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Abstract

Predicting the intermediate trajectories between an initial and target distribution
is a central problem in generative modeling. Existing approaches, such as flow
matching and Schrödinger Bridge Matching, effectively learn mappings between
two distributions by modeling a single stochastic path. However, these methods are
inherently limited to unimodal transitions and cannot capture branched or divergent
evolution from a common origin to multiple distinct outcomes. To address this, we
introduce Branched Schrödinger Bridge Matching (BranchSBM), a novel frame-
work that learns branched Schrödinger bridges. BranchSBM parameterizes multiple
time-dependent velocity fields and growth processes, enabling the representation
of population-level divergence into multiple terminal distributions. We show that
BranchSBM is not only more expressive but also essential for tasks involving
multi-path surface navigation, modeling cell fate bifurcations from homogeneous
progenitor states, and simulating diverging cellular responses to perturbations.

1 Introduction

While generative frameworks such as denoising diffusion [Austin et al., 2021] and flow matching
[Lipman et al., 2023] have demonstrated strong performance in learning mappings from noisy priors
to clean data distributions, many real-world problems call for a different paradigm. Tasks like crowd
navigation and modeling cell-state transitions under perturbation involve learning a transport map
between two empirically observed endpoint distributions, rather than sampling from a predefined prior.
The Schrödinger Bridge (SB) [Schrödinger, 1931] problem seeks to identify an optimal stochastic
map between a pair of endpoint distributions that minimizes the Kullback–Leibler (KL) divergence
to an underlying reference process.

Schrödinger Bridge Matching (SBM) solves the SB problem by parameterizing a drift field that
matches a mixture of conditional stochastic bridges between endpoint pairs that each minimize the KL
divergence from a known reference process. Extensions such as Generalized SBM [Liu et al., 2023a]
reformulate the standard SBM as a conditional stochastic optimal control (CondSOC) problem,
learning drift fields that minimize kinetic energy alongside a task-specific state cost. Typically,
SBM assumes conservation of mass from the initial to the target distribution, which fails to capture
dynamical population behaviors such as growth and destruction of mass, commonly seen in single-cell
population data. Furthermore, prior works focus on transporting samples from a pair of unimodal
initial and target distributions via a single, continuous trajectory, without accounting for branching
dynamics [Tong et al., 2024a, Theodoropoulos et al., 2024, Liu et al., 2022, De Bortoli et al., 2021a],
where a uniform population follows a branched trajectory that diverges toward multiple distinct target
distributions.
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The notion of branching is central to many real-world systems. For example, when a homogeneous
cell population undergoes a perturbation such as gene knockouts or drug treatments, it frequently
induces fate bifurcation as the cell population splits into multiple phenotypically distinct outcomes
or commits to divergent cell fates [Shalem et al., 2014, Zhang et al., 2025a]. These trajectories are
observable in single-cell RNA sequencing (scRNA-seq) data, where each subpopulation independently
evolves and undergoes growth or contraction along its trajectory toward a distinct terminal state.

In this work, we introduce Branched Schrödinger Bridge Matching (BranchSBM), a novel
framework for learning stochastic transport maps from an unimodal initial distribution to multiple
target distributions via branched trajectories. BranchSBM solves the branched Schrödinger Bridge
problem by parameterizing diverging velocity fields and branch-specific growth rates, which together
define a set of conditional stochastic bridges from the common source to each terminal distribution.
This formulation enables the modeling of population-level stochastic processes that account for both
transport and growth dynamics, jointly minimizing energy across branches while matching the mass
and structure of each target distribution.

Our main contributions can be summarized as follows:

1. We define the Branched Generalized Schrödinger Bridge problem and introduce BranchSBM, a
novel matching framework that learns optimal branched trajectories from an initial distribution
π0 to multiple target distributions {πt,k}.

2. We derive the Branched Conditional Stochastic Optimal Control (CondSOC) problem as the
sum of Unbalanced CondSOC objectives and leverage a multi-stage training algorithm to learn
the optimal branching drift and growth fields that transport mass along a branched trajectory.

3. We demonstrate the unique capability of BranchSBM to model dynamic branching trajectories
while matching multiple target distributions across various problems, including 3D navigation
over LiDAR manifolds (Section 5.1), modeling differentiating single-cell population dynamics
(Section 5.2), and predicting heterogeneous cell states after perturbation (Section 5.3).

2 Preliminaries

Schrödinger Bridge Given a reference probability path measure Q, the Schrödinger Bridge (SB)
problem aims to find an optimal path measure PSB that minimizes the Kullback-Leibler (KL) diver-
gence with Q while satisfying the boundary distributions P0 = π0 and P1 = π1.

PSB = min
P
{KL(P∥Q) : P0 = π0,P1 = π1} (1)

where Q is commonly defined as standard Brownian motion. For an extended background and formal
definition of Schrödinger Bridges, refer to Definition 3 and Appendix A.1.

Generalized Schrödinger Bridge Problem The solution to the standard SB problem minimizes
the kinetic energy of the conditional drift term ut(Xt) that preserves the endpoints drawn from the
coupling (x0,x1) ∼ π0,1 defined as

min
ut

∫ 1

0

Ept
∥ut(Xt)∥2dt s.t.

{
dXt = ut(Xt)dt+ σdBt

X0 ∼ π0, X1 ∼ π1
(2)

where dBt is standard d-dimensional Brownian motion. The evolution of the marginal probability
density pt of the state variable Xt is governed by the Fokker-Planck equation [Risken, 1996] given by

∂pt
∂t

= −∇ · (ptut) +
1

2
σ2∆pt, p0 = π0, p1 = π1 (3)

where we say ut generates pt. To define more complex systems where the optimal dynamics cannot
be accurately captured by minimizing the standard squared-Euclidean cost in entropic OT [Vargas
et al., 2021], the Generalized Schrödinger Bridge (GSB) problem introduces an additional non-linear
state-cost Vt(Xt) [Chen et al., 2021a, Chen and Georgiou, 2016, Liu et al., 2022]. The minimization
objective becomes

min
ut

∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

]
dt (4)

such that ut, pt satisfy the FP equation in (3). The state cost can also be interpreted as the potential
energy of the system at state Xt.
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Figure 1: Branched Schrödinger Bridge Matching (A) Stage 1 trains a correction term that learns the optimal
interpolant conditioned on endpoints (B) Stage 2 and 3 trains a separate flow and growth network for each branch
independently (C) Stage 4 jointly optimizes the flow and growth networks to minimize the energy, mass, and
matching loss.

3 Branched Schrödinger Bridge Matching

To model branched trajectories from an initial distribution π0 to multiple target distributions {πt,k},
we introduce Branched Schrödinger Bridge Matching (BranchSBM), a unique matching frame-
work that models branching of diverging distributions along the Schrödinger bridge path. First,
we define the Unbalanced GSB Problem and prove that it can be tractably solved as a Unbalanced
Conditional Stochastic Optimal Control (CondSOC) problem over paired endpoint samples in the
dataset. Then, we formulate the Branched GSB problem as the solution to the sum of Unbalanced
GSB problems for each branch. Finally, we solve the Branched GSB problem by parameterizing the
velocity and growth rates of each branch with neural networks.

3.1 Unbalanced Conditional Stochastic Optimal Control

Unbalanced Generalized Schrödinger Bridge Problem Extending the definition of the General-
ized Schrödinger Bridge (GSB) problem in Equation 4, we define the Unbalanced GSB problem by
scaling the minimization objective by a time-dependent weight wt(Xt) = w0 +

∫ t

0
gs(Xs)ds that

evolves according to a time-varying growth rate gt(Xt) : Rd × [0, 1]→ R.

min
ut,gt

∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

]
wt(Xt)dt s.t.


dXt = ut(Xt)dt+ σdBt

X0 ∼ π0, X1 ∼ π1

w0(X0) = w⋆
0 , w1(X1) = w⋆

1

(5)

Unbalanced Conditional Stochastic Optimal Control (CondSOC) Now, we show that we can
solve the Unbalanced GSB problem as an Unbalanced CondSOC problem where the optimal drift ut
and growth gt minimize the expectation of the objective in (5) conditioned on pairs of endpoints.
Proposition 1 (Unbalanced Conditional Stochastic Optimal Control). Suppose the marginal density
can be decomposed as pt(Xt) =

∫
π0,1

pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1, where π0,1 is a fixed joint
coupling of the data. Then, we can identify the optimal drift u⋆t and growth g⋆t that solves the
Unbalanced GSB problem in (5) by minimizing the Unbalanced Conditional Stochastic Optimal
Control objective given by

min
ut,gt

E(x0,x1)∼π0,1

[∫ 1

0

Ept|0,1

[
1

2
∥ut(Xt|x0,x1)∥2 + Vt(Xt)

]
wt(Xt)dt

]
(6)

s.t. dXt = ut(Xt|x0,x1)dt+ σdBt, X0 = x0, X1 = x1 w0(X0) = w⋆
0 , w1(X1) = w⋆

1 (7)

where wt = w0 +
∫ t

0
gs(Xs)ds is the time-dependent weight initialized at w⋆

0 , ut is the drift, gt is
the growth rate, and π0,1 is the weighted coupling of paired endpoints (x0, w

⋆
0 ,x1, w

⋆
1) ∼ π0,1.

The proof is provided in Appendix C.1. This defines the objective for us to tractably solve the
Unbalanced GSB problem by conditioning on a finite set of endpoint pairs in the dataset.
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3.2 BranchSBM: Sum of Unbalanced CondSOC Problems

Branched Generalized Schrödinger Bridge Problem Given the Unbalanced GSB problem, we
define the Branched GSB problem as minimizing the sum of Unbalanced GSB problems across all
branches. All mass begins along a primary path indexed k = 0 with initial weight 1. Over t ∈ [0, 1],
mass is transferred across K secondary branches with initial weight 0 and target weight w1,k such
that it minimizes the objective defined as

min
{ut,k,gt,k}Kk=0

∫ 1

0

{
Ept,0

[
1

2
∥ut,0(Xt,0)∥2 + Vt(Xt,0)

]
wt,0 +

K∑
k=1

Ept,k

[
1

2
∥ut,k(Xt,k)∥2 + Vt(Xt,k)

]
wt,k

}
dt

s.t. dXt,k = ut,k(Xt,k)dt+ σdBt, X0 ∼ π0, X1,k ∼ π1,k, w0,k = δk=0, w1,k = w1,k (8)

When total mass across branches is conserved, we enforce
∑K

k=0 wt,k = 1 for all t ∈ [0, 1],
which constrains the growth rates such that gt,0(Xt,0) +

∑K
k=1 gt,k(Xt,k) = 0. This ensures

that mass lost from the primary branch (when gt,0 < 0) is redistributed among the secondary
branches (where gt,k > 0). The primary branch evolves from initial weight of 1 according to
wt,0 = 1+

∫ t

0
gs(Xs,0)ds and the K secondary branches grow from the primary branch from weight

0 according to wt,k =
∫ t

0
gs(Xs,k)ds.

Branched Conditional Stochastic Optimal Control Following a similar procedure as shown
for the Unbalanced GSB problem, we can reformulate the Branched GSB problem as solving the
Branched CondSOC problem where we optimize a set of parameterized drift {ut,k}Kk=0 and growth
{gt,k}Kk=0 networks by minimizing the energy of the conditional trajectories between paired samples
(x0, {x1,k}Kk=0) ∼ {p0,1,k}Kk=0.

Proposition 2 (Branched Conditional Stochastic Optimal Control). For each branch, let pt,k(Xt,k) =
Ep0,1k

[pt,k(Xt,k|x0,x1,k)], where π0,1,k is the joint coupling distribution of samples x0 ∼ π0 from
the initial distribution and x1,k ∼ π1,k from the kth target distribution. Then, we can identify the set
of optimal drift and growth functions {u⋆t,k, g⋆t,k}Kk=0 that solve the Branched GSB problem in (3.2)
by minimizing sum of Unbalanced CondSOC objectives given by

min
{ut,k,gt,k}Kk=0

E(x0,x1,0)∼π0,1,0

∫ 1

0

{
Ept|0,1,0

[
1

2
∥ut,0(Xt,0)∥2 + Vt(Xt,0)

]
wt,0

+

K∑
k=1

E(x0,x1,k)∼π0,1,k

∫ 1

0

Ept|0,1,k

[
1

2
∥ut,k(Xt,k)∥2 + Vt(Xt,k)

]
wt,k

}
dt (9)

s.t. dXt,k = ut,k(Xt,k)dt+ σdBt, X0 = x0, X1,k = x1,k, w0,k = δk=0, w1,k = w1,k (10)

where wt,0 = 1 +
∫ t

0
gs,1(xs,1)ds is the weight of the primary paths initialized at 1 and wt,k =∫ t

0
gs,k(xs,k)ds are the weights of the K secondary branches initialized at 0.

The proof is given in Appendix C.2. This defines the objective for us to tractably solve the Branched
GSB problem in Section 4 by conditioning on a discrete set of branched endpoint pairs in the dataset.

Remark 1. When gt,0(Xt,0) = 0 and gt,k(Xt,k) = 0 for all t ∈ [0, 1] and k ∈ {0, . . . ,K}, then the
Branched CondSOC problem is the solution to the single path GSB problem.

4 Learning BranchSBM Using Neural Networks

Given an initial data distribution π0 and K + 1 target distributions {π1,k}Kk=0, we aim to learn
the optimal drift and growth fields {u⋆t,k, g⋆t,k}Kk=0 that solve the Branched CondSOC problem in
Proposition 2 by parameterizing {uθt,k, g

ϕ
t,k}Kk=0 with neural networks.

4.1 Branched Neural Interpolant Optimization

Since the optimal trajectory under the state cost Vt(Xt) follows a non-linear cost manifold, given a
pair of endpoints (x0,x1,k), we train a neural path interpolant φt,η(x0,x1,k) : Rd×Rd×[0, 1]→ Rd
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that defines the intermediate state xt,η,k and velocity ẋt,η,k = ∂txt,η,k at time t, which minimizes
(2). We define xt,η,k to be bounded at the endpoints as given by

xt,η,k = (1− t)x0 + tx1,k + t(1− t)φt,η(x0,x1,k) (11)
ẋt,η,k = x1 − x0 + t(1− t)φ̇t,η(x0,x1,k) + (1− 2t)φt,η(x0,x1,k) (12)

To optimize φt,η(x0,x1,k) such that it predicts the energy-minimizing trajectory, we minimize the
trajectory loss Ltraj defined as

Ltraj(η) =

K∑
k=0

∫ 1

0

E(x0,x1,k)∼π0,1,k

[
1

2
∥ẋt,η,k∥22 + Vt(xt,η,k)

]
dt (13)

After convergence, Stage 1 returns the network φ⋆
t,η(x0,x1,k) that generates the optimal conditional

velocity ẋ⋆
t,η,k which defines the matching objective in Stage 2. In Stage 2, we parameterize a set

of neural drift fields uθt,k(xt,k) : Rd × [0, 1]→ Rd that generates the mixture of bridges defined in
Stage 1 by minimizing the conditional flow matching loss [Lipman et al., 2023, Tong et al., 2024b].

Lflow(θ) =

K∑
k=0

∫ 1

0

E(x0,x1,k)∼π0,1,k

∥∥ẋ⋆
t,η,k − uθt,k(xt,k)

∥∥2
2
dt (14)

Proposition 3 (Solving the GSB Problem with Stage 1 and 2 Training). Stage 1 and Stage 2 training
yield the optimal drift u⋆t (Xt) that generates the optimal marginal probability distribution p⋆t (Xt)
that solves the GSB problem in (4).

The proof is provided in Appendix C.3. Since the drift for each branch uθt,k(Xt) are trained indepen-
dently in Stage 2, we can extend this result across all K+1 branches and conclude that the sequential
Stage 1 and Stage 2 training procedures yields the optimal set of drifts {u⋆t,k}Kk=0 that generate the
optimal probability paths {p⋆t,k}Kk=0 that solves the GSB problem for each branch.

4.2 Learning the Energy-Minimizing Branching Dynamics

Branched Energy Loss To solve the Branched CondSOC problem defined in Proposition 2, we
minimize a branched energy loss Lenergy defined as

Lenergy(θ, ϕ) =

∫ 1

0

E{pt,k}Kk=0

{[
1

2
∥uθ

t,0(xt,0)∥2 + Vt(xt,0)

]
wϕ

t,0︸ ︷︷ ︸
primary trajectory

+

K∑
k=1

[
1

2
∥uθ

t,k(xt,k)∥2 + Vt(xt,k)

]
wϕ

t,k︸ ︷︷ ︸
K branches

}
dt

s.t. wϕ
t,0 = 1 +

∫ t

0

gϕs,1(xs,1)ds, wϕ
t,k =

∫ t

0

gϕs,k(xs,k)ds (15)

where (x0,x1,0) are the endpoints of the primary path. At time t = 0, the primary path has weight 1
and the K branches have weights 0. Over t ∈ [0, 1], the weight of the primary path changes according
to gϕt,0(xt,0) and supplies mass to the K branches, which grow at rates gϕt,k(xt,k) ≥ 0 (Lemma 2).
Intuitively, the branched energy loss optimizes the branching growth rates such that they are non-zero
when branching is favored over the primary path.

Weight Matching Loss We define a weight matching loss Lmatch that aims to minimize the dif-
ference between the predicted weights of each branch at t = 1, obtained by integrating the growth
function gϕt,k(Xt) over t ∈ [0, 1], and the true weights of each terminal distribution {w⋆

1,k}Kk=0.

Lmatch(ϕ) =

K∑
k=0

Ep1,k

(
wϕ

1,k(x1,k)− w⋆
1,k

)2
, s.t. wϕ

1,k(x1,k) = w0,k +

∫ 1

0

gϕt,k(xt,k)dt (16)

where w⋆
1,k = Nk/Ntotal is the fraction of the population in the kth target distribution.

Mass Conservation Loss To ensure that the growth rate satisfies conservation of total mass at
all times t ∈ [0, 1], we define a mass loss Lmass that enforces the sum of the weights of all K + 1
branches matches the true total weight at time t denoted as wtotal

t .

Lmass(ϕ) =

∫ 1

0

E{pt,k}Kk=0

[( K∑
k=0

wϕ
t,k(xt,k)− wtotal

t

)2

+

K∑
k=0

max
(
0,−wϕ

t,k(xt,k)
)]

dt (17)
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where max(0,−wϕ
t,k) assigns an additional linear penalty for negative weight predictions. For the

balanced branched SBM problem where the total mass is conserved, we have wtotal
t = 1.

Training the Growth Networks In Stage 3, we train the growth networks {gϕt,k}Kk=0 by fixing the
weights of the flow networks {uθt,k}Kk=0 and minimizing the weighted combined loss Lgrowth with an
additional growth penalty term ∥gϕt,k∥22 to ensure coercivity of Lgrowth

Lgrowth(ϕ) = λenergyLenergy(θ, ϕ) + λmatchLmatch(ϕ) + λmassLmass(ϕ) + λgrowth

K∑
k=0

∥gϕt,k∥
2
2 (18)

We show in Lemma 2 that the optimal growth rates across the K secondary branches are non-
decreasing; however, mass destruction can still be modeled by defining an additional branch with
target weight equal to the ratio of mass lost over t ∈ [0, 1]. To ensure that the set of optimal growth
functions g⋆ exists, we establish Proposition 4 (see proof in Appendix C.4).
Proposition 4 (Existence of Optimal Growth Functions). Assume the state space X ⊆ Rd is a
bounded domain within Rd. Let the optimal probability density of branch k be a known non-negative
function bounded in [0, 1], denoted as p⋆t,k : X × [0, 1]→ [0, 1] ∈ L∞(X × [0, 1]). By Lemma 2, we
can define the set of feasible growth functions in the set of square-integrable functions L2 as
G := {g = (gt,0, . . . , gt,K) ∈ L2(X × [0, 1]) | gt,k(x) : X × [0, 1]→ R , gt,k(x) ≥ 0} (19)

Let the growth loss be the functional L(g) : L2(X × [0, 1]) → R. Then, there exists an optimal
function g⋆ = (g⋆t,0, . . . , g

⋆
t,K) ∈ L2 where g⋆t,k ∈ G such that L(g⋆) = infg∈G L(g) which can be

obtained by minimizing L(g) over G.

Final Joint Training In the final Stage 4, we train the weights for both the flow and growth
networks {uθt,k, g

ϕ
t,k}Kk=0 by minimizing Lgrowth from Stage 3 in addition to a reconstruction loss

Lrecons that ensures the endpoint distribution at time t = 1 is maintained.

Lrecons(θ) =

K∑
k=0

Ep1,k

∑
x1∈Nn(x1,k)

max

(
0, ∥x̃1,k − x1,k∥2 − ϵ

)
(20)

whereNn(x1,k) is the set of n-nearest neighbors to the reconstructed state x̃1,k ∼ p1,k at time t = 1
from the data points x1,k ∼ π1,k at time t = 1.

Our multi-stage training scheme decomposes the Branched CondSOC problem into two parts. We
first independently learn an optimal drift field for each branch, which is a vector field over the state
space that propagates mass flow in the direction of each target distribution. Then, we fix the drift fields
and learn the growth dynamics that determine the optimal distribution of mass over the branches.

5 Experiments

We evaluate BranchSBM on a variety of branched matching tasks with different state costs Vt(Xt),
including multi-path LiDAR navigation (Section 5.1), modeling differentiating single-cell population
dynamics (Section 5.2), and predicting heterogeneous cell-states after perturbation (Section 5.3).
For all tasks, we leverage the multistage training approach in Section E.1 to train a set of flow
{uθt,k}Kk=0 and growth neural networks {gϕt,k}Kk=0 for each branch. We demonstrate that BranchSBM
can accurately learn branched Schrödinger bridges with diverse state costs and data types.

5.1 Branched LiDAR Surface Navigation

First, we evaluate BranchSBM for navigating branched paths along the surface of a 3-dimensional
LiDAR manifold, from an initial distribution to two distinct target distributions (Figure 3).

Setup We define a single initial Gaussian mixture π0 and two target Gaussian mixtures π1,0, π1,1
on either side of the mountain (Figure 3). We sample 5000 points i.i.d. from each of the Gaussian
mixtures and assign all endpoints a target weight of w1,0 = w1,1 = 0.5. To ensure trajectories
follow the LiDAR manifold, we define the state cost V LAND

t (Xt) as the data-dependent LAND
metric [Kapuśniak et al., 2024, Arvanitidis et al., 2016], which assigns lower costs in regions near
coordinates in the LiDAR dataset. Further experimental details are provided in Appendix E.3.
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Figure 2: Plot of weight (left) and energy (right) calculated with (15) of
each branch over time t ∈ [0, 1]. Mass is transferred from the primary
branch to branch 1, and both converge to the target weight of 0.5 at t = 1.
Both plots represent the average over trajectories from samples in the
validation set.

Table 1: Benchmark of BranchSBM
against single-branch SBM on
multi-path surface navigation.
Wasserstein distances (W1 and
W2) between the reconstructed
and ground-truth distributions with
Nsteps = 100 Euler steps at time t = 1
from validation samples in the initial
distribution. Results are averaged over
5 independent runs.

Model W1 (↓) W2 (↓)

Single Branch SBM 0.975±0.009 1.285±0.007

BranchSBM 0.239±0.001 0.309±0.003

Initial and Target Distributions Learned Branching Drifts Branch 0 Branch 1

Figure 3: Application of BranchSBM on Learning Branched Paths on a LiDAR Manifold. Plots of the
initial and target distributions, learned interpolants, and learned branched trajectories on the LiDAR manifold.

Results We show that BranchSBM can learn distinct, non-linear branched paths that curve along
the 3-dimensional LiDAR manifold while minimizing the kinetic energy and state-cost. From the
mass and energy curves in Figure 2, we see that mass begins in the primary branch (branch 0) and is
gradually transferred to the secondary branch (branch 1) over t ∈ [0, 1], with both curves converging
to the target weight of 0.1 at t = 1. As mass is transferred, the slope of the cumulative energy curve
decreases in branch 0 and increases in branch 1, reflecting the true energy dynamics. In Figure 3, we
observe that the branching occurs at the edge of the inclined mountain, indicating that the model can
determine the optimal branching time based on the paths of lowest potential energy. As shown in
Table 1, BranchSBM reconstructs the endpoint distributions with significantly higher accuracy in
comparison to single-branch SBM. In total, we demonstrate the capability of BranchSBM to learn
branched trajectories on complex 3D manifolds.

5.2 Differentiating Single-Cell Population Dynamics

BranchSBM is uniquely positioned to model single-cell population dynamics where a homogeneous
cell population (e.g., progenitor cells) differentiates into several distinct subpopulation branches, each
of which independently undergoes growth dynamics. Here, we demonstrate this capability on mouse
hematopoiesis data.

Setup We use a dataset consisting of mouse hematopoiesis scRNA-seq data analyzed by a lineage
tracing technique from [Sha et al., 2023, Weinreb et al., 2020]. This data contains three time points
ti for i ∈ {0, 1, 2} that are projected to two-dimensional representations x ∈ R2 referred to as
force-directed layouts or SPRING plots. From the plotted data, we can observe two clear branches
that indicate the differentiation of progenitor cells into two distinct cell fates (Figure 4). We use
k-means clustering to define two distinct target distributions π1,0 and π1,1 of samples at time t2 and
set their target weights equal to w1,0 = w1,1 = 0.5 due to the equal ratio of cells (Figure 9). We used
samples across all time steps ti for i ∈ {0, 1, 2} to define the data manifold via the LAND metric
V LAND
t,η . BranchSBM was trained on pairs sampled only from t0 and t2, and samples from t1 were

held out for evaluation. For comparison, we trained a single-branch SBM model with both clusters at
t2 as the target distribution.
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Figure 4: Application of BranchSBM on Modeling Differentiating Single-Cell Population Dynamics.
Mouse hematopoiesis scRNA-seq data is provided for three time points t0, t1, t2. (A) Simulated states (top) and
trajectories (bottom) at time t1 using single-branch SBM. (B) Simulated states with BranchSBM at t1 (t = 0.5)
and (C) t2 (t = 1). (D) Learned trajectories over the interval t ∈ [t0, t2] on validation samples.

Results After evaluating the reconstructed distributions at the intermediate held-out time point t1
and final time point t2 (t = 1) from simulating validation samples from the initial distribution x0 ∼ π0.

Table 2: Results for Modeling Single-Cell Differentiation. Wasser-
stein distances (W1 and W2) between simulated and ground-truth cell
distributions at time t1 and t2 on the validation dataset. BranchSBM
reconstructs both intermediate and terminal states significantly better
than single-branch SBM. Results are averaged over 5 independent runs.

Model Single Branch SBM BranchSBM

Time ↓ W1 (↓) W2 (↓) W1 (↓) W2 (↓)

t1 0.582±0.020 0.703±0.008 0.366±0.034 0.479±0.044

t2 0.940±0.075 1.037±0.074 0.210±0.042 0.265±0.046

In Figure 4A, we observe that
single-branch SBM trained with a
single target distribution p1 con-
taining both terminal fates fails
to learn distinct branched trajecto-
ries, and the simulated cell states
at time t2 do not reach either of
the terminal distributions. In con-
trast, we show that BranchSBM
simulates branched states at inter-
mediate time steps not included in
the training data while accurately
reconstructing both target distribu-
tions with significantly lower 1-Wasserstein and 2-Wasserstein distances compared to the single-
branch SBM model (Figure 4B-D; Table 2).

5.3 Cell-State Perturbation Modeling

Predicting the effects of perturbation on cell state dynamics is a crucial problem for therapeutic
design. In this experiment, we leverage BranchSBM to model the trajectories of a single cell line
from a single homogeneous state to multiple heterogeneous states after a drug-induced perturbation.
We demonstrate that BranchSBM is capable of capturing the dynamics of high-dimensional gene
expression data and learning branched trajectories that accurately reconstruct diverging perturbed cell
populations.

Setup For this experiment, we extract the data for a single cell line (A-549) under two drug
perturbation conditions selected based on cell abundance and response diversity from the Tahoe-
100M dataset [Zhang et al., 2025a]. Clonidine at 5 µL was selected first due to having the largest
number of cells at this dosage, while Trametinib was chosen as the second drug based on its second-
highest cell count under the same condition. Since both drugs had over 60K genes, we selected the
top 2000 highly variable genes (HVGs) based on normalized expression and performed principal
component analysis (PCA) to find the top PCs that capture the variance in the data.

We set the initial distribution at t = 0 to be a control DMSO-treated cell population and the target dis-
tributions at t = 1 to be distinct clusters in the drug-treated cell population. After clustering, we identi-
fied two divergent clusters in the Clonidine-perturbed population and three in the Trametinib-perturbed
population (Appendix Figure 10). To determine the weights of each branch, we take the ratio of each
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Figure 5: Results for Clonidine Perturbation Modeling. (A) Gene expression data of DMSO control (set to
t = 0) and cell states (set to t = 1) after Clonidine perturbation with two distinct endpoints (pink and purple).
(B) The simulated trajectories for single-branch SBM on the top 50 PCs with both clusters. All samples take the
low-energy path without reaching the second cluster. (C) The simulated endpoints of the top 50, 100, and 150
PCs at t = 1 on the validation data for each branch.

cluster with respect to the total perturbed cell population (Appendix Table 8). For both experiments,
we simulated the top 50 PCs, which capture approximately 38% of the variance in the dataset. To fur-
ther evaluate the scalability of BranchSBM on simulating trajectories in high-dimensional state spaces,
we simulated the top 100 and 150 PCs for Clonidine and compared the performance across dimensions.

Table 3: Results for Clonidine Perturbation Modeling for In-
creasing Principal Component Dimensions. Maximum-mean
discrepancy (MMD) across all PCs and Wasserstein distances (W1

and W2) of top 2 PCs between ground truth and reconstructed distri-
butions at t = 1 simulated from the validation data at t = 0. Results
for single-branch SBM (50 PCs) and BranchSBM (2 branches) were
averaged over 5 independent runs.

Model RBF-MMD (↓) W1 (↓) W2 (↓)

Single Branch 0.279±0.024 5.124±0.509 6.149±0.463

SBM (50 PCs)

BranchSBM
50 PCs 0.065±0.001 1.076±0.085 1.224±0.097

100 PCs 0.053±0.002 1.832±0.174 2.037±0.174

150 PCs 0.083±0.001 1.722±0.064 1.931±0.035

Finally, we benchmarked both exper-
iments against single-branch SBM,
where we parameterize a single
branch with conserved mass that
learns the trajectory from the initial
distribution to the concatenation of
clusters in the perturbed distribution.

Given that the intermediate trajectory
between the control and perturbed
state is unknown, we assume that
the optimal trajectory both minimizes
the kinetic energy of the drift field
while minimizing the distance from
the space of feasible cell states. We
define the state cost Vt(Xt) with the
RBF metric [Kapuśniak et al., 2024,
Arvanitidis et al., 2016], which pushes
the intermediate trajectory to lie near
states represented in the dataset. Further details are provided in Appendix E.5.

Clonidine Perturbation Results After multi-stage training of BranchSBM with d ∈ {50, 100, 150}
PCs and two branched endpoints (Figure 5A), we simulated the final perturbed state of each branch
at time t = 1 from the samples in the initial validation data distribution x0 ∼ π0 corresponding to
the control DMSO condition. In Figure 5C, we demonstrate that BranchSBM accurately reconstructs
the ground-truth distributions of endpoint 0 (top row) and endpoint 1 (bottom row) across increasing
PC dimensions, capturing the location and spread of the dataset. To prove the necessity of our
branched framework, we simulate the target distribution with only a single endpoint distribution p1
containing both clusters with single-branch SBM and show that it only reconstructs the population
of cells in endpoint 0, which represent cells closest to the control cells along PC2, and fails to
differentiate cells in cluster 1 that differ from cluster 0 in higher-dimensional PCs (Figure 5B).
Concretely, BranchSBM used across all PC dimensions outperforms single-branch SBM on only
50 PCs (Table 3), indicating that BranchSBM is required to model complex perturbation effects in
high-dimensional gene expression spaces.
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Figure 6: Results for Trametinib Perturbation Modeling with BranchSBM. (A) Gene expression data of
DMSO control (t = 0) and cells after treatment with 5µL Trametinib (t = 0) with three distinct endpoints
(purple, turquoise, and pink). (B) The simulated endpoints of the top 50 PCs at t = 1 on the validation data for
each branch. (C) The evolution of cumulative energy across t ∈ [0, 1] calculated as (15) along each branched
trajectory after Stage 3 (growth with fixed drift) and Stage 4 (joint) training. (D) The evolution of mass across
t ∈ [0, 1] along each branched trajectory with target weights of w1,0 = 0.603, w1,1 = 0.255 and w1,2 = 0.142.

Trametinib Perturbation Results We further show that BranchSBM can scale beyond two
branches, by modeling the perturbed cell population of Trametinib-treated cells, which di-
verge into three distinct clusters (Figure 6A). We trained BranchSBM with three endpoints
and single-branch SBM with one endpoint containing all three clusters on the top 50 PCs.

Table 4: Results for Trametinib Perturbation Modeling. Maximum-
mean discrepancy (MMD) across all 50 PCs and Wasserstein distances
(W1 and W2) of top 2 PCs between ground truth and reconstructed
distributions at t = 1 simulated from the validation data at t = 0.
Results were averaged over 5 independent runs.

Model RBF-MMD (↓) W1 (↓) W2 (↓)

Single Branch SBM 0.246±0.013 5.428±0.234 6.426±0.186

BranchSBM 0.053±0.001 0.838±0.061 0.973±0.050

After simulating the trajectories
over time t ∈ [0, 1] on the vali-
dation cells in the control popu-
lation, we show that BranchSBM
generates clear trajectories to all
three branched endpoints (Figure
6B) and reconstructs the over-
all target distribution with lower
error compared to single-branch
SBM (Table 4). In Figure 6C
and D, we plot the evolution of
cumulative energy calculated in
Lenergy(θ, ϕ) (15) and weight of each branch over t ∈ [0, 1], demonstrating that BranchSBM’s multi-
stage training scheme effectively learns the optimal trade-off between minimizing the energy across
trajectories and matching the target weights of each branch.

6 Conclusion

In this work, we introduce Branched Schrödinger Bridge Matching (BranchSBM), a novel
matching framework that solves the Generalized Schrödinger Bridge (GSB) problem from an initial
distribution to multiple weighted target distributions through the division of mass across learned
branched trajectories. By framing the branched SBM problem as the sum of Unbalanced Conditional
Stochastic Optimal Control tasks, we parameterize the velocity and growth rates of each branch
with neural networks to predict the trajectories of dynamical systems without requiring simulation.
Through applications to nonlinear 3D navigation, cell differentiation, and perturbation-induced gene
expression, we demonstrate that BranchSBM provides a unified and flexible framework for modeling
complex branched dynamics across biological and physical systems.
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Outline of Appendix

In Appendix A, we provide an extended background on the relevant theory for learning optimal
stochastic bridges (A.1) and simulating trajectories on the data manifold (A.2). In Appendix B, we
discuss the relationship between our proposed formulation for BranchSBM and previous related
works. Appendix C provides the theoretical basis for Sections 3 and 4, including formal proofs for
Proposition 1 (C.1), Proposition 2 (C.2), Proposition 3 (C.3), and Proposition 4 (C.4). In Appendix E,
we describe further details on experiments and hyperparameters used including specific details for
each experiment, including multi-path LiDAR navigation (E.3), modeling differentiating single-cells
(E.4), and modeling cell-state perturbations (E.4). Finally, we provide the pseudo code for the
multi-stage training algorithm in Appendix F.

Notation We denote the state space as X ⊆ Rd and time interval as t ∈ [0, 1]. The branches are
indexed with k ∈ {0, . . . ,K}. We denote initial data distribution at time t = 0 as π0 and the terminal
data distributions at t = 1 as {π1,k}Kk=0. The joint data distribution is denoted π0,1,k and a pair
of samples is given by (x0,x1,k) ∼ π0,1,k. For simplicity, we denote d(x0,x1,k) = dπ0,1,k. Let
ut,k(Xt) denote the marginal velocity field, gt,k(Xt) denote the growth rate, and pt,k(Xt) denote the
marginal probability density, where we sometimes drop the input Xt for simplicity. In addition, we
denote the conditional velocity field and probability density as ut|0,1,k ≡ ut|0,1,k(Xt|x0,x1,k) and
pt|0,1,k ≡ pt|0,1,k(Xt|x0,x1,k) respectively. The optimal values for any quantity are superscripted
with a ⋆ symbol. We denote the parameterized flow neural networks as uθt,k with parameters θ and
the growth neural networks with gϕt,k with parameters ϕ. In the context of unbalanced endpoint
distributions, we denote the true initial weight of a sample as w⋆

0 and the final weight of a sample
from the kth target distribution as w⋆

1,k. The predicted weights generated from the growth dynamics
are given by wt(Xt), and we seek to match the predicted weight at time t = 1 given by w1,k(X1,k) to
the true weight w⋆

1,k. L2 denotes the space of square integrable functions and ∥ · ∥L2 be the L2-norm
in function space. L∞ denotes the space of essentially bounded functions such that ∥f∥∞ <∞.

A Extended Theoretical Background

A.1 Learning Optimal Stochastic Bridges

Pinned-Down Stochastic Bridges Let Q ∈M be a Markovian reference path measure that evolves
over t ∈ [0, 1] according to a drift field ft(Xt) : Rd → Rd and stochastic d-dimensional Brownian
motion Bt ∈ Rd, via the SDE

dXt = ft(Xt)dt+ σtdBt, X0 ∼ π0 (21)
Given Q, consider a stochastic process (Xt)t∈[0,1] over the time interval t ∈ [0, 1] pinned-down at
the initial point X0 = x0 and final point X1 = x1 denoted as Q·|0,1(·|x0,x1). Due to the endpoint
conditions, Q·|0,1 is not necessarily Markov, and evolves via the SDE

dXt = {ft(Xt) + σ2
t∇x logQ1|t(x1|Xt)}dt+ σtdBt, X0 = x0 (22)

where∇x logQ1|t(x1|Xt) is a non-Markovian score function that corrects the drift field ft(Xt) of
the reference process such that it points toward the target endpoint x1. Since logQ1|t(x1|Xt) is
the log-likelihood that the final state satisfies the condition X1 = x1, the gradient defines how the
log-likelihood changes with respect to the changes in the state x at time t. The drift moves x in the
direction of the largest increase in log-likelihood given by the score function, which ensures that the
process satisfies X1 = x1 following the theory of Doob’s h-transform [Rogers and Williams, 2000].
Now, we can define the conditional probability distribution pt as a mixture of pinned-down stochastic
bridges over pairs of endpoints in the data coupling π0,1 = π0 ⊗ π1 given by

pt(x) = π0,1Qt|0,1(x|x0,x1) =

∫
Qt|0,1(x|x0,x1)dπ0,1 (23)

To simplify notation, we denote each conditional bridge as Qt|0,1(Xt|x0,x1) = pt|0,1(Xt|x0,x1)
and the joint distribution π0,1 = p0,1(x0,x1). Now, we can rewrite the marginal pt as

pt(Xt) =

∫
pt|0,1(Xt|x0,x1)p0,1d(x0,x1) = Ep0,1

[
pt|0,1(Xt|x0,x1)

]
(24)
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Furthermore, we denote ut|0,1 ≡ ut|0,1(Xt|x0,x1) = {ft(Xt) + σ2
t∇x logQ1|t(x1|Xt)} as the

conditional drift that generates pt|0,1 ≡ pt|0,1(Xt|x0,x1), that satisfies the conditional Fokker-
Planck equation

∂

∂t
pt|0,1 = −∇ · (ut|0,1pt|0,1) +

1

2
σ2∆pt|0,1 (25)

Definition 1 (Reciprocal Class). Given our definition of the conditional bridge Q·|0,1, we can define
the reciprocal class, denotedR(Q), of the reference measure Q as the class of path measures that
share the same bridge as Q, defined asR(Q) = {Π | Π(Xt|x0,x1) = Q(Xt|x0,x1)}.

Markovian Projections Given a mixture of conditional stochastic bridges Π = Π0,1Q·|0,1 under
the reference measure Q that require knowledge of the joint distribution p0,1, we aim to project
Π to the space of Markovian measuresM, where the drift dynamics ut(Xt) is only dependent on
the current state Xt and require no knowledge on the endpoints. This allows us to parameterize a
Markovian drift uθt (Xt) that can transport samples from the initial distribution x0 ∼ π0 to samples
from the target distribution x1 ∼ π1. To do this, we define the Markovian projection of Π [Shi et al.,
2023, Liu et al., 2023b].
Definition 2 (Markovian Projection). Given a conditional bridge Q·|0,1 that evolves via the SDE in
(22), we define a Markovian projection of the mixture of bridges Π = Π0,1Q·|0,1 as a Markov process
M⋆ = projM(Π) ∈M with the same marginals as Π such that Xt ∼ Πt for all t ∈ [0, 1], X1 ∼ π1
and evolves via the SDE

dXt = {ft(Xt) + v⋆t (Xt)}dt+ σtdBt (26)

v⋆t (Xt) = σ2EΠ1|t

[
∇xt logQ1|t(X1|Xt)|Xt = xt

]
(27)

where Π1|t is the conditional distribution of X1 under the mixture of bridges Π and
∇xt

logQ1|t(X1|Xt) points in the direction of greatest increase in the log-likelihood of the tar-
get endpoint X1 ∼ π1 under the reference process Q. In addition, the Markov projection M⋆

minimizes the KL-divergence with the mixture of bridges M⋆ = argminM∈M KL(Π∥M) and can be
obtained by parameterizing vθt (Xt) and minimizing the dynamic formulation given by

KL(Π∥M) = E(x0,x1)∼Π0,1
Ext∼Πt|0,1

∫ 1

0

1

2σ2
t

[ ∥∥σ2
t∇xt

logQ1|t(x1|xt)− vθt (xt)
∥∥2 ]dt (28)

In general, the Markovian projection of a reference measure Q does not preserve the conditional
bridge and is not in the reciprocal class R(Q). The unique path measure P that is the Markovian
projection of Q, is in the reciprocal classR(Q), and preserves the endpoint distributions is called the
Schrödinger Bridge.
Definition 3 (Schrödinger Bridge). Given a reference measure Q, a initial distribution π0, and final
distribution π1. A path measure P is the unique Schrödinger bridge if it satisfies

1. P is the Markovian projection of Q, such that P = projM(Q).

2. P is in the reciprocal class of Q, i.e. P ∈ R(Q), such that it preserves the conditional bridge
P(Xt|x0,x1) = Q(Xt|x0,x1).

3. P preserves the endpoint distributions P0 = π0 and P1 = π1.

The goal of Schrödinger Bridge Matching (SBM) is to estimate the Schrödinger Bridge that transports
samples from an initial distribution π0 to a final distribution π1 given the optimal reference dynamics.
We further discuss previous approaches to solving the SB problem in Appendix B.

A.2 Simulating Trajectories on the Data Manifold

Riemannian Manifolds and Metrics Since the interpolant xt,η learned in Stage 1 is defined by
minimizing a non-linear state cost Vt(Xt), the resulting velocity field uθt (Xt) lies on the tangent
bundle TxΩ of a smooth d-dimensional manifold Ω ∈ Rd called a Riemannian manifold. Intuitively,
a Riemannian manifold can be thought of as a smooth surface where the local curvature around a
point x ∈ Ω can be approximated by a tangent space TxΩ that defines the set of directions in which
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x can move along the manifold. These directions are defined by a set of tangent vectors u ∈ TxΩ,
which pushes the point x along the manifold.

In Stage 2, we seek to parameterize a vector field uθt (Xt) that minimizes the angle from the tangent
vector ẋt,η = ∂txt,η at each point x on the manifold optimized in Stage 1. To do this, we must define
the concepts of length and angles on Riemannian manifolds. First, we define a location-dependent
inner product in Riemannian manifolds known as the Riemannian metric gx : TxΩ× TxΩ→ R that
maps two vectors u, v ∈ TxΩ to a scalar that describes the relative direction and length of the two
vectors. Formally, the Riemannian metric can be written as the billinear and positive definite function

gx(u, v) = u⊤G(x)v = ⟨u,Gv⟩ s.t.
{
∀u ̸= 0 gx(u, u) > 0

G ≻ 0
(29)

which defines the norm of a tangent vector as ∥u∥gx =
√
gx(u, u). Now, we can decompose the

Riemannian norm of the tangent vector ∥ẋt,η∥gx to get the loss defined in (13) as follows

Ltraj(η) = Et,(x0,x1)∼p0,1

[
∥ẋt,η∥2gx

]
(30)

= Et,(x0,x1)∼p0,1
⟨ẋt,η,G(xt,η)ẋt,η⟩ (31)

= Et,(x0,x1)∼p0,1

[
∥ẋt,η∥22 + ⟨ẋt,η, (G(xt,η)− I)ẋt,η⟩

]
(32)

= Et,(x0,x1)∼p0,1

[
∥ẋt,η∥22 + Vt(xt,η)

]
(33)

where the state cost is defined as Vt(xt,η) = ⟨ẋt,η, (G(xt,η)− I)ẋt,η⟩.

Data-Dependent State Cost Following Kapuśniak et al. [2024], we define the metric ma-
trix G(xt,η) described previously as the data-dependent LAND and RBF metrics of the form
GLAND(x,D) = GRBF(x,D) = (diag(h(x)) − εI)−1 which assigns higher cost (i.e. ∥G(x)∥
is larger) when x moves away from the support of the dataset D. Specifically, given a dataset
D = {xi}Ni=1, we define the elements hLAND(x) ∈ Rd that scales down each dimension
j ∈ {1, . . . , d} in the LAND metric as

hLAND
j (x) =

N∑
i=1

(xji − x
j)2 exp

(
−∥x− xi∥2

2σ2

)
(34)

where the exp term is positive when there is a high concentration of data points around the point
x (i.e. ∥x − xi∥ is small) and approaches 0 as the concentration of data around x decreases (i.e.
∥x− xi∥ is large). Writing ⟨ẋt,η,G(xt,η)ẋt,η⟩ in terms of hj(x), we get

Ltraj(η) = Et,(x0,x1)∼p0,1
⟨ẋt,η,G(xt,η)ẋt,η⟩ (35)

= Et,(x0,x1)∼p0,1

 d∑
j=1

(ẋt,η)
2
j

hj(xt,η) + ε

 (36)

When hj(x) is large, the loss is minimized, and when hj(x) is small, the loss is scaled up. While
the LAND metric effectively defines the data manifold in low dimensions, in high-dimensional state
spaces, setting a suitable variance σ in hLAND

j (xt) to ensure that the path does not deviate far from
the data manifold without overfitting is challenging. To overcome this limitation, the RBF metric
clusters the dataset into Nc clusters with centroids denoted as x̂n ∈ Rd and trains a set of parameters
{ωα,n}Nc

n=1 to enforce hj(xi) ≈ 1 for all points in the dataset such that points x within the data
manifold are also assigned hj(x) ≈ 1. Specifically, hRBF

j is defined as

hRBF
j (x) =

Nc∑
n=1

ωn,j(x) exp

(
−λn,j

2
∥x− x̂n∥2

)
(37)

λn =
1

2

(
κ

|Cn|
∑
x∈Cn

∥x− x̂n∥2
)−2

(38)

where Cn denotes the nth cluster, κ is a tunable hyperparameter, and λn,j is the bandwidth of cluster
n the jth dimension. To train the parameters, we minimize the following loss

LRBF({ωα,n}) =
∑
xi∈D

(
1− hRBF

n (xi)
)2

(39)
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In our experiments, we use the LAND metric for the LiDAR and mouse hematopoiesis datasets
with dimensions d = 2 and d = 3 respectively, and the RBF metric for the perturbation modeling
experiment with gene expression data of dimensions d ∈ {50, 100, 150}.

Sampling on the Data Manifold In Riemannian geometry, each Euclidean step ∆t·uθt (x) following
the tangent vector uθt (x) along the manifold requires mapping back to the manifold via an exponential
map Xt+∆t = expx(∆t · uθt (x)). In general, computing the exponential map expx under the
Riemannian metric G(x) requires simulation of the geodesic flow (i.e., approximating the final state
at t = 1 under the initial conditions x0 = x and ẋ0 = uθt (x)).

While the manifold induced by the data-dependent metric G(x,D) behaves as a curved manifold that
follows an optimal cost structure, its underlying space is still Euclidean. G(x,D) just assigns varying
costs of moving in the Euclidean space Rd. Therefore, we can avoid computing the exponential map
and generate trajectories with simple Euclidean Euler integration following

xt+∆t = xt +∆t · uθt (xt) (40)

where ∆t = 1/Nsteps is the discretized step size.

B Comparison to Existing Works

In this section, we discuss the relationship between our proposed formulation for Branched
Schrödinger Bridge Matching and related previous works. We establish reasons why BranchSBM is
the theoretically optimal formulation to solve the problem of modeling stochastic dynamical systems
with diverging trajectories over time by modeling branched Schrödinger bridges. We conclude by
introducing an alternative perspective of the Branched GSB problem defined in Section 3.2 as the
problem of modeling probabilistic trajectories of dynamic systems with nondeterministic states,
which BranchSBM is uniquely positioned to solve.

B.1 Modeling Branched Schrödinger Bridges

Schrödinger Bridge Matching Computational methods for solving the Schrödinger Bridge (SB)
problem for predicting trajectories between initial and target distributions have been extensively
studied in existing literature [De Bortoli et al., 2021b, Chen et al., 2021a, Korotin et al., 2023, Bunne
et al., 2022a, Chizat et al., 2018, Liu et al., 2023a, 2022, Shi et al., 2023, Kim et al., 2024, Wang
et al., 2021, Tong et al., 2024a, Peluchetti, 2024, Bunne et al., 2022a, Somnath et al., 2023, Gushchin
et al., 2024, Pavon et al., 2021, Garg et al., 2024, De Bortoli et al., 2024, Shen et al., 2024, Chen
et al., 2023, Noble et al., 2023]. Previous work has framed the SB problem as an entropy-regularized
Optimal Control (EOT) problem [Cuturi, 2013, Léonard, 2014, Pavon et al., 2018] or a stochastic
optimal control (SOC) problem [Chen et al., 2016, 2021b, Liu et al., 2023a], which we build on in
this work.

Conditional Stochastic Optimal Control Several works [Chen et al., 2016, 2021b, Liu et al.,
2023a] have reframed the SB problem as a Conditional Stochastic Optimal Control (CondSOC)
problem, which takes the canonical form

min
ut

∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

]
dt+ Ep1

[ϕ(X1)] (41)

s.t. dXt = ut(Xt)dt+ dBt, X0 ∼ π0 (42)

where ϕ(X1) : X → R acts as a reconstruction loss that enforces that the distribution of X1 ∼ p1
matches the true distribution π1. Due to the intractability of π0, π1, GSBM [Liu et al., 2023a] uses
spline optimization to learn an optimal Gaussian probability path p⋆t|0,1 = N (µt, γ

2
t Id) using only

samples x0 ∼ π0 and x1 ∼ π1 from the initial and terminal distributions. Although GSBM does
not require knowledge of the densities, it follows an iterative optimization scheme that alternates
between matching the drift ut given a fixed marginal pt, and updating the marginal given the drift.
This strategy can get stuck in suboptimal solutions and is sensitive to the initialization of uθt . GSBM
is also limited to learning unimodal Gaussian paths between one source and one target distribution
with balanced mass, making it unsuitable for modeling tasks with multimodal terminal distributions
and splitting of mass over multiple distinct paths.
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Regularized Unbalanced Optimal Transport Several previous works have studied the unbalanced
optimal transport problem [Zhang et al., 2025b, Chen et al., 2021a, Lübeck et al., 2022, Pariset et al.,
2023]; however, these approaches address a fundamentally different setting from the unbalanced
Generalized Schrödinger Bridge (GSB) problem considered in this work. Specifically, DeepRUOT
[Zhang et al., 2025b] solves the Regularized Unbalanced Optimal Transport (RUOT) problem by
parameterizing the canonical stochastic bridge SDE dXt = ft(Xt)dt + σtdBt with a probability
flow ODE given by

dXt =

{
ft(Xt) +

1

2
σ2
t∇x log p

θ
t (Xt)

}
︸ ︷︷ ︸

uθ
t (Xt)

dt (43)

where uθt (Xt) is the drift of the probability flow ODE that is learned along with the probability density
pθt (Xt) to derive the drift of the SDE ft(Xt). Unlike GSBM [Liu et al., 2023a], which enforces
a hard constraint on the endpoints, DeepRUOT models a probability density flow by minimizing
a reconstruction loss that encourages alignment with both intermediate and terminal distributions.
While effective when intermediate distributions are observed, the method fails to learn meaningful
trajectories in settings where these intermediate snapshots are unavailable, limiting its applicability in
many real-world scenarios.

Learning Diverging Trajectories with Single Target SBM To model diverging trajectories with
single-branch SBM where the target distribution is multi-modal, we can follow a set of Nsamples
samples from the initial distribution π0 to determine the distribution of samples that end at each of
the modes of the target distribution π1. While this can estimate the splitting of mass across different
trajectories, it does not explicitly learn the optimal distribution of mass in the latent space over time.

Furthermore, if the path toward a specific cluster in the target distribution has lower potential than
that of the other clusters, mode collapse could occur, where all samples follow the same trajectory
without reaching the other clusters. BranchSBM learns to generate the correct mass distribution
over each of the target states by optimizing the growth term with respect to the matching loss Lmatch
defined in Equation 16.

With the standard SBM formulation, it is also challenging to determine the time at which branching
occurs and the population diverges toward different targets, as all samples follow stochastic trajecto-
ries. With BranchSBM, we model population-wide branching dynamics with growth networks that
are trained to predict the origin of a branch from having zero mass (wt,k = 0) and the rate at which it
grows/shrinks over time ∂twt,k = gt,k(Xt,k). The mass of a branch at any given time step can be
simulated with wt,k(Xt,k) = w0,k +

∫ t

0
gϕs,k(Xs,k)ds.

Branching Dynamics While branched dynamics have been explored in the context of optimal
transport [Lippmann et al., 2022] and Brownian motion [Baradat and Lavenant, 2021], no previous
work has explicitly formulated or solved the branched Schrödinger bridge problem that seeks to
match an initial distribution to a multiple terminal distributions via stochastic bridges. For instance,
the concept of Branching Brownian Motion (BBM) introduced in Baradat and Lavenant [2021]
models a population of particles that each independently follow stochastic trajectories according
to standard Brownian motion with positive diffusivity ν > 0. To model branching dynamics, each
particle has an independent branching rate λ > 0 that determines the probability that the particle
undergoes a branching event, defined as the particle dying and generating k new particles that then
evolve independently. The number of generated particles is sampled from a probability distribution
over non-negative integers k ∼ p = (pk)k∈N, where pk is the probability of generating k particles
at the branching event and

∑
k∈N pk = 1. Given pk, qk = λpk defines the rate of branching events

that generate k new particles and define a new probability measure q = (qk)k∈N called the branching
mechanism.

While BBM defines branching as the generation of additional particles from a single particle following
an independent, temporal probability measure q, this model fails to model the division of mass across
multiple trajectories, where total mass remains constant but the mass of each branch changes. In
addition, BBM assumes that each branched particle undergoes independent Brownian motion, without
explicitly defining a terminal state or branch-specific drift. For these reasons, the BBM model is
unsuitable for modeling branching in the majority of real-world contexts, such as cell state transitions,
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where undifferentiated cells split probabilistically into distinct fates rather than proliferating in
number. In such systems, branching reflects a redistribution of probability mass over developmental
trajectories, governed by underlying regulatory patterns rather than purely stochastic reproduction.

Where existing frameworks fall short is in modeling meaningful energy-aware, conditional stochas-
tic trajectories with unbalanced and multi-modal dynamics, which we address in this work.
Specifically, we formulate the Unbalanced CondSOC problem followed by the Branched CondSOC
problem that defines a set of optimal drifts and growth fields that define a set of branched trajectories
following optimal energy-minimizing trajectories defined by the state cost Vt(Xt). Instead of spline
optimization, we leverage a parameterized network φ⋆

t,η(x0,x1) that learns to predict an optimal
interpolating path given a pair of endpoints.

To model dynamic growth of mass along branched trajectories, we initialize a normalized population
weight of 1 at a primary branch (k = 0), that can split across K branches and generate weights
{wt,k}Kk=0 that evolve co-currently via learned growth rates {gϕt,k}Kk=0. This approach relies on
learning the growth rate over an entire population of samples across all branches rather than learning
independent growth rates of individual samples, which enforces stronger constraints during training
to ensure that the model captures true population growth dynamics.

B.2 Modeling Perturbation Responses

In single-cell transcriptomics, perturbations such as gene knockouts, transcription factor induction,
or drug treatments frequently induce cell state transitions that diverge into distinct fates, reflecting
differentiation, resistance, and off-target effects [Shalem et al., 2014, Kramme et al., 2021, Dixit
et al., 2016, Gavriilidis et al., 2024, Zhang et al., 2025a, Kobayashi et al., 2022, Smela et al., 2023,
Pierson Smela et al., 2025, Yeo et al., 2021]. Trajectory inference methods for modeling cell-state
dynamics with single-cell RNA sequencing data, including flow matching [Zhang et al., 2025c,
Rohbeck et al., 2025, Atanackovic et al., 2024, Tong et al., 2024a, Wang et al., 2025], Schrödinger
Bridge Matching [Alatkar and Wang, 2025, Tong et al., 2024a], and optimal transport [Zhang et al.,
2025b, Tong et al., 2020, Bunne et al., 2023, Driessen et al., 2025, Huguet et al., 2022, Klein et al.,
2024, Yachimura et al., 2024, Schiebinger et al., 2019, Zhang et al., 2021, Bunne et al., 2022b],
have been widely explored. While many algorithms have been developed to predict perturbation
responses [Bunne et al., 2023, Megas et al., 2025, Rohbeck et al., 2025, Roohani et al., 2023, Ryu
et al., 2024], they either predict only the terminal perturbed state without modeling the intermediate
cell-state transitions or model single unimodal perturbation trajectories. Schrödinger Bridge Matching
frameworks like [SF]2M [Tong et al., 2024a] and DeepGSB [Liu et al., 2022] have been shown to
effectively model stochastic transitions in biological systems, offering better scalability and sampling
efficiency than classical OT.

However, these models are still limited to modeling trajectories between a single pair of boundary
distributions, limiting their ability to represent divergent trajectories arising from the same perturbed
initial state. This is a key limitation when modeling processes like fate bifurcation post-perturbation,
where a cell population exposed to the same stimulus may split into multiple phenotypically distinct
outcomes. BranchSBM extends the SBM framework to support multiple terminal marginals, enabling
modeling of stochastic bifurcations in a mathematically principled way. By learning a mixture of
conditional stochastic processes from a common source to multiple target distributions, BranchSBM
can capture the heterogeneity and uncertainty of cell fate decisions under perturbation. Moreover,
it retains the empirical tractability of previous SB-based models, requiring only samples from
distributions, and ensures that intermediate trajectories lie on the manifold of feasible cell states.

B.3 Modeling Probabilistic Trajectories with BranchSBM

We conclude the discussion with an alternative interpretation of the Branched Schrödinger Bridge
problem that deviates from the branching population dynamics problem. We instead consider
Branched SB as a probabilistic trajectory matching problem, where each branch is one of multiple
possible trajectories that a sample Xt could follow. Since single-path SBM learns only a single
deterministic drift field ut(Xt) that determines the direction and flow of the SDE dXt = uθt (Xt)dt+
σdBt, the probabilistic aspect of the trajectory remains restricted to Brownian motion via σdBt. This
fails to capture probabilistic dynamics where probability densities begin concentrated at a single state
but evolve into multi-modal probability densities {pt,k(Xt)}Kk=0 over multiple different states, each
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of which evolve according to an SDE dXt = ut,k(Xt)dt + σkdBt with an independent drift term
ut,k(Xt) and noise scaling σk.

Where other SBM frameworks fall short, BranchSBM is capable of modeling multiple probabilistic
trajectories, where a system begins at a single deterministic state X0 = x0 with probability w1,0 = 1
and evolves via multiple probabilistic trajectories that diverge in the state space governed by the SDEs
dXt = ut,k(Xt)dt+σkdBt. At time t, the system exists in a non-deterministic superposition of states
{Xt,k, wt,k}Kk=0, each with a probability wt,k such that

∑K
k=0 w

ϕ
t,k = 1. In addition, BranchSBM

can model the evolution of the probability weights wϕ
t,k by parameterizing the probabilistic growth

rates {gϕt,k}Kk=0 that preserve conservation of probability mass
∑K

k=0 w
ϕ
t,k = 1 at all times t ∈ [0, 1]

by minimizing the mass loss Lmass(ϕ) (17). This problem is prevalent in many biological and physical
systems, where a system does not exist in a single deterministic state, but rather a superposition over
a distribution of states.

Table 5: BranchSBM enables robust modeling of branched Schroödinger bridges compared to existing
frameworks. BranchSBM can model both branching and unbalanced trajectories, follows intermediate trajecto-
ries governed by a task-specific state cost, requires only endpoint samples for training, and samples trajectories
from only a single sample from the starting distribution.

Method Models Branching Models
Unbalanced

Intermediate
Dynamics

Requirements
for Training

Requirements
for Sampling

Generalized SBM
Liu et al. [2023a]

No No Entropic OT
with learned

drift uθ
t

Samples from
π0, π1

Endpoints
(x0,x1) ∼ pθ0,1

DeepRUOT [Zhang
et al., 2025b]

Requires simulating multiple
samples

Growth rate
gϕt (Xt)

Regularized OT
with learned
drift uθ

t and
density pθt

Samples from
π0, π1

Sample
x0 ∼ π0

BranchSBM
(Ours)

Simulates divergent trajectories
and terminal states from single

sample x0

Branched
growth rates

{gϕt,k(Xt)}Kk=0

Branched drifts
{uθ

t,k}Kk=0 that
minimize

state-cost Vt

Samples from
π0 and clusters
{π1,k}Kk=0

Sample
x0 ∼ π0

C Theoretical Proofs

C.1 Proof of Proposition 1

Proposition 1 (Unbalanced Conditional Stochastic Optimal Control) Suppose the marginal
density can be decomposed as pt(Xt) =

∫
π0,1

pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1, where π0,1 is a fixed
joint coupling of the data. Then, we can identify the optimal drift u⋆t and growth g⋆t that solves the
Unbalanced GSB problem in (5) by minimizing the Unbalanced Conditional Stochastic Optimal
Control objective given by

min
ut,gt

E(x0,x1)∼π0,1

[∫ 1

0

Ept|0,1

[
1

2
∥ut(Xt|x0,x1)∥2 + Vt(Xt)

]
wt(Xt)dt

]
(44)

s.t. dXt = ut(Xt|x0,x1)dt+ σdBt, X0 = x0, X1 = x1 w0(X0) = w⋆
0 , w1(X1) = w⋆

1 (45)

where wt = w0 +
∫ t

0
gs(Xs)ds is the time-dependent weight initialized at w⋆

0 , ut is the drift, gt is
the growth rate, and π0,1 is the weighted coupling of paired endpoints (x0, w0,x1, w1) ∼ π0,1.

Proof. We define the Unbalanced Generalized Schrödinger Bridge problem as the solution (ut, pt, gt)
to the energy minimization problem such that the unbalanced Fokker-Planck equation is satisfied.

min
ut,gt

∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

](
w0 +

∫ t

0

gs(Xs)ds

)
dt (46)

s.t.

{
∂
∂tpt(Xt) = −∇ · (ut(Xt)pt(Xt)) +

σ2

2 ∆pt(Xt) + gt(Xt)pt(Xt)

p0 = π0, p1 = π1
(47)

Under the assumption that the joint probability p0,1(x0,x1) is fixed over all times t ∈ [0, 1] and the
marginal probability can be factorized as pt(Xt) = Ep0,1

[pt(Xt|x0,x1)], we can decompose the
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minimization objective into∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

](
w0 +

∫ t

0

gs(Xs)ds

)
dt (48)

=

∫ 1

0

Ep0,1Ept|0,1

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

](
w0 +

∫ t

0

gs(Xs)ds

)
dt (law of total expectation)

= Ep0,1

∫ 1

0

Ept|0,1

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

](
w0 +

∫ t

0

gs(Xs)ds

)
dt (Fubini’s theorem)

which can be solved by identifying the conditional drift ut that minimizes the expected objective
value over all endpoint samples (x0,x1) ∼ p0,1. Under similar assumptions, we can decompose all
terms in the Fokker-Planck equation. For the left-hand side, we have:

∂

∂t
pt(Xt) =

∂

∂t

∫
π0,1

pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1 = E(x0,x1)∼π0,1

[
∂

∂t
pt(Xt|x0,x1)

]
(49)

For the divergence term, we have:

∇ · (ut(Xt)pt(Xt)) = ∇ ·

(
ut(Xt)

∫
π0,1

pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1

)

= ∇ ·

(∫
π0,1

ut(Xt)pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1

)
(50)

By Fubini’s Theorem and the linearity of the divergence operator, we can switch the order of
integration to get

∇ · (ut(Xt)pt(Xt)) =

∫
π0,1

∇ ·
(
ut(Xt)pt(Xt|x0,x1)

)
p0,1(x0,x1)dπ0,1

= E(x0,x1)∼π0,1

[
∇ ·
(
ut(Xt)pt(Xt|x0,x1)

)]
(51)

For the Laplacian term, we have:

σ2

2
∆pt(Xt) =

σ2

2
∇ · (∇pt(Xt))

=
σ2

2
∇ ·

(
∇
∫
π0,1

pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1

)

=
σ2

2

∫
π0,1

(
∇ · ∇pt(Xt|x0,x1)

)
p0,1(x0,x1)dπ0,1

=
σ2

2
E(x0,x1)∼π0,1

[
∆pt|0,1(Xt|x0,x1)

]
(52)

For the growth term, we have:

gt(Xt)pt(Xt) = gt(Xt)

∫
π0,1

pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1

=

∫
π0,1

gt(Xt)pt(Xt|x0,x1)p0,1(x0,x1)dπ0,1

= E(x0,x1)∼π0,1

[
gt(Xt)pt(Xt|x0,x1)

]
(53)

Combining all the terms of the Fokker-Planck equation, we have shown that (47) can be rewritten as

∂

∂t
pt(Xt|x0,x1) = −∇ ·

(
utpt(Xt|x0,x1)

)
+∆pt|0,1(Xt|x0,x1) + gtpt(Xt|x0,x1) (54)

Therefore, the Unbalanced GSB problem is equivalent to solving the Unbalanced CondSOC problem,
and we conclude our proof of Proposition 1.
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C.2 Proof of Proposition 2

Proposition 2 (Branched Conditional Stochastic Optimal Control) For each branch, let
pt,k(Xt,k) = Ep0,1k

[pt,k(Xt,k|x0,x1,k)], where π0,1,k is the joint coupling distribution of sam-
ples x0 ∼ π0 from the initial distribution and x1,k ∼ π1,k from the kth target distribution. Then,
we can identify the set of optimal drift and growth functions {u⋆t,k, g⋆t,k}Kk=0 that solve the Branched
GSB problem in (3.2) by minimizing sum of Unbalanced CondSOC objectives given by

min
{ut,k,gt,k}Kk=0

E(x0,x1,0)∼π0,1,0

∫ 1

0

{
Ept|0,1,0

[
1

2
∥ut,0(Xt,0)∥2 + Vt(Xt,0)

]
wt,0

+

K∑
k=1

E(x0,x1,k)∼π0,1,k

∫ 1

0

Ept|0,1,k

[
1

2
∥ut,k(Xt,k)∥2 + Vt(Xt,k)

]
wt,k

}
dt (55)

s.t. dXt,k = ut,k(Xt,k)dt+ σdBt, X0 = x0, X1,k = x1,k, w0,k = δk=0, w1,k = w1,k (56)

where wt,0 = 1 +
∫ t

0
gs,1(xs,1)ds is the weight of the primary paths initialized at 1 and wt,k =∫ t

0
gs,k(xs,k)ds are the weights of the K secondary branches initialized at 0.

Proof. We extend the proof of Proposition 1 to the branching case by defining each branch k as an
independent Unbalanced Generalized Schrödinger Bridge problem in (5) given by

min
ut,k,gt,k

∫ 1

0

Ept,k

[
1

2
∥ut,k(Xt,k)∥2 + Vt(Xt,k)

](
w0,k +

∫ t

0

gs,k(Xs,k)ds

)
dt (57)

s.t.

{
∂
∂t
pt,k(Xt,k) = −∇ · (ut,k(Xt)pt,k(Xt,k)) +

σ2

2
∆pt,k(Xt,k) + gt,k(Xt,k)pt,k(Xt,k)

p0 = π0, pt,k = πt,k

(58)

such that each branch independently solves the Fokker-Planck equation defined as ∂
∂tpt,k = −∇ ·

(ut,kpt,k) +
σ2

2 ∆pt,k. Now, we show that the sum of unbalanced CondSOC problems still satisfies
the global Fokker-Planck equation

∂

∂t
pt = −∇ · (utpt) +

σ2

2
∆pt (59)

where we define pt as the weighted sum of the branched distributions given by

pt(Xt) =

K∑
k=0

wt,kpt,k(Xt) (60)

To obtain an expression for the global Fokker-Planck equation, we differentiate both sides and
substitute the branched FPE as follows

∂

∂t
pt =

∂

∂t

[
K∑

k=0

wt,kpt,k

]
∂

∂t
pt =

K∑
k=0

[
wt,k

(
∂

∂t
pt,k

)
+

(
∂

∂t
wt,k

)
pt,k

]
∂

∂t
pt =

K∑
k=0

[
wt,k

(
−∇ · (ut,kpt,k) +

σ2

2
∆pt,k

)
+ gt,kpt,k

]
(substitute branched FPE and ∂twt,k = gt,k)

∂

∂t
pt =

K∑
k=0

[
−wt,k∇ · (ut,kpt,k) + wt,k

σ2

2
∆pt,k + gt,kpt,k

]
∂

∂t
pt =

K∑
k=0

(−wt,k∇ · (ut,kpt,k)) +

K∑
k=0

wt,k
σ2

2
∆pt,k +

K∑
k=0

gt,kpt,k (61)

By linearity of the Laplacian, the diffusion term can be rewritten as
K∑

k=0

wt,k
σ2

2
∆pt,k =

σ2

2
∆

(
K∑

k=0

wt,kpt,k

)
︸ ︷︷ ︸

pt

=
σ2

2
∆pt (62)
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Since the global growth term
∑K

k=0 gt,kpt,k is the sum of the growth dynamics across all branches
and is separate from the drift and diffusion dynamics, it doesn’t alter the direction or motion of
particles along the branched fields. Thus, both the diffusion and growth terms satisfy the global FPE.

Now, we set the divergence term in (61) equal to the global divergence ∇ · (utpt) and derive the
expression for the total drift field ut(Xt) that satisfies the global FPE. By linearity of the divergence
operator, we get

−∇ · (utpt) =

K∑
k=0

(−wt,k∇ · (ut,kpt,k))

−∇ · (utpt) = −∇ ·

(
K∑

k=0

wt,kut,kpt,k

)

−∇ · (utpt) = −∇ ·

(
1

pt

K∑
k=0

wt,kut,kpt,k

)
︸ ︷︷ ︸

ut

pt (63)

Under the global FPE constraint, the drift ut is defined as the mass-weighted average of the drift
fields for each branch, given by ut(Xt) =

1
pt(Xt)

∑K
k=0 wt,k(Xt)ut,k(Xt)pt,k(Xt). Intuitively, this

means that in the global context, for any Xt = xt, the drift of state Xt along the dynamics of branch
k is scaled by the weight of xt at time t along branch k and the ratio of probability density of xt

under branch k over the total probability density of xt across all branches. Therefore, our definition
of the weighted drift decoupled over individual branches satisfies the global FPE equation in (59),
and this concludes the proof of Proposition 2.

Remark 1 (Reduction to Single Path GSBM) When gt,0(Xt,0) = 0 and gt,k(Xt,k) = 0 for all
t ∈ [0, 1] and k ∈ {1, . . . ,K}, then the Branched CondSOC problem is the solution to the single
path GSB problem given by

min
ut

∫
Ept|0,1

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

]
dt s.t.

{
dXt = ut(Xt)dt+ σdBt

X0 ∼ π0, X1 ∼ π1
(64)

(65)

where the probability density pt|0,1(Xt|x0,x1) is conditioned explicitly on a pair of endpoints
(x0,x1) ∼ π0,1 drawn from the joint distribution.

C.3 Proof of Proposition 3

Proposition 3 (Solving the GSB Problem with Stage 1 and 2 Training) Stage 1 and Stage 2
training yield the optimal drift u⋆t (Xt) that generates the optimal marginal probability distribution
p⋆t (Xt) that solves the GSB problem in (4).

Proof. Let the marginal probability distribution p⋆t (Xt) and corresponding drift u⋆t (Xt) define the
optimal solution to the GSB problem. It suffices to show that

1. Given (x0,x1) ∼ π0,1, Stage 1 training with the trajectory loss Ltraj(η) (13) yields the inter-
polant x⋆

t,η and time-derivative ẋ⋆
t,η that define p⋆t (Xt).

2. Given p⋆t (Xt), Stage 2 training with the explicit flow matching loss Lflow(θ) (14) yields the
optimal drift u⋆t (Xt).

To prove Part 1, we establish the following Lemma.

Lemma 1. Given the Markovian reference process Q with drift v⋆t (Xt) that is the minimizer of the
unconstrained GSB problem in (4), Stage 1 training returns the velocity field ẋ⋆

t,η that generates
reciprocal projection Π⋆ = projR(Q)(P) of the path measure P = p0,1.

Proof of Lemma. It suffices to prove that ẋ⋆
t,η minimizes the KL-divergence with v⋆t (Xt) under

endpoint constraints X0 = x0 and X1 = x1.
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Consider the unconstrained Markovian drift v⋆t that is the minimizer of the energy function given by

v⋆t = argmin
vt

∫ 1

0

Ept

[
1

2
∥vt(Xt)∥2 + Vt(Xt)

]
dt (66)

The class of interpolants is given by parameters η is defined as

xt,η = (1− t)x0 + tx1 + t(1− t)φt,η(x0,x1) (67)
ẋt,η = x1 − x0 + t(1− t)φ̇t,η(x0,x1) + (1− 2t)φt,η(x0,x1) (68)

Stage 1 training yields the optimal interpolant ẋ⋆
t,η that minimizes the energy function across all time

points t ∈ [0, 1], defined as

ẋ⋆
t,η = argmin

ẋ⋆
t,η

∫ 1

0

Ept

[
1

2
∥ẋ⋆

t,η(x0,x1)∥2 + Vt(x
⋆
t,η)

]
dt (69)

Therefore, we aim to prove that ẋ⋆
t,η is the velocity field corresponding to Π⋆ = p0,1Q·|0,1, which is

the reciprocal projection of p0,1 onto the class of path measures that share the same bridge marginals
conditioned on a pair of endpoints, called the reciprocal classR(Q) [Léonard, 2014].

By definition, the reciprocal projection Π⋆ is defined as the minimizer of the KL-divergence with
P = p0,1 that lies within the reciprocal classR(Q) of measures that match the bridge conditions of
Q.

Π⋆ = argminΠ∈R(Q)KL(P∥Π) (70)

The reciprocal projection matches the endpoint constraints of P while following the bridge condi-
tionals Q·|0,1 = Q(·|X0 = x0, X1 = x1) [Léonard, 2014]. Therefore, we can write the generating
velocity field ẋ⋆

t,η as

ẋ⋆
t,η(x0,x1) = Ext∼Q [ẋt|X0 = x0, X1 = x1] (71)

Since both v⋆t generating Q and ẋ⋆
t,η minimize the same energy function, the objective in (70) reduces

to determining ẋ⋆
t,η that is the minimizer of the dynamic formulation of KL divergence between the

reference process Q and all path measures P = p0,1 that preserve endpoint constraints given by

ẋ⋆
t,η = argmin

ẋt,η

KL(P∥Q) (72)

= argmin
ẋt,η

E(x0,x1)∼p0,1

[∫ 1

0

1

2
∥ẋ⋆

t,η − v⋆t (xt,η)∥2dt
]

(73)

Therefore, we conclude that ẋ⋆
t,η generates the reciprocal projection Π⋆ = p0,1Q·|0,1.

By Lemma 1, we know that v⋆t is the optimal drift energy function in the GSB problem without
endpoint constraints and ẋ⋆

t,η is the reciprocal projection that follows the dynamics of v⋆t while
preserving the coupling p0,1. Therefore, we can define u⋆t|0,1(Xt|x0,x1) ≡ ẋ⋆

t,η(x0,x1) as the
conditional drift that generates the conditional probability distribution p⋆t|0,1(Xt|x0,x1) that satisfies
the Fokker-Planck equation

∂

∂t
pt|0,1 = −∇ · (ut|0,1pt|0,1) +

1

2
σ2∆pt|0,1 (74)

Given that p⋆t|0,1(Xt|x0,x1) is the optimal bridge that solves the GSB problem for a pair of endpoints
(x0,x1) ∼ p0,1, we can define the marginal probability distribution p⋆t as the mixture of bridges

p⋆t = E(x0,x1)∼π0,1

[
p⋆t|0,1(Xt|x0,x1)

]
(75)

which concludes the proof of Part 1.

For Part 2 of the proof, we aim to show that Stage 2 training yields the optimal Markovian drift
u⋆t (Xt) that generates p⋆t (Xt). To do this, we write the Fokker-Planck equation for p⋆t (Xt) in terms
of the conditional bridge pt|0,1 and drift field ut|0,1 to extract an expression for u⋆t (Xt) that satisfies
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it. Starting from the definition of p⋆t , we have

p⋆t =

∫
p⋆t|0,1p0,1dx0,1

∂

∂t
p⋆t =

∫ (
∂

∂t
p⋆t|0,1

)
p0,1dx0,1

=

∫ (
−∇ · (ut|0,1p⋆t|0,1) +

1

2
σ2∆p⋆t|0,1

)
p0,1dx0,1

=

∫ (
−∇ · (ut|0,1p⋆t|0,1)

)
p0,1dx0,1 +

∫ (
1

2
σ2∆p⋆t|0,1

)
p0,1dx0,1

= −∇ ·
∫
(ut|0,1p

⋆
t|0,1)p0,1dx0,1 +

1

2
σ2∆

∫
p⋆t|0,1p0,1dx0,1

= −∇ ·
∫
(ut|0,1p

⋆
t|0,1)p0,1dx0,1︸ ︷︷ ︸
(u⋆

t p
⋆
t )

+
1

2
σ2∆

∫
p⋆t|0,1p0,1dx0,1︸ ︷︷ ︸

p⋆
t

(76)

For (76) to satisfy the Fokker-Planck equation, we set the first term equal to (u⋆t p
⋆
t ) and solve for u⋆t

to get

u⋆t p
⋆
t =

∫
(u⋆t|0,1p

⋆
t|0,1)p0,1dπ0,1 (77)

u⋆t =
Eπ0,1

[
u⋆t|0,1p

⋆
t|0,1

]
p⋆t

(78)

Therefore, the optimal Markovian drift (or Markovian projection) is the average of the conditional
drifts defined in part 1 as u⋆t|0,1 ≡ ẋ⋆

t,η over the joint distribution p0,1. This means that the minimizer
of the conditional flow matching loss Lflow(θ) in (14) defined as the expected mean-squared error
between a Markovian drift field ut(Xt) and ẋ⋆

t,η over pairs (x0,x1) ∼ p0,1 in the dataset is the
optimal drift u⋆t (Xt) that solves the GSB problem.

u⋆t (Xt) = argmin
θ
Lflow(θ) = argmin

uθ
t

∫ 1

0

E(x0,x1)∼p0,1
∥ẋ⋆

t,η − uθt (Xt)∥2dt (79)

which concludes the proof of Proposition 3. Since the drift for each branch uθt,k(Xt) are trained
independently in Stage 2, we can extend this result across all K + 1 branches and conclude that the
sequential Stage 1 and Stage 2 training procedures yields the optimal set of drifts {u⋆t,k}Kk=0 that
generate the optimal probability paths {p⋆t,k}Kk=0 that solves the GSB problem for each branch.

C.4 Proof of Proposition 4

Lemma 2. Suppose the optimal drift field u⋆t,k : Rd → Rd and probability density p⋆t,k : Rd → R
that minimizes the GSB problem in (4) is well-defined over the state space X ⊆ Rd for each branch.
Then, the optimal weight w⋆

t,k at any of the secondary branches k ∈ {1, . . . ,K} is non-decreasing
over the interval t ∈ [0, 1]. Equivalently, the optimal growth rates g⋆t,k(Xt) ≥ 0 for all t ∈ [0, 1].

Proof. We will prove this lemma by contradiction. Suppose there exists a branch k that decreases in
weight over the time interval [t1, t2] for 0 ≤ t1 < t2 ≤ 1, such that wt1,k > wt2,k. We know that
the target weight at time t = 1 is non-negative w1,k ≥ 0 and the total weight across all branches
is conserved (i.e.

∑K
k=0 wt,k(Xt) = wtotal

t ) and non-decreasing (i.e. ∂twtotal
t > 0 for all t ∈ [0, 1]).

In this proof, we let Ek(t1, t2) =
∫ t2
t1

[
1
2∥u

⋆
t,k(Xt)∥22 + Vt(Xt)

]
denote the energy of following the

dynamics of the kth branch over the time interval [t1, t2].

Then, there can only be two possible reasons for the loss of mass along a branch k: (1) the mass is
destroyed, or (2) the mass is transferred to a different branch j ̸= k.
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Case 1. The destruction of mass directly violates the assumption that the total mass across all
branches is conserved and non-decreasing. So, we only need to consider the possibility of Case 2.

Case 2. Suppose the mass is transferred to a different branch j ̸= k over the interval [t1, t2]. By
Proposition 3, Stage 1 and 2 training yields the optimal velocity fields {u⋆t,k(Xt)}Kk=0 that generate
the optimal interpolating probability density {p⋆t,k(Xt)}Kk=0 that independently minimize the GSB
problem in (4).

If mass is transferred from branch k to branch j over the interval [t1, t2], it must be compensated
for over time [t2, 1] to reach the target weight w1,k > 0. Then, without loss of generality, we can
consider two sub-cases: (1.1) the mass is compensated from the primary branch, and (1.2) the mass
that diverges to the jth branch returns to the kth branch following a continuous trajectory.

Case 1.1. Since all mass along the K secondary branches originates from the primary branch, this
implies that there exists a positive weight w̃ > 0 that first follows the dynamics of branch k and
is transferred to branch j, contributing to the final weight of the jth endpoint, and the total weight
supplied from the primary branch to branch k is w1,k + w̃. Given that each branch has no capacity
constraints, it follows that the dynamics along branch k over [0, t1] and branch j over [t1, 1] is optimal
for all mass reaching endpoint j. Formally, we express this in terms of energy as

Ek(0, t1) + Ej(t1, 1) < Ej(0, 1) (80)

which contradicts the assumption that the dynamics of branch j given by (u⋆t,j , p
⋆
t,j) are optimal over

the state space X .

Case 1.2. In this case, there exists a positive mass that follows the dynamics of branch k over the
interval [0, t1], the dynamics of branch j over [t1, t2], and back to branch k over [t2, 1]. Similarly to
Case 1.1, given that each branch has no capacity constraints, this implies that this concatenation of
dynamics is optimal for all mass reaching endpoint k. Expressing in terms of energy, we have

Ek(0, t1) + Ej(t1, t2) + Ek(t2, 1) < Ek(0, 1) (81)

which contradicts the assumption that the dynamics of branch k given by (u⋆t,k, p
⋆
t,k) are optimal over

the state space X .

Given that both sub-cases lead to a contradiction of the optimality assumption, we conclude that mass
along each branch cannot be transferred to another branch and is non-decreasing over t ∈ [0, 1].

Note that we do not need to consider the case where the mass is compensated from another secondary
branch ℓ ̸= j, as this would imply that mass is transferred from branch ℓ to branch k, which is not
possible under the same argument.

Proposition 4 (Existence of Optimal Growth Functions) Assume the state space X ⊆ Rd is a
bounded domain within Rd. Let the optimal probability density of branch k be a known non-negative
function bounded in [0, 1], denoted as p⋆t,k : X × [0, 1]→ [0, 1] ∈ L∞(X × [0, 1]). By Lemma 2, we
can define the set of feasible growth functions in the set of square-integrable functions L2 as

G := {g = (gt,0, . . . , gt,K) ∈ L2(X × [0, 1]) | gt,k(x) : X × [0, 1]→ R , gt,k(x) ≥ 0} (82)

Let the growth loss be the functional L(g) : L2(X × [0, 1]) → R. Then, there exists an optimal
function g⋆ = (g⋆t,0, . . . , g

⋆
t,K) ∈ L2 where g⋆t,k ∈ G such that L(g⋆) = infg∈G L(g) which can be

obtained by minimizing L(g) over G.

Proof. This proof draws on several concepts from functional and convex analysis. For a comprehensive
background on these concepts, see Benešová and Kružík [2016]. We follow the direct method in
the calculus of variations [Dacorogna, 1989] for proving there exists a minimizer for the functional
Lgrowth(g) in (18) with the following steps:

1. Show that the set G of feasible growth functions is convex and closed under the weak topology
of the set of square integrable functions L2 (Lemma 3).

2. Show that the minimizing sequence {g(n)} has a weakly convergent subsequence (Lemma 4).
3. Show that the functional Lgrowth(g) is weakly lower semi-continuous (Lemmas 5, 6, 7, 8).

We prove each with a sequence of Lemmas.
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Lemma 3. The set of feasible growth functions G := {gt,k(x) : X × [0, 1] → R ∈ L2(X ×
[0, 1]) | gt,k(x) ≥ 0} is convex and closed over the weak topology of L2.

Proof. We first prove convexity and then closure under the weak topology of L2.

Proof of Convexity. To prove that the set of functions G is convex, we first define what it means for a
set of functions to be convex.
Definition 4 (Convex Set). A set of functions G is said to be convex if any convex combination of two
functions in the set g1, g2 ∈ G is also in the set. Formally, G if

∀g, g′ ∈ G, ∀λ ∈ [0, 1], gλ = λg + (1− λ)g′ ∈ G (83)

Recall our definition of G as the set of functions that return strictly non-negative values:

G := {gt,k(x) : X × [0, 1]→ R ∈ L2(X × [0, 1]) | gt,k(x) ≥ 0} (84)

Given any λ ∈ [0, 1], we have

gλt,k(x) = λgt,k(x) + (1− λ)g′t,k(x)
gλt,k(x) ≥ λ · 0 + (1− λ) · 0
gλt,k(x) ≥ 0 (85)

which means gλt,k ∈ G and G is convex.

Proof of Closure. First, we define what it means to be closed under the weak topology of L2.
Definition 5 (Closure Under Weak Topology of L2). A set of functions G is said to be closed in the
weak topology of L2 if the statement is true: if a sequence of functions {g(n) : g(n) ∈ G} indexed by
n, converges to some function g(∞) ∈ L2 as n→∞, then g(∞) ∈ G.

To show that G is closed under weak topology of L2, we need to show that all sequences {g(n)t,k :

g
(n)
t,k ∈ G} converge to g ∈ G as n→∞, such that g ≥ 0. The proof follows directly from Fatou’s

Lemma [Ekeland and Temam, 1999] which states that given a sequence of non-negative, measurable
functions {g(n)t,k : g

(n)
t,k ∈ G}, the following is true

0 ≤
∫
X
lim inf

n→∞
g
(n)
t,k (x)dx ≤ lim inf

n→∞

∫
X
g
(n)
t,k (x)dx (Fatou’s Lemma)

meaning that the limit of a converging sequence of non-negative functions g(∞)
t,k is also non-negative

over the state space X , and thus is in the set of feasible growth functions g(∞)
t,k ∈ G, concluding our

proof.

Lemma 4. Given a minimizing sequence {g(n) ∈ G} under the functional L(g) : L2 → R such
that L(g(n))→ infg∈G L(g), there exists a subsequence {g(ni) ∈ G} that converges weakly in L2 to
some limit g⋆ ∈ G.

Proof. It suffices to show the following:

1. The functional {g(n)} is bounded in L2 such that there exists a positive value M where
∥g(n)∥L2 ≤M for all n.

2. The space of feasible functions G is reflexive, such that all bounded sequences have a weakly
convergent subsequence in L2.

The proof of Part 1 follows from the growth penalty term in L(g) defined as the squared-norm ∥g∥2L2

of the growth functional. This term ensures that L(g) is coercive, such that

∥g(n)∥L2 →∞ =⇒ L(g(n))→∞ (86)

which ensures that the sequence does not diverge to infinity in norm without incurring a penalty from
the loss functional. Given that L(g(n)) → infg∈G L(g), where infg∈G L(g) < ∞, it follows from
coercivity that ∥g(n)∥L2 does not diverge to infinity and {g(n)} is bounded in L2.
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The proof of Part 2 follows from the well-established result that for 1 < p < ∞, the space Lp is
reflexive [Beauzamy, 2011]. Therefore, by reflexivity of L2, we have that every minimizing sequence
{g(n)} has a weakly convergent subsequence {g(ni)}, such that g(ni) → g⋆ in L2, concluding our
proof.

Before proving that each component of the loss functional is weakly lower semi-continuous, we
establish the definitions for weakly continuous and weakly lower semi-continuous functionals.
Definition 6 (Weakly Continuous Functionals). A functional L : L2 → R is said to be weakly
continuous if it satisfies

n→∞ =⇒ g(n) → g =⇒ L(g(n))→ L(g) (87)

such that if a sequence {g(n) : g(n) ∈ G} converges g(n) → g as n→∞, then the functional also
converges L(g(n))→ L(g).
Definition 7 (Weakly Lower Semi-Continuous Functionals). A functional L : L2 → R is said to be
weakly lower semi-continuous (w.l.s.c.) if it satisfies

n→∞ =⇒ g(n) → g =⇒ lim inf
n→∞

L(g(n)) ≥ L(g) (88)

such that if a sequence {g(n) : g(n) ∈ G} converges g(n) → g as n → ∞, then the functional is
lower bounded by L(g). By definition, weak continuity implies w.l.s.c.

Lemma 5. The functional Lmatch(g) : L
2 → R defined as

Lmatch(g) =

K∑
k=0

Ep⋆
t,k

(
w0,k +

∫ 1

0

gt,kdt− w⋆
1,k

)2

=

K∑
k=0

(
w0,k +

∫ 1

0

Ep⋆
t,k

[gt,k]dt− w⋆
1,k

)2

(linearity of expectation)

=

K∑
k=0

(∫ 1

0

∫
X
p⋆t,kgt,kdxdt+ c

)2

(89)

where c = w0,k − w⋆
1,k is a constant, is weakly lower semi-continuous in L2 (w.l.s.c.).

Proof of Lemma. First, we show that the map ϕ(gt,k) =
∫
X p

⋆
t,kgt,kdx is a bounded linear functional

in L2. By linearity of integration, we have that for two functions g, g′ ∈ G, ϕ(cg + c′g′) =
cϕ(g) + c′ϕ(g′), so ϕ(·) is a linear map. To establish that ϕ(·) is bounded in L2, we must show that
|ϕ(g)| ≤ C∥g∥L2

. By the Cauchy-Schwarz Inequality [Steele, 2004], we have

|ϕ(gt,k)| = |⟨p⋆t,k, gt,k⟩| =
∣∣∣∣∫

X
p⋆t,kgt,kdx

∣∣∣∣ ≤ ∥p⋆t,k∥L2∥gt,k∥L2 (90)

which is valid as p⋆t,k, gt,k ∈ L2. Since ∥p⋆t,k∥L2 is a fixed constant with respect to gt,k, we have
shown that |ϕ(gt,k)| ≤ C∥gt,k∥L2 and gt,k is bounded. By the definition of weak topology on L2,
all bounded linear functionals are weakly continuous, such that limn→∞ ϕ(g(n)) → ϕ(g). Given
that ϕ(g) is weakly continuous, as g(n) → g⋆, we have ϕ(g(n))→ ϕ(g⋆). Since the square function
ψ(·) = (·)2 is convex and continuous and bounded below by ψ ≥ 0, the function does not contain
discontinuities and limn→∞(ϕ(g(n)) − c)2 ≥ (ϕ(g⋆) − c)2, which is the definition of a w.l.s.c.
functional. Since the sum of w.l.s.c. functionals is also w.l.s.c., we conclude our proof.
Lemma 6. The functional Lenergy(g) : L

2 → R defined as

Lenergy(g) =

∫ 1

0

Ep⋆
t,k

[
1

2
∥ut,k(Xt)∥2 + Vt(Xt)

](
w0,k +

∫ t

0

gs,k(Xt)ds

)
dt

=

∫ 1

0

α(t)

(
w0,k +

∫ t

0

∫
X
p⋆s,kgs,kdxds

)
dt (linearity of expectation)

where α(t) is a constant not dependent on gt,k, is weakly lower semi-continuous in L2 (w.l.s.c.).

Proof of Lemma. Following a similar proof as Lemma 5, we have that the map ϕ(gs,k) =∫
X p

⋆
s,kgs,kdx is a bounded linear functional, and thus is weakly continuous in L2. Given that
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ϕ(g) is bounded, t ∈ [0, 1], and linearity of integration holds, the integral of ϕ(g) over the interval
s ∈ [0, t] remains a bounded linear functional in L2, and thus is weakly continuous in L2. Following
similar logic, the outer integral

∫ 1

0
α(t)

(
w0,k +

∫ t

0
ϕ(g)ds

)
dt is also a bounded linear functional

given that both α(t) and w0,k are constants, and we have shown that Lenergy(g) is weakly continuous.
Since weak continuity implies w.l.s.c. and the sum of w.l.s.c. functionals is also w.l.s.c., we conclude
our proof.
Lemma 7. The mass loss functional Lmass(g) : L

2 → R defined as

Lmass(g) =

∫ 1

0

E{pt,k}Kk=0

[
K∑

k=0

wϕ
t,k(xt,k)− wtotal

t

]2
dt

=

∫ 1

0

[
K∑

k=0

(
w0,k +

∫ t

0

Ept,k [gt,k]

)
− wtotal

t

]2
dt (linearity of expectation)

=

∫ 1

0

[
1 +

K∑
k=0

∫ t

0

Ept,k [gt,k]− wtotal
t

]2
dt (91)

where wtotal
t is a constant not dependent on gt,k, is weakly lower semi-continuous in (L2)K+1

(w.l.s.c.). Note that we do not need to account for the negative penalty loss as we assume the growth
function is strictly positive.

Proof of Lemma. Following a similar proof as Lemma 5, we have that the map ϕ(g) =
∫
X p

⋆
s,kgs,kdx

is a bounded linear functional, and thus is weakly continuous in L2. Since the sum of bounded linear
functionals across K+1 branches is also weakly continuous in L2, following similar logic to Lemma
5, the composition of a weakly continuous functional with the convex and continuous square map is
w.l.s.c.. Since the sum of w.l.s.c. functionals is also w.l.s.c., Lmass(g) is w.l.s.c., which concludes our
proof.
Lemma 8. The combined Stage 3 training loss Lgrowth(g) = λenergyLenergy(g) + λmatchLmatch(g) +
λmassLmass(g) + λgrowth∥g∥L2 is weak lower semi-continuous in L2 (w.l.s.c.).

Proof of Lemma. Given the weighted sum of w.l.s.c. functionals
∑M

i=1 λiLi(g) that each satisfy
limn→∞ Li(g

(n)) ≥ Li(g) for constants {λi}Mi=1 for a converging sequence g(n) → g as n→∞, it
follows easily that

lim
n→∞

M∑
i=1

Li(g
(n)) ≥

M∑
i=1

Li(g) (92)

By definition, the norm in L2 is lower semi-continuous in the strong topology and thus the weak
topology. Since Lenergy, Lmatch, and Lmass are w.l.s.c. by Lemmas 5, 6, and 7, we conclude that
Lgrowth(g) is w.l.s.c., which concludes the proof.

In total, we have shown:

1. The set G of feasible growth functions is convex and closed under the weak topology of the set
of square integrable functions L2 (Lemma 3).

2. The minimizing sequence {g(n)} has a weakly convergent subsequence (Lemma 4).
3. The functional L(g) is weakly lower semi-continuous (Lemmas 5, 6, 7, 8).

Thus, by the direct method in the calculus of variations, we have shown
∃g⋆ = (g⋆t,0, . . . , g

⋆
t,1) ∈ G s.t. L(g⋆) = inf

g∈G
L(g) (93)

which concludes the proof of Proposition 4.

D Additional Experiments and Discussions

D.1 Comparison to Single-Branch Schrödinger Bridge Matching

Setup For each experiment, we compared the performance of BranchSBM against single-branch
SBM. Instead of clustering the data at t = 1 into distinct endpoint distributions, we left the unclustered
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data as a single target distribution p1 and let the model learn the optimal Schrödinger Bridge from
the initial distribution π0. For the single-branch task, we assume mass conservation and set the
weights for all samples from π0 and π1 to 1.0, while keeping the model architecture, state-cost Vt,
and hyperparameters equivalent to BranchSBM. Since single-branch SBM does not require modeling
the growth of separate branches, we train only Stages 1 and 2 to optimize the drift field uθt of the
single branch. For evaluation, the trajectories of validation samples from the initial distribution
x0 ∼ π0 were simulated over t ∈ [0, 1] and compared with the ground truth distribution at t = 1.
For BranchSBM, we take the overall distribution generated across all branches and compare it to the
overall ground truth distribution.

Modeling Mouse Hematopoiesis Differentiation In Figure 7, we provide a side-by-side compari-
son of the reconstructed distributions at time t1 and t2 using BranchSBM (top) with two branches
and single-branch SBM (bottom), as well as the learned trajectories over the time interval t ∈ [t1, t2].
While single-branch SBM produces samples that loosely capture the two target cell fates, the resulting
distributions display high variance and fail to align with the true differentiation trajectories. In
contrast, BranchSBM generates intermediate distributions that are sharply concentrated along the
correct developmental paths, more faithfully reflecting the underlying branching structure of the data.
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Figure 7: Comparison of BranchSBM to Single-Branch SBM for Cell-Fate Differentiation. Mouse
hematopoiesis scRNA-seq data is provided for three time points t0, t1, t2. (A, B) Distribution of simulated cell
states at time (A) t1 and (B) t2 across both branches for BranchSBM (top) and single-branch SBM (bottom).
(C) Learned trajectories of BranchSBM and single-branch SBM over the t ∈ [t1, t2] on validation samples.

Modeling Clonidine and Trametinib Perturbation For both Clonidine and Trametinib, we
performed the single-branch experiment on the top 50 principal components identified by PCA. After
training, we simulated all the validation samples from the initial distribution π0 by integrating the
single velocity field uθt to t = 1. We evaluated the performance of the single-branch parameterization
by computing the RBF-MMD (99) of all PCs andW1 (97) andW2 (98) distances of the top-2 PCs of
the simulated samples at time t = 1 with the ground truth data points.

In Table 3, we show that BranchSBM with two branches trained on gene expression vectors across
all dimensions d ∈ {50, 100, 150} outperforms single-branch SBM on dimension d = 50 in recon-
structing the distribution of cells perturbed with Clonidine. In Table 4, we further show improved
performance of BranchSBM with three branches compared to single-branch SBM.

In Figure 8A and 8B, we see that single-branch SBM only reconstructs cluster 0, while failing
to generate samples from cluster 1 for Clonidine perturbation or clusters 1 and 2 for Trametinib
perturbation. The endpoints for both perturbation experiments are clustered largely on variance in the
first two or three principal components (PCs), where PC1 captures the divergence from the control
state to the perturbed clusters and PC2 and higher captures the divergence between clusters in the
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perturbed population, where cluster 0 is closest to the control state along PC2 and cluster 1 and
2 are farther from the control. From Figure 8A and B, we can conclude that single-branch SBM
is not expressive enough to capture the complexities of higher-dimensional PCs and follows the
most obvious trajectory from the control to cluster 0, resulting in an inaccurate representation of the
perturbed cell population.

In contrast, we demonstrate that BranchSBM is capable of stimulating trajectories to both clusters in
the population perturbed with Clonidine (Figure 8B) and three clusters in the population perturbed
with Trametinib (Figure 8D), generating branched distributions that accurately capture the location
and spread of the perturbed cell distribution in the dataset.
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Figure 8: Comparison of BranchSBM to Single-Branch SBM for Perturbation Modelling. (A, B) Clonidine
perturbation trajectories with two target clusters generated by (A) single-branch SBM and (B) BranchSBM
from the validation data. (C, D) Trametinib perturbation trajectories with three target clusters generated by
(C) single-branch SBM and (D) BranchSBM. In both experiments, single-branch SBM only generated states
in cluster 0 and not cluster 1 or 2, whereas BranchSBM reconstructed all perturbed clusters via branched
trajectories.

D.2 Effect of Final Joint Training on Losses

In Table 6, we show the final losses after convergence, summed across each branch and averaged
over the batch size, for Stage 3 training of the only the growth networks and Stage 4 joint training
of the flow and growth networks discussed in Section 4. All losses are calculated exactly as shown
in Section 4. Crucially, we find that the final joint training stage refines the parameters of both
the flow and growth networks simultaneously to minimize the energy loss Lenergy(θ, ϕ) (15) while
ensuring the growth parameters maintain minimal losses across Lmatch(ϕ) (16) and Lmass(ϕ) (17) for
all experiments. This indicates that jointly optimizing both the drift and growth dynamics leads to
further refinement towards modeling the optimal branching trajectories in the data.
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Table 6: Validation Losses for Stage 3 and 4 Training Across Experiments. Losses are summed across both
branches and averaged over batch size. The final Stage 4 joint training stage that refines both the flow and growth
networks simultaneously minimize the energy loss Lenergy(θ, ϕ) (15) from Stage 3 while ensuring the growth
parameters maintain minimal losses across Lmatch(ϕ) (16) and Lmass(ϕ) (17)

Experiment Stage 3 Stage 4

Lenergy(θ, ϕ) Lmass(θ, ϕ) Lmatch(θ, ϕ) Lenergy(θ, ϕ) Lmass(θ, ϕ) Lmatch(θ, ϕ)

LiDAR 1.276 3.0× 10−5 0.007 0.768 2.0× 10−5 0.102
Mouse Hematopoiesis 2.209 1.2× 10−4 0.054 1.918 5.0× 10−5 0.076
Chlonidine Perturbation 36.469 0.030 0.109 25.798 0.053 0.153
Trametinib Perturbation 35.834 0.023 0.078 32.843 0.017 0.056

E Experiment Details

E.1 Multi-Stage Training

To ensure stable training while incorporating all loss functions, we introduce a multi-stage training
approach (Algorithm 1).

Stage 1 First, we train a neural interpolant φt,η(x0,xt,k) : Rd × Rd × [0, 1] → Rd that takes
the endpoints of a branched coupling and defines the optimal interpolating state Xt at time t by
minimizing the energy function Ltraj(η) in (13). This is used to calculate the optimal conditional
velocity ẋt,η,k that preserves the endpointsX0 = x0 andX1,k = x1,k for the flow matching objective
in Stage 2.

Stage 2 Next, we train a set of flow networks {uθt,k}Kk=0 that generate the optimal interpolating
trajectories for each branch with the conditional flow matching objective Lflow in (14).

Stage 3 We freeze the parameters of the flow networks and only train the growth networks {gϕt,k}Kk=0

by minimizing Lgrowth in (18).

Stage 4 Finally, we unfreeze the parameters of both the flow and growth networks and jointly
train {uθt,k, g

ϕ
t,k}Kk=0 by minimizing the growth loss Lgrowth in (18) from Stage 3 in addition to the

distribution reconstruction loss Lrecons in (20).

E.2 General Training Details

Model Architecture We parameterized the branched trajectory φt,η(x0,x1) with a 3-layer MLP
with Scaled Exponential Linear Unit (SELU) activations. The endpoint pair (x0,x1) and the time
step t are concatenated into a single (2d + 1)-dimensional vector and used as input to the model.
Similarly, we parameterize each flow network uθt,k(xt) and growth network gθt,k(xt) with the same
3-layer MLP and SELU activations but takes the interpolating state xt and time t concatenated into a
(d+ 1)-dimensional vector.

To ensure that the growth rates of all secondary branches are non-negative (i.e. for all k ∈ {1, . . . ,K},
gt,k(Xt) ≥ 0), we apply an additional softplus activation to the output of the 3-layer MLP in the
growth networks, defined as softplus(·) = log(1 + exp(·)), which is smooth function that transforms
negative values to be positive near 0. For the growth network of the primary branch (k = 0), we
allow for both positive and negative growth, as all mass starts at the primary branch and flows into
the secondary branches, but the primary branch itself can grow as well, depending on whether mass
is conserved.

State Cost Vt Depending on the dimensionality of the data type, we set the state cost Vt(Xt) :
Rd → [0,+∞] to be either the LAND or RBF metric discussed in Appendix A.2. For the experiments
on LiDAR (d = 3) and Mouse Hematopoiesis scRNA-seq (d = 2) data, we used the LAND metric
(34) with hyperparameters σ = 0.125 and ε = 0.001.
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To avoid the task of setting a suitable variance σ for the high-dimensional gene expression space
d ∈ {50, 100, 150}, we use the RBF metric (38) that learns parameters to ensure the regions within
the data manifold have low cost and regions far from the data manifold have high cost. Using the
training scheme in Kapuśniak et al. [2024], we identified Nc cluster centers with k-means clustering,
and trained the parameters {ωj,n}Nc

n=1 by minimizing LRBF (39) on the training data. We found that
setting the number of cluster centers Nc too low resulted in non-decreasing LRBF and that increasing
Nc for higher dimensions enabled more effective training. Furthermore, we found that modeling
higher-dimensional PCs required setting a larger κ, which determines the spread of the RBF kernel
around each cluster center. The specific values for Nc and κ depending on the dimension of principal
components are provided in Table 9.

Optimal Transport Coupling Since our experiments consist of unpaired initial and target distribu-
tions and we seek to minimize the energy of the interpolating bridge, we define pairings (x0,x1,k)
using the optimal transport plan π⋆

0,1,k that minimizes the distance between the initial distribu-
tion π0 and each target distribution π1,k in probability space. Specifically, we define π⋆

0,1,k as the
2-Wasserstein transport plan [Villani et al., 2008] between π0 and π1,k defined as

π⋆
0,1,k = argminπ0,1,k∈Π

∫
π0⊗π1,k

∥x0 − x1,k∥22dπ(x0,x1,k) (94)

where π0 ⊗ π1,k is the set of all possible couplings between the endpoint distributions. For each of
the branches, the dataset was paired such that (x0,x1,k) ∼ π⋆

0,1,k.

Training We train each stage for a maximum of 100 epochs. For Stage 1, we used the Adam
optimizer [Kingma and Ba, 2014] with a learning rate of 1.0 × 10−4 to train φt,η(x0,x1). For
Stage 2, 3, and 4, we used the AdamW optimizer [Loshchilov and Hutter, 2017] with weight decay
1.0 × 10−5 and learning rate 1.0 × 10−3 to train each flow network uθt,k and growth network gϕt,k.
All experiments were performed on one NVIDIA A100 GPU. We trained on the LiDAR and mouse
hematopoiesis data with a batch size of 128 and the Clonidine and Trametinib perturbation data with
a batch size of 128, each divided with a 0.9/0.1 train/validation split. All hyperparameters across
experiments are provided in Table 9.

Computational Overhead Although we train K+1 flow and growth networks, the overall training
time remains comparable to that of single-branch SBM, since the networks for each branch is trained
only on the subset of data corresponding to its respective target distribution. While the method does
incur higher space complexity, we find that simple MLP architectures suffice for strong performance,
suggesting that scalability is not a major concern. BranchSBM also significantly reduces inference
time, as predicting branching population dynamics requires simulating only a single sample from the
initial distribution, unlike other models that require simulating large batches of samples.

E.3 LiDAR Experiment Details

LiDAR Data We used the same LiDAR manifold from Liu et al. [2023a], Kapuśniak et al. [2024].
The data is a collection of three-dimensional point clouds within 10 unit cubes [−5, 5]3 ⊂ R3 that
span the surface of Mount Rainier. Given any point x ∈ R3 in the three-dimensional space, we
project it onto the LiDAR manifold by identifying the k-nearest neighbors {x1, . . . ,xk} and fitting a
2D tangent plane to the set of neighbors

argmin
a,b,c

1

k

k∑
i=1

exp

(
−∥x− xi∥

τ

)
(ax

(x)
i + bx

(y)
i + c− x

(z)
i )2 (95)

where τ = 0.001 following Liu et al. [2023a]. Then, we solve for the tangent plane ax+ by + c = z
using the Moore–Penrose pseudoinverse from k = 20 neighbors. From the tangent plane, we can
project any point x to the LiDAR manifold with the function π(x) defined as

π(x) = x−
(
x⊤v + c

∥v∥2

)
v, where v =

[
a
b
−1

]
(96)
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Synthetic Distributions To reformulate the experiment in Liu et al. [2023a] as a branching problem,
we define a single initial distribution and two divergent target distributions. Specifically, we define a
single initial distribution π0 = N (µ0, σ0) as a mixture of four Gaussians and two target distributions
π1,0, π1,1 on either side of the mountain both as mixtures of three Gaussians. The exact parameters
of each Gaussian are given in Table 7.

We sample a total of 5000 points i.i.d. from each of the Gaussian mixtures {xi
0}5000i=1 ∼ π0,

{xi
1,0}5000i=1 ∼ π1,0, and {xi

1,1}5000i=1 ∼ π1,1. The data points are projected to the LiDAR mani-
fold with the projection function π(x) in (96).

Table 7: Synthetic Gaussian mixture distribution parameters for LiDAR experiment. 5000 datapoints are
drawn i.i.d. from each of the Gaussian mixtures and paired randomly (x0,x1,0,x1,1) to define the training
dataset. A visualization of the training data on the LiDAR manifold is provided in Figure 3.

Distribution µ σ

π0 N (µ0, σ0) (−4.5,−4.0, 0.5), (−4.2,−3.5, 0.5), (−4.0,−3.0, 0.5), (−3.75,−2.5, 0.5) 0.02
π1,0 N (µ1,0, σ1,0) (−2.5,−0.25, 0.5), (−2.25, 0.675, 0.5), (−2, 1.5, 0.5) 0.03
π1,1 N (µ1,1, σ1,1) (2,−2, 0.5), (2.6,−1.25, 0.5), (3.2,−0.5, 0.5) 0.03

Evaluation Metrics To determine how closely the simulated trajectories match the ground truth
trajectories, we compute the Wasserstein-1 (W1) and Wasserstein-2 (W2) distances defined as

W1 =

(
min

π∈Π(p,q)

∫
∥x− y∥2dπ(x,y)

)
(97)

W2 =

(
min

π∈Π(p,q)

∫
∥x− y∥22dπ(x,y)

)1/2

(98)

where p denotes the ground truth distribution and q denotes the predicted distribution. After training
the velocity and growth networks on samples from the initial Gaussian mixture π0 and target Gaussian
mixtures π1,0 and π1,1, we evaluateW1 andW2 of the reconstructed distribution simulated from the
validation points in the initial distribution π0 against the true distribution at t = 1.

E.4 Differentiating Single-Cell Experiment Details

Mouse Hematopoiesis scRNA-seq Data We used the mouse hematopoiesis dataset from Zhang
et al. [2025b] consisting of three timesteps t0, t1, t2, with a total of 1429 cells at t0, 3781 cells from
t1, and 5788 cells from t2. The data points at t0 form a homogeneous cluster, while the data points
at t2 are clearly divided into two distinct cell fates. We performed k-means clustering with k = 2
clusters to create branching on the cells at t2, splitting the cells into two clusters: endpoint 0 with
2902 cells and endpoint 1 with 2886 cells. Since the two endpoints are near equal in ratio, we set the
final weights of both endpoints as 0.5 (i.e. w1,0 = w1,1 = 0.5). To match the size of the t0 samples,
we randomly sampled 1429 samples from each of these two clusters and used them as the endpoints
for branches 0 and 1, respectively. Training and validation follow a 0.9/0.1 split ratio.

Evaluation Metrics To determine how closely the reconstructed distributions along the trajectory
match the ground truth distributions, we compute the 1-Wasserstein (W1) (97) and 2-Wasserstein
(W2) (98) distances similar to the LiDAR experiment. After training the velocity and growth networks
on samples from the initial cell distribution πt1 and differentiated target cell distributions πt2,0 and
πt2,1, we evaluateW1 andW2 between the reconstructed branched distributions at the intermediate
time t1 (pt1,0 and pt1,1) and the target distributions at the final time t2 (pt2,0 and pt2,1) simulated
from the validation points in the initial distribution π0 and the true distributions πt1 and πt2 .

E.5 Cell-State Perturbation Modeling Experiment Details

Tahoe Single-Cell Perturbation Data The Tahoe-100M dataset consists of 50 cell lines and over
1000 different drug-dose conditions [Zhang et al., 2025a]. For this experiment, we extract the data for
a single cell line (A-549) under two drug perturbation conditions selected based on cell abundance
and response diversity.
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Figure 9: Mouse Hematopoiesis Single-Cell RNA Sequencing Data Plotted by Time Point. Real scRNA-seq
data is projected to 2D force-directed SPRING plots [Sha et al., 2023, Weinreb et al., 2020, Zhang et al., 2025b].
There is a clear divergence of cell fate between times t0 (left), t1 (middle), and t2 (right) from the initial
homogeneous progenitor cells into two distinct cell fates (shown in pink and purple in the t2 plot). Cells at time
t2 are clustered into endpoint 0 (pink; 2902 cells) and endpoint 1 (turquoise; 2886 cells).

Clonidine at 5 µL was selected first due to having the largest number of cells at this dosage, while
Trametinib was chosen as the second drug based on its second-highest cell count under the same con-
dition. For both drugs, we selected the top 2000 highly variable genes (HVGs) based on normalized
expression and projected the data into a 50-dimensional PCA space, which captured approximately
38% of the total variance in both cases.

We applied K-nearest neighbor (K = 50) and conducted Leiden clustering separately for drugged
versus DMSO control conditions. The most abundant DMSO cluster was selected as the initial state
(t = 0). For Clonidine, we identified two clusters that were most distinct from the DMSO control
along PC1 and PC2, respectively. These were selected as two distinct endpoints for branches 1 and
2 at t = 1. We applied centroid-based sampling to obtain balanced training sets of 1033 cells per
cluster (Figure 10).

For Trametinib, we extended the branching up to three endpoints. From its Leiden clustering
results, we identified three clusters that were the most divergent from the DMSO control clusters
along PC1, PC2, and PC3, respectively. All selected clusters contained at least 100 cells and were
subsampled to 381 cells each for branch training. The remaining cells were clustered with K-means
into three (Clonidine) or four (Trametinib) groups to construct the metrics dataset. The training and
validation dataset split followed a 0.9/0.1 ratio. The final visualization utilized the first two principal
components.

Table 8: Training cluster cell counts for perturbation experiments.

Clonidine Trametinib

Cluster 0 Cluster 1 Cluster 0 Cluster 1 Cluster 2

Original Cell Count 1675 1033 1622 686 381
Initial Weight w0,k 1.0 0 1.0 0 0
Target Weight w1,k 0.619 0.381 0.603 0.255 0.142

Evaluation Metrics To quantify the alignment of the reconstructed and ground-truth distri-
butions for the cell-state perturbation experiment on principal component (PCs) dimensions
d ∈ {50, 100, 150}, we calculate the Maximum Mean Discrepency with the RBF kernel (RBF-
MMD) on all predicted PCs and the 1-Wasserstein (W1) (97) and 2-Wasserstein (W2) (98) distances
on the top-2 PCs.
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Figure 10: Clustered Cell-State Perturbation Data from the Tahoe-100M Dataset. PCA was conducted on
all cells for the control DMSO-treated and two drug-treated populations, and clustered. Plots show divergence
along the top 2 PCs. (A) Clonidine-treated cells (5µL) are plotted in pink (endpoint 0) and turquoise (endpoint
1), and the distribution of control cells is plotted in navy. (B) Trametinib-treated cells (5µL) are plotted in purple
(endpoint 0), turquoise (endpoint 1), and pink (endpoint 2), and the distribution of control cells is plotted in navy.

Given the predicted distribution p and true distribution q and n samples from each distribution
{xi ∼ p}ni=1 and {yi ∼ q}ni=1, the RBF-MMD between p and q is calculated as

MMD(p, q) =
1

n2

n∑
i=1

n∑
j=1

kmix(xi,xj) +
1

n2

n∑
i=1

n∑
j=1

kmix(yi,yj)−
2

n2

n∑
i=1

n∑
j=1

kmix(xi,yj) (99)

where kmix(·, ·) is a mixture of RBF kernel functions defined as

kmix(x, y) =
1

|Σ|
∑
σ∈Σ

exp

(
−∥x− y∥

2

2σ2

)
(100)

where Σ = {0.01, 0.1, 1, 10, 100} is the set of values that determine how much the distances between
pairs of points are scaled when computing the overall discrepancy. The equations for 1-Wasserstein
(W1) and 2-Wasserstein (W2) distances are provided in (97) and (98) respectively.
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E.6 Hyperparameter Selection and Discussion

In this section, we present the hyperparameters used in each experiment. While the model architecture
remained largely the same across experiments, we increased the hidden dimension to 1024 for di-
mensions d ∈ {50, 100, 150}. For low-dimensional data, we found that increasing model complexity
underperforms in comparison to lower hidden dimensions, and we established that a hidden dimension
of 64 achieves relatively optimal performance for d ∈ {2, 3}. While beyond the scope of this study,
we believe that further exploration of diverse model architectures and hyperparameter tuning could
improve the performance of BranchSBM. Exploration of diverse task-dependent state-costs for novel
applications is another exciting extension of our work.

Table 9: Hyperparameter settings for different datasets. The Clonidine perturbation experiment is split into
three columns for each of the three dimensions of principal components (PCs) used d ∈ {50, 100, 150}.

Parameter Dataset

LiDAR Mouse Hematopoesis scRNA Clonidine Perturbation Trametinib Perturbation
50PCs 100PCs 150PCs

branches 2 2 2 3
data dimension 3 2 50 100 150 50
batch size 128 128 32 32
λenergy 1.0 1.0 1.0 1.0
λmass 100 100 100 100
λmatch 1.0× 103 1.0× 103 1.0× 103 1.0× 103

λrecons 1.0 1.0 1.0 1.0
λgrowth 0.01 0.01 0.01 0.01
Vt LAND LAND RBF RBF
RBF Nc - - 150 300 300 150
RBF κ - - 1.5 2.0 3.0 1.5
hidden dimension 64 64 1024 1024
lr φt,η 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

lr uθ
t 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3

lr gϕt 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3
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F Training Algorithm

Here, we provide the pseudocode for BranchSBM’s multi-stage training algorithm for stable opti-
mization of the velocity and growth networks over the K branched trajectories.

Algorithm 1 Multi-Stage Training of BranchSBM
1: Stage 1: Learning the Branched Neural Interpolants
2: while Training do
3: ∀k, (x0,x1,k) ∼ π⋆

0,1,k, t ∼ U(0, 1)
4: for k = 0 to K do
5: xt,η,k ← (1− t)x0 + tx1,k + t(1− t)φt,η(x0,x1,k)
6: ẋt,η,k ← x1 − x0 + t(1− t)φ̇t,η(x0,x1,k) + (1− 2t)φt,η(x0,x1,k)
7: Compute Vt(xt,η,k) given the task-specific definition
8: Ltraj(η)←

∫ 1

0

[
1
2∥ẋt,η,k∥2 + Vt(xt,η,k)

]
dt

9: Update φt,η using gradient ∇ηLtraj(η)
10: end for
11: end while
12: Stage 2: Initial Training of Velocity Networks
13: while Training do
14: Initialize K + 1 flow networks {uθt,k(Xt)}Kk=0

15: for k = 0 to K do
16: Calculate xt,η,k and ẋt,η,k with the trained network φ⋆

t,η(x0,x1,k)

17: Lflow(θ)← ∥ẋt,η,k − uθt,k(xt,η,k)∥22
18: Update uθt,k using gradient∇θLflow(θ)
19: end for
20: end while
21: Stage 3: Initial Training of Growth Networks
22: while Training do
23: Freeze parameters of flow networks and initialize K + 1 growth networks {gϕt,k(Xt)}Kk=0

24: for t = 0 to 1 do
25: for k = 0 to K do
26: xt,k ←

∫ t

0
uθs,k(xs,k)ds

27: if k = 0 then
28: wϕ

t,k ← 1 +
∫ t

0
gϕt,k(xs,k)ds

29: else
30: wϕ

t,k ←
∫ t

0
gϕt,k(xs,k)ds

31: end if
32: Lenergy(ϕ)← Lenergy(ϕ) +

∫ t+∆t

t

[
1
2∥u

θ
t,k∥2 + Vt(xt,k)

]
wϕ

t,k

33: end for
34: Lmass ←

(∑K
k=0 w

ϕ
t,k − wtotal

)2
35: end for
36: Lmatch ←

∑K
k=0

(
wϕ

1,k(x1,k)− w⋆
1,k

)2
37: Lrecons(θ)←

∑K
k=0

∑
x1,k∈Nn(x1,k)

max(0, ∥x̃1,k − x1,k∥2 − ϵ)
38: Lgrowth(ϕ)← λenergyLenergy(θ, ϕ)+λmatchLmatch(ϕ)+λmassLmass(ϕ)+λgrowth

∑K
k=0 ∥g

ϕ
t,k∥22

39: Update gϕt,k using gradient∇ϕLgrowth(ϕ)
40: end while
41: Stage 4: Final Joint Training
42: while Training do
43: Unfreeze parameters of flow networks {uθt,k(Xt)}Kk=0

44: Repeat steps of Stage 3 and calculate Ljoint(θ, ϕ)← Lgrowth(θ, ϕ) + Lrecons(θ)

45: Jointly update uθt,k and gϕt,k for all branches using gradients∇θLjoint(θ, ϕ) and∇ϕLjoint(θ, ϕ)
46: end while
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