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Abstract

Multi-agent reinforcement learning (MARL), as a thriving field, explores how
multiple agents independently make decisions in a shared dynamic environment.
Due to environmental uncertainties, policies in MARL must remain robust to
tackle the sim-to-real gap. We focus on robust two-player zero-sum Markov games
(TZMGs) in offline settings, specifically on tabular robust TZMGs (RTZMGs).
We propose a model-based algorithm (RTZ-VI-LCB) for offline RTZMGs, which
is optimistic robust value iteration combined with a data-driven Bernstein-style
penalty term for robust value estimation. By accounting for distribution shifts
in the historical dataset, the proposed algorithm establishes near-optimal sample
complexity guarantees under partial coverage and environmental uncertainty. An
information-theoretic lower bound is developed to confirm the tightness of our algo-
rithm’s sample complexity, which is optimal regarding both state and action spaces.
To the best of our knowledge, RTZ-VI-LCB is the first to attain this optimality, sets
a new benchmark for offline RTZMGs, and is validated experimentally.

1 Introduction

Multi-agent reinforcement learning (MARL), which focuses on developing algorithms that enable
multiple agents to learn and make decisions in dynamic environments, has garnered significant
attention in gaming [35] and autonomous driving [4]. Offline MARL, addresses the high cost
of interacting with the environment by leveraging historical data collected from past interactions
generated under unknown or biased behavior policies [22]. The dynamic and non-stationary nature of
real-world environments introduces critical uncertainties. Robustness becomes important in ensuring
stable decision-making, because standard MARL algorithms under ideal conditions are highly
sensitive and prone to catastrophic failures when faced with even minor adversarial perturbations [48,
45, 46]. In this sense, robust guarantees are particularly vital in offline MARL, highlighting the core
of offline robust MARL. Two-player zero-sum Markov games (TZMGs) represent a compelling setting
of MARL, giving rise to the field of robust TZMGs (RTZMGs) from robust MARL.

A key challenge in offline RTZMGs is addressing environmental uncertainties with as few samples
as possible under partial and limited coverage. Historical data often only offers partial and limited
coverage of the state-action space, leading to poor estimates of model parameters and unreliable
policy. Besides, environmental uncertainties arise from model mismatches, system noise, and the
disparity between simulation and real-world scenarios. To address uncertainties, RTZMGs incorporate
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Table 1: A comparison between RTZ-VI-LCB and P2M2PO [5] on finding an ε-
optimal robust Nash policy in finite-horizon offline RTZMGs with f(σ+, σ−, H) =

min
{

(Hσ+−1+(1−σ+)H)
(σ+)2 , (Hσ−−1+(1−σ−)H)

(σ−)2 , H
}

, where the uncertainty set is quantified by to-
tal variation (TV) distance. The sample complexities omit all logarithmic factors.

Algorithm Sample complexity Uncertainty level
P2M2PO [5] CrH

5S2AB
ε2 not considered

RTZ-VI-LCB (Ours) C⋆
r H

4S(A+B)
ε2 f(σ+, σ−, H) full range

Lower bound C⋆
r SH4(A+B)

ε2 min {σ+, σ−} ≲ 1
H

Lower bound C⋆
r SH3(A+B)

ε2 min{σ+,σ−} min {σ+, σ−} ≳ 1
H

equilibria not only between the two players but also with their adversarial strategies, considering
worst-case environments selected from predefined uncertainty sets for each player.

Despite recent efforts [21, 5, 48, 29], there remains a fundamental gap in learning effectively in
offline RTZMGs, primarily due to high sample complexity. For a tabular RTZMG (formal definition
in Section 2) with horizon length H , states S, actions {A,B}, and uncertainty levels {σ+, σ−}
for the two players, the best sample complexity for ε-optimal robust Nash equilibrium (NE) in the
offline setting to date is Õ

(
CrH

5S2AB
ε2

)
achieved by P2M2PO [5], which demonstrates near-optimal

sample complexity in H , S, and A,B, but overlooks the influence of uncertainty levels and faces the
curse of multiagency [40]. Hence, the key research question addressed in this paper is

Can we design an efficient algorithm for offline RTZMGs with partial state-action
coverage while ensuring robustness to uncertainties?

1.1 Contribution

In this paper, we design a novel model-based algorithm RTZ-VI-LCB for offline RTZMGs, which is
an optimistic variant of robust value iteration. RTZ-VI-LCB involves a data-informed Bernstein-style
penalty for robust value estimation to effectively capture the variance structure, and a two-stage
subsampling method to suppress the statistical dependencies of the historical data. Notably, this
is the first time that the optimal dependence of sample complexity on S and {A,B} and the best
dependence on H has been achieved for offline RTZMGs. Table 1 compares the sample complexity
between our approach and the status quo. The main contributions are outlined as follows.

(i) Robust unilateral clipped concentrability: With this new criterion, we define a measure C⋆
r ∈[

1
S(A+B) ,∞

)
for the quality of historical data. It captures the distribution shift between the behavior

policy (µn, νn) and the single optimal robust policies (µ, ν⋆) and (µ⋆, ν) under environmental
uncertainty in the partial coverage, and offers a tighter measure of distribution mismatch than Cr

used in P2M2PO [5]. The introduction of C⋆
r improves sample complexity.

(ii) Near-optimal sample complexity upper bound: RTZ-VI-LCB can provably find an ε-optimal
robust NE policy as long as the sample size exceeds Õ

(
C⋆

r H
4S(A+B)
ε2 f(σ+, σ−, H)

)
with an ε-

independent burn-in cost. This significantly improves upon the prior art [5] on state S and action
{A,B}, and further delineates the impact of the uncertainty levels {σ+, σ−}.
(iii) Information-theoretic sample complexity lower bound: We establish a tight lower
bound for RTZMGs, revealing at least Ω

(
C⋆

r SH
4(A+B)/ε2

)
samples are needed for an

ε-optimal robust NE policy under the uncertainty level min {σ+, σ−} ≲ 1
H , and at least

Ω
(
C⋆

r SH
3(A+B)/(ε2 min {σ+, σ−})

)
samples are needed under min {σ+, σ−} ≳ 1

H . Com-
paring these upper and lower bounds confirms the optimality of RTZ-VI-LCB w.r.t. state S and
actions {A,B} in sample complexity across uncertainty levels.

(iv) Extension to multi-agent RL: We generalize RTZ-VI-LCB to Multi-RTZ-VI-LCB for ro-
bust multi-player general-sum Markov games, and achieve an ε-optimal robust NE policy for
Õ
(
C⋆

r H
4S
∑m

i=1 Aimin
{{

(Hσi − 1 + (1− σi)
H)/(σi)

2
}m
i=1

, H
}
/ε2
)

samples with M players,
Ai actions, and uncertainty level σi per player.
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1.2 Related Work

This section reviews a curated selection of related research focusing on provably tabular RL.

Finite-sample studies of standard TZMGs. Markov games (MGs), or stochastic games, were
proposed in the early 1950s [32]. Then, extensive research has been conducted, and MARL has
gained significant attention [30], particularly around Nash equilibrium [27, 23]. Numerous MARL
algorithms with provable convergence and asymptotic guarantees have been developed [31]. More
recent work has focused on creating algorithms for standard MARL with non-asymptotic guarantees
through finite-sample analysis. In this area, most efforts to compute Nash equilibria are focused on
TZMGs. The studies in [2] and [41] were the first to provide non-asymptotic sample complexity
guarantees for model-based (e.g., VI-Explore and VI-ULCB) and model-free algorithms (e.g., OMNI-
VI). Further improvements in sample complexity have been explored [10, 8, 28, 13, 26].

Robustness in MARL. Although progress has been made in MARL, existing algorithms may
struggle when faced with environmental uncertainties, leading to significantly deviated equilibria.
MARL robustness against uncertainties has drawn attention in different parts of MGs [38], includ-
ing state [49], environment (reward and transition dynamics), agent types [47], and other agents’
policies [20]. A typical method to address robustness against uncertainties of the environment is
distributionally robust optimization (DRO), which is a method predominantly explored in supervised
learning [3, 14, 6]. The application of DRO to manage model uncertainty in single-agent RL [17]
has attracted considerable attention. However, when extended to MARL, researchers formulated the
problem as robust MGs armed with DRO and developed a relatively understudied field with only a
few proved algorithms [5, 21, 29, 48, 34]. Thus, relevant algorithms based on partial coverage of
datasets while considering the uncertainty level are lacking.

Single-agent robust offline RL. In single-agent offline RL, addressing uncertainties of environ-
ments using DRO—such as robust Markov decision processes (MDPs) and distributionally robust
dynamic programming—has attracted considerable interest in both theoretical research and practical
applications [16]. Recent work has focused on the finite-sample performance of provable robust
offline RL algorithms, exploring different divergence functions for uncertainty sets, various sampling
mechanisms, and related challenges [5]. It has been shown that addressing robust MDPs does not
demand more samples compared with those needed for standard MDPs [33]. However, RTZMGs
present additional complexities beyond those in robust single-agent offline RL.

2 Problem Formulation

This paper focuses on offline RTZMGs, which is a robust version of standard offline TZMGs by taking
environmental uncertainties into consideration. RTZMGs form a broader class than standard TZMGs,
accommodating various prescribed environmental uncertainty sets. In RTZMGs, the dynamics extend
standard TZMGs by incorporating two players, as well as their respective situations that determine
the worst-case transitions. We investigate an efficient algorithm to achieve robustness and optimal
sample complexity on state S and actions {A,B} under partial coverage of the state-action space.

An RTZMG under the finite-horizon setting can be defined as MGr ={
S,A,B,Uσ+

ρ

(
P 0
)
,Uσ−

ρ

(
P 0
)
, r,H

}
, where S := {1, · · · , S} is the state space of size S;

(A := {1, · · · , A},B := {1, · · · , B}) denotes the action spaces of the max-player and the min-player
with sizes A and B, respectively; H is the horizon length; r = {rh}Hh=1 represents the immediate
reward obtained at time step h. Specifically, rh(s, a, b) is assumed to be deterministic on a
state-action pair (s, a, b) and falls within the range [0, 1]. This reward can represent both the gain
of the max-player and the loss of the min-player. Here, Uσ+

ρ (P 0) and Uσ−

ρ (P 0) represent the
uncertainty sets for the max-player and min-player, respectively.

Unlike standard TZMGs that assume a fixed transition kernel, these uncertainty sets account for
bounded perturbations in the transition kernel and enable modeling of environmental uncertainties.
These uncertainty sets are centered on a nominal kernel P 0 : S × A× B 7→ ∆(S), with their size
and shape defined by a distance metric ρ and radius parameters σ+ > 0 and σ− > 0. Considering
players’ individual properties, both players can independently define their uncertainty sets Uσ+

ρ (P 0)
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and Uσ−

ρ (P 0), by specifying different sizes (σ+ > 0 and σ− > 0) and potentially using distinct
divergence functions (ρ) to shape these sets. For illustration convenience, we consider the same
divergence function for both players in this paper.

Uncertainty set with two-player (s, a, b)-rectangularity. According to the transition kernel un-
certainty sets Uσ+

ρ (P 0) and Uσ−

ρ (P 0) defined above, we adapt the rectangularity condition to a
two-player setting inspired by [33, 17], termed two-player-wise (s, a, b)-rectangularity. The adapta-
tion enhances computational tractability and facilitates the robust version of Bellman recursions. It
permits each player to select its uncertainty set independently, which can be decomposed for each
state-action pair into a product of subsets. Thus, the uncertainty sets Uσ+

ρ (P 0) and Uσ−

ρ (P 0) for the
two players, adhering to two-player-wise (s, a, b)-rectangularity, are mathematically defined as

Uσ+

ρ

(
P 0
)
:= ⊗ Uσ+

ρ

(
P 0
h,s,a,b

)
, Uσ−

ρ

(
P 0
)
:= ⊗ Uσ−

ρ

(
P 0
h,s,a,b

)
, (1)

where Uσ+

ρ

(
P 0
h,s,a,b

)
:=
{
Ph,s,a,b ∈ ∆(S) : ρ

(
Ph,s,a,b, P

0
h,s,a,b

)
≤ σ+

}
, ⊗ represents the Carte-

sian product, and Uσ−

ρ

(
P 0
h,s,a,b

)
can be defined similarly. We define a vector of the transition kernel

P or P 0 at any state-action pair (s, a, b) as

Ph,s,a,b := Ph(· | s, a, b) ∈ R1×S , P 0
h,s,a,b := P 0

h (· | s, a, b) ∈ R1×S . (2)

Here, the distance function ρ for each player’s uncertainty set can be selected from various options that
quantify differences between probability vectors. These include f -divergences (e.g., KL divergence,
TV distance, and chi-square) [44], the Wasserstein distance [42], and ℓq norms [9].

Offline dataset. Let D be a dataset consisting of K episodes under independence, with
each episode produced by implementing a behavior policy {µn

h, ν
n
h}Hh=1 in a nominal MDP

M0 =
(
S,A,B, H, P 0 := {P 0

h}Hh=1, {rh}Hh=1

)
. For 1 ≤ k ≤ K, the k-th episode(

sk1 , a
k
1 , b

k
1 , . . . , s

k
H , akH , bkH , skH+1

)
is generated as follows:

sk1 ∼ ϱn, akh ∼ µn
h(· | skh), bkh ∼ νnh(· | skh), skh+1 ∼ P 0

h (· | skh, akh, bkh), 1 ≤ h ≤ H. (3)

Throughout this paper, ϱn denotes the initial distribution related to a historical dataset. We use the
short-hand notation for the occupancy distribution with respect to (w.r.t.) the behavior policy (µn, νn)
as: ∀(h, s, a, b) ∈ [H]× S ×A× B,

dµ
n,νn,P 0

h (s) :=P(sh=s|s1∼ϱn, µn, νn, P 0); dµ
n,νn,P 0

h (s, a, b) := dµ
n,νn,P 0

h (s)µn
h(a | s) νnh(b | s), (4)

which are simplified to dn,P
0

h (s) = dµ
n,νn,P 0

h (s) and dn,P
0

h (s, a, b) = dµ
n,νn,P 0

h (s, a, b). Similarly,
for any product policy (µ, ν), we define: ∀(h, s, a, b) ∈ [H]× S ×A× B

dµ,ν,Ph (s) := P(sh = s | s1 ∼ ϱ, µ, ν, P ); dµ,ν,Ph (s, a, b) := dµ,ν,Ph (s)µh(a | s) νh(b | s). (5)

Robust value functions. In RTZMGs, players seek to optimize their worst-case performance
across all possible transition kernels within their respective uncertainty sets Uσ+

ρ

(
P 0
)

and Uσ−

ρ

(
P 0
)
.

For any product policy (µ × ν) ∈ ∆(A × B), the max-player’s worst-case performance at time
step h is measured with the robust value function V µ,ν,σ+

h and the robust Q-function Qµ,ν,σ+

h ,
∀(h, s, a, b) ∈ [H]× S ×A× B, as given by

V µ,ν,σ+

h (s) := infP∈Uσ+
ρ (P 0) V

µ,ν,P
h (s), Qµ,ν,σ+

h (s, a, b) := infP∈Uσ+
ρ (P 0) Q

µ,ν,P
h , (6a)

V µ,ν,σ−

h (s) := supP∈Uσ−
ρ (P 0) V

µ,ν,P
h (s), Qµ,ν,σ−

h (s, a, b) := supP∈Uσ−
ρ (P 0) Q

µ,ν,P
h , (6b)

where

V µ,ν,P
h (s) := E

µ,ν,P

[∑H

t=h
rt
(
st, at, bt

)
| sh = s

]
;

Qµ,ν,P
h (s, a, b) := E

µ,ν,P

[∑H

t=h
rt
(
st, at, bt

)
| sh= s, ah = a, bh = b

]
.
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Robust Bellman equations. Based on the robust value functions in (6), RTZMGs include a robust
version of the Bellman equation, dubbed robust Bellman equation. The robust value functions
V µ,ν,σ+

h (s) for the max-player with any product policy (µ, ν) satisfy: ∀(h, s) ∈ [H]× S ,

V µ,ν,σ+

h (s) =E(a,b)∼(µh(a),νh(a))

[
rh(s, a, b) + infP∈Uσ+

ρ (P 0
h,s,a,b)

PV µ,ν,σ+

h+1

]
. (7)

Likewise, V µ,ν,σ−

h (s) can be obtained for the min-player. Note that the robust Bellman equations are
intrinsically connected to the two-player-wise (s, a, b)-rectangularity condition (see (1)) applied to
the uncertainty set. This condition separates the dependencies of uncertainty subsets among different
time steps, the players, and state-action pairs, thus leading to the Bellman recursion.

Optimal robust policy. Again, based on (6), we define the maximum robust value function of the
max-player under the fixed opponent policy as: ∀(h, s) ∈ [H]× S ,

V ⋆,ν,σ+

h (s) := maxµ:S×[H] 7→∆(A) V
µ,ν,σ+

h (s) = maxµ:S×[H]7→∆(A) infP∈Uσ+
ρ (P 0) V

µ,ν,P
h (s).

The maximum robust value function for the min-player can be obtained similarly.

As proved in [5], there is at least one policy, denoted by µ⋆
h(s) : S × [H] 7→ ∆(A) (for the max-

player) and ν⋆h(s) : S × [H] 7→ ∆(B) (for the min-player), corresponding to the robust best-response

policy. These policies can simultaneously achieve V ⋆,ν,σ+

h (s) (for the max-player) and V µ,⋆,σ−

h (s)
(for the min-player) for all s ∈ S and h ∈ [H].

Robust Nash equilibrium. We introduce the robust variant of standard solution concepts—robust
NE for RTZMGs. A product policy (µ, ν) is considered a robust NE if: ∀(s) ∈ S

V ⋆,ν,σ+

h (s) = V ⋆,σ+

h (s); V µ,⋆,σ−

h (s) = V ⋆,σ−

h (s). (8)
A robust NE signifies that given the product policy (µ, ν) of the opponents, no player can enhance
their outcome by deviating from their current policy unilaterally when each player accounts for the
worst-case scenario within their uncertainty set Uσ+

ρ (P 0) or Uσ−

ρ (P 0).

Since finding exact robust equilibria can be complex and may not always be feasible, practitioners
often seek approximate equilibria. In this context, a product policy (µ × ν) ∈ ∆(A × B) can be
termed an ε-robust NE if

Gap(µ, ν) := max{V ⋆,ν,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ), V ⋆,σ−

1 (ϱ)− V µ,⋆,σ−

1 (ϱ)} ≤ ε, (9)
where

V ⋆,ν,σ+

1 (ϱ) = Es∼ϱV
⋆,ν,σ+

1 (s), V ⋆,σ+

1 (ϱ) = Es∼ϱV
⋆,σ+

1 (s).

The definitions of V µ,⋆,σ−

1 (ϱ) and V ⋆,σ−

1 (ϱ) can be obtained similarly. The existence of a robust NE
has been proved for general divergence functions in the uncertainty set in [5].

Our Goal With a dataset collected from the nominal environment, our objective is to find a solution
yielding an ε-robust NE for RTZMG w.r.t. a specified uncertainty set U(P 0) around the nominal
kernel, minimizing the number of samples required under partial coverage of the state-action space.

3 Algorithm Design

In this section, we propose an efficient model-based algorithm, RTZ-VI-LCB, to learn a robust NE
policy. Notably, RTZ-VI-LCB achieves a near-optimal sample complexity with robustness, which is
designed for offline RTZMGs within the finite-horizon setting.

3.1 Building an Empirical Nominal MDP

According to the empirical frequencies of state transitions, we can construct an empirical estimate
P̂ 0 = {P̂ 0

h}Hh=1 of P 0, where ∀(h, s, a, b, s′) ∈ [H]× S ×A× B × S

P̂ 0
h (s′ | s, a, b) =

{ ∑N
i=1 1{(si,ai,bi,s

′
i)=(s,a,b,s

′)}
Nh(s,a,b)

, if Nh (s, a, b) > 0;

1/S, if Nh (s, a, b) = 0,
(10)
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r̂h (s, a, b) =

{
rh (s, a, b) , if Nh (s, a, b) > 0;

0, if Nh (s, a, b) = 0,
(11)

where Nh(s, a, b) represents the total number of sample transitions from (s, a, b) at step h, and

Nh(s, a, b) :=
∑N

i=1
1
{
(si, ai, bi) = (s, a, b)

}
. (12)

Although it is feasible to decompose the historical datasetD into sample transitions, the dependencies
between transitions within the same episode introduce significant complexities to the analysis.

Algorithm 1 Two-stage subsampling for RTZ-VI-LCB.
input Dataset D, probability δ.

1: Step 1: Data Partitioning. Split D into two equal-sized subsets, Dm and Da, each containing
K/2 trajectories.

2: Step 2: Defining Transition Bounds. For step h and state s, denote the number of transitions
from Dm (resp. Da) as Nm

h (s) (resp. N a
h(s)). Construct the trimmed count as:

N t
h(s) := max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}
; (13)

3: Step 3: Generating Subsampled Dataset. Randomly sample transitions (quadruples of the form
(s, a, b, h, s′)) from Dm uniformly. For each (s, h) ∈ S × [H], include min{N t

h(s), N
m
h (s)}

transitions in the new dataset Dt.
output Set D0 = Dt.

Inspired by [24], we design a new two-stage subsampling method for RTZMGs, as shown in
Algorithm 1. This method effectively reduces statistical dependencies, resulting in a distributionally
equivalent dataset D0 composed of independent samples. The property of D0 is summarized in the
following lemma and formally proved in Appendix C.

Lemma 3.1. The dataset produced by the two-stage subsampling method is distributionally identical
toD0 with probability of at least 1−8δ, where {Nh(s, a, b)} are independent of the sample transitions
in D0 and obey: ∀(h, s, a, b) ∈ [H]× S ×A× B,

Nh(s,a,b)≥
Kdnh(s,a,b)

8
−5
√
Kdnh(s,a,b)log

KH

δ
. (14)

By applying the two-fold sampling method, we can treat the dataset D0 as having independent
samples, simplifying the analysis significantly as supported by Lemma 3.1.

3.2 Optimistic Variant of Robust Value Iteration with Lower Confidence Bounds

We propose a model-based algorithm, RTZ-VI-LCB, for solving RTZMGs using an approximate P̂ 0

for P 0, which is the nominal transition kernel. Specifically, we introduce value iteration with lower
confidence bounds for RTZMGs to compute a robust NE for two players, along with a data-informed
penalty, as summarized in Algorithm 2.

Our algorithm begins at the final time step h = H and proceeds backward through h = H − 1, H −
2, . . . , 1. Following from single-agent offline RL algorithms [24, 19], we design an optimistic robust
Q-value for all (h, s, a, b) ∈ [H]× S ×A× B as

Q̂+
h (s, a, b) = min

{
r̂h (s, a, b) + infP∈Uσ+(P̂ 0

h,s,a,b)
PV̂ +

h+1 + βh

(
s, a, b, V̂ +

h+1

)
, H
}
; (15a)

Q̂−
h (s, a, b) = max

{
r̂h (s, a, b) + supP∈Uσ−(P̂ 0

h,s,a,b)
PV̂ −

h+1 − βh

(
s, a, b, V̂ −

h+1

)
, 0
}
, (15b)

to estimate the robust Q-function at time step h ∈ [H] as Q̂+
h and Q̂−

h .

Dual problem. Solving (15) directly is computationally intensive because it requires optimizing
over an S-dimensional probability simplex, which becomes exponentially more difficult as the state

6



space size S increases. Fortunately, strong duality for TV distance allows us to tackle this problem
by solving its dual [17] as

inf
P∈Uσ+(P̂ 0

h,s,a,b)
PV̂ +

h+1= max
α∈[min

s
V̂ +
h+1,max

s
V̂ +
h+1]

{
P̂ 0
h,s,a,b

[
V̂ +
h+1

]
α
−σ+

(
α−min

s′

[
V̂ +
h+1

]
α
(s′)
)}

, (16)

where
[
V̂ +
h+1

]
α

denotes the clipped versions of V̂ +
h+1 ∈ RS based on some level α ≥ 0, as follows.

[
V̂ +
h+1

]
α
(s) :=

{
α, if V̂ +

h+1(s) > α;

V̂ +
h+1(s), otherwise.

(17)

Moreover, supP∈Uσ−(P̂ 0
h,s,a,b)

PV̂ −
h+1 can be defined similarly. See Appendix B for details.

Penalty term. We design a data-driven penalty term, βh(s, a, b, V̂ ), to account for uncertainty in
value estimates, resulting in an optimistic robust Q-function estimate. To achieve this, we utilize a
Bernstein-style penalty, which effectively captures the variance structure over time [24]. In particular,
for any (s, a, b, h) ∈ S ×A× B × [H] and δ ∈ (0, 1), the penalty term βh(s, a, b, V̂ ) is defined as

βh

(
s, a, b, V̂

)
= min

max


√

Cn log
KH
δ

Nh (s, a, b)
VarP̂ 0

h,s,a,b
(V̂ ),

2CnH log KH
δ

Nh (s, a, b)

 , H

 , (18)

where Cn is some universal constant, and

VarP̂ 0
h,s,a,b

(
V̂
)
:= P̂ 0

h,s,a,bV̂
2 − (P̂ 0

h,s,a,bV̂ )2. (19)

Note that we choose P̂ 0 in the variance term VarP̂ 0
h,s,a,b

(V̂ ), as opposed to P 0, since we have no

access to the true transition kernel P 0. The penalty term βh

(
s, a, b, V̂

)
is crafted to address the

unique structure of RTZMGs, distinguishing it from the penalty terms used in standard offline TZMGs
[10, 24]. In particular, it provides a tight upper bound on statistical uncertainty, considers the non-
linear and implicit dependency introduced by the uncertainty set U(P 0), and addresses challenges
not present in standard MDPs.

Policy estimation. We update the policies using the estimated Q-functions with uncertainty, as
described in line 5 of Algorithm 2. For any matrix N ∈ RA×B , the function ComputNash(N) returns
a solution (ŵ, ẑ) to the minimax problem maxw∈∆(A) minz∈∆(B) w

⊤Nz [11]. In other words, for
each s ∈ S, we compute the NE policies

(
µ+
h (s), ν

+
h (s)

)
and

(
µ−
h (s), ν

−
h (s)

)
∈ ∆(A) × ∆(B)

for the robust zero-sum matrix games with payoff matrices Q̂+
h (s, ·, ·) and Q̂−

h (s, ·, ·), respectively.
Solving robust zero-sum matrix games is generally PPAD-hard as the players can potentially choose
different worst-case transition kernels.

4 Performance Guarantees

We provide the theoretical guarantee of RTZ-VI-LCB, including the upper and lower bounds of
sample complexity. We also validate the theoretical guarantee through numerical experiments;
see Appendix A.

Robust unilateral clipped concentrability. For offline RTZMGs, it is essential to measure the
distributional discrepancy between the historical data and the target data. Drawing on the single-policy
clipped concentrability in the single-agent RL [24], we propose a novel criterion, robust unilateral
clipped concentrability, to measure the distributional discrepancy for RTZMGs:
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Algorithm 2 Value iteration with lower confidence bounds for RTZMGs (RTZ-VI-LCB).

1: Initialization: Set uncertainty levels σ− and σ+; set V̂ −
h (s) = 0 and V̂ +

h (s) = H for all (s, h) ∈
S× [H + 1]; set Q̂−

h (s, a, b) = 0 and Q̂+
h (s, a, b) = H for all (s, a, b, h) ∈ S×A×B× [H + 1].

2: Compute the empirical reward function r̂ with (11) and empirical transition kernel P̂0 with (10).
3: for h = H,H − 1, . . . , 1 do
4: Update the robust Q-value estimate as (15) with βh (s, a, b, V ) defined in (18).
5: Compute Nash policy for each s ∈ S as(

µ+
h (s) , ν+h (s)

)
= ComputNash

(
Q̂+

h (s, ·, ·)
)
;(

µ−
h (s) , ν−h (s)

)
= ComputNash

(
Q̂−

h (s, ·, ·)
)
.

6: Update the robust value estimate for each s ∈ S as

V̂ −
h (s) = Ea∼µ−

h (s),b∼ν−
h (s)

[
Q̂−

h (s, a, b)
]
; V̂ +

h (s) = Ea∼µ+
h (s),b∼ν+

h (s)

[
Q̂+

h (s, a, b)
]
.

7: end for
output The policy pair (µ̂, ν̂), where µ̂ = {µ−

h }Hh=1 and ν̂ = {ν+h }Hh=1.

Definition 4.1 (Robust unilateral clipped concentrability). We define C⋆
r ∈

[
1

S(A+B) ,∞
]

as the
smallest value that satisfies

max

{
sup

(µ,s,a,b,h,P )∈∆(A)×S×A×B×[H]×Uσ− (P 0)

min
{
dµ,ν

⋆,P
h (s, a, b), 1

S(A+B)

}
dn,P

0

h (s, a, b)
,

sup
(ν,s,a,b,h,P )∈∆(B)×S×A×B×[H]×Uσ+ (P 0)

min
{
dµ

⋆,ν,P
h (s, a, b), 1

S(A+B)

}
dn,P

0

h (s, a, b)

}
≤ C⋆

r (20)

for the behavior policies of the historical dataset D satisfies, and refer to it as the robust unilateral
clipped concentrability coefficient. For consistency, we define the convention “0/0 = 0”.

Notably, if dµ,ν
⋆,P

h (s, a, b) or dµ
⋆,ν,P

h (s, a, b) is larger than 1/(S(A+B)), the robust unilateral

clipped concentrability assumption does not require the data distribution dn,P
0

h (s, a, b) to scale with
dµ,ν

⋆,P
h (s, a, b) or dµ

⋆,ν,P
h (s, a, b) proportionally. Estimating the concentrability coefficient C⋆

r from
offline data is generally information-theoretically impossible, as demonstrated even in the single-agent
case by the example construction in Section 3.4 of [24]. Fortunately, this does not affect the execution
of our algorithm.

Next, we outline the principal theoretical findings concerning the sample complexity of learning
robust NE in RTZMGs, including an upper bound for RTZ-VI-LCB (Algorithm 2) and an information-
theoretic lower bound. We start with the finite-sample guarantee for RTZ-VI-LCB, with the proof
provided in Appendix D.

Theorem 4.2 (Upper bound for RTZ-VI-LCB). Under the TV uncertainty set Uσ+

(·) and Uσ−
(·)

defined in (2) with σ+, σ− ∈ (0, 1], define dnm = minh,s,a,b {dnh(s, a, b) : dnh(s, a, b) > 0}, and let
f(σ+, σ−) = min

{
(Hσ+ − 1 + (1− σ+)H)/(σ+)2, (Hσ− − 1 + (1− σ−)H)/(σ−)2, H

}
. Con-

sider any δ ∈ (0, 1) and any RTZMGMGr =
{
S,A,B,Uσ+

(P 0),Uσ−
(P 0), r,H

}
. For sufficient

large constants c0, c1 > 0, with probability of at least 1− δ, we can achieve

Gap(µ̂, ν̂) ≤ c1

√
C⋆

r H
3S(A+B) log KH

δ

K
f(σ+, σ−, H) (21)

with the total number of samples T exceeding

T = KH ≥ c0
H2S(A+B)

dnm
log

KH

δ
f(σ+, σ−, H). (22)
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Remark 4.3. Under a generative model with uniform sampling, the visitation distribution becomes
explicit; that is, dn,P

0

h (s, a, b) = 1
SAB . In this case, it is sufficient to choose C⋆

r = min{A,B},
which can be readily verified to satisfy Eq. (20). This choice leads to the sample complexity
Õ
(

H4SAB
ε2 · f(σ+, σ−, H)

)
, which matches the bound established in [34] and confirms the effi-

ciency of our approach in the generative model setting.

We derive an information-theoretic lower bound of sample complexity, with its proof in Appendix E.
Theorem 4.4 (Lower bound for RTZMGs). Consider any tuple MGr ={
S,A,B,Uσ+

(P 0),Uσ−
(P 0), r,H

}
obeying H > 16 log 2 and σ+, σ− ∈ (0, 1 − c0] with

any small efficiently positive constant 0 < c0 ≤ 1
4 . Let

ε ≤
{

c2
H , if max {σ+, σ−} ≤ c2

2H ;

1, otherwise,
(23)

for any c2 ≤ 1
4 . With an initial state distribution ϱ, we can construct a set of RTZMGs

{
Mϕ

f |f ∈

F = {0, 1, · · · , SA− 1}, ϕ = [ϕh]1≤h≤H ∈ Φ ⊆ {0, 1}H
}

. For any dataset with K independent
sample trajectories of length H per trajectory satisfying C ≤ C⋆

r ≤ 2C, we have
inf
µ̂,ν̂

max
(f,ϕ)∈F×Φ

{
Pϕ

(
Gap(µ̂, ν̂) > ε

)}
≥ 1/8, (24)

provided that

T = KH ≤
cC⋆

r H
3S(A+B)min

{
1

min{σ+,σ−} , H
}

ε2
. (25)

Here, c is an efficiently small constant. The infimum is obtained over all estimators (µ̂, ν̂).

These theorems offer the following key implications:

(i) Theorem 4.2 demonstrates that the proposed RTZ-VI-LCB algorithm can attain an ε-robust NE
solution when sample size exceeds Õ

(
C⋆

r H
4S(A+B)
ε2 f(σ+, σ−, H)

)
, suggesting that the sample

efficiency for robust offline TZMGs is strongly influenced by the dataset quality (quantified by C⋆
r )

and problem structure of RTZMGs (reflected in the occupancy distributions dnm). If C⋆
r is as small

as 1
S(A+B) , the upper bound of the sample complexity exhibits a weaker dependency on actions

{A,B} and state S. Combining this upper bound with the lower bound in Theorem 4.4 shows that
RTZ-VI-LCB’s sample complexity is optimal w.r.t. key factors S, A, B and ε. This is the first optimal
sample complexity upper bound for offline RTZMGs, regarding state S and actions {A,B}.
(ii) Theorem 4.4 conveys two important points. When the uncertainty level is small (i.e.,
min{σ+, σ−} ≲ 1

H ), no algorithm can find an ε-optimal robust policy with fewer than

Ω
(

C⋆
r SH4(A+B)

ε2

)
samples for all offline RTZMGs, matching the complexity requirement for non-

robust offline TZMGs [18]. This implies that robust TZMGs are at least as challenging as standard
TZMGs for low uncertainty. When the uncertainty level satisfies min{σ+, σ−} ≳ 1

H , no algorithm

can find an ε-optimal robust policy with the numbers of samples fewer than Ω
(

C⋆
r SH3(A+B)

ε2 min{σ+,σ−}

)
. To

this end, RTZ-VI-LCB is the first provably optimal algorithm on S and {A,B} for RTZMGs without
requiring full coverage assumptions.

Moreover, our algorithm can be extended to multi-player general-sum MGs with m players and Ai

actions and uncertainty level σi per player; see Appendix F. We can obtain the following theoretical
guarantee for this extended algorithm, named Multi-RTZ-VI-LCB:
Theorem 4.5 (Upper bound for Multi-RTZ-VI-LCB). Consider any δ ∈ (0, 1) and any robust
multi-player general-sum MGs MGr = M(S, {Ai}mi=1, H, {Uσi

ρ (P 0)}mi=1, {ri}mi=1). Under the
TV uncertainty set Uσi(·) defined in (2) with σi ∈ (0, 1] for i = 1, 2, · · · ,m. Define dnm =

minh,s,a {dnh(s,a) : dnh(s,a) > 0}, and f({σi}mi=1, H) = min
{{

(Hσi−1+(1−σi)
H)

(σi)2

}m

i=1
, H
}

.

For sufficient large constants c0, c1 > 0, with probability of at least 1− δ, we can achieve

Gap(π̂) ≤ c1

√
C⋆

r H
3S
∑m

i=1 Ai

K
log

KH

δ
f({σi}mi=1, H),
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with the total number of samples T exceeding

T =KH≥c0
H2S

∑m
i=1Ai

dnm
log

KH

δ
f({σi}mi=1, H). (26)

Theorem 4.5 demonstrates that Multi-RTZ-VI-LCB can attain an ε-robust NE solution when the
sample size exceeds Õ

(
C⋆

r H
4S

∑m
i=1 Ai

ε2 f({σi}mi=1, H)
)

, breaking the curse of multiagency.

5 Numerical Experiments

To effectively evaluate our algorithm, we have conducted numerical experiments on randomly
generated transition kernels, following the code proposed by [39]. In particular, we adopt the
parameter setting as S = 50, A = B = 2, and H = 100, averaged over 100 seeds. Experiments
are conducted on PyTorch 2.0.0 with a single NVIDIA RTX 4090 24GB GPU. In our experiments,
the robust NE at each state and timestep is computed using standard NE solvers, i.e., the Python
package nashpy. Our algorithm is compatible with any exact or approximate NE solver, including
computational relaxations or sampling-based methods.

As shown in Figure 1(a), the case of K = 148 ≈ e5 demonstrates that our proposed algorithm
consistently outperforms the baseline value iteration for robust TZMGs (RTZ-VI) across all states and
all sample sizes. This trend remains consistent across other values of K as well. Moreover, we have
plotted the sub-optimality performance gap of RTZ-VI-LCB w.r.t. the sample size on a log-log scale
to corroborate the scaling of the sample size on the performance gap. Fitting using linear regression
leads to a slope estimate of −0.4877. This nicely matches the finding of our theoretical guarantee.
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Figure 1: The performances of RTZ-VI-LCB and RTZ-VI in the stochastic TZMG problem.

6 Conclusion

In this paper, we design an efficient robust model-based algorithm for offline RTZMGs, which is
value iteration with lower confidence bounds for RTZMGs. Our algorithm integrates robust value
iteration with the principle of pessimism. By imposing a tailored assumption (robust unilateral clipped
concentrability) on the historical dataset to account for the distribution shift, we address robustness
in the worse-case scenario of the shared environment, analyze the finite-sample complexity of the
proposed RTZ-VI-LCB algorithm, and establish an information-theoretic lower bound to evaluate its
optimality across various uncertainty levels. To the best of our knowledge, this is the first provably
optimal algorithm for offline RTZMGs that addresses the dependency on states S and actions {A,B},
while accounting for model perturbations and partial coverage. Furthermore, we extend RTZ-VI-LCB
to multi-agent general-sum MGs, demonstrating a breakthrough in breaking the curse of multiagency.

Broader Impacts This paper presents work whose goal is to advance the field of Reinforcement
Learning. There are many potential societal consequences of our work, none of which we feel must
be specifically highlighted here.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed illustration of our proposed algorithm in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is available at https://github.com/NLee10/RTZ-VI-LCB.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide full details in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the average results across 100 seeds with standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We point out the specific compute resources in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper obeys the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: There is no societal impact of the work performed since this work focuses on
theoretical analysis.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We respect the Licenses for existing assets that we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We will release new assets proposed in our paper once the paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLM to impact the core methodology, scientific
rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Numerical Experiments

log(KH) 6 7 8 9
RTZ-VI-LCB 3.1699 2.1498 0.2324 0.0819
P2M2PO 3.5970 2.2503 0.2404 0.0890

These results highlight the superiority of our method across varying dataset sizes and validate the
theoretical claims under controlled experimental conditions. While we focus on tabular settings in
this work, our algorithm can serve as a theoretical foundation for scalable extensions based on linear
or kernel-based function approximation.

B Preliminaries

In this appendix, we introduce the dual equivalence of robust Bellman operators and key facts about
RTZMGs and their empirical counterparts, laying the foundation for our theoretical analysis.

B.1 Dual equivalence of robust Bellman

We can compute the robust Bellman operator by solving its dual formulation rather than the original
form, as long as the predefined uncertainty set is in a benign form (e.g., utilizing TV distance as the
divergence function) [17, 33]. Taking TV distance as an example, we describe the equivalence under
strong duality between the robust Bellman operator and its dual form as Lemma B.1.

Lemma B.1. Consider any TV uncertainty set Uσ+

(P ) and Uσ−
(P ) associated with fixed uncertainty

levels σ+, σ− ∈ (0, 1] and any probability vector P ∈ ∆(S). For any vector V ∈ RS obeying
V ≥ 0, one has

inf
P∈Uσ+ (P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ+

(
α−min

s′
[V ]α (s′)

)}
; (27a)

sup
P∈Uσ− (P )

PV = min
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ−

(
α−max

s′
[V ]α (s′)

)}
, (27b)

where [V ]α is defined in (17)

Lemma B.1 can be proved similarly to Lemma 4.3 in [17]. Compared the standard Bellman operator,
this lemma guarantees that no additional computing cost is required when applying the robust Bellman
operator.

B.2 Facts of RTZMGs and empirical RTZMGs

Recall the definition of any RTZMG MGr =
{
S,A,B,Uσ+

ρ (P 0),Uσ−

ρ (P 0), r,H
}

. According
to robust Bellman equations in (7), one has: for any product policy (µ, ν) and any (h, s, a, b) ∈
[H]× S ×A× B,

Qµ,ν,σ+

h (s, a, b) = rh(s, a, b) + inf
P∈Uσ+

ρ (P 0
h,s,a,b)

PV µ,ν,σ+

h+1 ; (28a)

Qµ,ν,σ−

h (s, a, b) = rh(s, a, b) + sup
P∈Uσ−

ρ (P 0
h,s,a,b)

PV µ,ν,σ−

h+1 , (28b)

where

V µ,ν,σ+

h (s) = Ea∼µh(s),b∼νh(s)

[
Qµ,ν,σ+

h (s, a, b)
]
;

V µ,ν,σ−

h (s) = Ea∼µh(s),b∼νh(s)

[
Qµ,ν,σ−

h (s, a, b)
]
.

Considering the offline setting, we use M̂Gr =
{
S,A,B,Uσ+

ρ (P̂ 0),Uσ−

ρ (P̂ 0), r,H
}

to represent
the empirical RTZMG, which is established along with the estimated nominal distribution P̂ 0
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in (10). Therefore, for any product policy (µ, ν), we define the empirical robust value function (resp.
empirical robust Q-function) in M̂Gr as V̂ µ,ν,σ+

h and V̂ µ,ν,σ−

h (resp. Q̂µ,ν,σ+

h and Q̂µ,ν,σ−

h ), which
are analogous to (6). Moreover, we can similarly define the optimal empirical robust value function
for both players over M̂Gr: ∀s ∈ S,

V̂ ⋆,ν,σ+

h (s) = V̂ µ⋆,ν,σ+

h (s) := max
µ:S×[H]→∆(A)

V̂ µ,ν,σ+

h (s) = max
µ:S×[H]→∆(A)

inf
P∈Uσ+ (P̂ 0)

V̂ µ,ν,P
h (s);

(29a)

V̂ µ,⋆,σ−

h (s) = V̂ µ,ν⋆,σ−

h (s) := max
ν:S×[H]→∆(B)

V̂ µ,ν,σ−

h (s) = max
ν:S×[H]→∆(B)

inf
P∈Uσ− (P̂ 0)

V̂ µ,ν,P
h (s).

(29b)

Notably, for all s ∈ S , there exists at least one robust best-response policy that can achieve V̂ ⋆,ν,σ+

h (s)

and V̂ µ,⋆,σ−

h (s), as proved in [5]. Therefore, we can obtain the empirical robust Bellman equation
similar to (7) as: for any product policy (µ, ν),

Q̂µ,ν,σ+

h (s, a, b) = rh(s, a, b) + inf
P∈Uσ+

ρ (P̂ 0
h,s,a,b)

PV̂ µ,ν,σ+

h+1 ; (30a)

Q̂µ,ν,σ−

h (s, a, b) = rh(s, a, b) + sup
P∈Uσ−

ρ (P̂ 0
h,s,a,b)

PV̂ µ,ν,σ−

h+1 , (30b)

where

V̂ µ,ν,σ+

h (s) = Ea∼µh(s),b∼νh(s)[Q̂
µ,ν,σ+

h (s, a, b)];

V̂ µ,ν,σ−

h (s) = Ea∼µh(s),b∼νh(s)[Q̂
µ,ν,σ−

h (s, a, b)].

C Proof of Lemma 3.1

C.1 Independence property

Let us examine two distinct data-generation mechanisms, where a sample transition quadruple
(s, a, b, h, s′) represents a transition from state s with actions (a, b) to state s′ at step h.

Step 1: Creating Dt,a based on Dt. To construct the augmented dataset Dt,a, for each (s, h) ∈
S × [H], we first include all N t

h(s) sample transitions in Dt originating from state s at step h in
Dt,a. If N t

h(s) > Nm
h (s), we supplementDt,a with additional [N t

h(s)−Nm
h (s)] independent sample

transitions
{(

s, a
(i)
h,s, b

(i)
h,s, h, s

′ (i)
h,s

)}
, as follows:

a
(i)
h,s

i.i.d.∼ µb
h(·|s), b

(i)
h,s

i.i.d.∼ νbh(·|s), s
′ (i)
h,s

i.i.d.∼ Ph

(
· |s, a(i)h,s, b

(i)
h,s

)
, Nm

h (s) < i ≤ N t
h(s).

Step 2: Constructing Diid. For each (s, h) ∈ S × [H], we generate N t
h(s) independent sample

transitions
{(

s, a
(i)
h,s, b

(i)
h,s, h, s

′ (i)
h,s

)}
, as follows:

a
(i)
h,s

i.i.d.∼ µb
h(·|s), b

(i)
h,s

i.i.d.∼ νbh(·|s), s
′ (i)
h,s

i.i.d.∼ Ph

(
· |s, a, b

)
, 1 ≤ i ≤ N t

h(s).

The resulting dataset is defined as:

Diid :=
{(

s, a
(i)
h,s, b

(i)
h,s, h, s

′ (i)
h,s

)
| s ∈ S, 1 ≤ h ≤ H, 1 ≤ i ≤ N t

h(s)
}
.

Establishing independence property. The dataset Dt,a deviates from Dt only if N t
h(s) > Nm

h (s).
This augmentation ensures that Dt,a contains precisely N t

h(s) sample transitions from state s at
step h. Both Dt,a and Diid comprise exactly N t

h(s) sample transitions from state s at step h, with
{N t

h(s)} being statistically independent of random sample generation. Consequently, given {N t
h(s)},

the sample transitions in Dt,a across different steps are statistically independent. As a result, both Dt

and Diid can be regarded as collections of independent samples.
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C.2 Proof of N t
h(s) ≤ Nm

h (s)

Since Da is generated by half of the sample trajectories in line 2 in Algorithm 1, we have

N a
h(s) =

K∑
k=K/2+1

1
{
skh = s

}
, ∀s ∈ S, 1 ≤ h ≤ H.

Thus, we can view N a
h(s) as the sum of K/2 independent Bernoulli random variables with mean

dµ
n,νn

h (s). According to the Bernstein inequality and the union bound, we derive

P
{
∃(s, h) ∈ S × [H] :

∣∣∣∣N a
h(s)−

K

2
dµ

n,νn

h (s)

∣∣∣∣ ≥ N0

}
≤

∑
s∈S,h∈[H]

P
{∣∣∣∣N a

h(s)−
K

2
dµ

n,νn

h (s)

∣∣∣∣ ≥ N0

}

≤2HS exp

(
− N2

0 /2

Nh,s +N0/3

)
, ∀N0 ≥ 0,

where

Nh,s :=
K

2
Var
(
1{sth = s}

)
=

Kdµ
n,νn

h (s)
(
1− dµ

n,νn

h (s)
)

2
≤

Kdµ
n,νn

h (s)

2
.

Therefore, with probability of at least 1− 2δ, we have that: ∀s ∈ S and ∀1 ≤ h ≤ H ,∣∣∣∣N a
h(s)−

K

2
dµ

n,νn

h (s)

∣∣∣∣ ≤
√

4Nh,s log
HS

δ
+

2

3
log

HS

δ
≤
√

2Kdµ
n,νn

h (s) log
HS

δ
+ log

HS

δ
.

(31)

Since Dm and Da are generated in the same way, we obtain that with probability exceeding 1− 2δ,∣∣∣∣Nm
h (s)− K

2
dµ

n,νn

h (s)

∣∣∣∣ ≤
√
2Kdµ

n,νn

h (s) log
HS

δ
+ log

HS

δ
, ∀s ∈ S, 1 ≤ h ≤ H. (32)

By combining (31) and (32), it follows that

|Nm
h (s)−N a

h(s)| ≤ 2

√
2Kdµ

n,νn

h (s) log
HS

δ
+ 2 log

HS

δ
, ∀s ∈ S, 1 ≤ h ≤ H. (33)

Now, we prove N t
h(s) ≤ Nm

h (s) by considering two cases. In the first case, N a
h(s) ≤ 100 log HS

δ .
According to the definition in (13), we obtain

N t
h(s) = max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}
= 0 ≤ Nm

h (s). (34)

In the second case, N a
h(s) > 100 log HS

δ . From (31), it follows that

K

2
dµ

n,νn

h (s) +

√
2Kdµ

n,νn

h (s) log
HS

δ
+ log

HS

δ
≥ N a

h(s),

which leads to

Kdµ
n,νn

h (s) ≥ (9
√
2)2 log

HS

δ
≥ 100 log

HS

δ
. (35)

By substituting (35) into (31), we obtain

N a
h(s) ≥

K

2
dµ

n,νn

h (s)−
√
2Kdµ

n,νn

h (s) log
HS

δ
− log

HS

δ
≥ K

4
dµ

n,νn

h (s). (36)
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Consequently, in the case of N a
h(s) > 100 log HS

δ , we have

N t
h(s) = max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}

= N a
h(s)− 10

√
N a

h(s) log
HS

δ
(i)

≤ N a
h(s)− 5

√
Kdµ

n,νn

h (s) log
HS

δ

(ii)

≤ N a
h(s)−

{
2

√
2Kdµ

n,νn

h (s) log
HS

δ
+ 2 log

HS

δ

}
(iii)

≤ Nm
h (s), (37)

where (i) holds under condition (36), (ii) holds under the condition (35), and (iii) comes from the
inequality (33) with probability of at least 1− 2δ.

Combining (34) and (37), we establish N t
h(s) ≤ Nm

h (s).

As proved in Appendix C.3, we have: ∀(s, a, b, h) ∈ S ×A× B × [H], with probability exceeding
1− 2δ,

N t
h(s, a, b) ≥ N t

h(s)µ
n
h(a | s)νnh(b | s)−

√
4N t

h(s)µ
n
h(a | s)νnh(b | s) log

KH

δ
− log

KH

δ
. (38)

Employing the fact N t
h(s) ≤ Nm

h (s) and (38), we can prove (14) in two cases, i.e., Kdµ
n,νn

h (s, a, b) ≤
1600 log KH

δ and Kdµ
n,νn

h (s, a, b) > 1600 log KH
δ .

In the case of Kdµ
n,νn

h (s, a) ≤ 1600 log KH
δ , we can readily obtain

K

8
dµ

n,νn

h (s, a)− 5

√
Kdµ

n,νn

h (s, a) log
KH

δ
≤ 0 ≤ N t

h(s, a). (39)

In the case of Kdµ
n,νn

h (s, a, b) = Kdµ
n,νn

h (s)µn
h(a | s)νnh(b | s) > 1600 log KH

δ , we obtain

N a
h(s) ≥

K

4
dµ

n,νn

h (s) ≥ 400 log
KH

δ
, (40)

which can be derived following the same line of (36). Then, (40) and the definition of N t
h(s) together

yield

N t
h(s) ≥ N a

h(s)− 10

√
N a

h(s) log
KH

δ

≥ K

4
dµ

n,νn

h (s)− 10

√
K

4
dµ

n,νn

h (s) log
KH

δ
≥ K

8
dµ

n,νn

h (s).

As a consequent,

N t
h(s)µ

n
h(a | s)νnh(b | s) ≥

K

8
dµ

n,νn

h (s)µn
h(a | s)νnh(b | s) (41)

=
K

8
dµ

n,νn

h (s, a, b) ≥ 200 log
KH

δ
, (42)

where the last inequality holds under the assumption of the second case. Combining (41) with (38)
yields

N t
h(s, a, b) ≥

K

8
dµ

n,νn

h (s, a, b)−
√

K

2
dµ

n,νn

h (s, a, b) log
KH

δ
− log

KH

δ

≥ K

8
dµ

n,νn

h (s, a, b)− 2

√
Kdµ

n,νn

h (s, a, b) log
KH

δ
.

Combining the result above with (39) and referencing (38), we conclude the proof of Lemma 3.1.
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C.3 Proof of (38).

To prove (38), we analyze two cases, i.e., N t
h(s)µ

n
h(a | s)νnh(b | s) ≤ 4 log KH

δ and
N t

h(s)µ
n
h(a | s)νnh(b | s) > 4 log KH

δ .

In the first case of N t
h(s)µ

n
h(a | s)νnh(b | s) ≤ 4 log KH

δ , we conclude the right-hand side of (38) is
negative, leading to (38). In the second case of N t

h(s)µ
n
h(a | s)νnh(b | s) > 4 log KH

δ , we compose a
special set Dl as

Dl :=

{
(s, a, b, h) ∈ S ×A× B × [H]

∣∣∣ N t
h(s)µ

n
h(a | s)νnh(b | s) > 4 log

KH

δ

}
. (43)

Given the fact that∑
(s,a,b,h)∈S×A×B×[H]

N t
h(s)µ

n
h(a | s)νnh(b | s) =

∑
(s,h)∈S×[H]

N t
h(s)

∑
(a,b)∈A×B

µn
h(a | s)νnh(b | s)

=
∑

(s,h)∈S×[H]

N t
h(s) ≤

∑
(s,h)∈S×[H]

N a
h(s) =

KH

2
,

the cardinality of Dl can be bounded as:

∣∣Dl
∣∣ < ∑

(s,a,b,h) N
t
h(s)µ

n
h(a | s)νnh(b | s)

4 log KH
δ

≤ KH/2. (44)

Moreover, we can view N t
h(s, a) as the sum of N t

h(s) independent Bernoulli random variables
with mean µn

h(a | s)νnh(b | s), due to N t
h(s) ≤ Nm

h (s) with high probability and conditioned on
N t

h(s) and Nm
h (s). Analogous to (31) based on the condition N t

h(s) ≤ Nm
h (s), we can repeat the

Bernstein-type argument and obtain that for any fixed triple (s, a, b, h), with probability of at least
1− 2δ/(KH),

N t
h(s, a, b) ≥N t

h(s)µ
n
h(a | s)νnh(b | s)−

√
4N t

h(s)µ
n
h(a | s)νnh(b | s) log

KH

δ
− log

KH

δ
. (45)

With probability exceeding 1− δ, (45) holds ∀(s, a, b, h) ∈ Dl by utilizing the union bound of (44)
over all (s, a, b, h) ∈ Dl. Combining the two cases, we conclude that (38) holds ∀(s, a, b, h) ∈
S ×A× B × [H] with probability of at least 1− δ.

D Proof of Theorem 4.2

Theorem 4.2 can be proved in three steps.

D.1 Step 1: Decoupling statistical dependency

Before bounding Gap(µ̂, ν̂), we introduce an important lemma, quantifying the difference between
P̂ and P when projected in the direction of the value function.

Lemma D.1. Instate the assumptions in Theorem 4.2. Consider any vector V ∈ RS with ∥V ∥∞ ≤ H
for all (h, s, a, b) ∈ [H]× S ×A× B satisfying Nh (s, a, b) > 0. With probability of at least 1− δ,
one has∣∣∣∣∣ inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV − inf

P∈Uσ+ (P 0
h,s,a,b)

PV

∣∣∣∣∣≤C4

√
1

Nh(s,a,b)
VarP̂ 0

h,s,a,b

(
V
)
log

KH

δ
+C4

H logKH
δ

Nh (s,a,b)

(46)

for some sufficiently large constant C4 > 0, and

VarP̂ 0
h,s,a,b

(
V
)
≤ 2VarP 0

h,s,a,b

(
V
)
+O

(
H2

Nh (s, a, b)
log

KH

δ

)
. (47)
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Proof can be found in Appendix G.1.

In simple terms, (46) provides a Bernstein-type concentration bound, while (47) ensures that the
empirical variance estimate (i.e., the plug-in estimate) closely matches the true variance. Notably,
Lemma D.1 does not require V to be statistically independent of P̂ 0

h,s,a,b, which is essential given the
complex statistical dependencies in RTZ-VI-LCB. Under the leave-one-out analysis (see, e.g., [1, 7,
24, 25]), we prove Lemma D.1 to decouple statistical dependencies, as illustrated in Appendix G.1.

With Lemma D.1, we now have: for any (h, s, a, b) ∈ [H]× S ×A× B satisfying Nh(s, a, b) ≥ 1,∣∣∣∣∣ inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV − inf

P∈Uσ+ (P 0
h,s,a,b)

PV

∣∣∣∣∣ ≤ βh (s, a, b, V ) . (48)

Therefore, we conclude that Q̂+
h (s, a, b) is an optimistic estimation of Q̂µ,ν,σ+

h (s, a, b), as summarized
below.
Lemma D.2. With probability exceeding 1− δ, it holds that

Q̂+
h (s, a, b) ≥ Q⋆,ν̂,σ+

h (s, a, b) and V̂ +
h (s) ≥ V ⋆,ν̂,σ+

h (s); (49)

See Appendix G.2 for detailed proofs.

Moreover, we introduce another key lemma highlighting the difference between RTZMGs and
standard TZMGs from the same idea of Lemma 3 in [34]. The range of the robust value function
narrows as the uncertainty level σ+ of its uncertainty set increases, as shown below.

Lemma D.3. Consider the uncertainty set Uσ+

(·) with TV distance and any RTZMG MGr ={
S,A,B,Uσ+

(P ),Uσ−
(P ), r,H

}
. The optimistic robust value function estimate V̂ +

h :

∀h ∈ [H] : max
s∈S

V̂ +
h −min

s∈S
V̂ +
h ≤ min

{
(H + 1)

(
1− (1− σ+)H−h

)
σ+

, H

}
.

See Appendix G.3 for detail proofs.

D.2 Step 2: Decomposing the error Gap(µ̂, ν̂)

The goal of RTZ-VI-LCB is to output an ε-robust NE policy (µ̂, ν̂) satisfying Gap(µ̂, ν̂) in (9), i.e.,

Gap(µ̂, ν̂) := max
{
V ⋆,ν̂,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ), V ⋆,σ−

1 (ϱ)− V µ̂,⋆,σ−

1 (ϱ)
}
≤ ε.

Due to the interchangeability between the max-player and the min-player, we assume without
loss of generality that V ⋆,ν̂,σ+

1 (ϱ) − V ⋆,σ+

1 (ϱ) is larger than V ⋆,σ−

1 (ϱ) − V µ̂,⋆,σ−

1 (ϱ), leading to

Gap(µ̂, ν̂) ≤
{
V ⋆,ν̂,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ)
}

.

According to the relationship in Lemma D.2, we obtain

V ⋆,ν̂,σ+

h (s) ≤ V̂ +
h (s) = max

µ∈∆(A)
min

ν∈∆(B)
E(a,b)∼(µ(s),ν(s))

[
Q̂+

h (s, a, b)
]

≤ max
µ∈∆(A)

E(a,b)∼(µ(s),ν⋆(s))

[
Q+

h (s, a, b)
]
, (50)

where the first equality comes from line 5 in Algorithm 2. Therefore, there exists a deterministic
policy µd : S ← ∆(A) satisfying that for any s ∈ S

µd(s) := arg max
µ∈∆(A)

E(a,b)∼(µ(s),ν⋆(s))

[
Q+

h (s, a, b)
]
. (51)

We start by defining the following notation:

• The state-action space covered by the behavior policy (µn, νn) in the nominal transition
kernel P 0 is denoted as

Cn = {(h, s, a, b) : dnh(s, a, b) > 0} . (52)
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• For any time step h ∈ [H], the sets of potential state occupancy distributions w.r.t. the policy
(µd(s), ν⋆(s)) and the uncertainty set P ∈ Uσ+ (

P 0
)

are given by

Dp
h :=

{[
d
µd(s),ν⋆(s),P
h (s)

]
s∈S

: P ∈ Uσ+ (
P 0
)}

; (53)

Dpa
h :=

{[
d
µd(s),ν⋆(s),P
h (s, a, b)

]
(s,a,b)∈S×A×B

: P ∈ Uσ+ (
P 0
)}

. (54)

• For convenience and without ambiguity, we introduce additional notation for h ∈ [H] as

βµd,ν⋆

h (s) = E(a,b)∼(µd(s),ν⋆(s))βh

(
s, a, b, V̂ +

h+1

)
.

In particular, the vector βµd,ν⋆

h ∈ RS is defined with its s-th term given by βµd,ν⋆

h (s).

• Similarly, we can define the notation related to rewards for h ∈ [H] as

r̂µ
d,ν⋆

h (s) = E(a,b)∼(µd(s),ν⋆(s))r̂h (s, a, b) .

According to the update rule in line 4 in Algorithm 2 and robust Bellman equality (28), we derive

V ⋆,ν̂,σ+

h (s)− V ⋆,σ+

h (s) (55)

≤V̂ +
h (s)− V µd,ν⋆,σ+

h (s)

≤E(a,b)∼(µd(s),ν⋆(s)) inf
P∈Uσ+

(
P̂ 0

h,s,a,b

)PV̂ +
h+1 + βµd,ν⋆

h (s)

− E(a,b)∼(µd(s),ν⋆(s)) inf
P∈Uσ+(P 0

h,s,a,b)
PV µd,ν⋆,σ+

h+1

≤E(a,b)∼(µd(s),ν⋆(s))

[
inf

P∈Uσ+
(
P 0

h,s,a,b

)PV̂ +
h+1 − inf

P∈Uσ+(P 0
h,s,a,b)

PV µd,ν⋆,σ+

h+1

+

∣∣∣∣∣∣ inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ +

h+1 − inf
P∈Uσ+

(
P̂ 0

h,s,a,b

)PV̂ +
h+1

∣∣∣∣∣∣
]
+ βµd,ν⋆

h (s)

(i)

≤E(a,b)∼(µd(s),ν⋆(s))

 inf
P∈Uσ+

(
P 0

h,s,a,b

)PV̂ +
h+1 − inf

P∈Uσ+(P 0
h,s,a,b)

PV µd,ν⋆,σ+

h+1

+ 2βµd,ν⋆

h (s)

(ii)

≤E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V
h,s,a,b

(
V̂ +
h+1 − V µd,ν⋆,σ+

h+1

)]
+ 2βµd,ν⋆

h (s). (56)

Here, (i) holds due to (48) in Lemma D.1 for Nh(s, a, b) > 0 and∣∣∣∣∣∣ inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ +

h+1 − inf
P∈Uσ+

(
P̂ 0

h,s,a,b

)PV̂ +
h+1

∣∣∣∣∣∣ ≤ H = βµd,ν⋆

h (s) for Nh(s, a, b) = 0. (57)

Moreover, (ii) is due to

P inf,V
h,s,a,b := argmin

P∈Uσ+
(
P 0

h,s,a,b

)PV µd,ν⋆,σ+

h+1 (58)

and consequently,

inf
P∈Uσ+(P 0

h,s,a,b)
PV µd,ν⋆,σ+

h+1 = P inf,V
h,s,a,bV

µd,ν⋆,σ+

h+1 , and inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ +

h+1 ≤ P inf,V
h,s,a,bV̂

+
h+1.

For ease of exposure, we introduce notation as P̃ inf,V
h,s := E(a,b)∼(µd(s),ν⋆(s))P

inf,V
h,s,a,b. Furthermore,

we define a sequence of matrices P̃ inf,V
h ∈ RS×S . We can utilize (56) recursively over the time steps
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h, h+ 1, · · · , H and derive

V ⋆,ν̂,σ+

h (s)− V ⋆,σ+

h (s) ≤ V̂ +
h (s)− V µd,ν⋆,σ+

h (s)

≤ P̃ inf,V
h

(
V̂ +
h+1 − V µd,ν⋆,σ+

h+1

)
+ 2βµd,ν⋆

h (s)

≤ P̃ inf,V
h P̃ inf,V

h+1

(
V̂ +
h+2 − V µd,ν⋆,σ+

h+2

)
+ 2P̃ inf,V

h βµd,ν⋆

h+1 + 2βµd,ν⋆

h (s)

≤ · · · ≤ 2

H∑
i=h+1

i−1∏
j=h

P̃ inf,V
j

βµd,ν⋆

i + 2βµd,ν⋆

h (s) (59)

= 2

H∑
i=h

i−1∏
j=h

P̃ inf,V
j

βµd,ν⋆

i , (60)

For conciseness, we define
(∏h−1

j=h P̃ inf,V
j

)
= I to simplify notation.

For any dµ
d,ν⋆

h ∈ Dp
h (cf. (53)), taking inner product with (59) yields〈

dµ
d,ν⋆

h , V ⋆,ν̂,σ+

h − V ⋆,σ+

h

〉
≤

〈
dµ

d,ν⋆

h , 2

H∑
i=h

i−1∏
j=h

P̃ inf,V
j

βµd,ν⋆

i

〉
= 2

H∑
i=h

〈
dp,µ

d,ν⋆

i , βµd,ν⋆

i

〉
,

(61)

where

dp,µ
d,ν⋆

i :=

(dµd,ν⋆

h

)⊤i−1∏
j=h

P̃ inf,V
j

⊤

∈ Dp
i (62)

by the definition of Dp
i (cf. (53)) for all i = h+ 1, · · · , H .

Next, we control ⟨dp,µ
d,ν⋆

i , βµd,ν⋆

i ⟩ by using concentrability. According to (18) in Lemma D.1, we
first demonstrate that the pessimistic penalty satisfies

βi(s, a, b, V̂ ) ≤ max


√

Cn log
KH
δ

Ni (s, a, b)
VarP̂ 0

i,s,a,b
(V̂ ),

2CnH log KH
δ

Ni (s, a, b)


≤

√
Cn log

KH
δ

Ni (s, a, b)
VarP̂ 0

i,s,a,b
(V̂ ) +

2CnH log KH
δ

Ni (s, a, b)

(i)

≤

√
Cn log

KH
δ

Ni (s, a, b)

(
2VarP 0

i,s,a,b

(
V̂
)
+

C0H2

Ni (s, a, b)
log

KH

δ

)
+

2CnH log KH
δ

Ni (s, a, b)

(ii)

≤

√
2Cn log

KH
δ

Ni (s, a, b)
VarP 0

i,s,a,b

(
V̂
)
+

(
2Cn +

√
CnC0

)
H log KH

δ

Ni (s, a, b)
(63)

where (i) holds by applying (47) for some sufficiently large C0 and (ii) follows from the Cauchy-
Schwarz inequality. Therefore, combining the definition of βµd,ν⋆

i (s), we obtain

⟨dp,µ
d,ν⋆

i , βµd,ν⋆

i ⟩ =
∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s)

=
∑
s∈S

dp,µ
d,ν⋆

i (s)E(a,b)∼(µd(s),ν⋆(s))βi(s, a, b, V̂ )

=
∑

(s,a,b)∈S×A×B

dp,µ
d,ν⋆

i (s)1{a = µd(s)}ν⋆(b|s)βi(s, a, b, V̂ )

=
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ ), (64)
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where the last equation holds due to the definition in (5). Then, we observe dp,µ
d,ν⋆

h (s, a, b) ∈
Dpa

h ; cf. (54). Thereafter, we divide the bound (64) into two cases. In the first case, i.e., s ∈ S

where maxP∈Uσ+ (P 0) d
µd,ν⋆,P
i

(
s, µd(s), b

)
= 0, it follows from the definition (53) that: For any

dp,µ
d,ν⋆

i (s, µd(s), b) ∈ Dpa
i ,

dp,µ
d,ν⋆

i (s, µd(s), b) = 0. (65)

In the second case, i.e., s ∈ S where maxP∈Uσ+ (P 0) d
µd,ν⋆,P
i

(
s, µd(s), b

)
> 0, under the assumption

in (20),

max
P∈Uσ+ (P 0)

min
{
dµ

d,ν⋆,P
i

(
s, µd(s), b

)
, 1
S(A+B)

}
dni
(
s, µd(s), b

) ≤ C⋆
r <∞,

which implies that

dni
(
s, µd(s), b

)
> 0 and

(
i, s, µd(s), b

)
∈ Cn. (66)

Lemma 3.1 tells that with probability of at least 1− 8δ,

Ni

(
s, µd(s), b

)
≥

Kdni
(
s, µd(s), b

)
8

− 5

√
Kdni

(
s, µd(s), b

)
log

KH

δ
(i)

≥
Kdni

(
s, µd(s), b

)
16

(ii)

≥
KmaxP∈Uσ(P 0) min

{
dµ

d,ν⋆,P
i

(
s, µd(s), b

)
, 1
S(A+B)

}
16C⋆

r

≥
Kmin

{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}
16C⋆

r

, (67)

Here, (i) holds since, with f(σ+, σ−, H) = min
{

Hσ++1−(1−σ+)H

(σ+)2 , Hσ−+1−(1−σ−)H

(σ−)2 , H
}

,

Kdni
(
s, µd(s), b

)
≥ c0

HS(A+B)

dnm
log

KH

δ
f(σ+, σ−, H)dni

(
s, µd(s), b

)
≥ c0HS(A+B) log

KH

δ
f(σ+, σ−, H) ≥ 1600 log

KH

δ
, (68)

where the first inequality follows from condition (22), and the second inequality follows from

dnm = min
h,s,µd(s),b

{
dnh(s, µ

d(s), b) : dnh(s, µ
d(s), b) > 0

}
≤ dni

(
s, µd(s), b

)
. (69)

Moreover, (ii) comes from Assumption 4.1.

31



Combining (63) and (64), we arrive at

⟨dp,µ
d,ν⋆

i , βµd,ν⋆

i ⟩

=
∑

(s,b)inS×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

≤
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

√
2Cn log

KH
δ

Ni (s, µd(s), b)
VarP 0

i,s,µd(s),b

(
V̂
)

+
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

(
2Cn +

√
CnC0

)
H log KH

δ

Ni (s, µd(s), b)

(i)

≤
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

√√√√ 32C⋆
r Cn log

KH
δ

Kmin
{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}VarP 0

i,s,µd(s),b

(
V̂
)

︸ ︷︷ ︸
B1

+
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)
16C⋆

r

(
2Cn +

√
CnC0

)
H log KH

δ

Kmin
{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}
︸ ︷︷ ︸

B2

. (70)

From (61), we need to bound
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B1 and∑H
i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B2:

D.2.1 Bounding
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B1

Combining (68) with
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B1 yields

H∑
i=1

∑
(s,b)∈S×B

dp,µ
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=

H∑
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√√√√ 32C⋆
r Cn log

KH
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S(A+B)

}VarP 0

i,s,µd(s),b

(
V̂
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≤
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dp,µ
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r Cn log
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√
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δ

K
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i,s,µd(s),b

(
V̂
)}

,

(71)
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Therefore, we have

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)B1

≤
H∑
i=1

∑
(s,b)∈S×B

√
32C⋆

r Cn log
KH
δ
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d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
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+
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(
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)
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(√√√√H
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i,s,µd(s),b
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√√√√ H∑
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(
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×

√√√√ H∑
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(s,b)∈S×B
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i (s, µd(s), b)

)

=

√√√√128C⋆
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K
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i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
V̂
)
, (72)

where the last inequality follows from the Cauchy-Schwarz inequality.

Then, we introduce the following lemma about
∑H

i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP
i,s,µd(s),b

(
V̂
)
,

with its proof in Appendix G.4.

Lemma D.4. Considering ∀δ ∈ (0, 1), with probability at least 1 − δ, one has: for any product
policy (µ̂, ν̂),

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0
i,s,a,b

(
V̂i+1
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 . (73)

Armed with Lemma D.4, (72) can be further bounded as
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D.2.2 Bounding
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B2

Combining (67) with
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B2 yields
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where the inequality holds by the trivial fact

∑
(s,b)∈S×B
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1
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D.2.3 Putting all together

Combining (74) and (75), we obtain
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which can further bound as
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where the last relation follows from the AM-GM inequality. Rearranging the terms, it follows that
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K
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Along with the above analysis, we are ready to bound V ⋆,σ+

1 (ϱ) − V µ̂,⋆,σ+

1 (ϱ): There exist some
sufficiently large constants C1, C2, C3 > 0, and

V ⋆,ν̂,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ) ≤

√
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δ

K
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+
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K
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(80)
where the last inequality follows from condition (22).
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D.3 Step 3: Summing up

Consequently, we obtain the upper bound of V ⋆,ν̂,σ+

1 (ϱ)− V µ̂,ν̂,σ+

1 (ϱ) in (80). Similarly,

V ⋆,σ−

1 (ϱ)− V µ̂,⋆,σ−

1 (ϱ)

≤

√
C⋆

r C3H2S(A+B) log KH
δ

K
min

{
(H + 1)(Hσ− − 1 + (1− σ−)H)

(σ−)2
, H

}
, (81)

which directly leads to

Gap(µ̂, ν̂) ≤ c1

√
C⋆

r H
2S(A+B) log KH

δ

K

×

√
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
,
2(Hσ− − 1 + (1− σ−)H)

(σ−)2
, H

}
, (82)

for some sufficiently large c1 and

K ≥ HS(A+B) log
KH

δ
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
,
2(Hσ− − 1 + (1− σ−)H)

(σ−)2
, H

}
.

Discussion of (82). For the term T = min (f(σ+, σ−), H), considering the interchangeabil-
ity between σ+ and σ−, we define g(σ+, H) = Hσ+ − H(1 − σ+)H − (σ+)2H . For
H ≥ 2, we derive the first derivative as ∂g(σ+,H)

∂σ+ = H + H2(1 − σ+)H−1 − 2Hσ+. The

second derivative is given by ∂2g(σ+,H)
∂(σ+)2 = −H2(H − 1)(1 − σ+)H−2 − 2H < 0, indicat-

ing that g(σ+, H) is concave. By evaluating the first derivative at the boundaries, we find
∂g(σ+,H)

∂σ+ |σ+→0 → H2 + H > 0 and ∂g(σ+,H)
∂σ+ |σ+=1 = −H < 0, showing that g(σ+, H) first

increases monotonically, reaches a maximum at some point σ⋆, and then decreases monotoni-
cally. Furthermore, since g(σ+ → 0, H) → −H < 0 and g(σ+ = 1, H) = 0, there exists
0 < σ0 < 1 such that g(σ0, H) = 0. If σ0 ≲ min{σ+, σ−} ≲ 1, we have T = H . Otherwise,
T = min

{
(Hσ+−1+(1−σ+)H)

(σ+)2 , (Hσ−−1+(1−σ−)H)
(σ−)2

}
.

E Proof of Theorem 4.4

We focus on a simple class of RTZMGs: robust Markov decision processes (RMDPs), which
are single-agent versions of RTZMGs. Recall that an RTZMG with an uncertainty set isMG =

{S,A,B,Uσ+

(P 0),Uσ−
(P 0), r,H}. For illustration convenience, we assume A ≥ B and |B| = 1,

meaning the min-player’s actions do not affect transitions or rewards. Thus, finding a robust NE
in RTZMGs reduces to finding the max-player’s optimal policy in a corresponding RMDPMr =

{S,A,Uσ+

(P 0), r,H}.
Thus, we construct the lower bound for finding the optimal policy in RTZMGs, which also implies a
lower bound for finding robust NE in RTZMGs. We start by re-stating a useful property about KL
divergence from Lemma 2.7 in [36].

Lemma E.1. ∀p, q ∈ (0, 1), it holds that

KL(p ∥ q) ≤ (p− q)2

q(1− q)
. (83)

E.1 Step 1: Constructing a family of hard Markov game instances

The hard instances developed here differ from standard MDP since we need to consider that the
transition kernel can be perturbed in robust MDPs.
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E.1.1 Constructing hard robust MDP instances

We introduce an auxiliary collection Φ ⊆ {0, 1}H comprising H-dimensional vectors. Resorting to
the Gilbert-Varshamov lemma [15], there also exists a set Φ ⊆ {0, 1}H such that:

for any ϕ, ϕ̃ ∈ Φ obeying ϕ ̸= ϕ̃ : ∥ϕ− ϕ̃∥1 ≥
H

8
and |Φ| ≥ eH/8. (84)

Bearing this in mind, we construct a set of RMDPs as

M(F ,Φ):=

{
Mϕ

f =
(
S,A,Uσ+

(P f,ϕ), r,H
)
|f ∈F={0, 1, · · · , SA− 1}, ϕ = [ϕh]1≤h≤H ∈Φ

}
,

(85)

where S = {0, 1, . . . , S − 1}, A = {0, 1, · · · , A− 1}, and σ+ will be introduced momentarily.

In simple terms, the collection M(F ,Φ) consists of SA subsets, each containing |Φ| different
RMDPs associated with some f ∈ F . The state space for each RMDPMϕ

f ∈ M(F ,Φ), denoted
as Sone, includes two types of states: M = {mi | i ∈ F} and N = {ni | i ∈ F}. Each state in
M and N has two possible actions, Aone = {0, 1}. Thus, there are a total of 2SA states and 4SA
state-action pairs.

Now, we can define the transition kernels for M(F ,Φ). For any RMDP Mϕ
f ∈ M(F ,Φ), the

transition kernel P f,ϕ = {P f,ϕ
h }Hh=1 is defined as follows, for any (s, a, s′, h) ∈ Sone × Aone ×

Sone × [H],

P f,ϕ
h (s′ | s, a) =

{
p1(s′ = nf ) + (1− p)1(s′ = s), if s = mf , a = ϕh;
q1(s′ = nf ) + (1− q)1(s′ = s), if s = mf , a = 1− ϕh;
1(s′ = s), otherwise,

(86)

where p > q ≥ 1
2 .

In addition, the reward function is defined as

∀(h, s, a) ∈ [H]× Sone ×Aone : rh(s, a) =

{
1, if s ∈ N ;
0, otherwise. (87)

E.1.2 Uncertainty set of the transition kernels

Denote the transition kernel vector as
∀(h, s, a) ∈ [H]× Sone ×Aone : P f,ϕ

h,s,a := P f,ϕ
h (· | s, a) ∈ ∆(S). (88)

Recall the uncertainty set defined in (1). Uσ+

(P f,ϕ) represents

Uσ+

(P f,ϕ) := ⊗ Uσ+

(P f,ϕ
h,s,a), U

σ+

(P f,ϕ
h,s,a) :=

{
P̃ f,ϕ
h,s,a ∈ ∆(S) : ρ

(
P̃ f,ϕ
h,s,a − P f,ϕ

h,s,a

)
≤ σ+

}
,

where ⊗ represents the Cartesian product over (h, s, a) ∈ [H]× Sone ×Aone. For the convenience
of the subsequent proof, we analyze the TV distance as an uncertainty set for example, which means

Uσ+

(P f,ϕ
h,s,a) :=

{
P̃ f,ϕ
h,s,a ∈ ∆(S) : 1

2

∥∥∥P̃ f,ϕ
h,s,a − P f,ϕ

h,s,a

∥∥∥ ≤ σ+
}
. (89)

For any RMDPMϕ
f ∈ M(F ,Φ) and any (h, s, a, s′) ∈ [H] × Sone × Aone × Sone, we define the

minimum transition probability from (s, a) to s′, determined by any perturbed transition kernel
Ph,s,a ∈ Uσ+

(P f,ϕ
h,s,a), as

P inf,f,ϕ
h (s′ | s, a) := inf

Ph,s,a∈Uσ+ (P f,ϕ
h,s,a)

Ph(s
′ | s, a) = max{Ph(s

′ | s, a)− σ+, 0}, (90)

where the last equation inherits from the definition of Uσ+

(·) in (89), with the remaining probability
distributed to other states. We also define the transition from each s ∈M to the corresponding state
sm→n ∈ N for anyMϕ

f : for all h ∈ [H],

for mf : pinfh := P inf,f,ϕ
h (nf |mf , ϕh) = p− σ+,

qinfh := P inf,f,ϕ
h (nf |mf , 1− ϕh) = q − σ+. (91)
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It is obvious that

pinf1 = pinf2 = · · · pinfH , qinf1 = qinf2 = · · · qinfH , (92)

which motivates us to abbreviate them consistently as pinf := pinf1 and qinf := qinf1 later.

E.1.3 Robust value functions and optimal policies

We now define the robust value functions and identify the optimal policies for RMDP instances. For
any RMDPMϕ

f ∈M(F ,Φ), let µ̃⋆,f,ϕ = {µ⋆,f,ϕ
h }Hh=1 represent the optimal policy, given that ν is

deterministic. At each step h, we use V µ̃,σ+,f,ϕ
h and V ⋆,σ+,f,ϕ

h to denote the robust value function of
any policy µ̃ and the optimal policy µ̃⋆,f,ϕ, respectively, under uncertainty level σ+. The following
lemma highlights key properties of robust value functions and optimal policies; the proof is deferred
to Appendix H.1.

Lemma E.2. Consider anyMϕ
f ∈M(F ,Φ) and any policy µ̃. Defining

mµ̃,f,ϕ
h = pinf µ̃h(ϕh |mf ) + qinf µ̃h(1− ϕh |mf ), (93)

it holds that

∀h ∈ [H] : V µ̃,σ+,f,ϕ
h (mf ) = mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) + (1−mµ̃,f,ϕ

h )V µ̃,σ+,f,ϕ
h+1 (mf ),

(94a)

∀(s, h) ∈ N × [H] : V µ̃,σ+,f,ϕ
h (s) = 1 + (1− σ+)V µ̃,σ+,f,ϕ

h+1 (s) + σ+V µ̃,σ+,f,ϕ
h+1 (mf ). (94b)

In addition, for all h ∈ [H], the optimal policy and the optimal value function obey

µ̃⋆,f,ϕ
h (ϕh |mf ) = µ̃⋆,f,ϕ

h (ϕh |nf ) = 1, (95)

V ⋆,σ+,f,ϕ
h (mf ) = pinfV µ̃,σ+,f,ϕ

h+1 (nf ) + (1− pinf)V µ̃,σ+,f,ϕ
h+1 (mf ). (96)

E.1.4 Construction of the history/batch dataset

In the nominal environmentMϕ,n
f , a batch dataset is generated with K independent sample trajectories

with length H per trajectory, according to (3) and based on the initial state distribution ϱn and behavior
policy µ̃n = {µn

h}Hh=1 satisfying

ϱn(s) = ϱ(s) and µ̃n
h(a | s) =

1

2
, ∀(s, a, h) ∈ Sone ×Aone × [H]. (97)

We define the nominal transition kernels forMϕ,n
f , where any state mi ∈M transitions only to the

corresponding ni ∈ N or remains at itself. For simplicity, for any s = mi ∈ M, we denote the
corresponding state ni ∈ N as sm→n. The basic nominal transition kernel is defined as: For all
(h, s, a) ∈ [H]× Sone ×Aone,

P ⋆
h (s

′ | s, a) =

{
(p+∆)1(s′ = sm→n) + (1− p−∆)1(s′ = s), if s ∈M, a = ϕh;
p1(s′ = sm→n) + (1− p)1(s′ = s), if s ∈M, a = 1− ϕh;
1(s′ = s), if s ∈ N .

(98)

In other words, the transition kernel of eachMϕ
f ∈M(F ,Φ) differs slightly from the basic nominal

transition kernelMϕ,n
f when s = mf , making all components withinM(F ,Φ) close to each other.

Specifically, p and q are set according to

0 ≤ p ≤ p+∆ ≤ 1 and 0 ≤ q = p−∆ for some p,∆ > 0. (99)

Without loss of generality, let σ+ ∈ (0, 1− c0] for some 0 < c0 < 1 be the uncertainty level. Taking
c2 ≤ 1

4 and c1 := c0
2 ≤

1
4 , p and ∆ are set as

p =

{
c2
H , if σ+ ≤ c2

2H(
1 + c1

H

)
σ+ otherwise

and ∆ ≤
{

c2
2H , if σ+ ≤ c2

2H
c1
H σ+ otherwise

(100)
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which establishes the fact that

p+∆ ≥ p ≥ q = p−∆ ≥ max
{ c2
2H

,σ+
}
. (101)

Combined with H ≥ 2, it is easily verified that 0 ≤ p+∆ ≤ 1 as follows:

when σ+ >
c2
2H

:
(
1 +

c1
H

)
σ+ +

c1
H

σ+ ≤ 1− c0 +
2c1
H

σ+ ≤ 1− c0(H − 1)

H
< 1,

when σ+ ≤ c2
2H

:
3c2
2H
≤ 1. (102)

In addition, let ϱ(s) represent a state distribution supported on the state subset (mf , nf ) ∈M×N :

ϱ(s) =
1

CSA
1(s = mf ) +

(
1− 1

CSA

)
1(s = nf ), (103)

where 1(·) is the indicator function, and C > 0 is some constant that determines the concentrability
coefficient C⋆

r (as we shall detail momentarily) and obeys

1

CSA
≤ 1

4
. (104)

As it turns out, for any MDPMf
ϕ, the occupancy distributions of the above batch dataset are the same

(due to interchangeability) and admit the following simple characterization:

∀(s, a) ∈ Sone ×Aone, dn,P
ϕ,f

1 (s, a) =
1

2
ϱ(s), (105a)

∀(s, a, h) ∈ Sone ×Aone × [H],
ϱ(s)

2
≤ dn,P

ϕ,f

h (s) ≤ 2ϱ(s),
ϱ(s)

4
≤ dn,P

ϕ,f

h (s, a) ≤ ϱ(s).

(105b)

In addition, we choose the following initial state distribution

ϱ(s) =

{
1

CSA , if s ∈M
0, if s ∈ N .

(106)

With this choice of ϱ, the single-policy clipped concentrability coefficient C⋆
r and the quantity C are

intimately connected:

C ≤ C⋆
r ≤ 2C. (107)

The proofs of (105) and (107) are postponed to Appendix H.2 and H.3, respectively.

E.2 Step 2: Establishing the minimax lower bound

Recall our goal: for any policy estimator µ̃ computed based on the empirical dataset, we plan to
control the quantity

max
(f,ϕ)∈F×Φ

{
V ⋆,σ+,f,ϕ
1 (ϱ)− V µ̃,σ+,f,ϕ

1 (ϱ)
}

(108)

with initial state distribution defined in (106).

E.2.1 Step 1: Converting the goal to estimate (f, ϕ)

As verified in Appendix H.4, we have

ε ≤
{

c2
H , if σ+ ≤ c2

2H ;

1, otherwise,
(109)

and

∆ = c5

{
ε

H2 , if σ+ ≤ c2
2H ;

σ+ε
H , otherwise,

(110)
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which satisfies (100) and leads to that for any policy µ̃ obeying

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
≥ H

8
, (111)

one has

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) > ε, (112)

whose proof is postponed to Appendix H.4. Now, we are ready to convert the estimation of an
optimal policy to estimating (f, ϕ). Let Pf,ϕ represent the probability distribution when the RMDP
isMϕ

f , ∀(f, ϕ) ∈ F × Φ. For any (f, ϕ) ∈ F × Φ, suppose that there exists a policy µ̃ achieving

Pf,ϕ

{
V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) ≤ ε
}
≥ 3

4
, (113)

which, in view of (112), indicates that

Pf,ϕ

{
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8

}
≥ 3

4
. (114)

Consequently, taking ϕ̃ = argminϕ∈Φ

∑H
h=1

∥∥µ̃h(· |mf ) − µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
, we construct the

estimate of ϕ as ϕ̂ = ϕ̃. If
∑H

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
< H

8 for some ϕ ∈ Φ, then for any
ϕ′ ∈ Φ obeying ϕ′ ̸= ϕ, one has

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ′

h (· |mf )
∥∥
1

≥
H∑

h=1

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃⋆,f,ϕ′

h (· |mf )
∥∥
1
−

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1

>
H

4
− H

8
=

H

8
, (115)

where the first inequality holds due to the triangle inequality, and the last inequality follows from the
assumption

∑H
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
< H

8 and the separation property of ϕ ∈ Φ; see
(84). Similarly, we have ϕ̂ = ϕ if

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8
<

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ′

h (· |mf )
∥∥
1
,∀ϕ′ ∈ Φ, ϕ′ ̸= ϕ,

(116)

which can be directly achieved when
∑H

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
< H

8 , and further leads
to

Pf,ϕ

[
ϕ̂ = ϕ

]
≥ Pf,ϕ

{
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8

}
≥ 3

4
. (117)

E.2.2 Step 2: Developing the probability of error in testing multiple hypotheses

Next, we address the hypothesis testing problem over ϕ ∈ Φ and derive the information-theoretic
lower bound for the probability of error. Specifically, we define the minimax probability of error as:

pe := inf
(f̂ ,ϕ̂)

max
(f,ϕ)∈F×Φ

Pf,ϕ

(
ϕ̂ ̸= ϕ

)
,

where the infimum is taken over all possible tests ϕ̂ constructed from the available batch dataset.

Given the dataset D0 with K independent trajectories, let ϱn,ϕ (and ϱn,ϕh (s, a)) represent the distri-
bution vector (and distribution) of each sample tuple (sh, ah, s

′
h) at time step h under the nominal
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transition kernel P ⋆ for Mϕ,n
f . Then, employing Fano’s inequality [36, Theorem 2.2] and the

additivity of KL divergence [36, Page 85], it follows that

pe ≥ 1−K
max(ϕ,ϕ̃)∈Φ,ϕ ̸=ϕ̃ KL

(
ϱn,ϕ | ϱn,ϕ̃

)
+ log 2

log |Φ|
(i)

≥ 1− 8K

H
max

(ϕ,ϕ̃)∈Φ,ϕ ̸=ϕ̃
KL
(
ϱn,ϕ | ϱn,ϕ̃

)
− 8 log 2

H

(ii)

≥ 1

2
− 8K

H
max

(ϕ,ϕ̃)∈Φ,ϕ̸=ϕ̃
KL
(
ϱn,ϕ | ϱn,ϕ̃

)
, (118)

where (i) holds due to |Φ| ≥ eH/8 and (ii) follows from H ≥ 16 log 2.

Since the occupancy state distribution dnh is the same for any MDP Mϕ
f , ∀ϕ ∈ Φ, we apply the

chain rule of KL divergence [12, Lemma 5.2.8] and the Markov property of the independent sample
trajectories to obtain:

KL
(
ϱn,ϕ | ϱn,ϕ̃

)
=

H∑
h=1

E
s∼dn

h(s)

[
KL
(
P ⋆,ϕ
h (· | s, a) ∥ P ⋆,ϕ̃

h (· | s, a)
)]

(i)
=

1

2
ϱ(mf )

H∑
h=1

∑
a∈{0,1}

[
KL
(
Pϕ
h (· |mf , a) ∥ P ϕ̃

h (· |mf , a)
)]

, (119)

where (i) follows from applying (105) and obtaining

E
s∼dn

h(s)

[
KL
(
P ⋆,ϕ
h (· | s, a) ∥ P ⋆,ϕ̃

h (· | s, a)
)]

=
∑
s

dnh(s)

∑
a,s′

µ̃n
h(a | s)P

ϕh

h (s′ | s, a) log
µ̃n
h(a | s)P

ϕh

h (s′ | s, a)

µ̃n
h(a | s)P

ϕ̃h

h (s′ | s, a)


=
1

2
ϱ(mf )

∑
a

∑
s′

Pϕh

h (s′ |mf , a) log
Pϕh

h (s′ |mf , a)

P ϕ̃h

h (s′ |mf , a)

=
1

2
ϱ(mf )

∑
a

KL
(
Pϕh

h (· |mf , a) ∥ P ϕ̃h

h (· |mf , a)
)
.

Consequently, combining (118) and (119) leads to

pe ≥
1

2
− 4K

H
max

(ϕ,ϕ̃)∈Φ,ϕ̸=ϕ̃

[
ϱ(mf )

H∑
h=1

∑
a

KL
(
Pϕh

h (· |mf , a) ∥ P ϕ̃h

h (· |mf , a)
)]

. (120)

We proceed to analyze (120) by considering different cases of the uncertainty level σ+.

• For 0 < σ+ ≤ c2
2H : If ϕh = ϕ̃h, it is obvious that∑

a∈{0,1}

KL
(
P ⋆,ϕ
h (· | s, a) ∥ P ⋆,ϕ̃

h (· | s, a)
)
= 0. (121)

Consider the case of ϕh ̸= ϕ̃h. Without loss of generality, we suppose ϕh = 0 and ϕ̃h = 1,
which indicates

KL
(
P ⋆,ϕ
h (0 |mf , 0) ∥ P ⋆,ϕ̃

h (0 |mf , 0)
)
≤ (p− q)2

q(1− q)

(i)
=

∆2

q(1− q)

(ii)
=

(c5)
2ε2

H4q(1− q)
≤ 4(c5)

2ε2

c2H3
, (122)

where the first inequality exists by applying Lemma E.1, (i) follows from the definitions in
(99), (ii) holds due to the definition in (110), and the last inequality arises from q = p−∆ ≥
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c2
2H (see (100)) and 1− q ≥ 1− p ≥ 1− c2

H ≥
1
2 . Similarly, we establish the same bound

for KL
(
P ⋆,ϕ
h (0 |mf , 1) ∥ P ⋆,ϕ̃

h (0 |mf , 1)
)
. Further incorporating (122) yields∑

a∈{0,1}

KL
(
P ⋆,ϕ
h (· |mf , a) ∥ P ⋆,ϕ̃

h (· |mf , a)
)
≤ 16(c5)

2ε2

c2H3
. (123)

• For c2
2H < σ+ ≤ 1− c0: Following the same pipeline, it then boils down to control the main

term as below:

KL
(
P ⋆,ϕ
h (0 |mf , 0) ∥ P ⋆,ϕ̃

h (0 |mf , 0)
)
≤ (p− q)2

q(1− q)

(i)
=

∆2

q(1− q)

(ii)
=

(c5)
2σ+2

ε2

H2q(1− q)
≤ 2(c5)

2σ+ε2

c0H2
, (124)

where (i) and (ii) follow from the definitions in (99) and (110). Here, the last inequality
arises from

1− q ≥ 1− p = 1− (1 +
c1
H

)σ+
(i)

≥ c0 −
c1
H

(ii)

≥ c0
2

p ≥ q = p−∆
(iii)

≥ σ+, (125)

where (ii) holds due to the definition of c1 = c0
2 , and (iii) follows from (101). Consequently,

we arrive at ∑
a∈{0,1}

KL
(
P ⋆,ϕ
h (· | , s, a) ∥ P ⋆,ϕ̃

h (· | , s, a)
)
≤ 8(c5)

2σ+ε2

c0H2
. (126)

Summing up (123) and (126), we achieve for any (ϕ, ϕ̃) ∈ Φ with ϕ ̸= ϕ̃ and any time step h ∈ [H]∑
a∈{0,1}

KL
(
P ⋆,ϕ
h (· |mf , a) ∥ P ⋆,ϕ̃

h (· |mf , a)
)
≤ 16(c5)

2ε2

c0c2H2
max{σ+, 1/H}. (127)

Plugging (127) back to (120), under the definition in (106), we obtain

pe ≥
1

2
− 4K

H
max

(ϕ,ϕ̃)∈Φ,ϕ ̸=ϕ̃

[
ϱ(mf )

H∑
h=1

∑
a

KL
(
Pϕh

h (· |mf , a) ∥ P ϕ̃h

h (· |mf , a)
)]

≥ 1

2
− 4K

H
ϱ(mf )

H∑
h=1

16(c5)
2ε2

c0c2H2
max{σ+, 1/H}

≥ 1

2
− 64K(c5)

2ε2

c0c2CSAH2
max{σ+, 1/H} ≥ 1

4
, (128)

as long as the sample size, T = KH , of the dataset is selected as

T ≤ c0c2CSAH3 min{1/σ+, H}
256(c5)2ε2

≤ c0c2C
⋆
r SAH3 min{1/σ+, H}

256(c5)2ε2
. (129)

E.2.3 Step 3: Putting all together

Next, we establish (108) by contradiction. Suppose that there exists an estimator µ̃ such that

max
(f,ϕ∈F)×Φ

Pf,ϕ

[{
V ⋆,σ+,f,ϕ
1 (ϱ)− V µ̃,σ+,f,ϕ

1 (ϱ)
}
≥ ε
]
<

1

4
. (130)

According to (108), we would need

∀w ∈ F : max
ϕ∈Φ

Pf,ϕ

[{
V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf )
}
≥ ε
]
<

1

4
. (131)
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To meet (131) for any w ∈ F , we would require

∀ϕ ∈ Φ : Pf,ϕ

{
V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) < ε
}
≥ 3

4
, (132)

which, in view of (112), indicates that we would need

∀ϕ ∈ Φ : Pf,ϕ

{
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8

}
≥ 3

4
. (133)

On the other hand, (117) indicates

∀ϕ ∈ Φ : Pf,ϕ

[
ϕ̂ = ϕ

]
≥ 3

4
. (134)

To achieve (130) or, in other words, (133), we apply (134) to all w ∈ F , which would require

∀(f, ϕ) ∈ F × Φ : Pf,ϕ

[
(f̂ , ϕ̂) = (f, ϕ)

]
≥ 3

4
. (135)

This contract with (128) as long as the sample size condition in (129) is satisfied. Thus, if the sample
size obeys (129), we cannot achieve an estimate µ̃ that satisfies (130), which completes the proof.

F Multiplayer General-sum Markov Games

In this section, we extend RTZ-VI-LCB to the setting of multi-player general-sum Markov games
and present the corresponding theoretical guarantees.

F.1 Problem formulation

A robust general-sum Markov game is a tupleM(S, {Ai}mi=1, H, {Uσi
ρ (P 0)}mi=1, {ri}mi=1) with m

players, where S denotes the state space and H is the horizon length. We have m different action
spaces, where Ai is the action space for the ith player and |Ai| = Ai. We let A = A1 × · · · × Am

denote the joint action space, and let a := (a1, · · · , am) ∈ A denote the joint actions by all m
players. A notable deviation from standard MGs is that: for 1 ≤ i ≤ m, instead of assuming a fixed
transition kernel, each ith player anticipates that the transition kernel is allowed to be chosen arbitrarily
from a prescribed uncertainty set Uσi

ρ (P 0). Here, the uncertainty set Uσi
ρ (P 0) is constructed centered

on P 0(·|s,a), with its size and shape defined by a certain distance metric ρ and a radius parameter
σi > 0. ri = {rh,i}h∈[H] is a collection of reward functions for the ith player, so that rh,i(s,a) gives
the reward received by the ith player if actions a are taken at state s at step h.

The policy of the ith player is denoted as πi :=
{
πh,i : S → ∆Ai

}
h∈[H]

. We denote the product

policy of all players as π := π1 × · · · × πM , and denote the policy of all players except the ith

player as π−i. We define V π
h,i(s) as the expected cumulative reward that will be received by the

ith player if starting at state s at step h and all players follow policy π. For any strategy π−i,
there also exists a robust best response of the ith player, which is a policy µ⋆(π−i) satisfying
V

µ⋆(π−i),π−i,σi

h,i (s) = supπi
V

πi,π−i,σi

h,i (s) for any (s, h) ∈ S × [H]. For convenience, we denote

V
⋆,π−i,σi

h,i := V
µ⋆(π−i),π−i,σi

h,i . The Q-functions of the robust best response can be defined similarly.

Similar to the definition of behavior policy (µn, νn), we use the short-hand notation for the occupancy
distribution w.r.t. the behavior policy πn = (πn

i , π
n
−i) as: ∀(h, s,a) ∈ [H]× S ×A,

dn,P
0

h (s) = dπ
n,P 0

h (s) := P(sh = s | s1 ∼ ϱn, πn, P 0); (136a)

dn,P
0

h (s,a) = dπ
n,P 0

h (s,a) := P(sh = s | s1 ∼ ϱn, πn, P 0)πn(a | s). (136b)

Similarly, for any product policy π = (πi, π−i), there is, ∀(h, s,a) ∈ [H]× S ×A

d
πi,π−i,P
h (s) := P(sh = s | s1 ∼ ϱ, π, P ); (137a)

d
πi,π−i,P
h (s,a) := P(sh = s | s1 ∼ ϱ, π, P )πi,h(ai | s)π−i,h(a−i | s). (137b)
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Therefore, the robust variant of standard solution concepts—robust NE for Robust multi-player
general-sum MGs is introcuded as follows: A product policy π is considered a robust NE if

∀(s) ∈ S, V π,σi

1 (s) = V
⋆,π−i,σ

+

h (s). (138)

A robust NE signifies that given the product policy (π) of the opponents, no player can enhance
their outcome by deviating from their current policy unilaterally when each player accounts for the
worst-case scenario within their uncertainty set Uσi

ρ (P 0) for all i = 1, 2, · · · ,m.

Since finding exact robust equilibria can be complex and may not always be feasible, practitioners
often seek approximate equilibria. In this context, a product policy π ∈ ∆(A) can be termed an
ε-robust NE if

Gap(π) := max
{{

V
⋆,π−i,σi

i,1 (ϱ)− V π,σi

i,1 (ϱ)
}m
i=1

}
≤ ε, (139)

where

V
⋆,π−i,σi

1 (ϱ) = Es∼ϱV
⋆,π−i,σi

1 (s), and V ⋆,σi

1 (ϱ) = Es∼ϱV
⋆,σi

1 (s).

The existence of robust NE has been established for general divergence functions used in the
uncertainty set in [5].

Goal With a dataset collected from the nominal environment, our objective is to find a solution
among the ε-robust NEs for the robust multi-player general-sum MGMGr w.r.t. a specified uncer-
tainty set Uσi

ρ (P 0) around the nominal kernel, while minimizing the number of samples required
under partial coverage of the state-action space.

F.2 Multi-RTZ-VI-LCB

Here we present the Multi-RTZ-VI-LCB algorithm in Algorithm 4, which is an extension of Algo-
rithm 2 for multi-player general-sum Markov games.

According to the empirical frequencies of state transitions, we can naturally construct an empirical
estimate P̂ 0 = {P̂ 0

h}Hh=1 of P 0, where

P̂ 0
h (s′ | s,a) =

{
1

Nh(s,a)

∑N
j=1 1

{(
sj ,aj , s

′
j

)
= (s,a, s′)

}
, if Nh (s,a) > 0;

1
S , if Nh (s,a) = 0,

(140)

r̂i,h (s,a) =

{
ri,h (s,a) , if Nh (s,a) > 0;

0, if Nh (s,a) = 0,
(141)

for any (i, h, s,a, s′) ∈ [m]× [H]×S ×A×B ×S . Besides, Nh(s,a) represents the total number
of sample transitions from (s,a) at step h, and

Nh(s,a) :=

N∑
j=1

1
{
(sj ,aj) = (s,a)

}
. (142)

Before the details of Multi-RTZ-VI-LCB, we extend Algorithm 1 as Algorithm 3, which reduces
statistical dependencies and produces a distributionally equivalent dataset D0 with independent
samples. Similar to Lemma 3.1, we present the following lemma concerning the dataset D0, whose
proof is similar to the context in Appendix C.

Lemma F.1. The dataset produced by the two-stage subsampling method is distributionally identical
to D0 with probability at least 1− 8δ, where {Nh(s,a)} are independent of the sample transitions
in D0 and obey: ∀(h, s,a) ∈ [H]× S ×A,

Nh(s,a) ≥
Kdnh(s,a)

8
− 5

√
Kdnh(s,a) log

KH

δ
. (143)

Based on Algorithm 4, we propose a model-based approach for solving robust multi-player general-
sum MGs using an approximate P̂ 0 for P 0, as summarized in Algorithm 4.
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Algorithm 3 Two-stage subsampling for Multi-RTZ-VI-LCB.
input Dataset D, probability δ.

1: Step 1: Data Partitioning. Split D into two equal-sized subsets, Dm and Da, each containing
K/2 trajectories.

2: Step 2: Defining Transition Bounds. For step h and state s, denote the number of transitions
from Dm (resp. Da) as Nm

h (s) (resp. N a
h(s)). Construct the trimmed count as:

N t
h(s) := max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}
.

3: Step 3: Generating Subsampled Dataset. Randomly sample transitions (quadruples of the
form (s,a, h, s′)) from Dm uniformly. For each (s, h) ∈ S × [H], include min{N t

h(s), N
m
h (s)}

transitions in the new dataset Dt.
output Set D0 = Dt.

Algorithm 4 Multi-RTZ-VI-LCB.

1: Initialization: Set uncertainty levels σi for i = 1, 2, · · · ,m; set V̂ σi

i,h(s) = H and Q̂σi

i,h(s,a) =

H for all (i, s,a, h) ∈ [m]× S ×A× [H + 1].
2: Compute the empirical reward function r̂ using (141) and the empirical transition kernel P̂0

using (140).
3: for h = H,H − 1, . . . , 1 do
4: Update the robust Q-value estimate as

Q̂σi

i,h (s,a) = min

{
r̂i,h (s,a) + inf

P∈Uσi(P̂ 0
h,s,a)

PV̂ σi

i,h+1 + βi,h

(
s,a, V̂ σi

i,h+1

)
, H

}
,

with βi,h (s,a, V ) = min

{
max

{√
Cn log

KH
δ

Nh(s,a)
VarP̂ 0

h,s,a
(V ),

2CnH log KH
δ

Nh(s,a)

}
, H

}
.

5: Compute Nash policy for each s ∈ S as

πh (s) = (πi,h (s) , π−i,h (s)) = ComputNash
(
Q̂σi

i,h (s, ·)
)
,

6: Update the robust value estimate for each s ∈ S as

V̂ σi

i,h (s) = Ea∼πh(s)

[
Q̂σi

i,h (s,a)
]
.

7: end for
output The product policy π̂ (s) = {πh (s)}Hh=1 with πh (s) =

∏m
i=1 πi,h (s).

Similar to (16), we can tackle the multi-player general-sum MGs problem as:

inf
P∈Uσi(P̂ 0

h,s,a)
PV̂ σi

i,h+1= max
α∈[mins V̂

σi
i,h+1,maxs V̂

σi
i,h+1]

{
P̂ 0
h,s,a

[
V̂ σi

i,h+1

]
α
−σi

(
α−min

s′

[
V̂ σi

i,h+1

]
α
(s′)
)}

.

(144)

where
[
V̂ σi

i,h+1

]
α

respectively denote the clipped versions of V̂ σi

i,h+1 ∈ RS based on some level α ≥ 0,
as follows. [

V̂ σi

i,h+1

]
α
(s) :=

{
V̂ σi

i,h+1(s), if V̂ σi

i,h+1(s) > α;

α. otherwise;
(145)

F.3 Analysis of Multi-ME-Nash-QL

In this subsection, we prove Theorem 4.5, which can separated into three steps as the proof of
Theorem 4.2.
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First of all, similar to Assumption 4.1, we measure the distributional discrepancy between the
historical data and the target data to assess the effectiveness of the historical dataset for achieving the
desired goal. We propose a novel assumption for robust multi-agent general-sum MGs as:
Assumption F.2 (Robust multiple clipped concentrability). The behavior policies of the historical
dataset D satisfies

max


 sup

(π−i,s,a,h,P )∈∆(A−i)×S×A×[H]×Uσi (P 0)

min
{
d
π⋆
i ,π−i,P

h (s,a), 1
S
∑m

i=1 Ai

}
dn,P

0

h (s,a)


m

i=1

 ≤ C⋆
mr

(146)

F.3.1 Step 1: decoupling statistical dependency

Before bounding Gap(π̂), we introduce an important lemma whose proof is similar to Lemma D.1 in
Appendix G.1, quantifying the difference between P̂ and P when projected in the direction of the
value function.
Lemma F.3. Instate the assumptions in Theorem 4.5. Consider any vector V ∈ RS with ∥V ∥∞ ≤ H
for all (i, h, s,a) ∈ [m] × [H] × S × A satisfying Nh (s,a) > 0. With probability at least 1 − δ,
one has∣∣∣∣∣ inf
P∈Uσi (P̂ 0

h,s,a)
PV − inf

P∈Uσi (P 0
h,s,a)

PV

∣∣∣∣∣ ≤ C4

√
1

Nh (s,a)
VarP̂ 0

h,s,a

(
V
)
log

KH

δ
+ C4

H log KH
δ

Nh (s,a)

(147)

for some sufficiently large constant C4 > 0, and

VarP̂ 0
h,s,a

(
V
)
≤ 2VarP 0

h,s,a

(
V
)
+O

(
H2

Nh (s,a)
log

KH

δ

)
. (148)

With Lemma F.3, we can now have∣∣∣∣∣ inf
P∈Uσi (P̂ 0

h,s,a)
PV − inf

P∈Uσi (P 0
h,s,a)

PV

∣∣∣∣∣ ≤ βh (s,a, V ) (149)

for any (i, h, s,a) ∈ [m]× [H]× S ×A satisfying Nh(s,a) ≥ 1.

Therefore, we conclude that Q̂σi

i,h(s,a) is an optimistic estimation of Q̂π,σi

i,h (s,a) for any i =
1, 2, · · · ,m, which is summarized below, whose proof is similar to Lemma D.2 in Appendix G.2.
Lemma F.4. With probability exceeding 1− δ, it holds that

Q̂σi

i,h(s,a) ≥ Q
⋆,π̂−i,σi

i,h (s,a) and V̂ σi

i,h(s) ≥ V
⋆,π̂−i,σi

i,h (s). (150)

Besides, we introduce another key lemma highlighting the difference between robust multi-player
general-sum MGs and standard multi-player general-sum MGs from the same idea of Lemma D.3, as
shown below.
Lemma F.5. Consider any multi-player general-sum MGs MGr ={
S, {Ai}mi=1, H, {Uσi

ρ (P 0)}mi=1, {ri}mi=1

}
and the uncertainty set {Uσi

ρ (P 0)}mi=1(·) with TV
distance. The optimistic robust value function estimate V̂ σi

i,h:

∀(i, h) ∈ [m]× [H] : max
s∈S

V̂ σi

i,h −min
s∈S

V̂ σi

i,h ≤ min

{
(H + 1)

(
1− (1− σi)

H−h
)

σi
, H

}
.

F.3.2 Step 2: decomposing the error Gap(π̂)

The goal of our algorithm is to output an ε-robust NE policy (π̂) satisfying Gap(π̂) in (139), i.e.,

Gap(π̂) := max
{{

V
⋆,π̂−i,σi

i,1 (ϱ)− V π̂,σi

i,1 (ϱ)
}m

i=1

}
≤ ε.
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According to the relationship in Lemma F.4, under the definition of A−i := A1 × · · · × Ai−1 ×
Ai+1 × · · · × Am, we obtain

V
⋆,π̂−i,h,σ

+

h (s) ≤ V̂ σi

i,h(s) = min
maxπ−i∈∆(A−i)

Ea∼(πi(s),π−i(s))

[
Qσi

i,h(s,a)
]
, (151)

where the first equality comes from line 8 in Algorithm 4. Therefore, there exists a deterministic
policy πd

−i : S ← ∆(A−i) satisfying that for any s ∈ S

πd
−i(s) ≥ arg min

π−i∈∆(Ai)
Ea∼(πi(s),π−i(s))

[
Qσi

i,h(s,a)
]
. (152)

Before starting, we introduce several useful notations:

• The state-action space covered by the behavior policy πn in the nominal transition kernel
P 0 is denoted as

Cn = {(h, s,a) : dnh(s,a) > 0} . (153)

• For any (i, h) ∈ [m]× [H], the set of potential state occupancy distributions w.r.t. the policy
(πi(s), π

b
−i(s)) and the uncertainty set P ∈ Uσi

(
P 0
)

f is denoted as

Dpi
i,h :=

{[
d
πi(s),π

b
−i(s),P

h (s)

]
s∈S

: P ∈ Uσi
(
P 0
)}

; (154)

Dpai
i,h :=

{[
d
πi(s),π

b
−i(s),P

h (s,a)

]
(s,a)∈S×A

: P ∈ Uσi
(
P 0
)}

. (155)

• For convenience and without ambiguity, we introduce an additional notation for (i, h) ∈
[m]× [H] as

β
πi,π

b
−i

i,h (s) = Ea∼(πi(s),πb
−i(s))

βi,h

(
s,a, V̂ σi

i,h+1

)
.

In particular, the vector β
πi,π

b
−i

i,h ∈ RS is defined with its s-th item given by β
πi,π

b
−i

i,h (s).

• Similarly, we can define the notation related to rewards for (i, h) ∈ [m]× [H] as

r̂
πi,π

b
−i

i,h (s) = Ea∼(πi(s),πb
−i(s))

r̂i,h (s,a) .

To proceed with the analysis, we need to introduce a pessimistic V-estimation V σi

i,h(s) that are defined

similarly as V̂ σi

i,h(s). Similar to Lemma F.4, we have V σi

i,h(s) ≤ V π̂,σi

i,h (s).

Therefore, according to the update rule in line 4 in Algorithm 4 and robust Bellman equality similar
to (28), we derive

V
⋆,π̂−i,σ

+

i,h (s)− V π̂,σ+

i,h (s)

≤V̂ σi

i,h(s)− V σi

i,h(s)(s)

≤Ea∼(πi(s),πb
−i(s))

inf
P∈Uσi

(
P̂ 0

h,s,a

)PV̂ σi

i,h+1 + 2β
πi,π

b
−i

i,h (s)− Ea∼(πi(s),πb
−i(s))

inf
P∈Uσi(P 0

h,s,a)
PV σi

i,h+1

≤Ea∼(πi(s),πb
−i(s))

[
inf

P∈Uσi

(
P 0

h,s,a

)PV̂ σi

i,h+1 − inf
P∈Uσi(P 0

h,s,a)
PV σi

i,h+1

+

∣∣∣∣∣∣ inf
P∈Uσi(P 0

h,s,a)
PV̂ σi

i,h+1 − inf
P∈Uσi

(
P̂ 0

h,s,a

)PV̂ σi

i,h+1

∣∣∣∣∣∣
]
+ 2β

πi,π
b
−i

i,h (s)

(i)

≤Ea∼(πi(s),πb
−i(s))

 inf
P∈Uσi

(
P 0

h,s,a

)PV̂ σi

i,h+1 − inf
P∈Uσi(P 0

h,s,a)
PV σi

i,h+1

+ 3β
πi,π

b
−i

i,h (s)

(ii)

≤Ea∼(πi(s),πb
−i(s))

[
P inf,V
i,h,s,a

(
V̂ σi

i,h+1 − V σi

i,h+1

)]
+ 3β

πi,π
b
−i

i,h (s). (156)
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Here, (i) in (156) exists due to (149) in Lemma F.3 for Nh(s,a) > 0 and∣∣∣∣∣∣ inf
P∈Uσi(P 0

h,s,a)
PV̂ σi

i,h+1 − inf
P∈Uσi

(
P̂ 0

h,s,a

)PV̂ σi

i,h+1

∣∣∣∣∣∣ ≤ H = β
πi,π

b
−i

i,h (s) for Nh(s,a) = 0; (157)

and (ii) is valid under the notation

P inf,V
i,h,s,a := argmin

P∈Uσ+
(
P 0

h,s,a

)PV σi

i,h+1 (158)

and consequently,

inf
P∈Uσi(P 0

h,s,a)
PV σi

i,h+1 = P inf,V
i,h,s,aV

σi

i,h+1, and inf
P∈Uσi(P 0

h,s,a)
PV̂ σi

i,h+1 ≤ P inf,V
i,h,s,aV̂

σi

i,h+1.

For ease of proof, we introduce a notation as P̌ inf,V
i,h,s := Ea∼(πi(s),πb

−i(s))
P inf,V
i,h,s,a. Furthermore, we

define a sequence of matrices P̌ inf,V
i,h ∈ RS×S . We can utilizing (156) recursively over the time steps

h, h+ 1, · · · , H and derive

V
⋆,π̂−i,σ

+

i,h (s)− V π̂,σ+

i,h (s) ≤ V̂ σi

i,h(s)− V σi

i,h(s)

≤ P̌ inf,V
i,h

(
V̂ σi

i,h+1 − V σi

i,h+1

)
+ 3β

πi,π
b
−i

i,h (s)

≤ P̌ inf,V
i,h P̌ inf,V

i,h+1

(
V̂ σi

i,h+2 − V σi

i,h+2

)
+ 3P̌ inf,V

i,h β
πi,π

b
−i

i,h+1 + 3β
πi,π

b
−i

i,h (s)

≤ · · · ≤ 3

H∑
i′=h

 i′−1∏
j=h+1

P̌ inf,V
i,j

β
πi,π

b
−i

i,i′ + 3β
πi,π

b
−i

i,h (s)

= 3

H∑
i′=h

i′−1∏
j=h

P̌ inf,V
i,j

β
πi,π

b
−i

i,i′ , (159)

where we define
(∏i′−1

j=h P̌ inf,V
i,j

)
= I for conciseness.

For any d
πi,π

b
−i

h ∈ Dpi
h (cf. (53)), taking inner product with (59) yields

〈
d
πi,π

b
−i

h , V
⋆,π̂−i,σ

+

i,h − V π̂,σ+

i,h

〉
≤

〈
d
πi,π

b
−i

h , 3

H∑
i′=h

i′−1∏
j=h

P̌ inf,V
i,j

β
πi,π

b
−i

i,i′

〉

= 3

H∑
i′=h

〈
d
p,πi,π

b
−i

i′ , β
πi,π

b
−i

i,i′

〉
, (160)

where

d
p,πd

i ,π
⋆
−i

i′ :=

(dπi,π
b
−i

h

)⊤i′−1∏
j=h

P̌ inf,V
i,j

⊤

∈ Dpi
i′ (161)

by the definition of Dpi
i′ (cf. (154)) for all i′ = h+ 1, · · · , H .
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Next, we control ⟨dp,πi,π
b
−i

i′ , β
πi,π

b
−i

i,i′ ⟩ utilizing concentrability. First of all, according to the definition
of penalty, we demonstrate that the pessimistic penalty satisfies

βi,i′(s,a, V̂ ) ≤ max


√

Cn log
KH
δ

Ni (s,a)
VarP̂ 0

i,s,a
(V̂ ),

2CnH log KH
δ

Ni (s,a)


≤

√
Cn log

KH
δ

Ni (s,a)
VarP̂ 0

i,s,a
(V̂ ) +

2CnH log KH
δ

Ni (s,a)

(i)

≤

√
Cn log

KH
δ

Ni (s,a)

(
2VarP 0

i,s,a

(
V̂
)
+

C0H2

Ni (s,a)
log

KH

δ

)
+

2CnH log KH
δ

Ni (s,a)

(ii)

≤

√
2Cn log

KH
δ

Ni (s,a)
VarP 0

i,s,a

(
V̂
)
+

(
2Cn +

√
CnC0

)
H log KH

δ

Ni (s,a)
(162)

where (i) holds by applying (148) for some sufficiently large C0 and (ii) exists follows from the

Cauchy-Schwarz inequality. Therefore, combining the definition of β
πi,π

b
−i

i,i′ (s), we obtain

⟨dp,πi,π
b
−i

i′ , β
πi,π

b
−i

i,i′ ⟩ =
∑
s∈S

d
p,πi,π

b
−i

i′ (s)β
πi,π

b
−i

i,i′ (s)

=
∑
s∈S

d
p,πi,π

b
−i

i′ (s)Ea∼(πi(s),πb
−i(s))

βi,i′(s,a, V̂ )

=
∑

(s,a)∈S×A×B

d
p,πi,π

b
−i

i′ (s)1{ai = π⋆
i (s)}πd

−i(a−i|s)βi,i′(s,a, V̂ )

=
∑

(s,ai)∈S×A

d
p,πi,π

b
−i

i′ (s, ai, π
b
−i(s))βi,i′(s, π

d
i (s),a−i, V̂ ), (163)

where the last equation holds due to the definition in (137b). Then, we observe d
p,πi,π

b
−i

h (s,a) ∈ Dpai
h

(cf. (155)). Thereafter, we divide the bound (163) into two cases.

For the first case, i.e., s ∈ S where maxP∈Uσi (P 0) d
πi,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
= 0, it follows from

the definition (cf. (154)) that for any d
p,πi,π

b
−i

i′ (s, ai, π
b
−i(s)) ∈ D

pai
i , it satisfies that

d
p,πi,π

b
−i

i′ (s, ai, π
b
−i(s)) = 0. (164)

For the second case, i.e., s ∈ S where maxP∈Uσ+ (P 0) d
πi,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
> 0, by the assump-

tion in (146)

max
P∈Uσi (P 0)

min
{
d
πi,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
, 1
S
∑

i=1 Ai

}
dni′
(
s, ai, πb

−i(s)
) ≤ C⋆

r <∞.

It implies that

dni′
(
s, ai, π

b
−i(s)

)
> 0 and

(
i′, s, ai, π

b
−i(s)

)
∈ Cn. (165)
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Lemma F.1 tells that with probability at least 1− 8δ,

Ni′
(
s, ai, π

b
−i(s)

)
≥

Kdni′
(
s, ai, π

b
−i(s)

)
8

− 5

√
Kdni′

(
s, ai, πb

−i(s)
)
log

KH

δ
(i)

≥
Kdni′

(
s, ai, π

b
−i(s)

)
16

(ii)

≥
KmaxP∈Uσi (P 0) min

{
d
πi,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
, 1
S
∑

i=1 Ai

}
16C⋆

r

≥
Kmin

{
d
p,πi,π

b
−i

i′ (s, ai, π
b
−i(s)),

1
S
∑

i=1 Ai

}
16C⋆

r

, (166)

where (ii) comes from Assumption F.2 and (i) holds due to

Kdni′
(
s, ai, π

b
−i(s)

)
≥ c0

HS
∑

i=1 Ai

dnm
log

KH

δ
f({σi}mi=1, H)dni′

(
s, ai, π

b
−i(s)

)
≥ c0HS

∑
i=1

Ai log
KH

δ
f({σi}mi=1, H) ≥ 1600 log

KH

δ
, (167)

where f({σi}mi=1, H) = min
{{

(Hσi−1+(1−σi)
H)

(σi)2

}m

i=1
, H
}

, the first inequality follows from con-
dition (26), and the second inequality follows from

dnm = min
h,s,ai,πb

−i(s)

{
dnh(s, π

d
i (s),a−i) : d

n
h(s, π

d
i (s),a−i) > 0

}
≤ dni′

(
s, ai, π

b
−i(s)

)
. (168)

Combining the results in (63) and (64), we arrive at

⟨dp,πi,π
b
−i

i′ , β
πi,π

b
−i

i,i′ ⟩ =
∑

(s,ai)∈S×Ai

d
p,πi,π

b
−i

i′ (s, ai, π
b
−i(s))βi,i′(s, ai, π

b
−i(s), V̂ )

≤
∑

(s,ai)∈S×Ai

d
p,πi,π

b
−i

i′ (s, ai, π
b
−i(s))

√
2Cn log

KH
δ

Ni

(
s, ai, πb

−i(s)
)VarP 0

i,s,ai,π
b
−i

(s)

(
V̂
)

+
∑

(s,ai)∈S×Ai

d
p,πi,π

b
−i

i′ (s, ai, π
b
−i(s))

(
2Cn +

√
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)
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δ
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(169)

Similar to the proof in Appendix D.2, we are ready to bound V
⋆,π̂−i,σ

+

i,h (ϱ)− V π̂,σ+

i,h (ϱ). There exists
some sufficiently large constants C1, C2, C3 > 0, and

V
⋆,π̂−i,σ

+
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i,h (ϱ) ≤

√
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r C1H3S
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K
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{
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, H

}
+
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r C2H

2S
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δ

K
min

{
2(Hσi − 1 + (1− σi)
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, H
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≤

√
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r C3H3S
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i=1 Ai log
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δ

K
min

{
2(Hσi − 1 + (1− σi)H)

(σi)2
, H

}
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(170)
where the last inequality follows from condition (26).
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F.3.3 Step 3: summing up the results

Consequently, we obtain the upper bound of V ⋆,π̂−i,σi

i,1 (ϱ)− V π̂,σi

i,1 (ϱ) in (170). which directly leads
to

Gap(π̂) ≤ c1

√
C⋆

r H
2S
∑m

i=1 Ai log
KH
δ

K
min

{{
2(Hσi − 1 + (1− σi)H)

(σi)2

}m

i=1

, H

}
, (171)

for some sufficiently large c1 and

K ≥ HS
∑
i=1

Ai log
KH

δ
min

{{
2(Hσi − 1 + (1− σi)

H)

(σi)2

}m

i=1

, H

}
.

G Proofs of lemmas for Theorem 4.2

G.1 Proof of Lemma D.1

We prove Lemma D.1 similar to the proof of Claim 1 introduced by [43].

G.1.1 Proof of (46).

According to the definition in (16), for any fixed value vector V independent of P̂ 0
h,s,a,b, we have∣∣∣∣∣ inf

P∈Uσ+ (P̂ 0
h,s,a,b)

PV − inf
P∈Uσ+ (P 0

h,s,a,b)
PV

∣∣∣∣∣
=
∣∣∣ max
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)} ∣∣∣
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∣∣∣
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α∈[0,H]

∣∣∣P̂ 0
h,s,a,b [V ]α − P 0

h,s,a,b [V ]α

∣∣∣ , (172)

where the last inequality exists due to the fact that the maximum operator is 1-Lipschitz. According
to the definition of empirical transition kernel P̂ 0

h,s,a,b, we have(
P̂ 0
h,s,a,b − P 0

h,s,a,b

)
[V ]α

=
∑
s′∈S

[V (s′)]α
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]
︸ ︷︷ ︸

=:Xs′

as a sum of independent random variables. Based on the relationship between P 0
h,s,a,b and P̂ 0

h,s,a,b,
we verify E[Xs′ ] = 0 and |Xs′ | ≤ H for all s′ ∈ S. With probability exceeding 1− δ and for some
universal constant C4 > 0, under the Bernstein inequality [37, Theorem 2.8.4], we have

(
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+
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, (173)

where the last inequality comes from the definition of [V ]α in (17).
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Let V := V −
(
P 0
h,s,a,bV

)
1, we have

VarP 0
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where the last equation holds since
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Analogous to (173), with probability exceeding 1− δ,
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(175)

where the last inequation comes from the fact that

VarP 0
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Employing (175), we further bound (174) as
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where the last relation holds due to the AM-GM inequality. Therefore, we obtain
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Combining (176) and (173), we derive
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(177)
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Next, we consider two cases, i.e., Nh (s, a, b) ≤ 1
8C2

4
log KH

δ and Nh (s, a, b) >
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4
log KH

δ . In the

first case of Nh (s, a, b) ≤ 1
8C2

4
log KH

δ , (46) is valid since∣∣∣∣∣ inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV − inf

P∈Uσ+ (P 0
h,s,a,b)

PV

∣∣∣∣∣ ≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)
V
∣∣∣

≤ 2H = O

(
H log KH

δ

Nh (s, a, b)

)
. (178)

In the second case of Nh (s, a, b) >
1

8C2
4
log KH

δ , it follows from (177) that
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which, by arranging the terms, leads to
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Combining (172) and (179), we obtain∣∣∣∣∣ inf
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. (180)

Joining these two cases, we conclude the proof of (46).

G.1.2 Proof of (47).

We consider two cases, i.e., Nh (s, a, b) < 16C2
4 log
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δ . In the
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In the second case of Nh (s, a, b) ≥ 16C2
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where (i) comes from (174), (ii) holds due to (175), and (iii) is based on the AM-GM inequality.

Combining the two cases, (47) holds and Lemma D.1 is proved.

53



G.2 Proof of Lemma D.2

Assuming that Q̂+
h (s, a, b) ≥ Q⋆,ν̂,σ+

h (s, a, b), then we can obtain V̂ +
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which can be proved by mathematical induction. Specifically, (181) holds when h = H + 1 under
the trivial fact Q̂+
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H+1(s, a, b) = 0. Suppose that (181) holds for all (s, a, b) ∈
S ×A× B at some time step h ∈ [H]. According to the update rule in line 4 in Algorithm 2, (181)
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where the second inequality holds due to (48) in Lemma D.1 and the last equality comes from the
empirical robust Bellman equation (30). Together with the case of h = H + 1, we complete prove
Lemma D.2.

G.3 Proof of Lemma D.3

Following the proof by Lemma 3 in [34], we bound mins∈S V̂ +
h (s) and maxs∈S V̂ +

h (s). Specifically,
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where the second equality is valid due to the update rule in line 4 in Algorithm 2. Similarly,
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For any h ∈ [H], there exists at least one state s⋆h that satisfies V̂ +
h (s⋆h) = mins∈S V̂ +

h (s). Further-
more, for any accessible uncertainty set σ+ > 0 and (s, a, b) ∈ S ×A× B, we define an auxiliary
vector P̂ ′

h,s,a,b ∈ RS by reducing the values of several elements of P̂ 0
h,s,a,b strictly, namely,
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(185)
Let ls⋆h represent an S-dimensional standard basis under s⋆h. We can derive that
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[
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1
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where the first inequality is valid since the ‘distance’ function (e.g., TV distance) satisfies the triangle
inequality.

Therefore, we can conclude that P̂ ′
h,s,a,b + σ+

[
ls⋆h
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where the last inequality holds since∥∥P ′
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Putting (187) and (184) together shows
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By substituting (189) it (183), it readily follows that
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which, combined with maxs∈S V̂ +
h (s)−mins∈S V̂ +

h (s) ≤ H , conclude this proof.

G.4 Proof of Lemma D.4

First, we introduce auxiliary values and reward functions to control∑H
i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
V̂
)

as below: for any time step i

• V̂ m
i := mins∈S V̂ +

i (s): the minimum value of all the entries in vector V̂ +
i .

• V̂ ′
i := V̂ +

i − V̂ m
i 1: truncated value function.

• r̂µ
d,ν⋆

i (s) = E(a,b)∼(µd(s),ν⋆(s))r̂i(s, a, b): average reward function.
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• r̂mi = rµ
d,ν⋆

i +
(
V̂ m
i+1 − V̂ m

i

)
1: truncated reward function.

Applying the robust Bellman’s consistency equation in (30) gives

V̂ ′
i = V̂ +

i − V̂ m
i 1

(i)
≤ r̂µ

d,ν⋆

i + P̃ inf,V̂
i V̂ +

i+1 + 2βµd,ν⋆

i − V̂ m
i 1

= r̂µ
d,ν⋆

i + P̃ inf,V̂
i V̂ +

i+1 +
(
V̂ m
i+11− V̂ m

i 1
)
− V̂ m

i+11 + 2βµd,ν⋆

i

= r̂mi + P̃ inf,V̂
i V̂ +

i+1 − V̂ m
i+11 + 2βµd,ν⋆

i

= r̂mi + P̃ inf,V̂
i V̂ ′

i+1 + 2βµd,ν⋆

i , (191)

where (i) follows from the fact that

V̂ +
i (s) ≤r̂µ

d,ν⋆

i (s) + E(a,b)∼(µd(s),ν⋆(s)) inf
P∈Uσ+

(
P̂ 0

i,s,a,b

)PV̂ +
i+1 + βµd,ν⋆

i (s)

(i)

≤r̂µ
d,ν⋆

i (s) + E(a,b)∼(µd(s),ν⋆(s))

[
inf

P∈Uσ+
(
P 0

i,s,a,b

)PV̂ +
i+1

+

∣∣∣∣∣∣ inf
P∈Uσ+

(
P̂ 0

i,s,a,b

)PV̂ +
i+1 − inf

P∈Uσ+
(
P 0

i,s,a,b

)PV̂ +
i+1

∣∣∣∣∣∣
]
+ βµd,ν⋆

i (s)

(ii)

≤ r̂µ
d,ν⋆

i (s) + E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V̂
i,s,a,bV̂

+
i+1

]
+ 2βµd,ν⋆

i (s)

(iii)
= r̂µ

d,ν⋆

i (s) + P̃ inf,V̂
i,s V̂ +

i+1 + 2βµd,ν⋆

i (s), (192)

(ii) is valid under the notation

P inf,V̂
i,s,a,b := argmin

P∈Uσ+
(
P 0

i,s,a,b

)PV̂ +
i+1, (193)

and (iii) holds under the notation as P̃ inf,V̂
i,s := E(a,b)∼(µd(s),ν⋆(s))P

inf,V̂
i,s,a,b and the sequence as

P̃ inf,V
i ∈ RS×S . Besides, (i) in (192) exists due to (48) in Lemma D.1 for Ni(s, a, b) > 0 and∣∣∣∣∣∣ inf

P∈Uσ+(P 0
i,s,a,b)

PV̂ +
i+1 − inf

P∈Uσ+
(
P̂ 0

i,s,a,b

)PV̂ +
i+1

∣∣∣∣∣∣ ≤ H = βµd,ν⋆

i (s) for Ni(s, a, b) = 0. (194)

Then, we have

E(a,b)∼(µd(s),ν⋆(s))VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
(i)
=E(a,b)∼(µd(s),ν⋆(s))VarP inf,V

i,s,a,b

(
V̂ ′
i+1

)
=E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V
i,s,a,b

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
−
(
P inf,V
i,s,a,bV̂

′
i+1

)
◦
(
P inf,V
i,s,a,bV̂

′
i+1

)]
≤E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V
i,s,a,b

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
−
(
P inf,V̂
i,s,a,bV̂

′
i+1

)
◦
(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
(ii)

≤ P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
−
(
P̃ inf,V̂
i,s V̂ ′

i+1

)
◦
(
P̃ inf,V̂
i,s V̂ ′

i+1

)
=P̃ inf,V

i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) + V̂ ′

i (s) ◦ V̂ ′
i (s)−

(
P̃ inf,V̂
i,s V̂ ′

i+1

)
◦
(
P̃ inf,V̂
i,s V̂ ′

i+1

)
=P̃ inf,V

i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) +

(
V̂ ′
i (s)−

(
P̃ inf,V̂
i,s V̂ ′

i+1

))
◦
(
V̂ ′
i (s) +

(
P̃ inf,V̂
i,s V̂ ′

i+1

))
(iii)

≤ P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) +

(
r̂mi (s) + 2βµd,ν⋆

h (s)
)
◦
(
V̂ ′
i (s) +

(
P̃ inf,V̂
i,s V̂ ′

i+1

))
(iv)

≤ P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) +

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)(
2βµd,ν⋆

i (s) + 1
)
, (195)
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where (i) follows from that VarP inf,V
i,s

(V − b1) = VarP inf,V
i,s

(V ) for any value vector V ∈ RS and
scalar b, (ii) holds since

E(a,b)∼(µd(s),ν⋆(s))

[(
P inf,V̂
i,s,a,bV̂

′
i+1

)
◦
(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
≥E(a,b)∼(µd(s),ν⋆(s))

[(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
◦ E(a,b)∼(µd(s),ν⋆(s))

[(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
,

(iii) comes from (191), and (iv) arises from r̂mi ≤ ri ≤ 1 due to V̂ m
i+1 − V̂ m

i ≤ 0 by definition.

Consequently, combining (62), we arrive at

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
=
∑
s∈S

dp,µ
d,ν⋆

i (s)E(a,b)∼(µd(s),ν⋆(s))VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
≤
∑
s∈S

dp,µ
d,ν⋆

i (s)
(
P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s)

+
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)(
2βµd,ν⋆

i (s) + 1
))

≤
∑
s∈S

dp,µ
d,ν⋆

i (s)
(
P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s)

)
+
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+ 2

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s)

=
∑
s∈S

(
dp,µ

d,ν⋆

i+1 (s)
(
V̂ ′
i+1(s)◦V̂ ′

i+1(s)
)
−dp,µ

d,ν⋆

i (s)V̂ ′
i (s) ◦ V̂ ′

i (s)
)
+
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+ 2

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s)

=
∑
s∈S

(
dp,µ

d,ν⋆

i+1 (s)
(
V̂ ′
i+1(s)◦V̂ ′

i+1(s)
)
−dp,µ

d,ν⋆

i (s)V̂ ′
i (s) ◦ V̂ ′

i (s)
)
+
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+ 2

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

) ∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ ). (196)

Besides, under TV distance, we have

∣∣∣VarP 0
i,s,a,b

(
V̂ +
i+1

)
− VarP inf,V

i,s,a,b

(
V̂ +
i+1

)∣∣∣ = ∣∣∣VarP 0
i,s,a,b

(
V̂ ′
i+1

)
− VarP inf,V

i,s,a,b

(
V̂ ′
i+1

)∣∣∣
≤
∥∥∥P 0

i,s,a,b − P inf,V
i,s,a,b

∥∥∥
1

∥∥∥V̂ ′
i+1

∥∥∥2
∞

≤σ+
∥∥∥V̂ ′

i+1

∥∥∥2
∞
≤ (H + 1)

∥∥∥V̂ ′
i+1

∥∥∥
∞

, (197)

where the last inequality comes from Lemma D.3.
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Therefore, we derive
H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0
i,s,a,b

(
V̂ +
i+1

)
≤

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
+

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)
∣∣∣VarP 0

i,s,a,b

(
V̂ +
i+1

)
− VarP inf,V

i,s,a,b

(
V̂ +
i+1

)∣∣∣
≤

H∑
i=1

2
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s) +

H∑
i=1

(∥∥∥V̂ ′
i

∥∥∥
∞

+ (H + 2)
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+
∑
s∈S

dp,µ
d,ν⋆

H+1 (s)V̂ ′
H+1(s) ◦ V̂ ′

H+1(s)

≤4
H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

} ∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

+ (H + 3)

H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

}
(i)
≤4

H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

}
H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

+ (H + 3)

H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

}
(ii)
≤4Hmin

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

} H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

+ (H + 3)Hmin

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
, (198)

where (i) comes from Cauchy-Schwarz inequality and the (ii) holds since
H∑
i=1

(H + 1)
(
1− (1− σ+)H−i

)
σ+

=
H(H + 1)

σ+
−

H−1∑
i=0

(H + 1)(1− σ+)i

σ+

=
H(H + 1)

σ+
− (H + 1)(1− (1− σ+)H)

(σ+)2

=
(H + 1)(Hσ+ − 1 + (1− σ+)H)

(σ+)2

≤2H(Hσ+ − 1 + (1− σ+)H)

(σ+)2
.

H Proof for Theorem 4.4

To establish Theorem 4.4, we present key auxiliary facts, each addressing critical components of the
proof and providing essential theoretical underpinnings.

H.1 Proof of Lemma E.2

Since all RMDPs inM(F ,Φ) are constructed similarly for each w ∈ F and ϕ ∈ Φ, we will focus
on a specific RMDPMϕ

f ∈M(F ,Φ), with the results applicable to all other RMDPs inM(F ,Φ).
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H.1.1 Ordering the robust value function over different states

Before proceeding, we introduce several facts and notations that will be useful throughout this section.
First, for anyMϕ

f and any policy µ̃, we observe the following at the final step H + 1:

∀s ∈M∪N : V µ̃,σ+,f,ϕ
H+1 (s) = 0. (199)

Then for step H , we can easily verify that

∀s ∈ N : V µ̃,σ+,f,ϕ
H (s) = Ea∼µ̃H(· | s)

[
rH(s, a) + inf

P∈Uσ+ (P f,ϕ
H,s,a)

PV µ̃,σ+,f,ϕ
H+1

]
= 1 (200a)

∀s ∈M : V µ̃,σ+,f,ϕ
H (s) = Ea∼µ̃H(· | s)

[
rH(s, a) + inf

P∈Uσ+ (P f,ϕ
H,s,a)

PV µ̃,σ+,f,ϕ
H+1

]
= 0, (200b)

which holds by (199) and the definition of the reward function (see (87)). The above fact directly
indicates that

∀(s, s′) ∈M×N : min
s̃∈S

V µ̃,σ+,f,ϕ
H (s̃) = V µ̃,σ+,f,ϕ

H (mf ) ≤ V µ̃,σ+,f,ϕ
H (s) < V µ̃,σ+,f,ϕ

H (s′),

(201a)

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
H (s) = V µ̃,σ+,f,ϕ

H (s′). (201b)

Then we introduce a claim which we will prove by induction in a moment as below:

∀(h, s, s′) ∈ [H]×M×N : V µ̃,σ+,f,ϕ
h (mf ) ≤ V µ̃,σ+,f,ϕ

h (s) < V µ̃,σ+,f,ϕ
h (s′) (202a)

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
h (s) = V µ̃,σ+,f,ϕ

h (s′). (202b)

Note that the base case when the time step is H + 1 is verified in (201). Assume that the following
fact at time step h+ 1 holds

∀(s, s′) ∈M×N : min
s̃∈S

V µ̃,σ+,f,ϕ
h+1 (s̃) = V µ̃,σ+,f,ϕ

h+1 (mf ) ≤ V µ̃,σ+,f,ϕ
h+1 (s) < V µ̃,σ+,f,ϕ

h+1 (s′),

(203a)

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
h+1 (s) = V µ̃,σ+,f,ϕ

h+1 (s′). (203b)

The rest of the proof focuses on proving the same property for time step h. For RMDP Mϕ
f ∈

M(F ,Φ) and any policy µ̃, we characterize the robust value function of different states separately:

• For state s ∈ N : we observe that for any s ∈ N ,

V µ̃,σ+,f,ϕ
h (s) = Ea∼µ̃h(· | s)

[
rh(s, a) + inf

P∈Uσ+ (P f,ϕ
h,s,a)

PV µ̃,σ+,f,ϕ
h+1

]
(i)
= 1 + Ea∼µ̃h(· | s)

[
P inf,f,ϕ
h (s | s, a)V µ̃,σ+,f,ϕ

h+1 (s)
]
+ σ+V µ̃,σ+,f,ϕ

h+1 (mf )

= 1 + (1− σ+)V µ̃,σ+,f,ϕ
h+1 (s) + σ+V µ̃,σ+,f,ϕ

h+1 (mf ), (204)

where (i) holds by rh(s, a) = 1 for all s ∈ N (see (87)), the fact that
mins̃∈S V µ̃,σ+,f,ϕ

h+1 (s̃) = V µ̃,σ+,f,ϕ
h+1 (mf ) induced by the induction assumption (cf. (203))

and the definition of P inf,f,ϕ
h (s | s, a) in (90), and the last equality follows from

P f,ϕ(s | s, a) = 1 for all (s, a) ∈ N × Aone. Resorting to the induction assumption
in (203), we have

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
h (s) = V µ̃,σ+,f,ϕ

h (s′). (205)
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• For state mf : first, the robust value function at state mf obeys

V µ̃,σ+,f,ϕ
h (mf ) = Ea∼µ̃h(· |mf )

rh(mf , a) + inf
P∈Uσ+ (P f,ϕ

h,mf ,a)
PV µ̃,σ+,f,ϕ

h+1


(i)
= 0 + µ̃h(ϕh |mf ) inf

P∈Uσ+ (P f,ϕ
h,mf ,ϕh

)
PV µ̃,σ+,f,ϕ

h+1

+ µ̃h(1− ϕh |mf ) inf
P∈Uσ+ (P f,ϕ

h,mf ,1−ϕh
)
PV µ̃,σ+,f,ϕ

h+1

(ii)
= µ̃h(ϕh |mf )

[
pinfV µ̃,σ+,f,ϕ

h+1 (nf ) +
(
1− pinf

)
V µ̃,σ+,f,ϕ
h+1 (mf )

]
+ µ̃h(1− ϕh |mf )

[
qinfV µ̃,σ+,f,ϕ

h+1 (nf ) +
(
1− qinf

)
V µ̃,σ+,f,ϕ
h+1 (mf )

]
(iii)
= mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) + (1−mµ̃,f,ϕ

h )V µ̃,σ+,f,ϕ
h+1 (mf ) (206)

≤ (1− σ+)V µ̃,σ+,f,ϕ
h+1 (nf ) + σ+V µ̃,σ+,f,ϕ

h+1 (mf ). (207)

where (i) uses the definition of the robust value function and the reward function in (87),
(ii) uses the induction assumption in (203) so that the minimum is attained by picking the
choice specified in (91) to absorb probability mass to state mf , and (iii) holds by plugging in
the definition (93) of mµ̃,f,ϕ

h . Finally, the last inequality follows from the fact that function

f(m) := mV µ̃,σ+,f,ϕ
h+1 (nf ) + (1−m)V µ̃,σ+,f,ϕ

h+1 (mf ) is monotonically increasing with m

since V µ̃,σ+,f,ϕ
h+1 (nf ) > V µ̃,σ+,f,ϕ

h+1 (mf ) (see the induction assumption (203)), and the fact
mµ̃,f,ϕ

h ≤ 1− σ+.

Combining the above results with (205), we confirm the claim in (202).

H.1.2 Deriving the optimal policy and optimal robust value function

We shall characterize the optimal policy and corresponding optimal robust value function for different
states separately:

• For states inM: Recall (206)

V µ̃,σ+,f,ϕ
h (mf ) = mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) + (1−mµ̃,f,ϕ

h )V µ̃,σ+,f,ϕ
h+1 (mf ) (208)

and the fact V µ̃,σ+,f,ϕ
h+1 (nf ) > V µ̃,σ+,f,ϕ

h+1 (mf ) in (202). We observe that (208) is monotonic-
ity increasing w.r.t. mµ̃,f,ϕ

h , and mµ̃,f,ϕ
h is also increasing in µ̃h(ϕh |mf ) (refer to the fact

pinf ≥ qinf since p ≥ q; see (99) and (91)). Consequently, the optimal policy and optimal
robust value function in state mf thus obey

∀h ∈ [H] : µ̃⋆,f,ϕ
h (ϕh |mf ) = 1,

V ⋆,σ+,f,ϕ
h (mf ) = pinfV ⋆,σ+,f,ϕ

h+1 (nf ) +
(
1− pinf

)
V ⋆,σ+,f,ϕ
h+1 (mf ). (209)

• For states s ∈ N : Recall the transitions in (98) and (86). Considering that the action does
not influence the state transition for all states s ∈ N , without loss of generality, we choose
the robust optimal policy obeying

∀s ∈ N : µ̃⋆,f,ϕ
h (ϕh | s) = 1. (210)

H.2 Proof of (105)

With the initial state distribution and behavior policy defined in (97), we have for any MDPMf
ϕ,

dn,P
ϕ,f

1 (s) = ϱn(s) = ϱ(s),
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which leads to

∀(mf , a) ∈M×Aone : dn,P
ϕ,f

1 (mf , a) =
1

2
ϱ(mf ). (211)

Along with dn,P
ϕ,f

1 (nf , a) =
1
2ϱ(nf ) = 0, (105a) is proved.

In view of (98), the state occupancy distribution at any step h = 2, 3, · · · , H obeys

dn,P
ϕ,f

h (mf ) ≥ P {sh = s′ | sh−1 = mf ; µ̃
n}

≥ dn,P
ϕ,f

h−1 (mf )
[
µ̃n
h−1(ϕh−1 |mf )(1− p−∆) + µ̃n

h−1(1− ϕh−1 |mf )(1− p)
]

≥ dn,P
ϕ,f

h−1 (mf )(1− p−∆) ≥ · · · ≥ dn,P
ϕ

1 (mf )

h−1∏
j=0

(1− p−∆)

≥ dn,P
ϕ

1 (mf )
(
1− p−∆

)H
>

ϱ(mf )

2
, (212)

where the last line makes use of the properties p and ∆ in (101) and(
1− p−∆

)H
≥
(
1− c2

2H

)H
≥
(
1− 1

2H

)H
≥ 1

2
,

provided that 0 < c2 < 1. In addition, as state nf is an absorbing state and state mf will only transfer
to itself or state nf at each time step, we directly achieve that

dn,P
ϕ,f

h (mf ) ≤ dn,P
ϕ,f

h−1 (mf ) ≤ · · · ≤ dn,P
ϕ,f

1 (mf ) ≤ ϱ(mf ). (213)

For state nf , as it is absorbing, we directly have

dn,P
ϕ,f

h (nf ) = P {sh = nf | sh−1 = nf ; µ̃
n} ≥ dn,P

ϕ,f

h−1 (nf ) ≥ · · · ≥ dn,P
ϕ,f

1 (nf ) = ϱ(nf ).

(214)
According to the assumption in (104), it is easily verified that

dn,P
ϕ,f

h (nf ) ≤ 1 ≤ 2ϱ(nf ). (215)

Finally, combining (212), (213), (214), (215), the definitions of P ⋆
h (· | s, a) in (98), and the Markov

property, we arrive at for any (h, s) ∈ [H]× S ,
ϱ(s)

2
≤ dn,P

ϕ,f

h (s) ≤ 2ϱ(s), (216)

which directly leads to
ϱ(s)

4
≤ dn,P

ϕ,f

h (s, a) = µ̃n
1(a | s)d

n,Pϕ,f

h (s) ≤ ϱ(s). (217)

H.3 Proof of (107)

Examining the definition of C⋆
r in (20), we make the following observations.

• For h = 1, we have

max
(s,a,P )∈Sone×Aone×Uσ(Pϕ)

min
{
d⋆,P1 (s, a), 1

4SA

}
dn,P

ϕ,f

1 (s, a)

(i)
= max

(s,P )∈M×Uσ(Pϕ)

min
{
d⋆,P1 (s, ϕ1),

1
4SA

}
dn,P

ϕ,f

1 (s, ϕ1)

(ii)
= max

(s,P )∈M×Uσ(Pϕ)

1

4SAdn,P
ϕ,f

1 (s, ϕ1)

(iii)
= max

s∈M

1

2SAϱ(s)
= C, (218)

where (i) holds by d⋆,P1 (s) = ρ(s) = 0 for all s ∈ N (see (106)) and µ̃⋆,ϕ
h (ϕh | s) = 1

for all (s, h) ∈ M× [H] (see (95)), (ii) follows from the fact that d⋆,P1 (s, ϕ1) = 1 for all
s ∈M, (iii) is verified in (105), and the last equality arises from the definition in (103).
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• Similarly, for h = 2, 3, · · · , H , we arrive at

max
(s,a,P )∈Sone×Aone×Uσ(Pϕ)

min
{
d⋆,Ph (s, a), 1

4SA

}
dn,P

ϕ,f

h (s, a)

(i)
= max

(s,P )∈S×Uσ(Pϕ)

min
{
d⋆,Ph (s, ϕh),

1
4SA

}
dn,P

ϕ,f

h (s, ϕh)

≤ max
(s,P )∈M×Uσ(Pϕ)

1

4SAdn,P
ϕ,f

h (s, ϕh)

(ii)

≤ max
s∈M

1

2SAϱ(s)
= 2C, (219)

where (i) holds by the optimal policy in (95) and the trivial fact that d⋆,Ph (s) = 0 for all
s ∈ N (see (106) and (98)), (ii) arises from (105), and the last equality comes from (103).

Combining the above cases, we complete the proof by

C

2
≤ C⋆

r = max
(h,s,a,P )∈[H]×Sone×Aone×Uσ(Pϕ)

min
{
d⋆,Ph (s, a), 1

4SA

}
dn,P

ϕ,f

h (s, a)
≤ C.

H.4 Proof of (112)

Recalling (94a) and (96), we first consider a more general form

V ⋆,σ+,f,ϕ
h (mf )− V µ̃,σ+,f,ϕ

h (mf )

=pinfV ⋆,σ+,f,ϕ
h+1 (nf ) + (1− pinf)V ⋆,σ+,f,ϕ

h+1 (mf )

−
(
mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) +

[
1−mµ̃,f,ϕ

h

]
V µ̃,σ+,f,ϕ
h+1 (mf )

)
=
(
pinf −mµ̃,f,ϕ

h

)
V ⋆,σ+,f,ϕ
h+1 (nf ) +mµ̃,f,ϕ

h

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V µ̃,σ+,f,ϕ

h+1 (nf )
)

+ (1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)
−
(
pinf −mµ̃,f,ϕ

h

)
V µ̃,σ+,f,ϕ
h+1 (mf )

=mµ̃,f,ϕ
h

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V µ̃,σ+,f,ϕ

h+1 (nf )
)
+ (1− pinf)

(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
(
pinf −mµ̃,f,ϕ

h

)(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
(
pinf −mµ̃,f,ϕ

h

)(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)
, (220)

where the last inequality holds since

pinf −mµ̃,f,ϕ
h =

(
pinf − qinf

)(
1− µ̃h(ϕh |mf )

)
= (p− q)

(
1− µ̃h(ϕh |mf )

)
=

1

2
(p− q)

(
1− µ̃h(ϕh |mf ) + µ̃h(1− ϕh |mf )

)
=

1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1
, (221)

with the first equality holding by (93) and the second existing by (91).
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To further control (220), we have

V ⋆,σ+,f,ϕ
h (nf )− V ⋆,σ+,f,ϕ

h (mf )
(i)
=1 + (1− σ+)V ⋆,σ+,f,ϕ

h+1 (nf ) + σ+V ⋆,σ+,f,ϕ
h+1 (mf )

−
(
pinfV ⋆,σ+,f,ϕ

h+1 (nf ) + (1− pinf)V ⋆,σ+,f,ϕ
h+1 (mf )

)
=1 + (1− pinf − σ+)

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

(ii)
=1 + (1− p)

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

= · · · =
H−h∑
j=0

(1− p)j , (222)

where (i) follows from Lemma E.2 and (ii) holds by (91). Then, we consider two cases w.r.t. the
uncertainty level σ+ to control (222), respectively:

• When 0 < σ+ ≤ c2
2H : Recall p = c2

H if σ+ ≤ c2
2H . In this case, applying (222), we have

V ⋆,σ+,f,ϕ
h (nf )− V ⋆,σ+,f,ϕ

h (mf )

=

H−h∑
j=0

(1− p)j ≥
H−h∑
j=0

(
1− c2

H

)j
=

1−
(
1− c2

H

)H−h+1

c2/H
≥ 2c2(H − h+ 1)

3
. (223)

Here, the final inequality holds by observing(
1− c2

H

)H−h+1

≤ exp

(
−c2(H − h+ 1)

H

)
≤ 1− 2c2(H − h+ 1)

3H
, (224)

where the first inequality holds by noticing c2 < 1
2 and then 1− x ≤ exp(−x), and the last

inequality holds by exp(−x) ≤ 1− 2x
3 for any 0 ≤ x ≤ 1

2 .
Plugging above fact in (223) back to (220), we arrive at

V ⋆,σ+,f,ϕ
h (mf )− V µ̃,σ+,f,ϕ

h (mf )

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

2c2(H − h+ 1)

3
. (225)

Then, invoking the assumption
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
≥ H

8
(226)

in (111) and applying (225) recursively for h = 1, 2, · · · , H yields

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf )

≥c2
3

H∑
h=1

(1− pinf)h−1(p− q)(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(i)

≥ c2
3

H∑
h=1

(1− c2
H

)h−1(p− q)(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(ii)

≥ c2
6

H∑
h=1

(p− q)(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(iii)
=

c2∆

6

H∑
h=1

h
∥∥µ̃⋆,f,ϕ

H−h+1(· |mf )− µ̃H−h+1(· |mf )
∥∥
1

(iv)

≥ c2∆

6

⌊H/16⌋∑
h=1

2h ≥ c2∆

6
⌊H/16⌋ (⌊H/16⌋+ 1) , (227)
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where (i) follows from 1− pinf ≥ 1− p = 1− c2
H , and (ii) holds by

∀h ∈ [H] : (1− c2
H

)h−1 ≥ (1− c2
H

)H ≥ 1

2
b (228)

as long as c2 ≤ 1
2 . Here, (iii) arises from the definition of p, q in (99); (iv) can be verified by

the fact that for any series 0 ≤ m1,m2, · · · ,mH ≤ mmax that obeys
∑H

h=1 mh ≥ y, one
has

H∑
h=1

mhh ≥
⌊mmax/n⌋∑

h=1

mmaxh, (229)

and taking mh =
∥∥µ̃H−h+1(· |mf )− µ̃⋆,f,ϕ

H−h+1(· |mf )
∥∥
1
≤ 2 = mmax and n = H

8 .
Consequently, observed from (227), the following inequality holds

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) ≥
c2∆

6
⌊H/16⌋ (⌊H/16⌋+ 1) ≥ c3∆H2 > ε (230)

for some small enough constant c3 and letting ∆ = ε
c3H2 .

• When c2
2H < σ+ ≤ 1− c0: Similarly, recalling p =

(
1 + c1

H

)
σ+ if σ+ > c2

2H and invoking
(222) gives

V ⋆,σ+,f,ϕ
h (nf )− V ⋆,σ+,f,ϕ

h (mf ) =

H−h∑
j=0

(1− p)j =

H−h∑
j=0

(
1−

(
1 +

c1
H

)
σ+
)j

≥
1−

(
1− (1 + c1

H )σ+
)H−h+1

(1 + c1
H )σ+

≥c2(H − h+ 1)

3σ+H
, (231)

where the final inequality holds by observing(
1−

(
1 +

c1
H

)
σ+
)H−h+1

≤ exp
(
−
(
1 +

c1
H

)
σ+(H − h+ 1)

)
(i)

≤ exp
(
− c2
2H

(
1 +

c1
H

)
(H − h+ 1)

)
≤ 1−

(
1 +

c1
H

) c2(H − h+ 1)

3H
. (232)

Here, (i) holds by observing c2
2H < σ+, and the last inequality holds by

(
1 + c1

H

)
≤ 2,

c2 ≤ 1
2 , and the fact exp(−x) ≤ 1− 2x

3 for any 0 ≤ x ≤ 1
2 .

Plugging (231) into (220) gives

V ⋆,σ+,f,ϕ
h (mf )− V µ̃,σ+,f,ϕ

h (mf )

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

c2(H − h+ 1)

3σ+H
. (233)

Following the steps to achieve (227), applying (233) recursively for h = 1, 2, · · · , H gives

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf )

≥
H∑

h=1

(1− pinf)h−1(p− q)
c2(H − h+ 1)

6σ+H

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

(i)
=
c2(p− q)

6σ+H

H∑
h=1

(1− c1
H

)h−1(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(ii)

≥ c2∆

12σ+H
⌊H/16⌋ (⌊H/16⌋+ 1) , (234)
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where (i) follows from 1 − pinf = 1 − (p − σ+) = 1 − c1
H σ+, and (ii) holds by letting

c1 ≤ 1
2 and following the same routine of (227). Consequently, (234) yields

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) ≥
c2∆

12σ+H
⌊H/16⌋ (⌊H/16⌋+ 1) ≥ c4∆H

σ+
> ε,

(235)

which holds for some small enough constant c4 and letting ∆ = σ+ε
c4H

.
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