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Abstract

Recently, many researchers have made successful progress in building the AI
systems for MOBA-game-playing with deep reinforcement learning, such as on
Dota 2 and Honor of Kings. Even though these AI systems have achieved or
even exceeded human-level performance, they still suffer from the lack of policy
diversity. In this paper, we propose a novel Macro-Goals Guided framework, called
MGG, to learn diverse policies in MOBA games. MGG abstracts strategies as
macro-goals from human demonstrations and trains a Meta-Controller to predict
these macro-goals. To enhance policy diversity, MGG samples macro-goals from
the Meta-Controller prediction and guides the training process towards these goals.
Experimental results on the typical MOBA game Honor of Kings demonstrate
that MGG can execute diverse policies in different matches and lineups, and also
outperform the state-of-the-art methods over 102 heroes.

1 Introduction

As a stepping stone of Artificial General Intelligence (AGI), Game AI has achieved significant
progress in the past decade, including board games Silver et al. [2016], poker games Brown et al.
[2019]; Moravčík et al. [2017], Real-time Strategy (RTS) games Vinyals et al. [2019], etc. Especially,
Multi-player Online Battle Arena (MOBA) games have been regarded as a challenging problem in
Game AI and attracted massive attention from research communities because of the complicated
mechanisms such as imperfect information, large state-action space, and long-term sequential decision
making. Recently, OpenAI et al. [2019] develop the AI system on Dota 2, named OpenAI Five,
which defeats the Dota 2 world champion, i.e., Team OG, within a limited size of hero pool. It trains
with deep reinforcement learning and self-play. Ye et al. [2020a] build the AI system on another
popular MOBA game, Honor of Kings, which also defeats top e-sports players. Besides, compared
with OpenAI Five, their AI system enables playing full MOBA games, which extends the hero pool
size from 17 to 40 heroes, adds ban/pick capabilities, and addresses the scalability issue.

Even though existing AI systems have achieved or even exceeded human-level performance in MOBA
games, they still suffer from the lack of policy diversity. Agents during training are controlled by
the same hand-crafted reward signal and then present similar strategies even in different matches,
while strategies played by humans usually vary according to situations in the game. One of the
disadvantages is that we can counter the single learned policy after several attempts effortlessly. For
example, one team defeats OpenAI Five nine times with the same strategy in public tests1. The

1https://openai.com/projects/five/
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primary counter-strategy is to avoid fights as much as possible and instead push outside lanes to
pressure the agents into defending2.

Another disadvantage is that agents with a single policy cannot exploit the strength of heroes and
lineups. To interest players, MOBA game designers usually make different skill mechanisms for
different heroes, which result in heroes play different roles in the game. Therefore, different roles
in lineups have different strategies to maximize a team’s utility. For example, the supporter should
keep their allies alive and give them opportunities to earn more gold and experience. The assassin
can efficiently jungle neutrals rather than farm lanes. Moreover, different combinations of heroes
construct lineups with different characteristics. Some lineups have advantages in pushing with a
quick pace, while some lineups are good at the development of carry heroes. The agent should find a
way to maximize the picked lineup’s strength instead of playing with a single policy in the game.

Although existing methods can learn diverse policies in other games, it remains to be a grand challenge
in MOBA games. AlphaStar Vinyals et al. [2019] uses a framework based on the league to improve
the diversity of policies in StarCraft II. The historical models are used to construct the league and
train exploiters to highlight flaws in the league and main agents. The main agents are forced to
discover new strategies by training against the exploiters. They also define a latent variable according
to building orders in human data as constraints of self-play. However, the league-based methods
cannot be applied to MOBA games directly. First, they consume massive computation resources to
construct the league. They use 12 copies of models in which there exist 128 TPU cores. Second, the
scenarios between MOBA and RTS games are different. They leverage the nature of StarCraft II and
use building orders to represent each strategy, which is unavailable in MOBA games.

In this paper, we propose a novel learning paradigm named Macro-Goals Guided (MGG) learning
to train diverse policies in MOBA games. Motivated by top e-sports players, we define related
game information as macro-goals to depict strategic decisions, which constitute macro-strategies
in MOBA games. To explore macro-strategies efficiently, we extract macro-goals from human
demonstrations and train a supervised model to predict macro-goals according to the given lineups
and game information. We derive diverse policies by sampling macro-goals from the model, and
incorporating the goals and an intrinsic reward into the original actor-critic framework to guide the
policy learning process. We use the famous mobile 5v5 MOBA game, Honor of Kings3, as our
testbed, which is widely used for MOBA-game AI research Ye et al. [2020c,a,b]; Wu [2019]; Chen et
al. [2021]; Wei et al. [2021]. Experimental results demonstrate that the AI agent we obtained can
adopt different policies according to the given lineups and improve the Elo score by modelling policy
diversities. Our contribution can be concluded as follows:

• To the best of our knowledge, we are the first to investigate the problem of policy diversity
in MOBA games. We propose a novel framework that can learn diverse policies to adapt to
different matches and lineups.

• Based on macro-goals, our methods can explore diverse macro-strategies efficiently and
meanwhile preserve high-level micro-operations. Unlike league-based methods, our MGG
framework uses the same computation resources as the original actor-critic framework.

• We conduct performance testing and diversity analysis on the full hero pool, i.e., 102
heroes. Experimental results show that our agents can outperform existing state-of-the-art
MOBA-game AI systems and demonstrate diverse policies.

2 Related Works

2.1 Artificial Intelligence in MOBA Games

The progress of Game AI in MOBA mainly focuses on Dota 2 and Honor of Kings. OpenAI et
al. [2019] have successfully defeated top e-sports players on playing 1v1 and 5v5 games in Dota
2 within limited heroes. Ye et al. [2020b,c,a] have proposed a series of works that exceed human-
level performance and expanded hero pools in Honor of Kings. Besides, TencentHMS Wu [2019]
exploits a hierarchical policy structure to control macro-strategy decisions and micro-level executions,

2https://www.reddit.com/r/MachineLearning/comments/bfq8v9/
3https://en.wikipedia.org/wiki/Honor_of_Kings
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respectively. All the mentioned works except the supervised learning adopt a single strategy regardless
of the heroes and lineups, which cannot take full advantage of heroes and lineups’ characteristics.

2.2 Diverse Policies in Other Games

The league-based methods Vinyals et al. [2019]; Balduzzi et al. [2019]; Jaderberg et al. [2017, 2019]
train multiple agents simultaneously to explore strategy space and require massive computation
resources. However, it is impractical to use league-based methods in MOBA games. Because the
space of strategies is complex in that there are 213, 610, 453, 056(C10

40 × C5
10) lineups for 40 heroes

in MOBA games and each lineup has various strategies. Therefore, it is difficult to design artificial
signal to represent macro-strategies in MOBA games like Starcraft II (e.g., building order).

The aforementioned Game AIs design methods suffer from the following limitations: 1) the need for
data on human behaviors; 2) heavy dependence of designer expert knowledge and substantial labor
costs in searching a desirable behavior. Shen et al. [2020] can automatically generate diverse styles
with almost no domain knowledge. However, this method is not suitable for complex games that last
up to an hour long and consist of thousands of actions, such as MOBA games and RTS games.

2.3 Imitation Learning

In order to reduce the cost of strategy exploration in enormous lineups, we imitate macro-strategies
from human demonstrations. Actually some works have trained reward functions from human
preferences Nair et al. [2018]; Ibarz et al. [2018]; Christiano et al. [2017] or learnt policy directly
from limited human data Ho and Ermon [2016]. Different from the above works, we abstract strategy
as macro-goals in MOBA games. Our method not only imitates macro-strategies, but also leaves the
agent to explore the optimal micro-operations (e.g., move, attack) by itself through external rewards.

2.4 Goal-based Learning

Goal-based methods Schaul et al. [2015]; Andrychowicz et al. [2017]; Zhu et al. [2021] are originally
proposed to solve the problem of training a single goal-conditioned policy to accomplish multiple
tasks. Some methods refer to the idea of goal-based RL and divide a task into a series of sub-tasks (i.e.,
goal) to accelerate the exploration and training of policy, such as automatic goal generation Florensa et
al. [2018] and hierarchical RL Kulkarni et al. [2016]; Nachum et al. [2018], etc. However, in complex
scenarios such as MOBA or RTS games, it is difficult to explore the meaningful goals, whether
using GAN or training a high-level policy by RL methods. Therefore, we utilize the top players’
demonstrations to pre-train a macro-level policy to generate reasonable and diverse macro-goals.

3 Macro-Goals Guided Reinforcement Learning

The problem we focused on can be formulated as a Markov Decision Process (MDP), defined by
a tuple (S,G,A,R, T, γ), where S is the state space, A is the action space, T : S × A → S is the
transition function, R : S × A → R is the reward function, and γ ∈ [0, 1] is the discount factor.
In a typical MOBA game Silva and Chaimowicz [2017], the agents perform actions a ∈ A (e.g.
move, attack) according to the observations s ∈ S (e.g. unit states, in-game stats) to achieve the final
objective (e.g. destroy the crystal). In our setting, G represents the macro-strategic state space in the
game. And we define a macro-state extraction function f : S → G which maps the current state s to
the multi-dimensional macro-state c = f(s). The macro-state c ∈ G mainly includes the region state
(e.g. the area on the map) and resource state (e.g. unit resource, gold, level). The macro-goal g ∈ G
represents the macro-state that the agent should achieve in the near future in a certain strategy.

Ye et al. [2020a] design the general reward function for MOBA games, including farming, KDA,
damage, pushing, and win/lose related rewards. As a result of the single value system, the agent only
learns to execute a single strategy from self-play training, that is, farming first, then fighting and
pushing, no matter what strategy the opponents adopt. Thus, its macro-state set {c|c ∈ GRL} is only
a part of G, i.e. GRL ⊂ G. On the contrary, human strategies are diverse and their macro-state set
Ghuman can be considered to be close to the oracle G, i.e. Ghuman = G1 ∪ . . . Gi · · · ∪GN ≈ G,
where N is the number of human strategies. We define that strategy i can be expressed as a set of
macro-goal {g|g ∈ Gi}, where Gi ⊂ G. Our objective is to learn diverse strategies, that is, maximize
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the macro-state entropy −
∑

c∈G P (c)logP (c). Therefore, we model the policy as π(a|s, g) and
utilize g ∈ Ghuman ≈ G as the macro-goal of the policy. We also introduce an intrinsic reward
function Rgoal : S ×G×A → R to guide its macro-state set GRL to be close to the complete G.
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Figure 1: The MGG framework.

In this paper, we propose the Macro-Goals Guided (MGG) framework to learn diverse policies
in MOBA games. Intuitively, top players’ matches are observed to have high-quality and diverse
macro-strategies but noisy micro-operations. Thus, completely imitating human demonstrations,
including micro-operations, will worsen the performance of the policy. However, the macro-strategies
from top players’ matches can be used to imitate, which can reduce the cost of exploration in training.
Our motivation is to define macro-goals to depict human strategies and then learn diverse strategies
from these macro-goals only. In general, the MGG consists of three stages, as shown in Figure 1.

Stage 1: Extract state sDt and its corresponding macro-goal gD from top e-sports demonstrations.

Stage 2: Use the extracted state and macro-goal pairs ⟨sDt , gD⟩ as the training data to train the
Meta-Controller parameterized by ϕ, via supervised learning. During the training process, we use the
auxiliary auto-encoding tasks Taux of lineups to improve prediction accuracy. Given a state s, the
Meta-Controller ϕ should predict a macro-goal g to depict the current strategy.

Stage 3: Use the Dual-clip PPO algorithm Ye et al. [2020a] to train the policy and value network θ
conditioned on the macro-goal g. The macro-goals g of the specified strategy is sampled from the
pre-trained Meta-Controller. We introduce an intrinsic reward Rgoal

t to denote whether the agent
achieves the macro-goal g. Besides, we use the multi-head value mechanism Ye et al. [2020a] to
combine the original value output and the intrinsic value output.

To better illustrate the MGG method, we use Honor of Kings as a case study to describe some
common terms associated with MOBA games. But it can be applied to other MOBA games (e.g.
Dota 2 and League of Legends), as the playing mechanism across MOBA games are similar.

3.1 Generation of Macro-Goals

Base Area

Jungle Area
( Neutral )

Top Lane

Mid Lane

Bottom LaneBase Area

Jungle Area
( Neutral )

Region Intent Resource Intent

Monsters

Turrets Minions

Level Gold

Monsters

Figure 2: The macro-goal designed for abstracting player’s macro-strategy. The red and blue on the map indicate
two teams, and the map can be divided into 3 lanes (the top, middle, and bottom lane), 4 jungle areas, and 2
base areas. Circles represent turrets. The brown arrows in the left part indicate region intent ("Where to go").
The turrets, monsters, and minions on the right represent unit resources. The brown arrows on the right indicate
resource intent ("What to do"), which means that the agent will kill units in order to level up or gain gold.
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3.1.1 Macro-goal Definition

The motivation for designing MOBA AI macro-goals is inspired from how human players make
strategic decisions. Human players usually make strategic decisions according to "Where to go" and
"What to do". Thus, we define two types of macro-goals for all MOBA games, i.e., region intent
("Where to go") and resource intent ("What to do"), as shown in Figure 2. The region intent is the
next region where the players move to, as shown in the left part of Figure 2. The resource intent is the
quantity of game resources that players aim to obtain, including turrets, monsters, gold assignment,
and other resources commonly found in MOBA games, as shown in the right part of Figure 2.

3.1.2 Macro-Goal Label Extraction
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Figure 3: An example of macro-goal label extraction. The macro-goals at Ts is to move into the opposite middle
lane and gain gold resources from turrets and minions, while at Ts

′ is to move to the upper jungle area and grab
the monsters to level up. C is the delta of frame numbers between the state and its extracted macro-goals.

We extract macro-goals from top e-sports players’ matches. Given a state st in the trajectory, we
define a multi-dimensional goal and extract its region intents and resource intents in the future frame
as label, i.e., macro-goal gt = f(st+C). Each dimension denotes an aspect of the macro-goal in the
current state. The multi-dimensional goal can guide our policy learning to achieve multiple goals at
the same time. A concrete example of macro-goal label extraction is shown in Figure 3. The trajectory
consists of frames from top players’ matches. Let Ts denotes the current frame. We sample the frame
with goals from the interval [Ts +C − ϵ, Ts +C + ϵ], where C is a hyperparameter representing the
delta of frame numbers between the state and its macro-goals, generally 30s. ϵ is a hyperparameter
denoting the range of noise to avoid overfitting. Intuitively, by setting up labels in this way, we expect
the Meta-Controller to learn the mapping from the current state st to its future macro-goal gt.

3.1.3 Meta-Controller Training
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Figure 4: Network Architecture of the Meta-Controller. First, the features of each unit are extracted by some
shared MLPs to the units embedding. Then, the lineup information is encoded by MLPs and used as a query
vector to calculate the attention between the strategy and units embedding. Finally, the strategy embedding and
game stats embedding are used to predict macro-goals ϕ(st)g and strategy flag ϕ(st)

aux.

After extraction of macro-goals, we train the prediction model, i.e., Meta-Controller, via supervised
learning. The network structure of the Meta-Controller is shown in Figure 4. To predict macro-goals,
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we input current game state features including observable unit’s attributes and in-game statistics
information, e.g., health point(hp), location, gold, level, etc. Note that our game state features include
information of heroes and lineups, where the lineup means a combination of five heroes. Therefore,
the Meta-Controller can predict macro-goals of different strategies according to the lineup features.

Beside, because the strategies in MOBA games have strong connections with lineups, we regard the
auto-encoding task of lineups as an auxiliary task Taux to further model this relationship. It plays
a role of learning latent representations of strategies. Then, we exploit the attention mechanism in
which the latent representations of strategies as queries and the hidden encoding of game states as
keys and values. In addition, to solve the imbalance of macro-goal labels and improve the

LSL(ϕ) = LFL(ϕ(s)
g, yg) + λ ∗ LCE(ϕ(st)

aux, yaux), (1)

where LFL is the focal loss of predicting labels, LCE is cross-entropy loss of the auxiliary task, and λ
is the balancing parameter. We use Adam Kingma and Ba [2014] to solve the optimization problem.

3.2 Macro-goals Guided Training Framework

We integrate the Meta-Controller into the original actor-critic framework as shown in Figure 5. Given
the state st at frame t, a macro-goal gt is generated by the pre-trained Meta-Controller. To guide
the trained policy towards gt, inspired by goal-based RL Andrychowicz et al. [2017]; Schaul et al.
[2015], the policy and value function make decisions according to not only st but also gt. For each
N frames, the Meta-Controller updates a new goal ĝt to follow the strategy. And the same goal
ĝt is kept during the whole N frames [t, t + N) to estimate parameters of policy πθ(a|st, ĝt) and
value functions Vθ(st, ĝt). Besides, we sample macro-goals from the softmax distribution of the
Meta-Controller prediction to further increase the policy diversity even with the same lineups.
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Figure 5: An example of a trajectory with MGG.

We design an intrinsic reward Rgoal to guide the policy towards the macro-goals as follows, which
represents the delta of the distance between the current macro-state and the macro-goal:

Rgoal(st, at, st+1, ĝt) =
∣∣f(st)− ĝt

∣∣−∣∣f(st+1)− ĝt
∣∣ , (2)

where ĝt = ϕ(st) is the macro-goal generated by the Meta-Controller at frame t. f is the macro-state
extraction function, which is the same with the label extraction process. If the macro-state f(st+1) is
more close to ĝt than f(st), the agent will receive a positive reward, and vice versa.

We combine the intrinsic reward Rgoal with the extrinsic environment reward, and the agent is
trained to maximize the accumulated environment rewards as well as perform macro-goal distribution
matching. Therefore, the agent can explore the best way to achieve the goal while learning the human
strategy, so as to avoid the decline of micro-operation ability caused by completely imitation learning.

Policy updates. In order to avoid training instability in our large-scale distributed environment,
we use the Dual-clip PPO method Ye et al. [2020a]. Differing from the original algorithm, we
introduce the macro-goal g into the policy πθ(at|st, ĝt) and advantage estimation Ât(at, st, ĝt).
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When πθ(at|st, ĝt) ≫ πθold(at|st, ĝt) and Ât < 0, the radio rt(θ) =
πθ(at|st,ĝt)

πθold
(at|st,ĝt) is huge, which

causes the large and unbounded variance since rt(θ)Ât ≪ 0. Dual-clip PPO introduces another
clipping parameter c that indicates the lower bound when Ât < 0. The new objective is the following:

Lpolicy(θ) = Êt[max(cÂt,min(clip(rt(θ), 1− τ, 1 + τ)Ât, rt(θ)Ât))],

where τ is the original clip parameter in PPO.

Value updates. We use the multi-head value mechanism Ye et al. [2020a] to incorporate the value of
our macro-goal. Specifically, the value of achieving macro-goals are regarded as one head. Therefore,
the value loss is defined as follows:

Lvalue(θ) = Êt[
∑

headk

(Rk
t − V̂ k

t )], Vtotal =
∑

headk

wkV
k
t (st, gt),

where wk is the weight of the k-th head and V k
t (st, gt) is the k-th value.

4 Experiments

In this section, we compare the state-of-the-art methods of supervised learning (SL) Ye et al. [2020b]
and reinforcement learning (RL-baseline) Ye et al. [2020a] with the MGG method in the game of
Honor of Kings, from the aspect of capability and diversity. Then, we compare MGG, RL-baseline
and GAIL Ho and Ermon [2016] on some special lineup systems to evaluate the capability gains
from increasing the policy diversity. Since the GAIL algorithm has a high sample complexity, which
makes it is impossible to train on a full hero pool, i.e., 102 heroes. Thus we compare GAIL with
other methods only on a small hero pool (20 heroes) in the case study section.

4.1 Experimental Settings

We construct a training dataset by collecting replays from the top 1% human players to train the
Meta-Controller. We extract 4060-dimensional state and 64-dimensional macro-goal pairs ⟨sDt , gD⟩
from the raw data, while the delta C is 30 seconds and the noise ϵ is 3 seconds. We train only a single
model for all heroes. We use 8 NVIDIA P40 GPUs for about 26 hours of training, and the batch
size of each GPU is set to 512. We set α = 0.75, γ = 2 for focal loss LFL Lin et al. [2017], and set
λ = 1 for the weight of auxiliary task. We use Adam with the initial learning rate of 0.0001.

To make a fair comparison, except for the additional macro-goal features and intrinsic reward, the rest
of the MGG network architecture and training settings are exactly the same as the RL-baseline. MGG
and other RL methods adopt self-play training and train by randomly selecting heroes over a physical
computer cluster with 60,000 CPUs and 830 NVIDIA V100 GPUS. The batch size of each GPU is
set to 4096. All methods converged after training for a total of 420 hours. We evaluate all methods on
102 heroes4 in Section 4.2 and 4.3 and on about 20 heroes in Section 4.4. For online evaluation, the
response time of AI is set to 193ms, including observation delay (133 ms) and response delay (60
ms). Response delay consists of features, models, result processing, and transmission delays. The
average APMs of AI and top players are comparable (80.5 and 80.3, respectively).

4.2 AI Performance

We compare MGG with built-in bots, supervised learning agents Ye et al. [2020b] (SL), and the
original reinforcement learning agents Ye et al. [2020a] (RL-baseline). Note that RL-baseline is also
the state-of-the-art method in the game of Honor of Kings. We use all methods to play pairwise
matches, 400 games for each pair, and then calculate the Elo scores Coulom [2008]. All lineups in
each match are randomly selected from the full 102 hero pool.

In addition, during the period from April 1st to April 4th, 2021, we conduct a large-scale human-
machine test in the game activity to evaluate the average level of human players. We run about
100,000 tests on RL methods, where players are randomly matched against the RL-baseline and
MGG agents without being told about the opponent model, just knowing that the opponent is the AI.

4see Supplementary for more details.
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And we also conduct 50,000 tests on the SL method. The win rates of SL, RL-baseline, and MGG
against humans are 93.10%, 97.77%, and 97.81%, respectively.

Figure 6 shows that the MGG method performs better than all the baseline methods in real games,
demonstrating the benefits from modelling policy diversities and taking advantage of the characteris-
tics of lineups.
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Figure 6: The performance comparison between MGG and the baseline methods in the game of Honor of Kings.
Blue: Overall comparison of Elo scores. Yellow: Baselines vs. MGG win rate.

4.3 Diversity in Different Lineups and Matches

4.3.1 Diversity in Different Lineups

We visualize macro-state embeddings of MGG, RL-baseline, and human players in Figure 7, and
points are colored according to different methods. Figure 7 shows that MGG plays more diverse
policies than RL-baseline. The macro-state space of MGG (blue points) covers both the RL-baseline
(red points) and human (yellow points), which indicates MGG can play both the human strategies
and RL-baseline strategies. Besides, we can observe that the points of MGG and human strategy are
clearly separated from each other. Conversely, the points of the RL-baseline strategy are mixed.

We evaluate the Davies-Bouldin Index Davies and Bouldin [1979] of macro-states embeddings in
different lineups, as shown in Table 1. We can see the MGG has a lower Davies-Bouldin Index, which
indicates the MGG’s macro-strategies have a better separation between different lineups.

RL-baseline          Player          MGG

Figure 7: Macro-states t-SNE Embedding of different algorithms
in the same space. Left: comparison of MGG (blue points) and
RL-baseline (red points). Right: comparison of MGG and human
player (yellow points). The strategy space of MGG covers both.

Table 1: Davies-Bouldin Index of
MGG and RL-baseline in differ-
ent lineups. The values closer
to zero indicate a better parti-
tion, meaning that the strategies
(macro-state space) varies more
between the different lineups.

Davies-Bouldin Index

RL-baseline 10.72

MGG 1.76

human 1.45

4.3.2 Diversity in Different Matches

The previous section shows that the MGG agent presents diverse policies in different lineups. To
evaluate the diversity when the agents pick the same lineup in different matches, we define the macro-
state entropy metric H = −

∑
c∈G P (c)logP (c), where P (c) is the probability mass function of

macro-state and c = f(s). In this experiment, we run 1000 matches for each comparison, and we let
agents play against the same bot with the same lineup and start the game from the same state.

In Table 2, we compare MGG with the RL-baseline, which shows that the MGG agent plays diverse
polices even in the same lineup due to sampling the macro-goal from the Meta-Controller in real-time.
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Table 2: Comparing macro-state entropy of each method in the different matches while picking the same lineup.
Built-in bots RL-baseline MGG

macro-state entropy 0.000 0.014 0.408

4.4 Case Study

In Honor of Kings, the most common strategy for human players is three-lane-strategy, in which the
marksman, mage, and warrior (or tank) obtain resources from three lanes, respectively, the assassin
grabs the neutral jungle resources, and the supporter roams to assist them without gaining resources.
Therefore, the general reward function Ye et al. [2020a] is designed following the common strategy,
so agents will perform similar strategies in different lineups and thus cannot perform the most suitable
strategy in some special lineups. To evaluate the effectiveness of MGG on this issue, we select several
lineup systems5 that differed significantly from the common strategy to evaluate the diversity and
capabilities of MGG and other methods.

We also compare MGG with GAIL Ho and Ermon [2016], which is shown to be effective in behavior
imitating tasks. GAIL uses a discriminator to distinguish whether a state-action pair is from the
human player or the learned policy, meanwhile optimizes the policy to confuse the discriminator.
However, adversarial training will greatly affect the training efficiency of the policy, so we only train
separately under certain special lineup systems, not the full hero pool.

4.4.1 Case of Marksman-Core System

Marksman-Core System refers to substituting supporter for the mage so that the powerful marksman
can obtain the resources of the two lanes to gain an advantage over the enemy in money and equipment
as fast as possible. Therefore, we evaluate the achievement of the resource allocation strategy within
the team by analyzing the money rate of the marksman ( moneymarksman∑

(moneyteam_index)
) during the match

against the RL-baseline, and then analyze the advantage over the enemy through the marksman’s
money difference (moneymarksman − 1

5

∑
(moneyenemy_index). As shown in Figure 8, compared

to RL-baseline and GAIL, MGG is closer to the distribution of human players in terms of marksman
money rate and money difference, indicating that applying MGG is more beneficial for achieving the
resource intent strategies, which is difficult for the original reward function to achieve.

ce
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0.33
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0.25 0.27

0.32

0.25
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Figure 8: Statistical indicator of resource allocation in
Marksman-Core System.

Table 3: Neutral monster resource metrics of
Resource-Grab System. In the early stage, the
near side resources are at most 2 and the far side
resources are also capped at 2.

Near Side
Resources

Far Side
Resources

Total
Resources

Human 1.317 0.561 1.878
RL-baseline 1.002 0.000 1.002

GAIL 1.141 0.056 1.197
MGG 1.741 0.658 2.399

4.4.2 Case of Resource-Grab System

Resource-Grab System means using a strong assassin in the early stage (first 2 minutes) to grab
the resources of neutral monsters closer to the opponents, which belongs to the long-term regional
intent strategy. Therefore, the success of the strategy can be expressed by the number of neutral
resources snatched in the early stage. As shown in Table 3, RL-baseline maximizes short-term gains
by only grabbing the resources closest to it based on the common policy. In contrast, MGG effectively
implements this long-term strategy and outperforms the human by 0.52 monster resources in total.
Besides, GAIL is difficult to guide agents at the micro-operation level to implement the regional
intent for grabbing the enemy’s resources because this strategy requires long-term planning.

5see Supplementary for more cases of lineup systems and results of their human-machine test.

9



4.4.3 Capability Analysis

To further investigate whether increased diversity can improve the capability of the particular lineup
systems, we test the methods against each other, with pairs playing 100 games. In Figure 9, the
Elo scores of built-in bots, SL agents, the RL-baseline agents, GAIL agents, and MGG agents are
provided. Elo scores demonstrate that different strategies have a significant impact on the upper
limit of its capability for the same lineup. Figure 9 shows that with improved strategy diversity,
MGG increases 312 and 560 Elo scores over baseline in the above two lineup systems, respectively.
Thus, training MOBA AI with strategies diversity and enhancing specific lineup systems’ capabilities
benefits significantly from our proposed method. The video of the above case can be found in
https://sites.google.com/view/mgg-demo.

0 0

1006 1004

2029 19872279 23862341 2547

0
500

1000
1500
2000
2500
3000

Marksman-Core System Resource-Grab System

Elo Scores

Built-in bots SL RL-baseline GAIL MGG

Figure 9: Comparison of Elo scores between MGG and other methods in two special lineup systems.

5 Conclusions

In this paper, we propose the MGG framework to learn diverse policies during training. We define
macro-goals to depict diverse strategies in MOBA games. We sample macro-goals from softmax
distribution of the Meta-Controller prediction, which enhances policy diversity. To guide the policy
towards a specific strategy, we design an intrinsic reward to indicate whether the agents achieve
macro-goals during training. The trained agents can play diverse policies in different matches and
exploit lineups’ characteristics to improve capabilities. In the future, after learning diverse policies,
we will investigate non-transitivity in strategies of MOBA games using game theory. We will also try
to find a solution that is closer to Nash equilibrium in MOBA games.

6 Broader Impact

To the research community. MOBA (Multiplayer Online Battle Arena) poses a grand challenge
to the AI community. Even though the existing MOBA-game AI systems have achieved or even
exceeded human-level performance, they still suffer from the lack of policy diversity in such a
complex environment. To this end, this paper is introducing a learning paradigm to train diverse
policies for the MOBA-game AI systems. We herewith expect that this work can provide inspiration
for the diversity of strategies in various game AI research.

To the game industry. Our AI has found several real-world applications in the game, and is changing
the way that MOBA game designers’ work, elaborated as follows: 1) Game balance testing. In
MOBA and many other game types, balancing the ability of each strategy is essential. Using similar
techniques presented in this paper is an easy way to construct a strategy balance testing tool for
MOBA games. 2) PVE (player vs environment) game mode. Introducing AI with diverse strategies
into the game’s PVE mode is a low-cost method to increase the interest of players.

To the e-sports community. Like AlphaGo, our method can provide a high-quality low-cost training
environment with diverse strategies for e-sports players. The AI system with diverse macro-strategies
and high-level micro-operations is suitable as a training partner for e-sports athletes.

7 Funding Disclosure

This work is supported by the Tencent AI Department and the Tencent TiMi Studio.
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