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ABSTRACT

Compression of Transformer is a natural request that arose in the computer vision
community. Apart from quantization that hardly rely on hardware, sparsifica-
tion is another way to remove redundant parts, usually based on mask training
or sparsity regularization. We propose the novel compressed structure of multi-
head self-attention (MHSA) mechanism called Irregular Attention (IrrAtt). IrrAtt
is built on top of BTD-(L,L,1) tensor decomposition and is aimed at sparsifying
pre-trained Vision Transformer by pruning query and key (QK) contraction di-
mension in MHSA block. We derive the algorithm of rank selection procedure for
BTD-(L,L,1) based on the structure of fusion layer obtained from CP decompo-
sition of original MHSA kernels. In order to improve the compression ratio with
least possible quality loss we introduce the fine-tuning schemes that yield each
head its own sub-optimal rank for QK in the IrrAtt. We validated the proposed
scheme for DeiT architectures on ILSVRC-2012 dataset. Our results show that Ir-
rAtt has better performance compared to original MHSA compressed by SVD. It
indicates that attention heads have non-uniform importance and require different
QK contract dimensions.

1 INTRODUCTION

Since their arrival, transformers Vaswani et al. (2017) became main neural architecture for the natu-
ral language processing and then they have been successfully applied for different computer vision
tasks Dosovitskiy et al. (2021); Touvron et al. (2021); Carion et al. (2020); Strudel et al. (2021). De-
spite their great success, this architecture is significantly computationally consuming, which makes
applying it on mobile devices a challenging task. For example, the DeiT-Base model, which is a
typical vision Transformer (ViT) model, requires 17.6 GFLOPs and 86M parameters for a single
forward pass. Most of the parameters are concentrated in the linear layers of MHSA and Multilayer
perceptron (MLP).

While the MLP compression is well-studied topic and can be performed by conventional methods,
the compression of MHSA is relatively new and underexplored. Moreover, MHSA has a more
complicated structure, as it consists of several linear layers that interact with each other. Therefore,
MHSA compression demands novel methods that take into account its peculiarities.

Several methods have been proposed to improve the efficiency of the self-attention mechanism. One
way is to restrict the attention region of each token to local or windowed attention Liu et al. (2021b);
Zhang & Yang (2021). However, this approach sacrifices the global self-attention and requires
many layers to enlarge the receptive field. Another way is to reduce the number of tokens Tang et al.
(2021); Hou & Kung (2022); Rao et al. (2021) or dimensions of tokens Zhu et al. (2021); Yu et al.
(2022b); Chen et al. (2021). While token pruning shows good results in image classification, its
performance on dense downstream tasks may be limited. Token channel dimension can be reduced
with pruning or low-rank approximation.

This paper is focused on the compression of MHSA. We propose a new Vision Transformer by
extending the MHSA with regular attention weights to the new Irregular Attention (IrrAtt), whose
ranks for heads can be automatically determined, while the total ranks of heads is bounded. The
contributions of this paper are summarized as follows:

• A new attention IrrAtt layer based on BTD-(L,L, 1) decomposition, where each attention
weight can have own rank.
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• Rank selection procedure for IrrAtt block based on rank identification from the structure of
the fusion layer in CP SlimAtt.

• Initialization procedure for IrrAtt block based on BTD-(L,L, 1) ALS algorithm.

To demonstrate the efficiency and applicability of the proposed method, it is tested on DeiT and
ILSVRC-2012 Deng et al. (2009) dataset.

The rest of the paper is organized in the following way. Section 5 provides an overview of neural
network compression and decomposition rank selection literature.

2 PRELIMINARIES

2.1 NOTATION

We use the following conventions to denote tensors and tensor operations. We use bold calligraphic
letters to represent tensors, such as Y ∈ RI1×I2×···×IN , where N is the order of the tensor, and
In is dimension of the mode-n. For example, a order 2 tensor W ∈ RI×J is a matrix of size
I × J . Following Cichocki et al. (2016), we represent tensors graphically by circles, while each
outgoing leg from a circle represents the indices of a specific mode (see Figure 1). An order-N
tensor Y ∈ RI1×I2×···×IN , which has order N and size In, is represented by a circle with N legs,
each of size In, (n = 1, 2, ..., N ). An interconnection between two circles denotes a contraction of
tensors.

We use superscripts to distinguish different tensors/matrices of the same type or shape, such as
WQ,WK , and WV for the query, key, and value weight matrices in a transformer layer. We use
subscripts to index slices or elements of a tensor, such as Wh for the h-th slice (matrix) of an order-
3 tensor W, or W(i, j) for the (i, j)-th element of a matrix W. We use colon “:” to indicate all
elements along a mode, such as W(i, :) for the i-th row of a matrix W.

The symbol “◦” denotes tensor outer product. Tensor unfolding (or matricization) of W reshapes
a tensor into a matrix by arranging the elements along the mode-n and is denoted by W(n). For
example, unfolding an order-3 tensor W along mode 2, written as W(2), gives a matrix of size
I2 × I1I3.

2.2 MULTI-HEAD SELF-ATTENTION

Attention mechanisms are widely used to model the interactions between different inputs. The
operation for a single self-attention head is defined as:

Ah = SoftMax(
QhK

⊤
h√

d
)Vh ∈ RN×D, (1)

and the outcome of MHSA is given by

O =

H∑
h=1

AhXWV
h (W

O
h )

⊤, (2)

where Qh = XWQ
h ,Kh = XWK

h , and Vh = XWV
h . WQ

h ,W
K
h ,WV

h ∈ RF×D are (Q)uery,
(K)ey, and (V)alue matrices, respectively, which project input sequence X ∈ RN×F ; N - sequence
length, F - sequence element feature size, D - attention feature size. The tensor diagram of MHSA
is illustrated in Figure 1. MHSA complexity is 4NFDH + 2HN2D, which is quadratic to input
sequence length N and attention feature length D.

2.3 TRUNCATT

Multiplication of Q and K- projections in MHSA could be seen as contraction of input X and joint
query-key (QK) weight tensor YQK in the following way:

A∗
h = QhK

⊤
h = XYQK(:, :, h)X⊤,
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Figure 1: The tensor diagram of MHSA. X is an
input matrix with sequence length N and feature
size F . Gray nodes Wi for i = {Q,K,O, V } are
weights and a white node L is a super-diagonal
tensor. YQK and YV O are contraction of three
tensors inside green shaded boxes. SoftMax is
applied to the tensor network inside the blue box.

Figure 2: BTD-(L,L, 1) rank distribution for to-
tal rank 96. BTD-(L,L, 1) ranks for each block
are sorted and split into H = 6 groups. Then,
density for each group (head) is visualized.

where each head h has its own attention weight, YQK(:, :, h) of size F × F , and A∗ is an atten-
tion tensor before softmax normalization. Reconstruction of this weight tensor from WQ and WK

weights will increase the computational complexity of QK part in MHSA. On the contrary, one can
compress the joint QK weight tensor YQK by approximating the head attention matrices with its
low-rank counterparts, e.g., using truncated singular value decomposition (SVD).

We name this layer TruncAtt, which stands for truncated attention. The original MHSA needs
NDH(2F + N) multiplications to get attention tensor A∗, where D is the QK- contract length
(rank). TruncAtt can achieve significant savings in terms of multiplications when R is much smaller
than D.

2.4 CP SLIMATT

Instead of compressing attention weight matrix, YQK(:, :, h) for each head individually, an alterative
method is compress the whole attention weight tensor, YQK , by the canonical polyadic (CP) model,
like in compression of convolutional layers . The new layer leverages the joint subspace among the
weight matrices, WQ

h and WK
h , and obtains common single projection matrices, SQ and SK shared

among all heads. This way, we replace the original QK weights, YQK , with a new architecture that
has fewer parameters and lower computational complexity, while preserving the performance of the
layers.

YQK ≈
R∑

r=1

SQ(:, r) ◦ SK(:, r) ◦ SH(:, r). (3)

We name this the CP SlimAtt layer. The new structure consists of three matrices: SQ and SK , both
of size F × R, and SH , of size H × R as a fusion or multi-head expansion. The new layer returns
output for each head, h = 1, 2, . . . ,H , as

A∗
h = XSQ︸ ︷︷ ︸

Q−projection

diag(SH(h, :))︸ ︷︷ ︸
head expansion

(SK)⊤X⊤︸ ︷︷ ︸
K−projection

. (4)

The complexity of this step is O(NFR), where N is the number of tokens, F is the sequence
element feature size, and R is the rank of the projection matrices. Q = XSQ, and K = XSK are
Q and K-projections, respectively. The multi-head fusion is performed by multiplying the Q and
K-projections with diagonal matrix, diag(SH

h ). This requires N(N + 1)HR multiplications, where
H is the number of heads.

The rank-R of the CP decomposition controls the trade-off between the accuracy of the approxima-
tion and the complexity of the layer. A higher rank-R leads to a better approximation of YQK , but
also increases the complexity.
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3 MHSA WITH IRREGULAR ATTENTION

3.1 SQUEEZING THE CP-SLIMATT
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(b) Reordered SH

Figure 3: Fusion weight SH in the CP-SlimATT layer. (a) finetuned weights, (b) finetuned weights
after reorder and rescaling columns in the fusion matrix.

Remark (From weight sparsity to simplification of CP SlimAtt). In this remark, we show how
the sparsity structure of the fusion weights in CP SlimAtt can be exploited to simplify the model and
reduce its complexity.

In Figure 3, we illustrate the third factor matrix, SH , in DeiT-B with CP SlimAtt layers with rank
of 168 fine-tuned on ILSVRC-12. The matrix, SH , in Figure 3(a) exhibits sparsity structure of the
fusion weights. Since CPD is non-unique up to permutation and scaling [1], we can change the
order and scale of columns in factor matrices, so that the largest absolute values in each column
are 1. After reordering columns and rows (heads) of SH , Figure 3(b) reveals a very special block-
diagonal structure of the fusion layer: 12 blocks with different sizes, each corresponding to one
head. Sparsifying the off-diagonal coefficients in the fusion weights can squeeze the CPD layer to a
more compact layer.

We assume the fusion weights SH of size H ×R, after row (heads) and columns reordering, can be
well approximated by H blocks,

SH = blkdiag(l1, . . . , lH) = [e1l1, . . . , eHlH ] , (5)

where each lh is a row vector of length Dh, D1 + D2 + · · · + RH = R. We partition the weight
matrices, SQ and SK , into H sub-matrices as

SQ =
[
SQ
1 , . . . ,S

Q
H

]
,

SK =
[
SK
1 , . . . ,SH

H

]
,

where SQ
h and SK

h are of size F ×Dh. The CP-SlimATT layer in (3) becomes a new model com-
prising H terms of rank-Dh

YQK =

H∑
h=1

Dh∑
r=1

SQ
h (:, r) ◦ S

K
h (:, r) ◦ ehlh(r)

=

H∑
h=1

(SQ
h diag(lh) (S

K
h )⊤) ◦ eh

=

H∑
h=1

(
S̃Q
h

(
S̃K
h

)⊤
)
◦ eh (6)

where S̃Q
h = SQ

h diag(lh)
1
2 , S̃K

h = SK
h diag(lh)

1
2 . Concatenate the vectors eh into a matrix of size

H ×H gives a new fusion matrix SH which is of much smaller size than the fusion matrix in CP-

SlimATT. Here we can relax the structure of SH as an identity matrix. S̃Q
h

(
S̃K
h

)⊤
is an equivalent

low-rank representation of SQ
h diag(lh) (S

K
h )⊤.
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Algorithm 1 Initialize BTD-(L,L, 1) Decomposition.

Input: tensor X of size (I1 × I2 × I3), total rank R.
Output: BTD-(L,L, 1) factors [A,B,C] with sizes (I1 ×R), (I2 ×R), (I3 × I3), respectively;
BTD-(L,L, 1) ranks.
begin

A,B,C← CPD-EPC(X, R)
Normalize C so that largest absolute values in each column are 1
cmax, order← max(C1, axis = 1) # find max values and their indices over CP rank dim.
A,B, cmax ← permute(A, order), (B, order), (cmax, order)
Split C into I3 blocks ciRi

= [ci1 . . . c
i
Ri
] for i ∈ 1, I3 to get ranks (R1, . . . , RI3 ).

C← I, where I is identity matrix
end

We call the squeezed model of CP-SlimAtt in (6) TruncAtt with irregular contract dimensions Dh.
The Irregular Attention (IrrAtt) block has complexity of TruncAtt layer and performance of CP
SlimAtt layer.

To conclude, we have shown how to simplify the CP SlimAtt model by exploiting the sparsity
structure of the fusion weights. We next show methods to obtain the IrrAtt layers in which ranks
of attention weights can be automatically defined. Good initialization of weights in IrrAtt layers is
essential to prevent big accuracy drop of the new network before finetuning the model.

3.2 FROM CP-SLIMATT TO BTD IRR-ATT

The first method to initialize IrrAtt’s weights is from the weights in CP SlimAtt by seeking block-
diagonal of the fusion weight matrices, SH . Ranks, Dh, of the attention weight matrices in IrrAtt
are the lengths of blockterms, lh. We summarize the proposed procedure in Algorithm 3 for weight
initialization, multiple block term decomposition in Algorithm 3 which exploits the single block
term decomposition in Algorithm 2.

To obtain the weights in the CP-SlimAtt, we used the sensitivity aware algorithm that ensures a stable
forward pass, namely CPD-EPC Phan et al. (2020) for CP SlimAtt. We note that ordinary algorithms
like ALS could also be used for tensor decomposition, but they may not guarantee stability. To get
weights for IrrAtt, the procedure described in Algorithm 3 was used. Firstly, BTD-(L,L, 1) compo-
nents are initialized using Algorithm 1. Then, each BTD-(L,L, 1) component is updated at a time
using Algorithm 2.

3.3 IRR-ATT WITH RANK-CONSTRAINTS

An alternative approach which can reveal the ranks, Dh, in IrrAtt is to constraint the fusion weight
matrices, SH in CP SlimAtt to have non-overlapping weights due to block-diagonal structure, and
non-negativity constraints since SH comprises singular values of the weight attention matrices. The
proposed loss can be written as

min
θ

Ltrain(θ), s.t. SH
i ≥ 0, SH

i (SH
i )⊤ = I , i = 1, . . . , Nblocks (7)

3.4 RANK SELECTION

Tensor and matrix decompositions, like SVD and CPD, have hyperparameter, rank, which describes
the computational complexity of the decomposition. BTD-(L,L, 1) has its own rank for each com-
ponent. The local compression approach was used, where each attention block had the same target
compression ratio.

FLOPs(R)

FLOPsorig
≤ CR,

where R denotes either rank (SVD or CPD) or total rank (BTD-(L,L, 1) ), FLOPsorig is FLOPs
of the original model, CR is the target compression ratio. In this case, the rank for SVD, CPD,
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Algorithm 2 Fit Single BTD-(L,L, 1) Component.

Input: tensor X of size (I1 × I2 × I3), the rank R, and maximum number of iterations maxiter.
Output: BTD-(L,L, 1) component factors [A,B, c].
begin

Initialize ci as leading eigenvector of X(3)X
⊤
(3)

for j = 1, . . . , maxiter do:
Rank-R truncated SVD of X×3 c

⊤ ≈ AB⊤

T← X(3) khatri-rao(A,B⊤)

Best rank-1 approximation to T ≈ s cd⊤

end
A← A diag(sd)

end

Algorithm 3 BTD-(L,L, 1) Decomposition with CPD-EPC Initialization

Input: tensor X of size (I × J ×H), total rank R.
Output: BTD-(L,L, 1) factors [A,B,C] with sizes (I × R), (J × R), (H ×H), respectively;
BTD-(L,L, 1) ranks.
begin

Get factors ([A1, . . . ,AI3 ], [B1, . . . ,BI3 ], [c1, . . . , cI3 ]) and ranks (R1, . . . , RI3 ) using Al-
gorithm 1.

for j = 1, . . . , maxiter do:
for i = 1, . . . , I3 do:

X′ ← X−
∑

k ̸=i(Ak,Bk, ck)

Ai,Bi, ci ← fit component(X′, Ri) using Algorithm 2
end

end
end

or BTD-(L,L, 1) was determined based on the target compression ratio and was the same for all
attention blocks, so different compressed attention blocks could be compared.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The experiments were conducted with the efficient neural network framework Pytorch on a GPU
server with one NVIDIA® Tesla® A100 GPU, AMD EPYC 7452 32-Core CPU, and 80 GB RAM.
A pre-trained DeiT-Base and DeiT-Small model shipped with Torchvision and Timm library was
used as a baseline for the ILSVRC-12. DeiT-Base included 86.57M parameters and 17.6B FLOPs,
while DeiT-Small included 22M parameters and 4.6B FLOPs. In our approach, the original model
was compressed with selected tensor decomposition and then fine-tuned for 60 epochs with batch
size 256 (DeiT-B) or 512 (DeiT-S) using an optimizer parameters from original DeiT pipeline. Top-1
accuracy was estimated on the ILSVRC-12 validation set. One fine-tune pass (60 epochs) took 1.5-2
GPU days on a single NVIDIA® Tesla® A100. Summary of optimizer parameters is presented in
Appendix A.3.

4.2 MODEL COMPRESSION RESULTS

Our goal was to compare TruncAtt, CP SlimAtt and IrrAtt in terms of FLOPs, number of parameters
and top-1 accuracy drop. We first applied weight decomposition to the QK block, and then fine-
tuned the network. VO blocks were compressed with TruncAtt, while MLP was compressed using
SVD. All results, which are discussed below, are presented in Table 1.
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4.3 INITIALIZATION FOR IRRATT

We have compared results for IrrAtt with initialization using BTL-(LL1), constrained CP. In addi-
tion, the constrained CP gives initialization that is further from original local minima compared to
BTD-(L,L, 1) ; hence, this results in lower top-1 accuracy for constrained CP initialization.

4.4 IRRATT VS CP SLIM

The experiments with DeiT models have shown that IrrAtt has top-1 accuracy close to CP SlimAtt,
while the FLOPs CR is significantly lower, ≥ 1.3 times. The results supports the observation that
fusion layer in CP SlimAtt has low-rank structure.

4.5 IRRATT VS TRUNCATT

TruncAtt is a specific case of IrrAtt, when all contract dimensions have the same size. IrrAtt has
shown slightly higher FLOPs CR (due to extra head fusion layer), while achieving better top-1
accuracy, plus 0.15 - 0.2%. This result proves the head slices in joint QK weight YQK have different
rank. Moreover, we took IrrAtt with total rank 96 for each block, sorted the component ranks for
each BTD-(L,L, 1) and split them into H = 6 groups, i.e., smallest rank came to the first group
while largest to the last group. The rank density distribution is presented in Figure 2. Hence, in all
attention blocks, the joint QK weight YQK has both: low-rank and high-rank slices.

Table 1: Comparison of different TruncAtt, CP SlimAtt and IrrAtt blocks for DeiT on the ILSVRC-
12 validation set. The Top-1 Acc column is the model’s top-1 accuracy. CR stands for compression
ratio. FLOPs CR is estimated without accounting SoftMax and GELU modules. MHSA FLOPs CR
contains FLOPs only for MHSA block. VO blocks are compressed with TruncAtt, while MLP is
compressed with SVD. Blank MLP rank stands for a model without MLP compression. † denotes
IrrAtt initialization with constrained CP.

QK block QK rank VO rank MLP rank Top-1 Acc, %
MHSA
FLOPs
CR, %

FLOPs
CR, %

# param
CR, %

DeiT-Small (H = 6)

Original 64 64 79.85 100 100 100
TruncAtt 16 32 78.87 (-0.98) 37.5 76.2 79.9
TruncAtt 22 32 79.00 (-0.85) 42.2 78.0 81.4
TruncAtt 32 32 79.19 (-0.61) 50.0 81.0 83.9
CP 96 32 79.16 (-0.69) 50.3 81.1 79.9
CP 132 32 79.10 (-0.75) 59.7 84.7 81.4
CP 192 32 79.33 (-0.52) 75.5 90.7 84.0
IrrAtt 96 32 79.03 (-0.82) 38.5 76.6 79.9
IrrAtt 132 32 79.18 (-0.67) 43.1 78.4 81.4
IrrAtt 192 32 79.45 (-0.40) 51.0 81.4 83.9
†IrrAtt 192 32 78.96 (-0.89) 51.0 81.4 83.9

Original 64 64 152 78.45 (-1.40) 100 69.4 67.6
TruncAtt 32 32 152 77.35 (-2.60) 50.0 50.4 51.5
CP 192 32 152 77.49 (-2.36) 75.5 60.1 51.5
IrrAtt 192 32 152 77.58 (-2.26) 51.0 50.8 51.5

DeiT-Base (H = 12)

Original 64 64 81.80 100 100 100
TruncAtt 13 32 304 80.53 (-1.27) 35.2 44.7 45.7
CP SlimAtt 168 32 304 80.84 (-0.96) 49.7 49.9 46.0
IrrAtt 168 32 304 80.74 (-1.06) 37.0 45.4 46.0

7



Under review as a conference paper at ICLR 2024

Table 2: Comparison of IrrAtt and channel pruning methods for attention block of DeiT-Base on
the ILSVRC-12 validation set. The ∆ Top-1 Acc column is the model’s top-1 accuracy drop with
regard to the original model. CR is compression ratio.

Model ∆ Top-1
Acc, %

FLOPs
CR, % # param CR, %

VTP Zhu et al. (2021) -1.1 56.8 55.5
WDPruning Yu et al. (2022a) -1.06 56.6 65.0
UVC Yu et al. (2022b) -1.23 45.5 -
QK IrrAtt(168) + VO IrrAtt(32) (our) -1.06 45.4 46.0

4.6 COMPARISON WITH CHANNEL PRUNING

IrrAtt was compared with the channel pruning method Zhu et al. (2021); Yu et al. (2022b;a), which
removes input and/or output channels in a linear layer. Our approach had a smaller accuracy drop at
lower FLOPs CR level, as shown in Table 2.

4.7 MLP COMPRESSION

Compression of MLP is not the major aim of this paper. It can be done with the truncated SVD, i.e.,
replacing each linear layer with a sequence of two linear layers.

5 RELATED WORKS

Neural network compression is a long-established field of science where several main techniques
have been suggested to strike a balance between the efficiency and speed of pre-trained models.
Among these techniques are pruning, quantization, knowledge distillation, low-rank approximation
and others.

5.1 NEURAL NETWORK COMPRESSION AND ACCELERATION

Our proposed framework can be mostly related to low-rank methods but also have some connections
with pruning. Thus we only make a brief overview of these two family of methods.

5.1.1 PRUNING

Neural network weight pruning has established that not all weights carry equal significance. Hence,
commonly more than half can be eliminated without affecting performance. For Transformers,
three pruning techniques are widely used: unstructured pruning or weight sparsification (removing
individual weights), structured pruning (eliminating a group of weights) and token/patch pruning,
i.e. discarding sequence elements).

In Zhu et al. (2021) ViT was trained with sparsity regularization, which involved incorporating
dimension-wise sparsity through the pruning of dimensions in linear projections. Yu et al. Yu
et al. (2022b) in their work suggested an optimization framework that took into account budget con-
straints. Their framework enables the joint learning of model weights and layer-wise pruning ratios
with masks and skip configurations. Rao et al. Rao et al. (2021) employed a lightweight prediction
module to dynamically select a subset of the most relevant tokens. This module is integrated into
multiple layers of ViT, allowing hierarchical sparsification. Consequently, the number of pruned
tokens progressively increases with each prediction module. In contrast, Patch Slimming Tang et al.
(2021) implements a top-down approach to remove redundant patches. Initially, effective patches in
the last layer are identified, and they are subsequently utilized to guide the patch selection process
in previous layers. Hou et al. Hou & Kung (2022) introduced a pruning criterion based on statis-
tical dependency. This criterion utilizes the Hilbert-Schmidt norm of the cross-variance operator
and can be applied to various dimensions. Consequently, it is capable of identifying and removing
detrimental components across heads, features, and sequence dimensions simultaneously.
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5.1.2 LOW-RANK APPROXIMATION

To reduce the complexity of neural network models without altering the network structure, a com-
mon approach is to employ low-rank approximation of weights Novikov et al. (2015); Ou et al.
(2023). Singular Value Decomposition (SVD) Chen et al. (2021) and its more advanced version
Fisher-Weighted SVD (FWSVD) Hsu et al. (2022), are naturaly used for ViTs, which mostly consist
of linear layers represented as matrices.

When it comes to more advanced scenarios, matrix tensorization followed by tensor decomposi-
tion is a popular approach. Tensor Train (TT) decomposition Oseledets (2011), including Matrix
Product Operator (MPO), are widely chosen in this scenario. TT decomposition has been success-
fully applied to tensorized linear layers in various domains such as language processing Liu et al.
(2021a); Li et al. (2022) and speech recognition He & bin Zhong (2019). TT is also utilized for ViT
in image classification Minh et al. (2022) and object detection Zhen et al. (2022) tasks. In Liu et al.
(2021a) Liu et al. show that MPO outperforms Canonical Poliadic decomposition (CPD) Harshman
(1970); Hillar & Lim (2013) and Tucker decomposition (TKD) Tucker (1963). TKD has been em-
ployed to compress all layers of the BERT model simultaneously Ren et al. (2022). An alternative is
Tensor Chain (or Tensor Ring) decomposition (TC), which approximates the weights of linear and
convolutional layers represented as high-order tensors Wang et al. (2018).

An advanced approach in the Tensorized Transformer Ma et al. (2019) involves modeling the inter-
actions between query, key and value tensors in MHSA using Block Term Decomposition (BTD) De
Lathauwer (2008). Furthermore, Tuformer Liu et al. (2022) introduces method for joint learnable
weights across heads through weight matrix reparameterization.

5.2 DECOMPOSITION RANK SELECTION

The choice of rank for low-rank methods balances the compression ratio and quality drop values. In
most cases the task of finding the optimal rank is a complex and computationally demanding task.
Thus establishing the procedure of optimal rank selection is important part of low-rank methods.
In Sobolev et al. (2022) authors propose a Proxy-based Automatic tensor Rank Selection method
(PARS) that utilizes a Bayesian optimization approach to find the best combination of ranks for
neural network compression.

6 CONCLUSION

This work proposes IrrAtt, which has the same computation complexity as TruncAtt and perfor-
mance similar to CP SlimAtt. Utilizing the sparse structure of a fusion layer in CP SlimAtt, a power-
full technique to mitigate rank determination for heads in IrrAtt and to initialize the weights inside
query-key (QK) block with BTD-(L,L, 1) factors is presented. IrrAtt highlights the non-uniform
structure inside QK block in MHSA and showed good compression properties. Yet this non-uniform
structure requires some extra low-level optimization for the efficient implementation of MHSA to
utilize modern hardware efficiently. For the next steps we are planning to develop further the rank
minimization procedures in order to achieve better compression ratios at the same quality drop.
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A APPENDIX

A.1 ABBREVIATIONS

The following abbreviations are used in this manuscript:

ViT Vision Transformer
CNN Convolutional Neural Network
MHSA Multi-Head Self-Attention
MLP Multilayer Perceptron
ILSVRC-12 ImageNet
SVD Singular Value Decomposition
CPD Canonical Polyadic Decomposition

CPD-EPC Canonical Polyadic Decomposition with
Error-Preserving Correction

GELU Gaussian Error Linear Units
QK Query-Key
VO Value-Output
CR Compression Ratio
FLOPs Number of Floating Point Operations
MACs Number of Multiply–Add Operations

A.2 TENSOR DIAGRAM REPRESENTATION

Following Cichocki et al. (2016), we represent tensors graphically by nodes (circles), while each out-
going line (leg) from a node represents the indices of a specific mode (see Figure 1). In our adopted
notation, each vector, matrix or tensor is represented by a circle, while the order of a tensor is deter-
mined by the number of lines (legs) connected to it. An order-N tensor Y ∈ RI1×I2×···×IN , which
has order N and size In, is represented by a circle with N legs, each of size In, (n = 1, 2, ..., N ).
An interconnection between two nodes denotes a contraction of tensors. More illustrations of tensor
networks can be found in Supplementary.

TENSOR DECOMPOSITIONS

In the following section we briefly describe tensor decompositions used in the paper.

A.2.1 CANONICAL POLIADIC DECOMPOSITION (CPD)

The Canonical Poliadic Decomposition (CPD) Harshman (1970); Hillar & Lim (2013) represents
an order-N tensor by the sum of rank-1 tensorsor equivalently by factor matrices interconnected
through a super-diagonal tensor. For an order-3 tensor Y of size I1 × I2 × I3 with CP rank R, the
CPD has the form:

Y ≃
R∑

r=1

ar ◦ br ◦ cr,

where A = [a1, . . . ,aR], B = [b1, . . . , bR], and C = [c1, . . . , cR] are factor matrices of size
I1×R, I2×R, and I3×R, respectively. The illustration for CPD of an order-3 tensor is presented
in Figure 4.
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Figure 4: CP decomposition of an order-3 tensor.

A.2.2 TUCKER DECOMPOSITION

Comparing to the CP decomposition, the Tucker decomposition (TKD) provides a more flexible
factorization of an order-N tensor into a relatively small size core tensor and factor matrices, given
in the form as

Y ≃
R3∑

r3=1

R2∑
r2=1

R1∑
r1=1

gr1r2r3 (ar1 ◦ br2 ◦ cr3) = G×1 A×2 B×3 C,

where Y ∈ RI1×I2×I3 is the given data tensor, G ∈ RR1×R2×R3 is the core tensor, and A =
[a1, . . . ,aR1 ], B = [b1, . . . , bR2 ], and C = [c1, . . . , cR3 ] are the factor (component) matrices.
The core tensor (typically, Rn ≪ In) models a potentially complex pattern of mutual interaction
between the vectors in different modes. The illustration for TKD of an order-3 tensor is presented
in Figure 5.
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Figure 5: Tucker decomposition of an order-3 tensor.

A.2.3 BLOCK-TERM DECOMPOSITION (BTD)

Block-term decomposition (BTD) De Lathauwer (2008) is a hybrid of CPD and TKD, and it models
the data as the sum of multiple Tucker terms,

Y ≃
T∑

t=1

Gt ×1 At ×2 Bt ×3 Ct,

where Gt are order-3 core tensors, while At, Bt and Ct are factor matrices. BTD comprises a
smaller number of parameters than TKD. So far, there are no available proper selection criteria of
the block size (rank of BTD) and the number of terms.

A.3 TRAINING DETAILS

The compressed model was fine-tuned for 60 epochs with batch size 256 using an optimizer with
parameters presented in Table 3.

A.4 TRUNCATT AS CP SLIMATT

We show TruncAtt as a special case of CP SlimAtt with constraints on the fusion matrix, SH . Assume
the attention matrix Yh in TruncAtt is represented as rank-D truncated SVD

Yh = Uh diag(λh)V
T . (8)

13



Under review as a conference paper at ICLR 2024

Table 3: Optimizer parameters for fine-tuning DeiT-Base model.
Parameter Value
optimizer AdamW

lr 5e-05
eps 1e-08

momentum 0.9
weight decay 0.0

scheduler Cosine
min lr 1e-06

warm-up lr 1e-06
warm-up epochs 5

model EMA True

We concatenate matrices Uh into a matrix SQ, matrices Vh into SK , and build the fusion matrix
SH as block diagonal of singular values, λh, i.e.,

SQ = [U1, . . . ,UH ] ,

SK = [V1, . . . ,VH ] ,

SH = blkdiag(λ1, . . . ,λH),

By this way, SQ,SK and SH form an equivalent CP SlimAtt layer.
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