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Abstract

For an ordinal regression task, a classification task for ordinal data, one-dimensional trans-
formation (1DT)-based methods are often employed since they are considered to capture the
ordinal relation of ordinal data well. They learn a 1DT of the observation of the explanatory
variables so that an observation with a larger class label tends to have a larger value of the
1DT, and classify the observation by labeling that learned 1DT. In this paper, we study
the labeling procedure for 1DT-based methods, which have not been sufficiently discussed
in existing studies. While regression-based methods and classical threshold methods con-
ventionally use threshold labelings, which label a learned 1DT according to the rank of the
interval to which the 1DT belongs among intervals on the real line separated by threshold
parameters, we prove that likelihood-based labeling used in popular statistical 1DT-based
methods is also a threshold labeling in typical usages. Moreover, we show that these thresh-
old labelings can be sub-optimal ones depending on the learning result of the 1DT and the
task under consideration. On the basis of these findings, we propose to apply empirical
optimal threshold labeling, which is a threshold labeling that uses threshold parameters
minimizing the empirical task risk for a learned 1DT, to those methods. In experiments
with real-world datasets, changing the labeling procedure of existing 1DT-based methods
to the proposed one improved the classification performance in many tried cases.

1 Introduction

Ordinal regression (OR) (or called ordinal classification) is the classification of ordinal data in which the
underlying target variable is categorical and labeled from a label set (ordinal scale) that is equipped with a
natural ordinal relation for the explanatory variables; see Section 2.1 for a detailed formulation. The ordinal
scale is typically formed as a graded (interval) summary of objective indicators like age groups {‘0-9’, ‘10—
19°, ..., ‘90-99’, ‘100-"} or graded evaluation of subjectivity like human rating {‘excellent’, ‘good’, ‘average’,
‘bad’, ‘terrible’}, and ordinal data appear in various practical applications: age estimation (Niu et al., 2016;
Cao et al., 2020), information retrieval (Liu, 2011), movie rating (Yu et al., 2006), and questionnaire survey
in social research (Biirkner & Vuorre, 2019).

One-dimensional transformation (1DT)-based methods are often applied to the OR problems as
a simple way to capture the ordinal relation of ordinal data: they learn a 1DT of the observation of the
explanatory variables so that an observation with a larger class label tends to have a larger value of the 1DT,
and classify the observation by labeling that learned 1DT, as we will formalize in Section 2.2. For example,
regression-based methods and classical threshold methods (or called threshold models) conventionally
use a threshold labeling, which labels a learned 1DT according to the rank of the interval to which the 1DT
belongs among intervals on the real line separated by threshold parameters. Regression-based methods
(Kramer et al., 2001; Agarwal, 2008) learn a 1DT by solving a naive regression task that infers a class label
by the 1DT in a continuous scale, and often apply nearest-neighbor threshold (NNT) labeling that
rounds the learned 1DT to its nearest label (see Section 3.1). Classical threshold methods (Shashua & Levin,
2003; Lin & Li, 2006; Chu & Keerthi, 2007; Lin & Li, 2012; Li & Lin, 2007; Pedregosa et al., 2017) learn
a 1DT using an objective function different from the empirical task risk, and commonly use minimum
threshold (MT) and summation threshold (ST) labelings that apply parameters obtained incidentally
in that learning procedure as threshold parameters (see Sections 3.2). Also, statistical 1DT-based methods
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(statistical methods) (McCullagh, 1980; Williams, 2006; Cao et al., 2020; Yamasaki, 2022), in which the
learning procedure of the 1DT can be viewed as statistical modeling of conditional probabilities of the data,
can apply likelihood-based (LB) labeling that is designed to minimize the task risk under the expectation
that the assumed likelihood model is correctly specified to the data distribution (see Section 3.3).

We, however, have respective concerns on these existing labeling procedures. First, threshold parameters
of NNT, MT, and ST labelings are generally not designed to minimize the task risk. So their threshold
parameters can be sub-optimal for the minimization of the task risk, as we will demonstrate in Example 1.
On the other hand, the LB labeling is designed to minimize the task risk if the assumed likelihood model is
correctly specified to the distribution of the data (see Theorem 2). However, 1DT-based likelihood models
have a strongly restricted representation ability and can be mis-specified to the data, and hence the LB
labeling can degrade the classification performance depending on the data distribution.

Previous studies have done little theoretical work on the properties of these existing labelings. Therefore,
we first study the relationship between these labelings. In particular, we show in Theorem 3 that not only
the NNT, MT, and ST labelings but also the LB labeling in typical usages is a threshold labeling. This
finding motivates us to search for a better labeling function among the class of threshold labelings. Then,
in Section 4, we propose to apply empirical optimal threshold (EOT) labeling, which is a threshold
labeling that uses threshold parameters minimizing the empirical task risk for the learned 1DT, to 1DT-
based methods, under the expectation that the 1DT is learned successfully and the empirical (training) task
risk becomes a good estimate of the (test) task risk. Here, the threshold parameters for the EOT labeling
can be computed with a computational complexity of quasi-linear order O(nlogn) regarding the training
sample size n using a dynamic programming-based algorithm (Algorithm 1) mentioned in Lin & Li (2006)
(see Section 5 for the relation of our proposal to several previous studies including this reference).

In this study, we further performed numerical experiments of the OR task for real-world ordinal data to
confirm the practical effectiveness of the EOT labeling (see Section 6). The EOT labeling gave superior
generalization performance (more exactly, smaller test task risk) than the NNT, MT, ST, and LB labelings,
in many tried cases. Also, a modified 1DT-based method with the EOT labeling outperformed an existing
1DT-based method using the ST labeling that has been declared by Cao et al. (2020) to be state-of-the-art
in 2020 for the age estimation from the facial image.

Therefore, in this paper, we propose to change labeling procedures of (existing) 1DT-based OR methods
to the EOT labeling, on the ground of the fact (see Example 1 and Theorem 3) that the NNT, MT, and
ST labelings and LB labeling in typical usages are possibly sub-optimal threshold labelings, and empirical
effectiveness of the EOT labeling.

2 Preliminaries

2.1 Formulation of OR Problem

OR is the classification of ordinal data. The ordinal data have an underlying categorical target variable
Y € [K]:={1,...,K} that is equipped with an ordinal relation naturally interpretable in the relationship with
explanatory variables X € RY, where d and K are supposed to be integers larger than or equal to 1 and
3, respectively.! We here suppose that the target class labels are encoded to 1,...,K in an order-preserving
manner, like from ‘excellent’, ..., ‘terrible’ to 1,...,5.

The task of the OR (OR task) is basically the same as that of the standard (including cost-sensitive)
classification, to obtain a good classifier f : R? — [K]. For a user-specified task loss function ¢ : [K]? —
[0,00), it is formulated as minimization of the task risk E[{(f(X),Y)], where the expectation value E[-] is
taken for all random variables in its argument (here X and Y). Popular task losses for OR tasks include
not only the zero-one task loss €,,(j, k) = 1(j # k), where 1(c) takes 1 if a condition ¢ is true and 0
otherwise, but also V-shaped losses (for cost-sensitive tasks) reflecting one’s preference of smaller prediction

IFor better modeling of the ordinal data, it would be important to provide a mathematical characterization and further
discussion of the natural ordinal relation. However, it would be related to learning procedure of the 1DT (defined in Section 2.2)
more closely, and its necessity is not so great for the analysis and proposal of this study, so we will not mention it in this paper.
Refer to, for example, OR studies (da Costa et al., 2008; Yamasaki, 2022) for the discussion on such characterizations.
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errors over larger ones such as the absolute deviation task loss ,4(j,k) = |j — k|, squared task loss
lsq(j k) = (j — k)%, and €,0,0(j, k) = 1(|j — k| > ¢) with ¢ > 0.

2.2 Formulation of One-Dimensional Transformation (1DT)-Based Methods and Threshold Methods

In this paper, we discuss only 1DT-based OR methods. We here provide notations and terminologies common
for all the 1DT-based OR methods.

Suppose that one has the sample D, := {(x;,y;)}!;, each of which is drawn independently from an identical
distribution of (X,Y). First, 1DT-based methods learn a IDT a : RY — R of an observation of the
explanatory variables from a user-specified class A C {a : R — R} (1DT class) (e.g., a neural network
with a fixed network architecture and learnable weight and bias parameters) possibly together with other
objects so that an observation with a larger class label tends to have a larger value of the 1DT; we call this
procedure the learning procedure (of the 1DT). Next, 1DT-based methods build up a classifier as f = hoa
with a learned 1DT a and a labeling function h : R — [K]; we call this procedure the labeling procedure.
Most existing 1DT-based methods can be seen as adopting one of the NNT, MT, ST, and LB labelings,
depending on the properties of their learning procedure, as we review later in Section 3.

In particular, we call a labeling function & that can be represented as

K-1
h(w) = hepe (s 8) =1+ ) Au > 1) (1)

k=1
with parameters ¢ = (f1,...,tx_1) € RE~! as the threshold labeling. Also, we call the parameters t as the

threshold parameters, and a 1DT-based method using a threshold labeling as the threshold method,
in this paper. Note that this formulation of the threshold method is a generalization of the one employed
in most previous studies on conventional threshold methods that we will review latter in Section 3.2. The
threshold labeling Ay, (u; t) has the following properties:

Proposition 1. The threshold labeling hin(u;t) is non-decreasing and right-continuous in u € R and in-
variant regarding the permutation of the threshold parameters ti,...,tx_1. Conversely, an arbitrary non-
decreasing right-continuous function h : R — [K] can be represented by a threshold labeling hyn,(-;t) with
certain threshold parameters t € RE=1 (i.c., there exist t € REK=Y such that h(u) = hine(u;t) for any u € R)
or their permutation. Also, if t1,...,tx—1 take only L different values, then hin(u;t) has L change points
u=ui,...,ur such that hypn(u; — €;t) # hyne(ug; t) with a sufficiently small € >0 forl=1,...,L.

The last result implies that the threshold labeling is the simplest as the labeling function in the sense that
the resulting classifier has only (K — 1) decision boundaries for the learned 1DT at most.

Note that, in the learning procedure, since the empirical task risk ,1,2?:1 {(h(a(x;)), y;) is discontinuous
with respect to the 1DT a and hence difficult to optimize numerically, many methods depend on another ob-
jective function. In this paper, we call that objective function the empirical surrogate risk, its population
version the surrogate risk, and its data-dependent minimal component the surrogate loss (function).

2.3 Formulation of Policy of This Study

The goal of this study is to improve the labeling procedure of 1DT-based methods. Thus, regarding the
learning procedure of the 1DT, this paper adopts those by existing studies, and we do not discuss the
goodness of the learning procedure. Assuming that a learned 1DT a and task loss ¢ are given, we will
discuss the goodness of the labeling function & with the task risk E[¢(h(a(X)),Y)] or the empirical task risk

1 4 C(h(a(x;)), yi) as a criterion, since the aim of the OR task is to minimize the task risk.
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3 Review and Analysis of Existing 1DT-Based Methods and Labeling Functions

3.1 Regression-based Method with Nearest-Neighbor Threshold (NNT) Labeling

Regression-based methods (Kramer et al., 2001; Agarwal, 2008) learn a 1DT a by solving a naive regression
task that infers a class label by the 1DT: for a regression loss function ¢ : R X [K] — [0, o),

min > " pla(e), ). @)
i=1

For example, Kramer et al. (2001) used the squared (SQ) loss ¢sq(u,y) = (u — y)?, and Agarwal (2008)
used the absolute-deviation (AD) loss ¢aq(u,y) = |u—y|, as a regression loss function ¢.

As a labeling function h, regression-based methods often use the NNT labeling
hont () = hene(u; (1.5,2.5,. .., K — 0.5)) (3)

that is a threshold labeling A, (-;t) with the threshold parameters f, = k + 0.5, k = 1,...,K — 1. The NNT
labeling rounds the learned 1DT to its nearest label.

The regression-based methods using the above two surrogate loss functions and NNT labeling have the
following optimality guarantee for an OR task with a respective specific task loss:

Theorem 1 (Pedregosa et al. (2017, Theorems 9 and 11)). Let (£, ¢) be (Lads Paqa) o7 (bsqs dsq)- Then, for the
surrogate risk minimizer a € argmin,.pa_,g Bld(a(X),Y)] based on the surrogate loss ¢, the classifier font =
hnnt 0@ minimizes the task risk B[((f(X),Y)] for the task loss £: B[{(funt(X),Y)] = min;ga_, g E[C(f(X),Y)].

According to this theorem, the regression-based methods (Kramer et al., 2001; Agarwal, 2008) would be
expectable to work well if the sample size n and 1DT class A are sufficiently large. On the other hand, if the
1DT class A is strongly restricted, a classifier based on the NNT labeling may be sub-optimal for the OR
task (imagine that E[¢(funt(X),Y)] # E[£(h(a(X)),Y)] for fant = hune © @ with @ € argmin, z E[¢(a(X),Y)]

and h € argminy, g_,x) E[{(h(a(X)),Y)]).

3.2 Classical Threshold Method with Minimum and Summation Threshold (MT and ST) Labelings

Classical threshold methods have been studied actively in the machine learning and statistical litera-
ture (Shashua & Levin, 2003; Chu & Keerthi, 2007; Li & Lin, 2007; Lin & Li, 2012; Pedregosa et al., 2017;
Cao et al., 2020). Many of these methods are formulated with a learning procedure that simultaneously
learns (K — 1) parameters in addition to the 1DT a:

1
i ; pla(x;), b, i), (4)
where we call b = (by,...,bg_1) € RE"! the bias parameters, B C RE-! is a user-specified class for the

bias parameters (BPs class), and ¢ : R x RK=1 x [K] — [0, ) is a surrogate loss function. As the labeling
function h, several early works (Shashua & Levin, 2003; Chu & Keerthi, 2007) use the MT labeling

Bt (u; b) == min{k € [K] | u < by} with bg = 0o (5)
with learned bias parameters b = (by,...,bk_1), and more recent works (Pedregosa et al., 2017; Cao et al.,
2020) use the ST labeling

hst (u; B) = hene(u; b). (6)

The MT and ST labelings are threshold labelings and have the following relationship:

Proposition 2. Given b € RK™! together with by = —oo, let t be l;l-k with iy = min{j € {0,...,k} | bk Sﬁl;j}
for each k = 1,...,K — 1. Then, one has that hy(u; b) = hene(u;t) with t = (t1,...,tx-1). Also, hm(u; b) =
hne(u; ) if by < -+ < bg1.
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We remark that the MT labeling Bt (u; b) and ST labeling hg;(u; b) are different when the learned bias
parameters b are not ordered.

A surrogate loss function ¢(u,b, k) for these threshold methods is often built by replacing step functions
1(l = -) and 1(I + 1 < -) in the expression of the task loss €(-, k) = €(k, k) + Z;‘;ll{f(l, k)y—¢(+ 1k} =
D+ Zl]i;{l {€l + 1,k) = €(1,k)}1(I + 1 < -) to convex surrogates widely-used in binary classification (Lin & Li,
2012; Pedregosa et al., 2017) such as the hinge, logistic, and exponential losses, so that ¢(-,b,k) becomes a
continuous convex upper bound of €(figh:(+; b), k). For example, in the terminology of Pedregosa et al. (2017),
the ¢mmediate threshold (IT) loss function

@(b1 — a(x)), ify=1,
¢(Cl($), b’ Y) = (p(a(:v) - bK—l)’ if y= K’ (7)
¢(a(x) — by_1) + p(by — a(x)), otherwise

is an upper bound of zero-one task loss ¢,,, and the all threshold (AT) loss function

S bk — a(w)), ify=1
¢(a(:c), b, y) = Z]Ifz_ll ‘P(a(iﬂ) - bk)’ if y = K, (8)
Zzi pla(x) — by) + Zf:_yl @o(br — a(x)), otherwise

is an upper bound of absolute deviation task loss €,q. For instance, SVOR-IMC (Chu & Keerthi, 2007)
uses the IT loss with ¢(u) = min{0,1 — u}, fixed margin strategy (Shashua & Levin, 2003) and SVOR-EXC
(Chu & Keerthi, 2007) use the AT loss with ¢(u) = min{0,1 — u}, ORBoost-LR (Lin & Li, 2006) uses the
IT loss with ¢(u) = e, ORBoost-ALL (Lin & Li, 2006) uses the AT loss with ¢(u) = e™, and CORAL
(Cao et al., 2020) uses the AT loss with ¢(u) = log(1 + e™*).

As the BPs class B, the non-restricted (non-ordered) class RK~! and ordered class {b € RK~! | by < -.- <
bk_1} are often applied. As a simple implementation of the ordered class, Franses & Paap (2001) mentioned
to parametrize the bias parameters b as

by = b}, and by = by_1 + b}> for k= 2,...,K -1, (9)
with other parameters b},...,b%_, € R. When the ordered BPs class is applied, the MT and ST labelings
bring the same classification results. Also, for many AT loss functions, bias parameters b of the surrogate

risk minimizer (a,b) € arg ming e g pepx-1 E[¢p(a(X),b,Y)] are ensured to be ordered (by < --- < bg_1) (see
Chu & Keerthi (2005, Lemma 1) and Li & Lin (2007, Theorem 2)), and hence the use of the ordered BPs
class will be justified.

The use of the surrogate loss ¢ and the MT or ST labeling &, which make ¢(-,b,y) (with ordered I_)) to be an
upper bound of the task loss €(A(-),y), is almost like a convention and may facilitate generalization analysis
(Li & Lin, 2007; Lin & Li, 2012), but the goodness of selecting the MT or ST labeling is not supported
by theoretical discussion. We demonstrate in the following example that the MT or ST labeling may be a
negative factor that degrades the classification performance of threshold methods:

Example 1. We here consider the IT loss (7) with ¢(u) = min{0,1 — u}, which we denote ¢ninge-it(u,b, k)
and call Hinge-IT loss. The Hinge-IT loss is a continuous convex upper bound of the zero-one task loss with
the MT labeling €y0(hmt(-; b),k) (and ST labeling €,0(hst(-; b),k)) when b is ordered (i.e., by < -+ < bg_1):
Phinge-it (- b, k) s a convexr function and @ninge-it(-, b, k) = €,0(hmi (-3 b), k). So one may think that the Hinge-
IT loss and the task with the zero-one task loss (Task-Z) have friendly compatibility, from an analogy of
a well-known result, classification calibration (Bartlett et al., 2006), in binary classification. However, the
following demonstration shows that the MT labeling may be sub-optimal in minimizing the task risk as a
labeling function for the combination of the Hinge-IT loss and Task-Z.

We consider a 4-class OR problem (let K = 4), and suppose that the data appear only on 4 different points
22! in R and follow the probability distribution, Pr(zll) = 0.25 and (Pr(1|z!d),. .., Pr(K|z!l) =
(0.5,0.4,0,0.1), (0.3,0.5,0,0.2), (0.2,0,0.5,0.3), (0.1,0,0.4,0.5) fori=1,...,4.2

2We abbreviate the marginal probability Pr(X = z) to Pr(z) and the conditional probability Pr(Y = y|X = z) to Pr(y|x)
(this abbreviation applies to an estimate Pr as well).
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It can be shown that the surrogate risk minimizer (a,b) € arg ming gd g perk-1 E[@ninge-it(a(X), b, Y)] satisfies
by = by = by = 0, a(xM) = a(x!?!) = -1, and a(xB!) = a(x*)) = 1 (ignore the translation invariance) by
several simple calculations. The MT labeling predicts a label of the data on ®' as hy(a(el); b) = 1,1,4,4
for i =1,....4 (B[ly(hmi(@a(X);b),Y)] = 0.6), despite that using different threshold parameters (say t =
(=2,0,2)) can predict it as hye(a(xll);t) = 2,2,3,3 fori = 1,...,4 and yield a smaller value of the task risk
(E[z0(hmt(a(X); 1),Y)] = 0.55). o

3.3 Statistical Methods with Likelihood-Based (LB) Labeling

In the OR research in statistics, several methods have been developed according to the statistical mod-
eling of the conditional probabilities of the data through a 1DT (McCullagh, 1980; Williams, 2006;
Chu & Ghahramani, 2005; Yamasaki, 2022). For example, the cumulative link model (McCullagh, 1980),
which is popular in the OR research, models the conditional probabilities Pr(y|z), (x,y) € R¢ x [K] by

o (by — d(x)), ify=1,
P(y;o,a(z),b) = {1 - (by_; — a(x)), if y =K, (10)
o (by — d(x)) — o (by_1 — a(x)), otherwise,

where o : R — [0,1] is a link function that is non-decreasing and satisfies o-(-) = 0 and o(+00) =1 (i.e., o
is a cumulative distribution (CPD) function), @ : R — R is an assumed 1DT, and b = (by,...,bx_1) € RK~!
are assumed bias parameters that satisfy by < --- < bg_1. As a link function o, ordinal logistic regression
(OLR) (McCullagh, 1980) applies the CPD function of the logistic distribution (a.k.a. the sigmoid function)
Tlogistic() == 1/(1+e™), and cumulative probit model (Agresti, 2010, Section 5.2) and Gaussian process OR
(GPOR) proposed by Chu & Ghahramani (2005) use the CPD function of the standard Gaussian distribution

(a.k.a. the inverse function of the probit function) ogauss() = fio(2yr)_1/2e“’2/2 dv.

In the learning procedure of the 1DT, statistical methods apply surrogate loss functions associated with their
statistical modeling. For the cumulative link model, a surrogate loss function ¢ and the BPs class 8 for the
learning procedure same as (4) should satisfy

K
(@, B) = arg min Z P(y; 0,1, l~7)¢(u, b,y). (11)
ueR,beB y=1

A popular instance of the surrogate loss function is the negative log likelihood (NLL) loss function
énn(u, b, y;0) = —log{P(y; o,u,b)}, for which the learning procedure amounts to the maximum likelihood
estimation for the model (10). Also, Cao et al. (2020) used the AT loss (8) with ¢(u) = —log{o(u)}, which we
call the all negative log cumulative likelihoods (ANLCL) loss function and denote ¢anici(u,b,y; o),
for o = Ologistic. The learning procedure for this loss function can be characterized as the minimization
of sum of the NLLs of the models of cumulative conditional probabilities Pr(Y < k|X = ) for binary
classification problems, ‘k or less’ vs. ‘more than k£’ k =1,...,K — 1.

The above interpretation on using the surrogate losses ¢, and ¢aniel under the statistical model (10) can
be mathematically understood as follows:

Theorem 2. Assume that the random variable (X,Y) underlying the data has conditional probabilities that
can be represented as (10): Pr(y|x) = P(y; o, d(x),b) for every y € [K] and any x € R? in the support of the
distribution of X with o that is non-decreasing and satisfies o-(—00) = 0 and o(+c0) =1 (and o(=)=1-0()

for ¢ = Ganicl) such as Tlogistic and Tgauss, @ : R4 — R, and b € RK-1 satisfying b1 < --- < bx_1. Let A
be {g : RY - R}, and (¢,8B) be (pun.{b € RE™ | by < -+ < bx1}), (Pantet, RET), 0F (fantcr, {b € RETL |
by £ -+ < bg-1}). Then, any surrogate risk minimizer (a,b) € argmin,c g peg El¢p(a(X),b,Y)] satisfies

P(y;o,a(x),b) = Pr(y|z) for any x € R¢ in the support of the distribution of X .

For such methods, not only the threshold labelings but also the LB labeling that grounds on the assumed
statistical model is a widely-used option for the labeling function. Considering Theorem 2 and the equality
E[¢(f(x),Y)] = Zle Pr(y|z){(f(z),y), and aiming to minimize the task risk, mingga_,;x) E[(f(X),Y)], these
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methods can predict a label with the LB labeling

hy (u; 07, b, €) = mln(argmm ZP(y,o- u,b)t(k,y) (12)
ke[K] y=1

with learned bias parameters b, under the expectation that the assumed statistical model (10) correctly
represents the actual statistical behavior of the data and it is learned successfully. Note that there can
be a tie situation where objective functions with different k of (12) take the same value, and argming gk
operation outputs multiple labels. The overlaid min operation in (12) avoids such a tie situation.

These methods tend to perform better when their assumed statistical model represents the actual statistical
behavior of the data well. One can, however, find that the condition in Theorem 2 is very restrictive.
Therefore, in many practical situations, their statistical model would deviate from the actual statistical
behavior of the data, and then their 1IDT model may not be learned appropriately, and the LB labeling
hin(+; o, b, €) may be sub-optimal for the learned 1DT model a.

One may still consider that the LB labeling is more flexible, in that it is generally not restricted within the
class of non-decreasing threshold labelings, and superior to threshold labelings. However, we found that the
LB labeling takes the form of the threshold labeling, for typical statistical models such as ones in OLR and
GPOR (i.e., the link function o such as Glogistic, Cgauss) and for typical task losses such as € = €50, ly0, ¢, ads Csq-

Theorem 3. Suppose that o is non-decreasing and satisfies (=) =0 and o(+o0) = 1 and that by <--- <
bkx_1. Then, the LB labeling hy,(u; o,b,€) is

(i) a certain threshold labeling hn,(u;t) for some t € RX=Y if £(k,l) at each fized k € [K] is non-
increasing in | for | < k and non-decreasing in I for | > k, and & 1(j) = C(k,j) —€(k,j + 1) =€, ) +
(1, j + 1) at each fized different k,I € [K] is non-positive (resp.non-negative) for all j € [K — 1]
respectively when k <1 (resp.k > 1), such as € = €aq,4sq,

(ii) a certain threshold labeling hine(u;t) for some t € RE=L if € = £,0,€,0.c with ¢ € [0,|K/2]), o is
differentiable, o’ (v) is even and non-increasing in v if v > 0, and % 18 non-increasing in vy

with fized vo and in vo with fized v1 if vi < v, such as Tlogistic aNd Ogauss, where | v] is the greatest

integer less than or equal to v,

(iii) the threshold labeling hin(u; b) that is same as the MT labeling hui(u; b) and ST labeling hgi(u; b), if
€ ="0aq and 0(0) =

Here, Theorem 3 (i) assumes that the task loss ¢ is V-shaped, and the condition on £ ; in Theorem 3 (i)
holds under the convexity of £ defined below:

Theorem 4. & ;(j) at each fized different k,I € [K] is non-positive and non-negative for all j € [K — 1]
respectively when k <1 and k > 1, if the task risk € is convex in the difference of the two arguments:

ks) < (j3 —k3) = (j1 — k1) (j2 — k2) = (s — k3)
T (Jo —k2) = (j1 — k1) (o — k2) = (j1 — k1)

for all ji,...,ks € [K] such that j1 — k1 # jo — ko and j1 — k1 < j3 — k3 < jo — ko.

(s, €01 k) + {(j2, k2) (13)

The condition on o in Theorem 3 (ii) comes from the consideration for non-convex task losses.

A result similar to Theorem 3 also holds for 1DT-based likelihood models other than the CL model (10); refer
to Theorem 5 in Section B. For 1DT-based statistical methods, it may be common that their LB labeling is
a threshold labeling.

4 Proposal of 1DT-based Methods with Empirical Optimal Threshold (EOT) Labeling

In typical usages, not only the NNT, MT, and ST labelings, but also the LB labeling is a threshold labeling,
as we confirmed in Theorem 3. Thus, we consider that it would be meaningful to aim for a better threshold
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Algorithm 1: Calculation of the threshold parameters for the EOT labeling

Input: Task loss ¢, learned 1DT a, and training data D, = {(x;, i)},
/* Preparation of {aj} ', and Y;,j=1,...,N. x/

1 Let {a } , be unique elements of {a(a:l)}l.:1: aj1 * ajf2 for all ji, jo € [N] s.t. j1 # jo2, and
a(m)E{a }N for all i € [n].

2 Sort {a }N1 in the ascending order, and represent the result as {aj} Lo a1 < <an.
3Createsets Yi={vilalx)=a;}',,j=1....N
/* Calculate matrix L e RN Xk */
4 fork=1,...,K do
5 | Lix=Xy ey kyi)
6 for j=2,...,N do
7 for k=1,...,K do
8 ‘ Lj g = mingefe) Lj—1,1 + 2y, cy; Ok, i)

/* Calculate threshold parameters t. x/
9 [ « min(argmin;¢(x Ly 1)-
10 if I # K then
| Let # be a value larger than ay (e.g., +o0) for k =1,...,K — 1.
11 for j=N-1,...,1do
12 J — mm(arg ming ey Lj.1)-
13 if I # J then
‘ I = (ﬁj +67j+1)/2 fork=J,....01—1,and I « J.
14 if I # 1 then
| Let # be a value smaller than a; (e.g., —o0) for k =1,...,1-1.
Output: Threshold parameters ¢ = (f1,...,fx—1).

labeling for improving the classification performance of existing 1DT-based methods. Recalling that the final
goal is to make the task risk E[£(f(X),Y)] small, and expecting that the 1DT was learned successfully and
the empirical (training) task risk becomes a good estimate of the (test) task risk, we propose to apply the
EOT labeling

h(ut; beor) With teoy € argmin ~ Z CChene(@(a;); ), yi) (14)
teR

that uses threshold parameters minimizing the empirical task risk for a given learned 1DT model a.

The threshold parameters for the EOT labeling can be computed with a dynamic programming-based algo-
rithm (Algorithm 1) mentioned in Lin & Li (2006); see also researchers’site (https://home.work.caltech.
edu/~htlin/program/orensemble/) of Lin & Li (2006), and Section C of our paper for its optimality guar-
antee. It costs a computational complexity of quasi-linear order O(nlog n) regarding the training sample size
n, which stems from the sorting operation in Line 2.

The NNT labeling for regression-based methods (reviewed in Section 3.1) and LB labeling for statistical
methods (reviewed in Section 3.3) have optimality guarantees for the task risk minimization under ideal
situations; refer to Theorems 1 and 2. Also, many threshold methods employ (K — 1) bias parameters, and
those bias parameters can be directly used in their labeling procedure like MT and ST labelings, as reviewed
in Section 3.2. Presumably, for these reasons, a formulation that allows a threshold labeling with variable
threshold parameters have not been considered for these methods. Our formulation in Section 2.2 introduces
the threshold labeling with variable threshold parameters and clearly distinguishes the bias and threshold
parameters. This is also an important contribution of this paper: due to this formulation, it becomes natural
to consider the application of the threshold labeling to 1DT-based methods with a different number of bias
parameters than (K — 1) such as PO-VS-SL (Yamasaki, 2022). Furthermore, this led to the EOT labeling
that has a potential to improve the classification performance.
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5 Relationship to Other Previous Studies

Most existing studies on 1DT-based methods discuss the learning procedure. In Section 3, we reviewed point-
wise 1DT-based methods in which the learning procedure is formulated with a surrogate loss function
defined for each point (a(x;),y;), but some 1DT-based methods employ different formulations. For example,
pair-wise 1DT-based methods including RankSVM (Herbrich et al., 1999) and RankBoost (Lin & Li,
2006) are formulated with a surrogate loss function that is defined for each pair of two points (a(x;),y;) and
(a(zxj),y;); see also Lin & Li (2012); Gutierrez et al. (2015) for survey of such methods. The EOT labeling
can be applied to those 1DT-based methods as well.

On the other hand, there are several previous works that have studied the labeling procedures different from
NNT, MT, ST, LB, and EOT labelings. We review the discussion of those previous works, and describe the
relationship between their methods and the EOT labeling, in the following.

Herbrich et al. (1999) considered a pairwise 1DT-based method based on a hinge-type surrogate loss, for the
task with the zero-one task loss. Their method (Herbrich et al., 1999, (12)) adopts a threshold labeling with
threshold parameters determined by minimizing a unique criterion that emphasizes the shape of the used
hinge-type loss and is different from the (empirical) surrogate risk, and has no optimality guarantee in the
task risk minimization.

Lin & Li (2006) considered three methods; see RankBoost (4), ORBoost-LR (7), and ORBoost-ALL (8) of
this reference. The third method applies the AT loss with ¢(u) = e™ (ORBoost-ALL), and its labeling
procedure is the same as the MT and ST labelings in this paper. Also, one can understand that the second
method, ORBoost-LR (7), tries to minimize (an upper bound of) the empirical surrogate risk based on the IT
loss function with ¢(u) = e™ and ordered BPs class in its learning procedure, and its labeling procedure also
can be seen to follow the idea of the MT and ST labelings. Finally, the first method, RankBoost, is a pair-
wise 1DT-based method, and its objective function (4) for the labeling procedure is defined as the empirical
task risk with the absolute deviation task loss. This labeling procedure is similar to the EOT labeling,
but Lin & Li (2006) did not mention the relevance between that objective function and the task under
consideration. Although Lin & Li (2006) presented a description on the threshold parameters determination
based on the zero-one task loss at the part following (4), they tried only the threshold parameters determined
by minimizing the empirical task risk with the absolute deviation task loss even when they considered the
task with the zero-one task loss in their experiments. The main claim of our consideration in Section 4 is
that the threshold parameters should be determined via minimizing the (empirical) task risk for the task
under consideration. Therefore, the EOT labeling in Section 4 can be interpreted as a variant of those for
Lin & Li (2006, (4)) with respect to the relevance between the objective function to determine the threshold
parameters and the task under consideration.

6 Numerical Experiments

Purpose We performed numerical experiments to answer the question, whether a modified 1DT-based
method with the EOT labeling can yield better classification performance (i.e., smaller test task risk) for
the OR task than existing 1DT-based methods using other labeling functions.

Datasets and Preprocessing In the experiments, we used the five various-domain datasets, LEV (lec-
tures evaluation), ERA (employee rejection/acceptance), SWD (social workers decision), WQR (winequality-
red), and CAR (car evaluation) datasets, and the three face-age datasets, MORPH (MORPH Album2),
CACD, and AFAD datasets (Ricanek & Tesafaye, 2006; Chen et al., 2014; Niu et al., 2016). The main reason
why we used the various-domain and face-age datasets is respectively to experiment with many real-world
datasets in various domains and to confirm whether the proposed method achieves the classification perfor-
mance competitive to the state-of-the-art method in a modern application. For most of the experimental
settings, we referred to those of the previous study (Cao et al., 2020).3

3For the face-age datasets, we used a part of program codes published in https://github.com/Raschka-research-group/
coral-cnn by Cao et al. (2020), but results of our reproduction of their method differ from theirs mainly because we changed
a learning rate from 5 x 107 to 1072:3. See https://github.com/Anonymous for program codes that we used.
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Table 1: Dataset properties, the total sample size not, the dimension d of the explanatory variables, and
the number K of classes of the target variable, of all the used datasets.
| LEV | ERA | SWD | WQR | CAR |MORPH| CACD | AFAD

Ttot, 1000 1000 1000 1599 1728 55013 159402 | 164418
d 4 4 10 11 21 1282 x3 | 1282 x3 | 1282 %3
K 5 9 4 6 4 55 49 26

For the various-domain datasets, we selected those with the total sample size nyo¢ = 1000 from datasets
that Gutierrez et al. (2015) used as OR datasets, and used them following the setting of the explana-
tory and target variables in Gutierrez et al. (2015). One can obtain the various-domain datasets from a
researchers’site (http://www.uco.es/grupos/ayrna/orreview) of Gutierrez et al. (2015) or our GitHub
repository (https://github.com/Anonymous). We purchased the MORPH dataset at https://ebill.
uncw.edu/C20231_ustores/web/ and preprocessed it so that the face spanned the whole image with the
nose tip, which was located by facial landmark detection (Sagonas et al., 2016), at the center by using
EyepadAlign function by Raschka (2018). While this dataset contains 55,134 facial images with ages from
16 to 77, we used 55,013 images with ages from 16 to 70. The CACD dataset can be downloaded from
https://becsiriuschen. github.io/CARC/. We preprocessed this dataset similarly to the MORPH dataset.
Since the CACD dataset collects images from the Internet using computer vision techniques, it includes
some facial images inappropriate for our consideration. Excluding images, in which no face or more than two
faces were detected in the preprocessing, from the original 163,446 images, we used 159,402 facial images in
the age range of 14-62 years. For the AFAD dataset obtainable at https://github.com/afad-dataset/
tarball, because faces in its images were already centered, we took no further preprocessing, and used its
164,418 images with ages 15—40. For these face-age datasets, we treated the age rank as the target variable.
Table 1 summarizes basic dataset properties, the total sample size nyot, the dimension d of the explanatory
variables, and the number K of classes of the target variable, of all the used datasets.

For the various-domain datasets, we randomly divided each dataset into 72 % training, 8 % validation, and
20 % test sets. For the face-age datasets, we resized all images to 128 x 128 x 3 pixels (3 stems from RGB
channels) and randomly divided each dataset into 72 % training, 8 % validation, and 20 % test sets, and the
training phase used images randomly cropped with the size of 120 x 120 X 3 pixels as input to improve the
stability of the model against the difference of facial positions, and validation and test phases used images
center-cropped to the same size, following procedures by Cao et al. (2020).

Tasks We considered the three popular OR tasks: minimization of the task risk for the zero-one task loss
l0(j, k) = 1(j # k) (Task-Z), that for the absolute deviation task loss €.q4(j,k) = |j — k| (Task-A), and that
for the squared task loss €sq(j, k) = (j — k)* (Task-S).

Methods For the various-domain datasets, we applied a 1DT class based on a 4-layer fully-connected
neural network, in which every hidden layer has 100 nodes activated with the sigmoid function in addition to
bias nodes. Also, for the face-age datasets, we applied a 1DT class based on ResNet-34 (He et al., 2016), a
modern CNN architecture, following (Cao et al., 2020)’s implementation. It modifies a fully-connected (the
number of classes)-output final layer of the conventional ResNet-34 to a fully-connected 1-output layer.

As the surrogate loss function, we tried the AD loss @,q; the IT loss (7) with ¢(u) = log(1 + e™) (Logistic-
IT); the AT loss (8) with ¢(u) = log(1 +e™) (Logistic-AT); the NLL loss ¢y for the statistical model (10)
with o = Ojogistic (OLR-NLL).*

As the BPs class, we tried the non-ordered class and the ordered class for the Logistic-IT loss; the ordered
class for the Logistic-AT and OLR-NLL losses. Note that the AD loss has no bias parameters.

As the labeling procedure, we tried the NNT and EOT labeling for the AD loss; the MT, ST, and EOT
labelings for the Logistic-IT loss; the MT, ST, LB, and EOT labelings for the Logistic-AT and OLR-NLL
losses. When using the ordered BPs class, the MT and ST labeling yield the same result (see Proposition 2).

4For numerical stability (to avoid log(0)), we used an approximation of the NLL loss in which the logarithmic function log(-)
of ¢y is replaced to log(- + 1078) in the learning procedure.

10
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(b) Logistic-IT, non-ordered (c) Logistic-IT, ordered
o 9 —— NNT, training ---- NNT, test
s ° —— MT, training ---- MT, test
! ) —— ST, training ---- ST, test
z j —— LB, training ---- LB, test
. N —— EOT, training ---- EOT, test

[ 20 40 60 80 100 0 20 60 80 100

(d) Logistic-AT, ordered (e) OL“I:D{—NLL7 ordered
Figure 1: The learning curves of the training and test errors over 100 training epochs in a certain trial.
These are for a special case for the AFAD dataset and the RMSE for the Task-S. In Figures (¢)—(e), the ST
and MT labelings yield the same curves.

Also, for the Logistic-AT and OLR-NLL losses with the ordered BPs class, MT, ST, and LB labelings yield
the same result under the Task-A (see Theorem 3).

Cao et al. (2020) declare that their method, which is a combination of the Logistic-AT loss and ST labeling,
is the state-of-the-art method for the face-age datasets in 2020. Although they used the non-ordered BPs
class, bias parameters of the surrogate risk minimizer are guaranteed to be ordered, and hence using the
ordered BPs class would have made little difference to the result. Thus, we treated results for the method
with the Logistic-AT loss, ordered BPs class, and ST labeling as their results, in the comparison.

Training and Evaluation During the validation and test phases, models are evaluated based on the
mean zero-one error (MZE), the mean absolute deviation error (MAE), and the root of the mean
squared error (RMSE), which are defined for a classifier f and m used data points as % o o (f(x), yi),
% 2ty Laa(f (), yi), and {% 2 Lsq(f (), yi)}1/2, for the Task-Z, Task-A, and Task-S, respectively. Here,
the root operation of the RMSE is only for adjusting the scale of the error and does not affect our discussion
related to the optimality of the EOT labeling.

We ran 50 trials for the various-domain datasets and 10 trials for the face-age datasets, with randomly-set
different divisions of training, validation, and test sets and initial parameters of the network. In each trial,
we trained the network using Adam of the learning rate 1072-% and mini-batch size 256 as an optimization
procedure for 500 epochs for the various-domain datasets or 100 epochs for the face-age datasets. Addition-
ally, for methods using the EOT labeling, we calculated the threshold parameters according to Algorithm 1
at the end of every training epoch. The above errors were evaluated on the validation set at the end of every
training epoch, and then we adopted a model at the timing with the smallest error among the obtained
validation error sequences as the test model.

We judge the significance on the classification performance of the labeling function by the one-sided Wilcoxon
rank sum test with p-value 0.1 based on errors for all the trials of methods using different labeling functions,
in each combination of the dataset, error, surrogate loss function, and BPs class.

Results Figure 1 shows the learning curves of the training and test errors. The EOT labeling results in
smaller training errors as its design, which appears to in turn result in smaller test errors. Also, we can find
that the EOT labeling may stabilize (or smooth) the learning curve from Figures (c) and (d). Table 2 shows
the mean and standard deviation of the errors, for the test model, evaluated on the test set. In many tried
cases, the EOT labeling outperformed the NNT, MT, ST, and LB labelings regarding the test task risk. In
particular, for the face-age datasets, modified 1DT-based methods using the EOT labeling provided better
performance than the method (Logistic-AT, Ordered, ST) in Cao et al. (2020) that was the state-of-the-art
in 2020. These results suggest the success of the EOT labeling in the subject (aiming for a better labeling
procedure) of our research.

11
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Table 2: It shows the mean (M) and standard deviation (S) of the test errors in the form ‘Mg’ The smaller
the error, the better that method is for that dataset and that task. In each block specified with the dataset,
error, and learning procedure, we highlighted in bold font the best results that were tie each other and
superior to all other results with respect to the one-sided Wilcoxon rank sum test with a significance level
of 0.1, if they exist. Also, we colored the best results in red for each combination of dataset and error.
Learning  Labeling | LEV | ERA | SWD | WQR | CAR |MORPH| CACD | AFAD

AD NNT 385026 | 794027 | 411028 | 392026 | 014009 | 875005 | 927002 | -882.002

EOT .384 .027 .733_032 .412_025 .395.023 .013.003 .8744003 1925 o01 .878_002

Logistic-IT MT 390030 | 744029 | 414036 | 393023 | 017007 | -884.003 | -937.001 | -887.004

N nong-ordered ST 390030 | 744020 | 414036 | 394021 | 018 008 | 885003 | .936.002 | .895.002

ﬁ LOgiStiC—IT NIT,ST .3854029 .7251);;1 .416033 .390.024 ~011.006 .8934004 .947_0()2 .881.002

S ordered EOT .386_026 .729_031 .412_030 .389_025 .010_006 .890.002 .946.002 .882_002
s . MT,ST .383 731 413 .397 .012 74 005 | .929 .883

m _ ) .028 .026 .034 .022 .006 .005 .004 .002

S Loglgtlc éAT LB 386,020 | .758.026 | 418031 | 397022 | 011006 | 874005 | 9300005 | 880002

=~ ordere EOT 389025 | 732030 | 412028 | 3931020 | 011006 | -872006 | -929.004 | -879.003

OLR-NLL MT,ST .380 025 725 o35 411 o33 .394 25 .010 o5 871 go5 1926 002 .878 002

dered LB .383.029 | 747027 | 419030 | .392024 | 010005 | -870.005 | .926.003 | -876. 002

ordere EOT 384026 | .T33.032 | 410,031 | .394.026 | 010,005 | .871.00a | -925.002 | .876.003

AD NNT 413031 | 1.236.069 | -429.035 .430 029 014 009 | 2.931 025 | 5.243 929 | 3.352 024

EOT A13.030 | 1.231 072 | 428,031 | 432028 | -013.009 | 2.918 033 | 5.238 029 | 3.349.020

< Logistic-IT MT 425 036 | 1.262 973 | 438,037 | 430,026 | 017007 | 3.189 049 | 5.758 101 | 3.796 080

% LOBIS 1dc‘ q ST 425036 | 1.262073 | 438037 | 429026 | 018009 | 3.188 049 | 5.757 103 | 3.732.038

g nomordere EOT Aldg3 | 1228979 | 436,034 | 421026 | 0100 | 3.124,933 | 5.631 093 | 3.538 030

8 LOgiStiC—IT IWT,ST .4164030 1.239076 .440()33 .426.026 ~011.006 3.742,084 6.6854131 4.082043

E ordered EOT ~4134026 1.2264069 .436.031 .428.027 ~010.006 3.540 .038 6.359,042 3.619_023

i Logistic-AT MT,ST,LB || .416.032 | 1.233.063 | .437.034 431 23 .011.006 | 2.874037 | 5.381 138 | 3.375.033

= ordered EOT .4164032 1233406‘3 .437034 .431.023 ~011.006 2 856 .030 5~3424128 3.367_025

OLR-NLL MT,ST.LB || 417929 | 1.234.067 | .436.035 | 427026 | .010.005 | 2.873.043 | 5.243 034 | 3.345 020

ordered EOT A12 029 | 1.225 068 | 433032 429 27 010,005 | 2.845 037 | 5.228 g41 | 3.343 017

AD NNT 697 036 | 1.623.094 | .684 035 .710 930 113044 | 3.962 040 | 7.395 027 | 4.571 32

EOT 698 036 | 1.589 977 | .676 930 721 o33 108044 | 3.942 039 | 7.410035 | 4.534 927

Logistic-I'T MT 706 041 | 1.655085 | .696 035 | .713.032 | .133.032 | 4.257 970 | 7.870.109 | 5.151 78

e ered ST 706,041 | 1.655.085 | 696035 | 710039 | 135036 | 4.255.068 | 7-869 110 | 5.058 065

% non-ordere EOT 694034 | 1.585.079 | 684,30 | 702026 | 094,034 | 4172045 | 7.620 g7 | 4.706 936

& Logistic-IT MT,ST 698 037 | 1.644 990 | .694.033 707 029 102032 | 5.016.100 | 8.902 182 | 5.720 g2

:@: ordered EOT 693 036 | 1.592 ¢78 .684 (o7 .709 031 .095 036 | 4.726 064 | 8.320 955 | 4.798 o35

Om,) Logistic-AT MT,ST 696 035 | 1.585. 0977 | .686.031 | .708. 027 | .102033 | 3.859 043 | 7.520 096 | 4.589 053

g Losine LB 696,035 | 1.604.081 | 689034 | 710025 | 102033 | 3.858.043 | 7.497.080 | 4.517.040

=i ordered

= EOT 694 036 | 1.587.0s0 | 682032 | 713029 | .099 037 | 3.841 034 | 7.494 053 | 4.517 922

OLR-NLL MT,ST 697 033 | 1.592 081 | .683.024 | 710028 | .100025 | 3.870.037 | 7.437 061 | 4.574 031

d_“ d LB 696 032 | 1.616 085 | .690.034 | .710.029 | -099 025 | 3.869.036 | 7423 060 | 4.508 g29

ordere EOT 693035 | 1.588.079 | .682.026 | .708.02s | -096.030 | 3.852.044 | 7.417 059 | 4.510 925

7 Conclusion and Future Prospect

The NNT, MT, and ST labelings and the LB labeling in typical usages are threshold labelings that may be
sub-optimal depending on the learning result of the 1DT, task under consideration, and data distribution.
In this study we propose to change the labeling procedure of the existing 1DT-based methods to the EOT
labeling that applies the threshold parameters minimizing the empirical task risk for a given 1DT, in order to
obtain higher classification performance. Experiments in this paper showed the usefulness of this proposal.

We are also interested in the design of the learning procedure, especially the selection of the surrogate loss
function, for the threshold method. One may be able to take systematic discussion on the goodness of the
loss function by fixing components of the threshold method other than the loss function to the optimal ones.
In such discussion, the EOT labeling will serve as the optimal other components. This is a future prospect.
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A Proof of Consistency of Statistical Methods
We here give proof of the theorem on the interpretation of the learning procedure for statistical methods.

Proof of Theorem 2. We can characterize the surrogate risk minimization for the NLL loss as maximum
likelihood estimation for the statistical model (10) for multi-class classification problem through the equation

aeA,be

K
min B E[¢nn(a(X),b,Y;0)] = aer;[}}ge 3 ELZ; Pr(y| X)¢nu(a(X),b, y; 0)]
) (15)

= min E
acA,beB

K
=2 PrIX)log P(y; o alz), b)].
y=1

According to the method of Lagrange multiplier, one solution of a point-wise (at each X = &) minimization
problem

K K
min - Z Pr(y|z)log Pr(y|z), subject to Z Pr(y|z) = 1 (16)
{Pr(k|z)}k y=1 y=1

is lﬁr(y|:c) = Pr(y|lz) = P(y;o,a(xz),b), y = 1,...,K, where the existence of such {a(x),b} is assumed in the

statement of the theorem. This solution applies for any @ € R, and one can see that a solution of (15) is
{a,b}, which completes the proof of the statement for the NLL loss.

14
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Also, for the ANLCL loss, we can provide the following characterization:

E[¢anld(a(X)’ b7 Y)]

K y-1 K-1
= E[— > Pr(le){Z log {1 - O(k; o,a(X),b)} + Y log O(k; o, a(X), b)}]
y=1 k=1 k=y (17)

-1
== Z E[PF(Y < y|X)log Q(k; o, a(X),b) + {1 - Pr(Y < y|X)}log{l - Q(y;tf,a(X),b)}],
y=1

where Q(y; o,a(x),b) = zzl P(k;o,a(x),b) and the expectation value E[-] is taken for X. On the ground

of the binary version, ‘y or less’ vs. ‘more than y’ (y = 1,...,K = 1), of (16), one can prove the statement
similarly. O
One may consider the IT loss (7) with ¢(u) = —log{o(u)}, which we call immediate negative log cu-

mulative likelihoods (INLCL) loss function. However, it is difficult to characterize the surrogate risk
minimization with the INLCL loss as a problem with a known solution unlike those for the NLL and ANLCL
losses, and the optimality condition for the INLCL loss is unknown.

B Proof of Relationships between Labeling Functions

This section provides proofs of Theorems 3 and 4 regarding the relationships between the LB and threshold
labelings. Propositions 1 and 2 would be trivial, so we omit proofs of them.

First, we prove Theorem 3.

Proof of Theorem 3. We introduce the functions

K K-1
Ri(w) = ) (b =) = by =}, K) = LK) + ) (b =u}{0(k) = Gk + )} for j = 1......K,
k=1 k=

(18)

with by = —c0 and bg = +co, where the equation holds, since o(~o0) = 0 and o-(+o0) = 1. The classifier based
on the LB labeling, f(x) = arg min;x; Zszl P(k; o,a(x),b){(j, k), is equal to arg min; (g} Rj(a(x)). According
to Proposition 1, the LB labeling is a certain threshold labeling if and only if arg minjE[K]{Rj(ul)}jK:l <
arg minje[K]{Rj(ug)}szl for any u1,us € R such that u; < us. The latter condition holds if the situation

Ry (1) > Ry(u) for u € (s1,52) and Ry(u) < Ry(u) for u € (so,53) with k <[, 51 < 59 < 53 (19)

does not occur. In the following we assume k < [ for the indices k,[ € [K].

Proof of (i). Under the assumption described in the statement of the theorem, the difference

K-1
Ri(u) = Ri(u) = {{(k,K) = (I,K)} + o(bj —u) {L(k,j) =€k, j +1) = (L j) + €1 j + 1)} (20)
j=1 [ ——
non-negative non-negative non-positive
constant non-increasing constant

is non-decreasing with respect to u. Thus, Rx(u) < R;(u) for u < p and Ry (u) > Ry(u) for u > p for a some point
p, Ri(u) < Ry(u) for any u, or Ri(u) > Ry(u) for any u, which implies that the above-mentioned situation (19)
does not occur. Note that, for the instances £ = faq,€sq, one has that

2. Mk<j<l-1) for € ="{yq,

(21)
2(k = 1), for € = {yq.

b1 () = €k, j) = €Ck, j + 1) = &L, j) + £(L,j + 1) = {

15
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This completes the proof of the statement (i).
Proof of (ii). For ¢ = {,, . with ¢ € [0,| K/2]) where €, = {00, the function R;(u) reduces to

Ri(u) =1—-A{o(b; —u) — o(aj —u)}, (22)

with a; := Emax{o,j—c} and b; = I;min{jJ,C,K}, where a; < b;. Lemma 1 (described after the proof of Theorem 3)
shows the shape of the function R;(x): Under the assumption of Theorem 3 (ii), R;(u) is minimized at
u = (a; + bj)/2 = ¢j, symmetric in ¥ around u = c;, non-increasing in u for u < ¢;, and non-decreasing in
u when u > ¢j, from Lemma 1 (i) and (ii). Also, assuming that ¢; is fixed, then R;(u) is non-decreasing in
bj —aj, from Lemma 1 (iii).

When by — ar = by — a;, the translated two curves Ri(u) and R;(u) have just one intersection point at

u = (cx + ¢1)/2, and it holds that Ri(u) < Ry(u) for u < (cx + ¢;)/2 and Ri(u) > Ry(u) for u > (¢ + ¢1)/2.
Therefore, the situation (19) does not occur if by — ax = by — a;.

Then, assume by — ax < b; — a; (the following proof strategy for this setting can be applied to the other
setting by — ax > by — a;). In this setting, Ri(u) > Ry(u) for u > ¢; due to the shape of the functions Ry and
R;. Also, within [cg, ¢;], they can have one intersection point p at most such that Ri(u) < R;(u) for u € [cy, p]
and Ry (u) > Ry(u) for u € [p,c], since Ri(u) and R;(u) are respectively non-decreasing and non-increasing in
u. Therefore, the situation (19) can be satisfied only in such a situation that there exists a point p satisfying

Ri(p) = Ri(p), R, (p) < R/(p), and p < ¢;. (23)
The existence of such a point p implies that

o’(ax = p) = o'(by = p) < o’(a; —p)—o'(b; — p)
o(ax —p)—o(bx — p) o(a; — p) —o(b; - p)

with ax < a;, b < by, ax < by, a; < by, p < cy. (24)

a’'(v1)-o’(va)

1) va) is non-increasing in v; with fixed v and in vo with fixed v; when

However, the assumption that
1 < vo shows that
oax —p) =o' (bx —p) _ o'k —p) =o' (i —p) _ o'(a~p) =’ (b=~ p)
o(ax—p)—o(bk—p) ~ olax—p)—obi—p) ~ ola-p)-ob-p)’

(25)

which contradicts to the equation (24). Therefore, the situation (19) does not occur also when by —ax < by—a;.
Note that, especially when o = 0ggistic, one can show that
0'/(V1) - 0',(\/2) _ ‘Tlogistic(vl)(]- - mogistic(vl)) - Ulogistic(VZ)(]- - Jlogistic(VZ))

o(v1) —o(v2) - O-IOgistic(Vl) - O’logistic(VQ) (26)

=1- {Ulogistic(vl) + o'logistic(VZ)},

is decreasing in vy with fixed v2 and in vy with fixed vi. Moreover, when o = 0gauss, one has that

o’ vy) - o’ V2) efvf/Q _ e*V%/Q
( ) ( = fl(vl,vz), (27)
o(v1) —o(v2) O'gauss(vl) - O-gauss(VQ)
that the derivative of fi(v1,v2) with respect to vy,
oy, pmV2/2 _ _(,-VE/2 _ -vE/2y 1 —vE/2
0 ( ) vie "1 {O—gauss(‘}l) O—gauss(VQ)} (6 1 e "2 )me 1 ( )
——fi(vi,v2) = 28
oy {O-gauss(vl) - O-gauss(v2)}2

has the same sign as

]. —V2/2 ]. —V2/2
—e 17— ——e 27 29
Vo Nor (29)

folvi,ve) = _Vl{o-gauss(vl) - O-gauss(VQ)} -

16
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and that the derivative of fa(v1,v2) with respect to vo is

P o
a_\/ng(Vl’VQ) =(v1 - V2)\/T_ﬂ€ 32, (30)

Since %fg(vl,\q) < 0 when vy < vy and fo(vy,v1) = 0, it holds that f5(v1,v2), which has the same sign as

o o' (vi1)-o’'(v2) o'(vi)-o’(ve)

v oo (va) is negative when v; < vg, that is, o (va) is decreasing in v; with fixed vo when vy < vo;

monotonicity in ve with fixed v; can be proved by the same discussion.

Proof of (iii). Regarding the MT and ST labelings, let y = A, (u; b) under the assumption by < --- < bg_1,
which implies that by < -+ < by_1 <u < by < -+ < bg_1. Regarding the LB labeling for the likelihood
model (10), one has that, with the abbreviations oy = (b —u) for k = 1,...,K,

K

Rj(u) = Z{O'k — Ok-1}j — kI,

)
=lj-1{or—oo} +1j -2{o2 — o1} + -+ 2{0j2 — 03} + {0j-1 — 02}
+{ojs1 — o} + 2{ojr2 — ot + -+ | - K+ 1{ok-1 — o2} +|j — Kl{ok —ok-1}

=—Ij—1|$+{jiak}—{Iilak}ﬂj—zqi,; (31)

k=1 k=j
0 1
1 K-1 B
= olbe-w+ y {1 -ob —uw)}

k=1 k=j
for every j € [K]. Simple calculations show thatio'(l;k —u)<05fork=1,...,y—1and {1 - o(by —u)} <0.5
fork=y,....,K—-1,from by <---<by_1 <u<by <--- < bg_1 and the assumption on the shape of o. One
would see that objective function (31) is minimized at j = y because some summands are replaced by ones
of 0.5 or more if j deviates from y, which concludes the proof. O

The following is an auxiliary lemma for the above-described proof of Theorem 3.

Lemma 1. Suppose that o is non-decreasing and satisfies o(—o0) = 0 and o(+o0) = 1. Define S(u;a,b) =
o(b—u)—o(a—-u) fora<b. Then, one has that

(i) S(u;a,b) with fized a and b is symmetric in u around u = %, if o(=) =1=0(), orif o is
differentiable and o’ is even.

(ii) S(u; a,b) with fized a and b is maximized with respect tou atu = %, non-decreasing in u foru < %,
and non-increasing in u for u > %, if o is differentiable and o’(u) is even and non-increasing in

u ifu>0.

(iii) S(u;a,b) with fized u and % is increasing with respect to (b — a).

Proof of Lemma 1. Proof of (i). The assumptions that o-(—o0) = 0, o-(+o0) = 1, and o’ is even imply that
0(—)=1—=0("). On the basis of this result, one then has that

o253 )

(32)
b-—a b-a b-a b-—a
=0 —u|l—-ol|- —ul =0 —u|l-1+o0|— +ul,
2 2 2 2
which implies that
S(u+aQLb7a,b)=S(—u+%b,a,b) (33)
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Proof of (ii). The above equation (32) shows that

;S(u—i- %b;a,b) = o-'(b_a +u) —a’(b_a —u) =0, atu=0. (34)
u

Also, one can show that

iS u+a—+b'ab =0’ —b_a+u -0’ b_a—u
ou A 2 2
35
o (1554 +ul) o (254 —u) >0, foru <0, (3)
= o"(b%a"'” _O_r(|b%a_u|)go, for u > 0.

Here, for u < 0, we used the fact that o’ is even, which implies that o"(b%“ +u) = U’(lb%“ +ul), and o’(v) is
non-increasing in v for v > 0 and b%“ —u> Ib;’ +u| > 0; for u > 0, we used the fact that o’ is even, which
implies that o-’(b%“ —u) = o"(|b%a —ul), and o”’(v) is non-increasing in v for v > 0 and b%“ +u > |b%“ —u| > 0.

Proof of (iii). With change of variables t = 252,y = 222 we introduce a function
Tt u,v)=Sw;v—-t,v+t)=c(v—u+t)—o(v—u-—t). (36)

For this function, one has that

0
ET(I; uv)y=c'(v-—u+t)+oc’'v-u—-1t)>0, (37)
since o is non-decreasing (i.e., o-’(u) > 0 for any u). O

Next, we give a proof of Theorem 4.

Proof of Theorem 4. If k < I, the convexity shows that

k=i - (k=G D), Uiy -tk=7}
B e o) M T o ) S )
1 . -k .
RE TS AR TR
and that
N IR ) e (St P I e (R ) P
e (N L} R A Ty S T TS A 59)
-k . 1 .
Sirer D e )

These inequalities imply that £ ; is non-positive:

()
= {f(k7f) + f(l"] + 1)} - {f(k"] + 1) + f(l"j)}

. . 1 . -k . -k . 1 )
= {f(k,]) + f(l,‘] + 1)} — [{mf(k,] + 1) + mf(l,])} + {mf(k,] + 1) + mg(l,])}]

; 1 . -k . . -k ) 1 .
= [f(k,]) - {mf(k,J +1) + mf(l,])} + 0L +1) - {mf(k,] +1)+ mf(l,])}]
<0. (40)
Similarly, one can show that £ ; is non-negative if k > /. O

18
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McCullagh (1980, Section 6.1) has proposed the heteroscedastic extension of the cmulative link model (10),
Py(y; o, a(x), b, s(x)) = P(y; o, a(x)/s(x), b/ s(x)) (41)

with the scale model s : R — (0,00), and statistical OR studies, Thompson Jr (1977); Fienberg & Mason
(1979) and Agresti (2010, Section 4.2), have also considered another model

y-1
Ps(y;0,a(@),b) = o(by - a@)) | [{1 - o(be1 - a(@))}. (42)
k=1

We obtain the following theorem that is similar to Theorem 3 and suggests the efficiency of the EOT labeling
for statistical methods adopting these other likelihood models:

Theorem 5. Suppose that o is non-decreasing and satisfies o(—00) = 0 and o(+00) = 1 and that a : R? S R,
beRKL and 5: R4 — (0,00).

(i) argmin;e(x) SK | Pa(k; 0, a(x), b, 5(x))(j, k) = hene(a@(x); b) if € = laq, 0(0) = 0.5, and by < -+ <
bx_1.
(ii) argmin; ek, lele Ps(k; o, a(x),b)t(j, k) = hene(a(x); t) for some t € RE7L 4f £ = £,q.

Proof of Theorem 5. Proof of (i). The statement (i) of Theorem 5 is trivial from the statement (iii) of
Theorem 3.

Proof of (ii). Regarding the LB labeling for the likelihood model (42), one has that, with the abbreviations
o =1-0(bp —a(x)) for k =1,...,K,

K
Rj(a@)) = ) Pa(k; 0,a(@), b)laalj, k)
k=1

K k-1
- Z((l - (rk)]_[m_l)u — K,
k=1 =1

43
=j-1UA=-061)+1j =211 =b2) +---+ 01 0j-2(l = 0j-1) ()
+o10(1=0ju1)+- -+ K+ 1|01 ok-2(l —0k-1)+|j —K|o1 -+ FTK-1

Jj-1 k ~ K-1 k ~
=(j-1- (Z [ [{1 - - a(ac))}) + (Z [ [{1 =B - a@)y),
k=1 I=1 k=j I=1
for every j € [K]. One has that
J
Rji(a(@) - Ri(a(@) = 12| {1 - o(bi - ax))}, (44)
=1

is non-decreasing in j with fixed a(z). Therefore, argmin;¢k; Z,’;l Ps(k; o, a(x), b)laa(j, k) is the first in-
dex [ such that Rjii(a(x)) — Ri(a(x)) < 0, or K if Riyi(a(x)) — Ri(a(x)) > 0 for all I = 1,...,K — 1.
Also, Rji1(a(x)) — Ri(a(x)) is non-increasing in a(x), for each I = 1,...,K — 1. These facts show that
arg min ¢k Zszl Ps(k; o, a(x),b)laq(j, k) = henr(a(z); t) with the threshold parameters r, k = 1,...,K — 1
satisfying Rg.1(fx) — R (tx) = 0. O

C Optimality Guarantee of Algorithm for Empirical Optimal Threshold Labeling

Lin & Li (2006) do not describe the optimality guarantee of Algorithm 1 in their paper. As a supplement
to their development, we write here the optimality guarantee of Algorithm 1.
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Theorem 6. For any task loss € : [K]> — [0,00), 1DT a, and training data D, = {(i, yi)}L,, the threshold
parameters t obtained by Algorithm 1 minimize the empirical task risk for a classifier based on the threshold
labeling: t € argmingcpx-1 % 2iq Elhene(a(z;); t), yi).

Proof of Theorem 6. First, we prove ‘statement(;j)’ that, for each k € [K], L; x is the minimum task risk for
a task such that 1DTs {a(a: ) | a(xi) = ai},....{a(x;) | a(x;) = a;—1} are predicted as any of 1,...,k in a
non-decreasing manner, and 1DTs {a(x;) | a(x;) = a;} are predicted as k:

Lix= , win DD by (45)

.....

s.t.hy <<=k LU ym €

The statement (1), which is the starting point for mathematical induction, is trivial. Also, according to the
equation,

L; =minL;; + t(k,y;
j+1k = T Ly Z (k. i)
Yi€Yji1

:}Iel[llg( h m}zne[z] Z Z f(hl’y'"))Jr( Z f(ks)’i))

sth’1<’ <h._ll€[l])’m€~y1 Vi €Yj1

i?ﬁ[k] Z Z €(hy, ym) with [ =argrnin( e mhne[l] Z Z E(hy, yim)

- le[k] \ M1seees
8.6y <<=l <hjo =k LU ym €S L] s.t.hy <o <hy=1 €L ym €Y,

min Z C(hs, ym)s
hi,..., 41 €K] B 4 m
s.t.h1< <h =k Ll ymed

) (46)

I
L5E

one can find that the statement(j) holds with j > as well.

The statement(N) shows that 1DTs {a(z;) | a(z;) = an} should be labeled as min(arg min;¢(x) Ly.1) = M
Also, for

(h1,...,hN) € arg min Z Z E(hy, ym), (47)
,,,,, hNE[M N]ymeY;
S. t ]’11< -<hn

it will also be clear that 1DTs {a(x;) | a(z;) = a1},...,{a(z;) | a(x;) = ay-1} should be labeled as hi,. .. N1
The index I or J in Lines 9-14 tracks Any(= M),hn_1,...,h1. Therefore, it can be found that the obtained
threshold parameters are optimal. O
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