-scale quaternion networks, specifically ex-
ploring five ResNet model depth variations. While
our findings are significant, further research is essen-
tial to generalize across a broader range of large-scale
models. Our experiments involving pruning large
network models across both small and large datasets
further confirmed that pruned quaternion models
consistently outperform their real counterparts un-
der conditions of high sparsity.

7 Limitations and Future
Work

In our study, we acknowledge several limitations
and propose potential areas for future exploration.
First, comprehensive hyperparameter optimization
tailored to quaternion models is needed to enhance
their performance and potentially surpass real mod-
els in accuracy. Additionally, while experiments
were conducted on ImageNet, further research with
larger datasets like the original ILSVRC is essential
to unlock quaternion models’ full potential, espe-
cially in sparse conditions. Furthermore, extending
quaternion models beyond image classification to
tasks like object detection, semantic segmentation,
and natural language processing is valuable. Lastly,
exploring quaternion models’ performance in various
neural network architectures beyond ResNet, such
as Transformers, GNNs, and RNNs, could reveal
novel applications and advantages, offering valuable
insights into their broader applicability.
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