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Abstract— Automated epilepsy diagnosis research aims to 
improve prediction models using Electroencephalography (EEG) 
signals. Federated Learning (FL) preserves medical data privacy 
while accessing knowledge from multiple clients. Despite 
addressing data scarcity through collaboration, designing 
lightweight and personalized predictions with federated 
transformers for distributed EEG data is challenging. Additional 
modalities provide complementary knowledge for enhanced 
predictions. Developing a lightweight model for early, accurate 
personalized seizure prediction from multimodal signals offers 
significant opportunities. This work introduces client-level and 
patient-specific personalization using a federated transformer 
model. The self-attention mechanism in federated transformers 
can negatively impact results due to data heterogeneity, limiting 
collaboration. Hypernetwork addresses this by learning 
personalized self-attention layers, generating EEG-representative 
attention maps, and eliminating global self-attention aggregation. 
Model parameters are aggregated globally. Client-level 
personalization uses a local transformer (teacher model) for 
prediction. Knowledge distillation creates a lightweight patient-
level model (student model) from teacher model weights, 
integrating multimodal signals for patient-specific prediction. 
Validated with the MIT-CHB dataset, this approach accurately 
determines the preictal state, outperforming existing models 
proved by potential outcome of 95.58% sensitivity and 98.61% 
specificity. Also, the proposed approach yielded only a 0.014 False 
Positive Rate (FPR) while finetuning the student model of each 
hospital with the multimodal data by the federated-guided 
generalized knowledge from the teacher model.  

Keywords— Client-level, Epilepsy Prediction, Federated 
Transformer, Hyper network, Knowledge Distillation, 
Personalization, Multimodal, Patient-Specific Personalization, and 
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I. INTRODUCTION 
Epilepsy [1] is a neurological disorder characterized by 
recurrent, unprovoked seizures, which are sudden, abnormal 
electrical discharges in the brain. The apparent unpredictability 
of epilepsy, such as the uncertainty in the seizure occurrence 
for each patient, affects the quality of life for individuals. 
During an epileptic seizure [2], a substantial quantity of brain 
neurons participates in an excessive, synchronized, and 
inappropriate electrical discharge, leading to the manifestation 
of signs and symptoms. The epileptic seizure detection and 
prediction profoundly influence the daily lives of epileptic 
patients. Providing precise last-minute notifications about 

impending seizures promptly leverages safety precautions [3]. 
In epilepsy diagnosis, scalp or intracranial EEG signals enable 
the exploration of different transitions of the epileptic seizure 
states. In epileptic EEG signals, four stages of epileptic seizures 
involve the interictal, preictal, ictal, and postictal. Epilepsy 
prediction aims to predict pre-seizures that are preictal states, 
focusing primarily on two phases: the interictal phase, 
representing the interval between two epileptic seizures during 
which the patient exhibits apparent normal behavior, and the 
preictal phase, characterized by the abrupt onset of sporadic 
isolated spikes and large amplitudes [4, 5]. The epilepsy 
landscape has transformed due to recent progress in data-driven 
computational methods and device technology, turning the 
accurate prediction of seizures into a tangible reality. Deep 
learning (DL) stands out by accurately learning patterns from 
extensive data through the classification process within 
intricate hierarchical structures. In personalized healthcare, 
continuous remote monitoring, and emergency intervention, the 
Internet of Things (IoT) emerges as a remarkable technology. 
IoT establishes connections among various devices or 
components as middleware, facilitating seamless 
communication for predicting and monitoring seizures [6].  

Recent research shows promising results in probabilistic 
seizure risk prediction using wearable devices and electronic 
diaries. However, effective prediction relies on continuous 
monitoring, EEG signals, and the challenge of developing a 
lightweight, privacy-aware design for remote data integration 
[7]. Personalizing seizure prediction faces data scarcity and 
inter-patient variability due to limited EEG patterns within 
hospitals [8]. Developing personalized models with available 
patient data, privacy, and computational efficiency is 
challenging with single-modality DL models like EEG. To 
address these issues, research has used FL [9] for data scarcity 
and privacy and transformer models [10] for learning 
relationships in epileptic inputs. 

Multimodal inputs from wearable and implantable devices 
enhance seizure prediction, providing continuous EEG data and 
information on motor behavior, electrocardiogram (ECG), 
electromyography (EMG), accelerometry (ACC), and 
photoplethysmography (PPG) data from the autonomic nervous 
system. This makes epilepsy prediction more effective. 
However, designing a lightweight system that combines FL and 
transformer models without compromising accuracy is 
challenging. Therefore, developing a personalized, lightweight 



epilepsy prediction model is essential for improving the quality 
of life for epileptic individuals through collaborative training, 
privacy preservation, and model customization.  

The significant contributions of this work are presented as 
follows. 
• This work presents a twofold personalization for epilepsy 

prediction: client-level and patient-specific 
personalization.  

• Fold1 offers client-level personalization while applying the 
federated transformer model with the adoption of 
hypernetwork for precisely understanding the client-level 
epileptic EEG pattern, which works as a teacher model.  

• To enhance the learning ability of the transformer model in 
both the time and frequency domain, the proposed 
approach provides the input epileptic EEG data as the 
ternary feature representations involving the timestep, 
channel, and spectral embeddings. 

• The client-level personalized attention maps are generated 
for each hospital with the help of EEG embedding input-
based hypernetwork modeling. At the same time, the self-
attention layer is retained in the local model while the 
model parameters are aggregated with the global model. 

• Fold2 is a patient-specific personalization that applies the 
knowledge distillation from the client-level personalized 
teacher model and utilizes multimodal inputs, such as the 
ECG, PPG, and ACC, acquired from the patients’ 
wearables to ensure the lightweight prediction. 

• Thus, the proposed approach precisely identifies the 
preictal state and predicts the seizure onset in the sequence 
of epileptic EEG time series data.  

II. LITERATURE REVIEW 
This section investigates recent research developments 

through a comprehensive literature review of various epileptic 
seizure prediction approaches with DL and advanced 
transformer architectures. 

2.1. Epilepsy Prediction Approaches 
To predict epileptic seizures, patient physiological signals 

are acquired invasively or noninvasively. Several ML 
algorithms are vital for epilepsy prediction. For instance, 
decision trees in [11] predict seizures using electronic seizure 
diaries that record mood, symptoms, stress, and seizure 
occurrences. The approach in [12] uses XGBoost on 36-minute 
pre-seizure data to distinguish preictal from interictal states, 
optimizing the interval with Leave-One-Patient-Out cross-
validation. In [13], the Multiscale Prototypical Part Network 
(MSPPNet) DL model captures multiscale EEG features for 
enhanced decision-making. 

Research [14] presents a patient-specific model combining a 
sparse autoencoder and SVM classifier to categorize EEG 
signals. Study [15] uses a long short-term memory (LSTM) 
RNN with a wrist-worn sensor for real-world seizure 
forecasting, outperforming a random predictor in most cases. 
The approach in [16] employs an LSTM model on 
subcutaneous EEG recordings for patient-specific predictions. 

ForeSeiz [17] integrates an ECNN and a Phase Transition 
Predictor for real-time seizure prediction. Research [18] 
transforms EEG data into temporal and spectral features, using 
Principal Component Analysis (PCA), Common Spatial Pattern 
(CSP), and Multivariate Multiscale Sample Entropy (MMSE) 
for temporal analysis and unified Maximum Mean Discrepancy 
Autoencoder (uMMD-AE) for spectral analysis, followed by 
SVM decision fusion. The two-layer LSTM model in [19] uses 
spectral features to distinguish preictal and interictal states. 

DL models face challenges like interpretability and 
computational efficiency in epilepsy prediction due to evolving 
EEG patterns and data scarcity. Consequently, FL and 
transformer models are increasingly used for accurate epilepsy 
detection and prediction, maintaining data privacy even in data-
scarce environments.    

2.2. Federated Learning and transformer-based Epilepsy 
Prediction Approaches 

Personalized FL framework [20] explores Convolutional 
Neural Network (CNN) architectures for EEG-based seizure 
detection, balancing performance and energy consumption. It 
allows clients to use personalized DNNs collaboratively, 
minimizing communication energy. Decentralized FL [21] 
employs adaptive ensemble learning for seizure detection, 
addressing non-independent and identically distributed (non-
IID) challenges within hospitals and aligning with wearable 
system constraints. 

Transformer architectures parallelize input sequences, 
reducing training time and enhancing interpretability for 
disease diagnosis. EpilepsyNet [22] uses transformer models 
for seizure detection from EEG signals, applying Pearson 
Correlation Coefficient (PCC) to compute statistical 
relationships between features. The approach in [23] emloys 
Sequence Transformer Network (STN) which learns temporal 
changes in EEG data, predicting seizures with a CNN model 
using Short-Time Fourier Transform (STFT) transformed 
features. A three-tower transformer model [24] fuses time and 
frequency domain features for seizure prediction. The 
prediction model in [25] uses Temporal Multichannel 
Transformer (TMC-T) and Vision Transformer (TMC-ViT) for 
multichannel EEG signals, examining seizure prediction 
performance with varying sample sizes.  

III. PRELIMINARIES, PROBLEM FORMULATION AND SYSTEM 
MODEL 

This section introduces the preliminary information for 
developing the epilepsy prediction approach, problem 
formulation, and system model.   

i) Preliminaries 
Federated Learning: FL allows organizations to train models 

without sharing private data. Hospitals collaborate, training 
models on diverse patient data without exchanging specifics. 
FL improves generalization by utilizing data from multiple 
sources, maintaining the same distribution or feature space but 



varying sample spaces. 
Transformer: Transformers capture long-range dependencies 

in EEG data, crucial for identifying epileptic activity patterns. 
They automatically learn representations from EEG data, 
focusing on essential segments and reducing noise through self-
attention. 

Hypernetwork: Hypernetworks produce parameters for other 
networks, dynamically generating features from input data. 
They adapt model parameters based on input data properties, 
serving as regularization for transformer-based epilepsy 
prediction. 

Multimodality: Utilizing various information sources 
improves prediction accuracy by capturing a broader range of 
parameters contributing to epileptic activity. Integrating data 
from multiple physiological signals results in highly robust 
predictions through a combination of rich and informative 
feature representations. 

Knowledge Distillation: It constructs efficient prediction 
models for wearables by training the student model to imitate 
the teacher model's predictions. The student model minimizes 
distillation loss, transferring knowledge from the teacher 
model, suitable for resource-constrained devices. 

TABLE I.  MODELS AND THEIR  SIGNIFICANCE IN THE PROPOSED 
SYSTEM 
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ii) Problem Formulation and System Model  

 The epileptic seizure is still an open research problem, and 
accomplishing high sensitivity and specificity is challenging. 
The seizure prediction algorithms rely on the patient 
intervention or wearables implanted in the patient’s body, 
employing various physiological signals. Epilepsy prediction is 
formulated as the binary classification problem, discrimination 
of preictal and interictal state. To recognize epileptic seizure 
activities, the widely applied physiological signals involve the 
EEG, ECG, PPG, and ACC, acquired from the electrodes and 
wearable devices. 
 This work designs a twofold personalization-based 
epilepsy prediction model using federated transformer learning 
with personalization and knowledge distillation. In Fold1, the 
proposed system employs the FL model for healthcare services 
among multiple distributed hospitals, particularly EEG-based 
epilepsy prediction. For the ‘N’ number of hospitals, the 
proposed approach utilizes the ‘N’ number of different epileptic 
EEG datasets, and the ‘N’ number of similar transformer 
models accompanied by a multi-head self-attention mechanism. 
The generalization relies on the epileptic EEG signals, and the 
personalization relies on additional physiological signals. To 
implement the federated scenario for the ‘N’ number of 
hospitals with distinct epileptic EEG data distribution, applying 
the federated aggregation is challenging.    

𝑎𝑟𝑔min
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#
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ℒ"(𝜂")																																												(1) 

 As formulation in (1), the proposed epilepsy prediction 
aims to minimize the personalized loss of each local model or 
client (i) while aggregating each client’s local EEG samples (𝑠") 
in a unified manner (S). 𝜑 and 𝜂" refers to a set of personalized 
parameters and a personalized local model. Moreover, ℒ" 
denotes the loss function of patient samples in each client, 
referring to the cross-entropy loss. To minimize the 
personalized loss in the federated model, the integration of FL 
with the transformer model is enhanced by the hypernetwork-
based personalization performed during the local model 
updation at the end of the FL-based prediction task over the 
iterations. In particular, the federated aggregation in the 
proposed system combines the partially transferred local model 
parameters to maintain data privacy while applying the self-
attention-based transformer model. The main objective of 
Fold2 design is to accurately predict epilepsy by discriminating 
the personalized preictal and interictal states from the EEG 
signals through knowledge distillation with the additional 
knowledge of other physiological signals, such as the ECG, 
PPG and ACC. In the task of knowledge distillation, optimizing 
the personalization of each local model based on its 
personalized inputs is challenging without compromising the 
personalization of the local model and the patients. Therefore, 
the knowledge distillation in the proposed epilepsy prediction 



is based on the minimization of prediction loss in each 
client,	ℒ"(𝜂") as well as each patient, ℒ"(𝜇").  							 
𝑎𝑟𝑔min

&
ℒ"(𝜔") = ℒ"(𝜂") + 	𝛾. ℒ"(𝜇")																												(2)	 

    As mentioned in (2), loss of prediction personalization with 
the distance measure in knowledge distillation, ℒ"(𝜔") is the 
cumulative measure of client-level and patient-level 
personalization; hence, the proposed system transfers the 
client-level personalized knowledge as the global 
representation for multimodal-associated patient-level 
personalization. In each hospital, the multimodal inputs are 
gathered from the wearables of corresponding patients enrolled 
in the hospitals or clients for enhancing epilepsy prediction.  

IV. SEIZURE PREDICTION METHODOLOGY 
The proposed model designs a twofold personalization 

involving the federated transformer learning-based client-level 
personalization, considered a teacher model and the 
knowledge-distillation-based patient-specific personalization a 
student model. In the proposed system, Fold1 intends to 
integrate the FL with the transformer model to utilize the global 
epileptic patient knowledge collaboratively. However, the 
inherent heterogeneity in the hospitals’ data makes generalizing 
the globally shared parameters-based local seizure prediction at 
the edge ineffective. Hence, the federated transformer model 
integration is based on the hypernetwork built by embedding 
EEG input for the client-level personalization in the self-
attention mechanism. Moreover, Fold 2 employs knowledge 
distillation from the teacher model for patient-specific 
personalization by utilizing multimodal data, including ECG, 
PPG, and ACC, captured from wearable devices to ensure the 
lightweight design of seizure prediction. Figure 1 shows the 
proposed federated transformer model for epilepsy prediction. 

 
Figure 1: Federated Transformer Model in Proposed Epilepsy Prediction 
 
4.1. Data Description and Preprocessing 

The proposed system uses the CHB-MIT scalp EEG dataset 
[26] with recordings from 24 patients at Boston Children’s 
Hospital. EEG signals, sampled at 256 Hz, include 198 
seizures. Preictal data is 1 hour before a seizure, interictal data 
spans 4 hours around seizures. Utilizing EEG data from 21 

patients (excluding CHB12, CHB13, and CHB24), the system 
predicts 108 seizures. Besides EEG, it incorporates 
physiological signals from wearable devices like ECG, PPG, 
and ACC, captured by ePatch [27] for ECG and Empatica E4 
[28] for PPG and ACC. Signals undergo bandpass filtering: 
EEG (0.5-40 Hz), ECG (0.4-20 Hz), PPG (0.4-3 Hz), and ACC 
(0.5-40 Hz). ECG signals are segmented into 60s epochs and 
notch filtered to remove 50 Hz interference.  

For time series analysis, STFT transforms EEG signals into 
2D matrices for time-frequency domain analysis. Z-score 
normalization is applied to EEG channels within each patient’s 
samples. Each EEG segment is represented as an N×M matrix, 
with N as the 256-segment duration and M as the 23 channels 
in the CHB-MIT dataset, providing a generic representation for 
all patients in epilepsy classes. 

4.2. Fold1: Client-level Personalization 
The client-level personalization uses a federated transformer 

network for EEG data, ensuring data privacy and improving 
generalization. It offers personalized seizure prediction by 
learning personalized self-attention layers to address data 
heterogeneity. The global model aggregates local parameters 
without the self-attention layer, while local execution uses 
hypernetwork-assisted attention maps. Epileptic EEG input is 
represented with timesteps, channels, and spectral features in a 
transformer model with multi-head self-attention. Positional 
encoding is applied to timestep and spectral features but not to 
channel-wise features. Spectral features like delta, theta, alpha, 
beta, and gamma bands highlight brain variations for seizure 
prediction. Moreover, the distinct features are extracted from 
the spectral sub-bands to characterize the epileptic seizure for 
prediction [29].   

To ensure a lightweight model, sparse attention [30] reduces 
computation complexity from O(n²) to O(n log n), enabling 
deployment on resource-constrained devices. Generalized self-
attention in FedAvg can degrade performance, leading to 
convergence and scalability issues. During local training, 
ternary features are learned using normalization, self-attention, 
and MLP layers to recognize the preictal state. Only partial 
transformer model parameters are uploaded to the global 
model, retaining local self-attention layers to preserve patient-
specific patterns. The global model aggregates local parameters 
to recognize the preictal state using knowledge from multiple 
hospitals. 

Hypernetwork-based Personalization: FedAvg aggregation 
of self-attention layers affects performance with heterogeneous 
data. Hence, this approach uses personalized self-attention 
presented in [31][32] for EEG data at the client level. The 
hypernetwork fine-tunes the self-attention layer and captures 
global model parameters without compromising privacy. It 
generates attention maps for client-level personalization while 
applying the FL model. For EEG input, the hypernetwork 
generates projection matrices to fine-tune the self-attention 
layer in each hospital's personalized epilepsy prediction. It 
learns the embedding vector of EEG features and generates 



partial weights for each client’s seizure prediction model. This 
generates attention maps for each client, improving client-level 
seizure prediction in a distributed environment.  

Client-Level Personalization: Client model updating 
involves global model parameters and hypernetwork-based 
personalized EEG data representation. Jointly training the local 
model with global parameters and hypernetwork-generated 
attention maps improves seizure prediction accuracy. This 
federated transformer model enhances EEG-based seizure 
prediction by accurately discriminating between epilepsy states 
for each client. 
 
4.3. Fold2: Knowledge-distillation-assisted Patient-Specific 
Personalization 

Fold2 personalization is a lightweight, patient-specific 
approach using knowledge distillation from the generalized 
federated transformer model in Fold1. This teacher-student 
paradigm builds a lightweight student model from the teacher 
model's knowledge. The system fine-tunes client-level 
predictions based on global knowledge distance measures. 
Instead of using large-scale EEG data, it utilizes multimodal 
physiological data, enhancing computational efficiency. The 
combined knowledge from the federated transformer model and 
multimodal inputs in the student model accurately identifies the 
preictal state. For seizure patients, wearable ECG devices like 
ePatch record ECG signals, aiding seizure detection through 
HRV analysis and R-peak detection. Combining ECG and EEG 
improves prediction accuracy by measuring responses from 
both the central and peripheral nervous systems. Changes in 
HRV, indicating autonomic nervous system activity, help 
predict seizures. 

The Empatica E4 device monitors PPG and ACC signals 
for epilepsy. PPG measures blood volume changes, while ACC 
detects movement patterns, both aiding in seizure prediction. 
Integrating EEG, ECG, PPG, and ACC data improves the 
model's specificity and sensitivity. The Pan-Tomkins algorithm 
determines R-peaks in ECG signals, computing HRV from 
these peaks. Pulse Rate Variability (PRV) and Pulse Transit 
Time (PTT) from PPG signals further aid prediction, with PTT 
indicating blood pressure changes linked to seizures. 

 
Figure 2 Knowledge Distillation Process for Patient-Specific Personalization 
 
As shown in Figure 2, the proposed approach uses knowledge 
distillation from the teacher model, which contains client-level 
personalized knowledge, to personalize the student model for 
patients. Instead of using knowledge from the global model, 
seizure prediction distills knowledge between the hospital and 

patient. This iterative finetuning reduces computation 
complexity and improves accuracy. Heterogeneity among 
hospitals affects the student model's prediction quality when 
using generalized global knowledge. Hypernetwork-based 
attention maps in client-level personalization compute the 
distance between knowledge representations, regulating the 
student model with minimal computation for each patient. 
Wearable technologies assist in dynamic human analysis by 
monitoring disease evolution over time. They provide 
contextual data for personalized disease monitoring and allow 
clinicians to respond to physiological changes in real-time. The 
proposed approach uses multimodal data from wearables for 
patient-specific epilepsy personalization, identifying the 
preictal state. Figure 3 shows patient-specific personalization 
based on multimodal data. 
 

 
Figure 3: Multimodal-based Patient-Specific Personalization  
 
In Algorithm 1, the detailed procedure of the proposed epilepsy 
prediction is presented as follows.  

Algorithm 1: Pseudocode of TwoFold  
Input: EEG, ECG, PPG, and ACC 

Output: Seizure State Prediction via Preictal identification 
//Fold 1 - Client-level Personalization// 
1 for all the clients /hospitals do 
//Preprocessing and Feature Extraction// 
2   for all the EEG samples in each hospital do 
3     Apply filtering and normalization 
4 Extract ternary features (timestep, spectral, and channel) 
5 endfor 
//Federated Transformer-based Learning// 
6 for all the extracted EEG features in all the hospitals do 
7  Apply federated learning 
8  Execute local model individually by the transformer 
model 
9  Apply the sparse attention for lightweight execution  
10  for each local model do 
11   Personalize the self-attention by the hypernetwork 
12   for each local epileptic EEG samples in each hospital 
do 
13    Generate epileptic EEG embedding input for the 
hypernetwork 
14    Generate the attention maps for transformer model 
15   endfor  
16  endfor 



17  Train the local model for each hospitals’ epileptic EEG 
data 
 18  Transfer the local model parameters for the aggregation 
without self-attention 
//Collaborative Federated Training// 
19  Perform federated aggregation and global model training 
20  if global model execution reach epochs then 
21   Transfer global model parameters to each local 
model 
22  endif 
//Personalization// 
23  for each local model or client do 
24   Perform joint training of global model and 
hypernetwork-based parameters 
25   Update local model with personalized self-attention 
in each hospital 
26   Predict epilepsy by the classification of preictal and 
interictal 
27  endfor 
28  endfor 
//Fold 2 – Patient-level Personalization// 
30 for each hospital do 
31 Perform knowledge disillation 
32 Apply the deep learning model 
33 for each patient do 
34  Acquire multimodal physiological signals from each 
patient 
35  if distance between epileptic patterns teacher and 
student model is minimal then 
36   Transfer client-level personalized knowledge to 
the student model 
37  endif 
38 endfor 
39 Predict the epileptic seizure via preictal identification 
40 endfof 

V. EXPERIMENTAL EVALUATION 
The experimental framework implements the epilepsy 

prediction algorithm using Python programming, assessing the 
prediction performance by classifying pre and interictal classes. 
The experimental model utilizes the EEG, ECG, PPG, and ACC 
data for the proposed model implementation. EEG data is 
utilized from the CHB-MIT dataset, and ECG, PPG, and ACC 
data are assumed as observed from the corresponding patients’ 
wearables. The simulation of a multimodal scenario in the 
proposed epilepsy prediction system is conducted to 
demonstrate the proposed epilepsy prediction prototype. The 
existing epilepsy prediction research [24, 25] is evaluated under 
the parameter settings mentioned in the corresponding research 
work for the CHB-MIT EEG dataset. The proposed seizure 
prediction model is trained and tested on the client-level and 
patient-level personalization stages using cross-validation. The 
evaluation of baseline DL models is implemented for the same 
set of CHB-MIT EEG datasets with the default learning 
parameters with the train-test split validation. To assess the 
performance of the epilepsy prediction, the experimental model 

employs precision, recall or sensitivity, specificity, False 
Positive Rate (FPR), and Area Under the ROC Curve (AUC).       
Precision: Ratio between the number of correctly detected 
preictal samples and the number of detected samples in the 
preictal state. Sensitivity: Ratio between the number of 
correctly detected preictal samples and the total number of 
actual samples in the preictal state.  
Specificity: Ratio between the number of correctly detected 
interictal samples and total number of actual samples in 
interictal state.  
False Positive Rate: Ratio between the number of incorrectly 
detected preictal samples and total number of interictal 
samples. 
AUC: Measure classification performance in assessing the 
degree of discrimination between pre and interictal classes. 

TABLE II.  MODEL PARAMETERS 

Parameters Values 

Teacher Model 
(Federated 

Transformer) 

Student Model 

Number of Clients 3 3 

Number of 
Communication Rounds 

3 - 

Dropout Rate 0.1 0.2 

Learning Rate 0.01 0.01 

Activation RELU, Sigmoid RELU, 
Sigmoid 

Loss Function Binary Cross Entropy Binary Cross 
Entropy 

Epochs 10 5 

Batch Size 32 2 

Optimizer Adam Adam 

5.1. RESULTS AND DISCUSSION 
The performance of the proposed epilepsy seizure prediction is 
compared with several baseline algorithms and two existing 
epileptic seizure prediction research works [24, 25].  

TABLE III.  COMPARATIVE ELEMENTS IN PROPOSED EPILEPSY 
PREDICTION SYSTEM AND EXISTING SYSTEMS 

Epilepsy Prediction Elements 
Epileps

y 
Predict

ion 

Deal 
with 
Data 

Scarcit
y 

Data 
Privacy 

Data 
Interpretabil
ity Analysis 

Paralleli
zation 

Person
alizatio

n 

Multi
moda

lity 

Light 
Weig

ht 

[24] O O O P O O O 

[25] O O O P O O O 

Propo
sed P P P P P P P 

Note: P - Presence, O - Absence 



Table 3 compares the proposed epilepsy prediction system with 
two existing epilepsy prediction systems regarding research 
constraints. The proposed epilepsy prediction performance is 
provided in Table 4, while the prediction outcome is assessed 
two-fold for the CHB-MIT epileptic EEG dataset and 
multimodal physiological signals.  

TABLE IV.  TWOFOLD PERSONALIZATION PERFORMANCE OF THE 
PROPOSED EPILEPSY PREDICTION 

Approac
h 

Performance of Epilepsy Prediction 

Client-level Personalization (Fold 
1) 

Patient-Level Personalization 
(Fold 2) 

Sensitiv
ity (%) 

Specificity 
(%) 

FPR Sensitiv
ity (%) 

Specificity 
(%) 

FPR 

Proposed 87.04 78.71 0.209 95.58 98.61 0.014 

 
From Table 4's result analysis, the proposed seizure 

prediction method in Fold 2 achieved higher true positives and 
negatives than client-level personalization in Fold 1. 
Integrating multimodal physiological signals significantly 
impacts prediction outcomes using distilled knowledge from 
client-level personalized EEG representations. Lower FPR 
values in Tables 4 and 5 indicate better performance in 
accurately identifying the preictal state, showcasing the 
proposed system's optimal performance despite scarce epileptic 
knowledge. FL addresses scarcity in Fold 1 and multimodality 
in Fold 2, resulting in higher sensitivity, specificity, and 
minimal FPR.  

Table 4 compares epilepsy prediction performance at the 
patient level with client-level personalization, showing patient-
level sensitivity and specificity are 8.54% and 19.9% higher 
due to multimodal knowledge-based finetuning. Table 5 shows 
the proposed model outperforms baseline models and existing 
research (TMC-T [24] and three-tower transformer model [25]) 
across all measures, including precision, sensitivity, specificity, 
AUC, and FPR. The proposed method achieves a 95.58% true 
positive rate and 98.61% true negative rate, 0.11% and 3.49% 
higher than the comparative model [25]. Scarce personalized 
and diversified EEG knowledge affects the performance of the 
comparative model for new samples. 

TABLE V.  COMPARISON OF THE PROPOSED EPILEPSY PREDICTION 
WITH THE BASELINE MODELS AND EXISTING EPILEPSY PREDICTION WORKS 

Models Average Epilepsy Prediction Performance 

Precision 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

AUC 
(%) 

FPR 

Random 
Forest 

86.68 88.37 86.31 87.34 0.13 

1DCNN 85.18 84.14 87.75 85.95 0.12 

2DCNN 76.31 70.73 81.63 76.18 0.18 

TMC-T 
[25] 

86.21 92.59 85.18 88.88 0.14 

Three-
tower 

transformer 
[24] 

94.89 95.47 95.12 95.41 0.048 

Proposed 98.59 95.58 98.61 98.02 0.014 

 
Table 5 compares the proposed seizure prediction model 

with baseline models [24, 25] using CHB-MIT EEG samples. 
The proposed model combines federated learning and the 
transformer model, benefiting from collaborative training of 
diverse epileptic EEG patterns and efficient parallel execution. 
It outperforms the TMC-T model, with a 2.99% higher 
sensitivity for preictal state identification and improved FPR. 
The true positive rate indicates accurate seizure prediction by 
distinguishing preictal from interictal states. The proposed 
model achieves 98.61% specificity and 97.09% AUC, 
outperforming baseline models. Figure 4 shows the superior 
performance of the proposed model compared to existing works 
[24, 25]. 

 

 
Figure 4: Comparison of Epilepsy Prediction Performance 

    The AUC and accuracy performance of the proposed seizure 
prediction approach are plotted in Figure 4 for the tested 
outcome of the CHB-MIT EEG dataset. In order to validate the 
classification model performance, the experimental model 
assesses the accuracy and AUC that measures the trade-off 
between the sensitivity and specificity values. In particular, 
AUC measures the class discrimination ability of the learning 
model for the binary classes of preictal and interictal. The 
teacher model-based student model finetuning facilitates the 
accurate detection of classes from learning multimodal input 
patterns in the proposed approach, resulting in 98.02% and 
95.58% AUC and sensitivity, respectively. Compared to the 
three-tower transformer model, the proposed approach obtained 
2.61% higher AUC due to the potential advantage of learning 
the client-level personalized knowledge from the diversified 
EEG patterns. 

VI. CONCLUSION 
A twofold personalization-based epilepsy prediction model is 
proposed based on client-level and patient-specific 
personalization to enhance the epileptic seizure prediction. The 
client-level personalization is considered a teacher model, and 
the patient-specific personalization is a student model. 
Moreover, the hypernetwork, multimodality, and transformer 
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models resolve the personalization and prediction accuracy 
limitations. The hypernetwork-based personalization aided in 
retaining the contextual epileptic patterns learned by the 
transformer in each hospital, and federated aggregation 
provided the globally learned diversified epileptic EEG 
knowledge from different hospitals, thereby improving the 
epilepsy prediction performance at the local level. Client-level 
personalization is achieved by joint learning between the 
hyperparameter-enabled self-attention and extracting the 
knowledge from the federated transformer model from the 
epileptic EEG data. The patient-level personalization is 
facilitated in fold 2 for each client while utilizing the 
multimodal inputs observed from the patients’ wearables. Thus, 
the proposed approach effectively discriminates the preictal and 
interictal state of the epileptic samples in the student model 
from the influence of the teacher model. 
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