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ABSTRACT

Tropical cyclones are among the most powerful and destructive weather events on
Earth, and the formation and evolution of these systems is crucial to the resilience
and safety of coastal populations. Although physical models have historically
been used to research tropical cyclones, these models frequently fail to capture
the complex interactions between many atmospheric and oceanic factors that in-
fluence cyclonic systems’ behavior. In this research, we suggest a unique method
of employing graph neural networks (GNNs) to analyze the development and evo-
lution of tropical cyclones. GNNs are an effective machine learning technique that
can learn from huge and complex datasets, which makes them well-suited to cap-
ture the underlying patterns in the behavior of tropical cyclones. In our method,
a GNN is used to estimate cyclone formation, forecast whether it will become
stronger or weaker in the following time step, and match the evolution pattern
of cyclones in the training set. We tested our method on a substantial dataset of
tropical cyclones and showed that it outperformed conventional physical models
in predicting the genesis of tropical cyclones. Our research also shown that the
intricate connections between atmospheric and oceanic factors that affect tropi-
cal cyclones are better captured by the GNN-based method, leading to a better
understanding of their behavior. As a result of our research, better early warning
systems and disaster response planning will be possible, allowing for more precise
forecasts of tropical cyclone development and behavior. Our work also shows how
machine learning methods may improve our comprehension of intricate meteoro-
logical processes, presenting new avenues for research in atmospheric science.

1 INTRODUCTION

Cyclones, powerful atmospheric phenomena characterized by their swirling winds and intense
weather systems, play a pivotal role in shaping weather patterns and pose significant challenges
to accurate prediction [1]. The intricate interplay of various attributes, such as latitude, longitude,
CFLX (Convective Available Potential Energy Flux), MSLP (Mean Sea Level Pressure), and
VMAX (Maximum Sustained Wind Speed), makes cyclone evolution analysis a complex task that
demands innovative computational approaches.

Traditional machine learning and deep learning approaches are so far adopted for cyclone for-
mation prediction. These approaches are limited by their distinct nature to capture the feature
individually. On the contrary, our work aims to address the limitations of existing methods in
capturing the spatial and temporal dependencies present in cyclone data. In this paper, we present
a novel methodology that leverages the power of Graph Neural Networks (GNNs) to uncover
hidden patterns and insights within cyclone data [2]. Our approach goes beyond traditional machine
learning techniques by embracing the inherent structure and temporal evolution of cyclone attributes.

One of the crucial parts of adopting GNN is to construct the graph. By representing cyclone
attributes as nodes in a graph and their temporal evolution as edges, we construct a robust
framework for cyclone evolution analysis. Each node in the graph represents the VMAX value
at a specific geographical location, while the edges capture the temporal progression of cyclones
over a fixed time interval, typically 6 hours. However, the expressive capability of GNNs serves as
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the cornerstone of our approach. GNNs efficiently capture the intricate connections and linkages
included in cyclone data by propagating information via the graph structure. This makes it possible
for us to more accurately describe the non-linear dynamics of cyclone evolution.

Additionally, our graph-based method gives a comprehensive view of cyclone analysis. We
acquire a thorough knowledge of cyclone evolution patterns by fusing geographical and temporal
data into a single graph representation. As a result, meteorologists, academics, and decision-
makers can make better judgments and create solid plans for cyclone forecasting, catastrophe
readiness, and impact reduction. In this work, we give in-depth explanations of our technique,
covering the stages involved in data preparation, the construction of graphs, and the training
of our Graph Neural Network. Using actual cyclone data, we assess the performance of our
system and compare it to cutting-edge techniques. Our findings show how effective our methodol-
ogy is at predicting the future and the insightful information it provides on the evolution of cyclones.

The contributions of this work extend beyond cyclone analysis:

1. To discover the potential of GNNs in capturing complex dynamics in other geospatial and
temporal domains, opening new avenues for research in diverse fields such as climate sci-
ence, environmental monitoring, and natural disaster analysis.

2. To explore in-depth explanations of our technique, covering the stages involved in data
preparation, the construction of graphs, and the training of our Graph Neural Network.

3. To accelerate solid plans for cyclone forecasting, catastrophe readiness, and impact reduc-
tion.

The rest of the paper is organized as follows: Section 2 provides an overview of related work in
cyclone prediction, highlighting different approaches and techniques. Section 3 presents the pro-
posed method of using graph neural networks for cyclone prediction, explaining the architecture,
data representation, and training process. In Section 4, the methodology is described, including data
collection, preprocessing, and experimental setup. Section 5 presents the results and evaluation of
the cyclone prediction model, analyzing accuracy and comparing predicted values with ground truth.
Finally, in Section 6, the paper concludes, summarizing key findings and discussing implications for
cyclone prediction and potential areas for future research.

2 LITERATURE REVIEW

In recent years, there has been growing interest in leveraging machine learning (ML) techniques
for weather forecasting. Several ML-based weather forecasting models have been developed,
aiming to improve the accuracy and efficiency of traditional forecasting methods. However, the
challenge of accurately modeling complex atmospheric processes and capturing the spatiotemporal
dependencies in weather data remains.

One notable ML-based weather forecasting model is GraphCast, a machine-learning weather
simulator introduced by Remi Lam et al. in their groundbreaking research. GraphCast surpasses the
accuracy of the most precise deterministic operational medium-range weather forecasting system,
as well as all previous ML baselines. It introduces an autoregressive model based on graph neural
networks (GNNs) and a novel high-resolution multi-scale mesh representation [3].

The authors trained GraphCast on historical weather data from the European Centre for Medium83
Range Weather Forecasts (ECMWF)’s ERA5 reanalysis archive. The model can generate 10-day
forecasts, at 6-hour time intervals, for multiple surface and atmospheric variables, with detailed
coverage at 37 vertical pressure levels. The forecasts are produced on a fine-grained 0.25° latitude86
longitude grid, providing a resolution of approximately 25×25 kilometers at the equator.

Results from extensive evaluations demonstrate the superior accuracy of GraphCast. It outperforms
ECMWF’s deterministic operational forecasting system, HRES, on 90.0% of the evaluated variable
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and lead time combinations. Additionally, GraphCast surpasses the most accurate previous
ML-based weather forecasting model on 99.2% of the reported targets, highlighting its exceptional
predictive capabilities.

The accomplishments achieved by GraphCast represent a significant advancement in the field of
weather modeling and forecasting. The model’s ability to outperform traditional methods and
previous ML-based approaches underscores the potential of ML-based simulation in the physical
sciences. The research exemplifies the synergy between machine learning and weather modeling,
paving the way for fast, accurate forecasting and unlocking new opportunities in atmospheric
science.

Another relevant work titled Graph Neural Networks for Improved El Niño Forecasting by Salva
Rühling Cachay et al. proposed improved seasonal forecasting, particularly in predicting complex
climate phenomena like the El Niño-Southern Oscillation (ENSO). While these deep learning
models have shown promising results, their reliance on convolutional neural networks (CNNs) can
hinder interpretability and pose challenges in modeling large-scale atmospheric patterns [4].

To address these limitations, the authors propose an innovative approach by applying graph neural
networks (GNNs) to seasonal forecasting for the first time. GNNs excel in capturing large-scale
spatial dependencies and offer enhanced interpretability through explicit modeling of information
flow via edge connections.

Their model, named graphino, introduces a novel graph connectivity learning module that allows the
GNN to learn both the spatial interactions and the ENSO forecasting task simultaneously. By jointly
optimizing these aspects, graphino achieves superior performance compared to state-of-the-art deep
learning-based models for ENSO forecasts up to six months ahead.

An important advantage of graphino lies in its interpretability. By leveraging GNNs, the model
learns sensible connectivity structures that correlate with the ENSO anomaly pattern. This inter-
pretability allows researchers and climate scientists to gain insights into the underlying mechanisms
and spatial relationships influencing ENSO dynamics.

This research not only demonstrates the effectiveness of GNNs for seasonal forecasting but also
highlights their ability to uncover meaningful spatial interactions in climate systems. By surpassing
existing deep learning models and offering interpretability, graphino opens new avenues for
advancing our understanding and prediction of ENSO and other complex climate phenomena.

Research Gap Although a number of notable work on GNN for weather forecasting has been pre-
sented in the literature, none of them are focused on the cyclone dataset. Neither of the work has
formulated the cyclone data as a graph data structure which leads to cyclone formation prediction.

3 CYCLONE PREDICTION AS GRAPH NEURAL NETWORK

3.1 CYCLONE DATA AS GRAPH

In our work, we represent the cyclone dataset as a graph structure to study and analyze the
dynamics of cyclone evolution. The dataset comprises various attributes of cyclones, such as
latitude, longitude, CFLX (Convective Available Potential Energy Flux), MSLP (Mean Sea Level
Pressure), and VMAX (Maximum Sustained Wind Speed) recorded at 6-hour time intervals. To
construct the cyclone dataset as a graph, we consider each cyclone as a node in the graph, with
its attributes representing the node features. The latitude and longitude coordinates determine the
spatial positions of the nodes, providing a geographical context to the graph representation (see
Figure 1).
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Figure 1: Graph representation of cyclone information: Each node represents a unique cyclone with
associated attributes

3.2 TEMPORAL EVOLUTION MODELING

The graph’s edges effectively capture the cyclones’ temporal progression. To create a time-based
series of edges, we join the nodes corresponding to the same cyclone together throughout various
time steps. These edges allow for the modeling of temporal relationships within the network
structure and encode the evolution of cyclone properties over time.

The link between succeeding time steps and the evolution of cyclone properties are represented by
the edges in the cyclone graph. We include the cyclone intensity into the graph representation by
thinking of the VMAX attribute as the weight connected to each edge. The resulting cyclone graph
allows us to analyze the patterns and dependencies in cyclone behavior over time. By leveraging
graph-based algorithms and techniques, we can explore the spatial relation- ships between cyclones,
identify clusters or communities of cyclones with similar characteristics, and investigate the
influence of various attributes on cyclone evolution.

3.3 PROBLEM FORMULATION: CYCLONE PREDICTION AS NODE CLASSIFICATION PROBLEM

To analyze the evolution and patterns of cyclones, we formulate the problem as follows. Given
a dataset of cyclones represented as a graph G = (V,E), where V represents the set of nodes
(cyclones) and E represents the set of edges (temporal evolution), our goal is to model the behavior
and predict future attributes of cyclones based on their historical information.

Let vi ∈ V represent the node corresponding to cyclone i with associated attributes xi =
[xi1, xi2, . . . , xin], where xij denotes the j-th attribute of cyclone i. The edges in the graph capture
the temporal evolution of cyclones, denoted as (vi, vj) ∈ E for consecutive time steps.

We aim to learn a function f(G) that maps the input graph G to predicted attributes of cyclones at
future time steps. This function can be formulated as:

yi(t) = f(Gi(t)) (1)

Where yi(t) = [yi1(t), yi2(t), . . . , yim(t)] represents the predicted attributes of cyclone i at time t,
and Gi(t) denotes the subgraph of cyclone i up to time t.

We utilize Graph Convolutional Networks (GCNs) to model the temporal dependencies and spatial
relationships within the cyclone graph. The GCN model learns the mapping f(·) by propagating
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information between neighboring nodes, capturing the evolution of cyclone attributes and their in-
teractions over time.

Our objective is to train the GCN model to minimize the prediction error between the predicted at-
tributes yi(t) and the ground truth attributes y∗i (t). This can be achieved by optimizing the following
loss function:

L =

N∑
i=1

T∑
t=1

∥yi(t)− y∗i (t)∥
2 (2)

Where N is the total number of cyclones in the dataset, and T represents the number of time steps.

By formulating the problem mathematically, we can apply graph neural networks, specifically Graph
Convolutional Networks, to effectively model the evolution and patterns of cyclones, ultimately
enabling us to make accurate predictions about their future attributes.

4 METHODOLOGY

4.1 GNN ARCHITECTURE

In our research, we employed Graph Convolutional Networks (GCNs)(see Figure 2) as a key
component of our methodology. GCNs are a type of graph neural network that operates on
graph-structured data and are effective in capturing the spatial dependencies and information flow
within a graph.

Mathematically, the propagation rule of a GCN can be defined as follows:

H(l+1) = σ(D̂−1/2ÂD̂−1/2H(l)W (l)) (3)

where: H(l) represents the node features at the l-th layer of the GCN. W (l) denotes the learnable
weight matrix for the l-th layer. Â is the adjacency matrix of the graph, which incorporates both the
structural information of the graph and the edge features. D̂ is the diagonal degree matrix of Â. σ(·)
is the activation function applied element-wise.

The GCN propagation rule consists of several key operations:

1. The input node features H(l) are transformed by the weight matrix W (l).

2. The graph structure and node features are combined by multiplying Â with H(l).

3. The D̂−1/2ÂD̂−1/2 term normalizes the graph adjacency matrix to ensure stability and
facilitate information flow.

4. The resulting product is further transformed by the activation function σ(·) to introduce
non-linearity.

By iteratively applying the GCN propagation rule, information is propagated across the graph,
allowing each node to aggregate and update its features based on the features of its neighboring
nodes. This process enables the GCN to capture the spatial dependencies and learn representations
that incorporate both the local and global graph structure.

In our research, we leveraged the power of GCNs to model the temporal evolution of cyclones by
treating the cyclone locations as nodes in the graph and the evolution of time as the edges connect-
ing them. This enabled us to capture the dynamic patterns and dependencies in cyclone behavior,
ultimately enhancing our understanding and predictive capabilities in cyclone forecasting.
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Layer (type) Input Shape Output Shape Param #
GCNConv (1, 1) (1, 128) 256

ReLU (1, 128) (1, 128) 0
Dropout (1, 128) (1, 128) 0

GCNConv (1, 128) (1, 64) 8,256
ReLU (1, 64) (1, 64) 0

Dropout (1, 64) (1, 64) 0
GCNConv (1, 64) (1, 1) 65

Total 8,577

Table 1: Model Summary

4.2 TRAINING AND EVALUATION

The GCN model was trained on the cyclone dataset using suitable optimization techniques, such
as stochastic gradient descent or Adam optimization. We utilized appropriate evaluation metrics
to assess the performance of the model, such as R-squared, mean absolute error (MAE), and root
mean squared error, depending on the specific task and objectives of our cyclone analysis.

We employed the GCN architecture, which combines graph convolutional layers with autoregressive
modeling, to capture the spatiotemporal patterns in cyclone behavior. The model was trained using
the Adam optimizer with a learning rate of 0.01 and a batch size of 32. We used root mean squared
error (RMSE) as the loss function to optimize the model’s predictions.

The training process involved iteratively updating the model parameters using back-propagation and
gradient descent. We monitored the validation loss during training to prevent overfitting and selected
the best-performing model based on the validation loss.

Figure 2: A Typical GNN Architecture

5 RESULTS

5.1 DATA SET

As part of our study approach, we used the Tropical Cyclone Developmental Data repository
supplied by the Cooperative Institute for Study in the Atmosphere (CIRA) at Colorado State
University to get the North Indian Ocean* 5-day predictor dataset spanning from 1990 to 2017.

A useful tool for researching and comprehending the behavior and evolution of tropical cyclones
in the North Indian Ocean region is the North Indian Ocean* 5-day predictor dataset. It includes a
vast array of predictor factors that help anticipate the development of cyclones during a 5-day time
frame.
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Index Actual VMAX Predicted VMAX

1 25 31.20

2 30 19.50

3 35 47.43

4 45 27.00

5 60 87.30

6 65 48.77

7 70 41.70

8 75 71.43

9 80 97.45

10 85 93.50

11 95 59.37

12 100 123.84

13 110 110.52

14 110 121.24

15 100 67.44

16 90 68.95

17 90 104.15

18 80 54.95

19 75 71.42

20 65 71.07

21 60 60.52

22 55 47.34

23 50 48.95

24 50 54.67

25 45 49.48

26 45 48.52

27 40 36.24

28 40 44.33

29 30 30.36

30 30 26.04

Table 2: Actual and Predicted VMAX (First 30 data points)

The data set contains a vast array of information related to cyclone intensification and development.
These characteristics give a comprehensive picture of the environmental factors that affect tropical
cyclone behavior since they include both atmospheric and oceanic components. Sea surface
temperature, vertical wind shear, relative humidity, atmospheric instability indices, and several
other atmospheric and oceanic characteristics are some of the important variables included in the
data set.

7



Under review as a conference paper at ICLR 2024

We wanted to capture the intricate interactions and patterns connected with cyclone evolution in
the North Indian Ocean region using this rich and substantial data set, which we included into our
study methods. We created a thorough knowledge of cyclone behavior and created a model that
can accurately forecast cyclone paths and intensities by utilizing the temporal and geographical
information included in the data set.

The availability of the North Indian Ocean* 5-day predictor dataset for an extended period, from
1990 to 2017, enabled us to encompass a wide range of cyclonic events and capture the inherent
variability and inter annual dynamics of tropical cyclones in the region. This extensive temporal
coverage ensures the robustness and generalizability of our model’s performance across different
climatic conditions and cyclone seasons.

Figure 3: Performance metrics (MAE, RMSE, and R-squared) of the CycloneGNN model during
the training process

5.2 PERFORMANCE ANALYSIS

The model achieved promising results after 200 epochs of training. In the final epoch (Epoch 199),
the model’s performance metrics were as follows: Loss: 262.4238, MAE: 11.5046, RMSE: 16.1995,
and R-squared: 0.4769. Figure 3 listed the results. These metrics provide valuable insights into
the accuracy and effectiveness of the model in predicting the VMAX of cyclones based on the
given data. Figure 4 illustrate the actual VMAX in this context and Figure 5 and Table 2 show the
combination of prediction and actual VMAX values.

6 CONCLUSION

In this study, we employed a graph neural network (GNN) approach to predict VMAX values
in cyclone data. Our objective was to determine how well GNNs could capture the underlying
dynamics and patterns of VMAX development over time.

We have effectively shown the potential of GNNs in forecasting VMAX values through our
experiments and research. With graph convolutional layers, the constructed CycloneGNN model
showed good results in capturing the intricate interactions between VMAX values at various
locations and their temporal evolution.
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Figure 4: Plot showing the actual values of VMAX for the cyclone dataset

Figure 5: Comparison of Actual and Predicted VMAX Values for Cyclones
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Results from comparing our model to actual VMAX values were positive. The fact that the
anticipated and real VMAX values nearly match each other shows how well our method captures
the dynamics of cyclone systems. This suggests that GNNs have the potential to be an important
tool for predicting and comprehending VMAX patterns in cyclones.

The predictions made by the CycloneGNN model are generated from examining historical data
patterns and temporal dynamics, despite the fact that our study makes use of artificial intelligence
(AI) approaches. Researchers, meteorologists, and decision-makers may learn more about cyclone
behavior and anticipated future trends by using these projections as a useful tool. To make wise
conclusions, it is essential to use caution and integrate these forecasts with additional expert
knowledge and domain-specific data.

The performance of the model could be improved in the future by utilizing more sophisticated
GNN architectures or adding other features. Additionally, investigating the incorporation of outside
environmental elements and climate data might improve the precision and applicability of VMAX
forecasts and judgments even more.
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