

GROUNDATTACK: MITIGATING EASY-OPTIONS BIAS FOR VISUAL QUESTION ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this early study, we observe an **Easy-Options Bias** (EOB) issue in several multiple-choice Visual Question Answering (VQA) benchmarks, including MMStar, RealWorldQA, SEED-Bench, NExT-QA, STAR benchmark, and Video-MME. This bias allows vision-language models (VLMs) to select the correct answer using only the vision (V) and options (O) as inputs, without the need for the question (Q). Through grounding experiments, we attribute the bias to an imbalance in visual relevance: the correct answer typically aligns more closely with the visual contents than the negative options in feature space, creating a shortcut for VLMs to infer the answer via simply vision-option similarity matching. To mitigate this, we introduce **GroundAttack**, an agentical method that automatically generates hard negative options as visually plausible as the correct answer. We apply it to the NExT-QA and MMStar datasets, creating new EOB-free annotations. On these EOB-free annotations, current VLMs approach random accuracies under ($V+O$) settings, and drop to non-saturated accuracies under ($V+Q+O$) settings, providing a more realistic evaluation of VLMs' QA ability.

1 INTRODUCTION

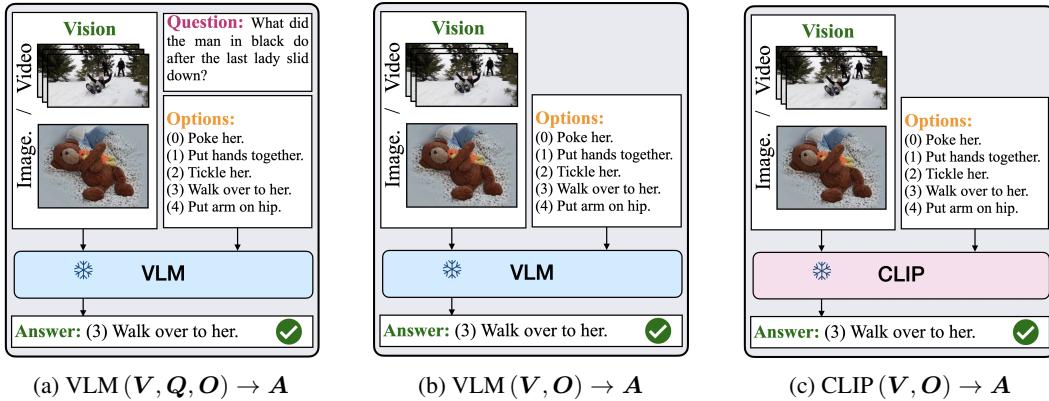


Figure 1: **Easy-Options Bias** lets a VLM pick the correct answer without seeing the question. Here, V, Q, O, A denote the vision input, question, options, and the correct answer.

Visual Question Answering (VQA) is a core benchmark in multimodal research, designed to test a model's ability to jointly reason over visual and linguistic inputs (Yu et al., 2019; Xiao et al., 2021; Wu et al., 2021; Yue et al., 2024; Chen et al., 2024b). In particular, multiple-choice VQA tasks require a model to select the correct answer from a set of options given an image and a natural language question. Such tasks are widely used to evaluate vision-language models (VLMs), under the assumption that correct performance necessitates understanding and integrating both the visual content and the question semantics.

Over the past few years, VLMs have made remarkable progress across VQA benchmarks, often surpassing human-level performance. These gains have been enabled by advances in large-scale

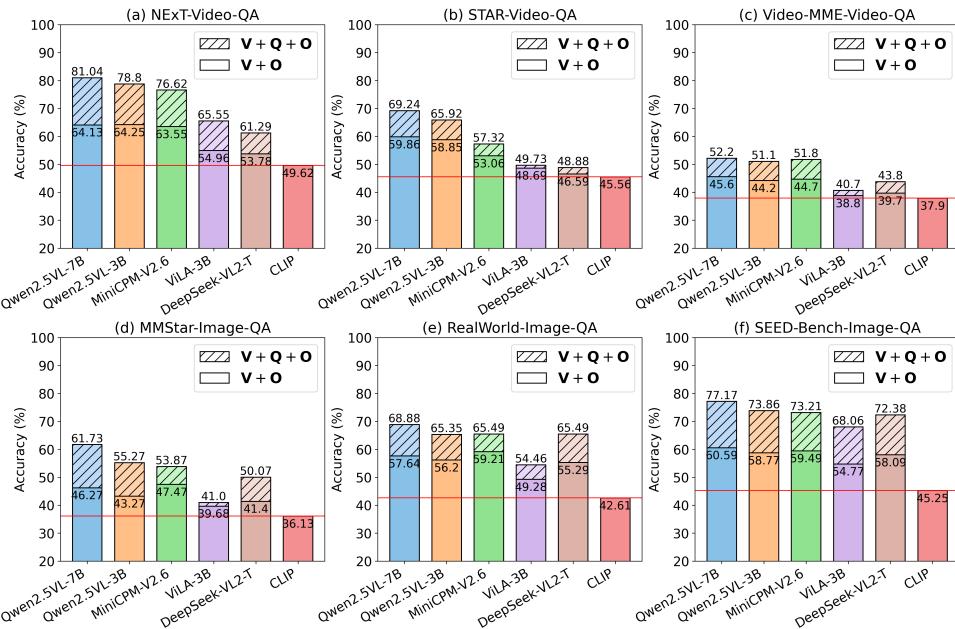


Figure 2: **Easy-Options Bias across six VQA benchmarks and four VLM series.** Across all datasets and models, VLMs with “vision+options” inputs achieve an mean accuracy of 52.27%, just 9.07% lower than the 61.34% mean accuracy with “vision+question+options” inputs. When use CLIP to select the most visually similar options (“vision+options”), the mean accuracy reaches 42.82%. This shows that negative options are less groundable than the correct answer in these VQA benchmarks, creating shortcuts that VLMs can exploit.

pretraining, attention-based architectures, and integration of vision and language modalities via contrastive and generative learning. However, there is growing concern that such improvements may not reflect genuine multimodal reasoning. Instead, models may be exploiting dataset biases (Rawal et al., 2024), superficial correlations, or artifacts in the benchmark design, echoing earlier concerns in natural language processing, where models often succeed through spurious cues rather than deep understanding (Geirhos et al., 2020; Chao et al., 2017; Yang et al., 2020; Manjunatha et al., 2019; Cadene et al., 2019; Clark et al., 2019; Zhong et al., 2022).

Before the VLM/LLMs era, **shortcut learning** (Dancette et al., 2021) posed a critical challenge for Visual Question Answering (VQA). Shortcut learning happens when a model relies on shallow patterns in the `<vision, question>` inputs instead of truly understanding or reasoning about the contents. For example, on some VQA benchmarks, “what colour...” questions often get the answers “white”. These biases emerge because the answer distributions for colour-relevant questions are long-tailed, with “white” appearing most frequently. During training, VQA models unconsciously learn these statistics. Since most VQA datasets split the training/testing sets in an identical distribution manner (IID), models can exploit these shortcuts to achieve spurious high accuracy on the testing set.

Several well-known biases in VQA benchmarks that lead to shortcut learning include language bias (Goyal et al., 2017), texture bias (Geirhos et al., 2018), and type bias (Agrawal et al., 2018). Their key characteristic is that the model predicts the most frequent associated answer whenever a particular visual or linguistic cue appears. As a result, VQA models often reach performance saturation on standard benchmarks but generalize poorly to out-of-domain inputs. To reduce shortcut learning, researchers have created de-biased VQA benchmarks. They rebalance the testing set so it no longer mirrors the training set (OOD), forcing models to go beyond shallow patterns and combine vision and language. Representative works include VQA-CP (Agrawal et al., 2018), VQA-CE (Dancette et al., 2021), VQA-VS (Si et al., 2022), and GQA-AUG (Reich & Schultz, 2024). By breaking the training–testing correlations, these benchmarks compel models to learn beyond superficial shortcuts and focus on genuine understanding and reasoning.

In the VLM/LLM era, VLMs benefit from pre-training on web data, and show strong performances on existing VQA benchmarks under *zero-shot* conditions. Unlike predecessor VQA models, which were trained on publicly available training data, VLMs are trained behind the scenes on large-scale, weakly labeled web data by industrial companies. That means we can't guarantee their training and testing sets meet the OOD standards. Besides, VLMs store more prior knowledge than predecessor VQA models and learns human-like answering skills; they can exploit even subtler shortcuts than before. For example, Chen et al. (Chen et al., 2024a) show that VLMs suffer from a language bias: they can predict the correct answer using only the question, without looking at the image. They call this a "*Lack of Visual Dependency*" issue in VQA benchmarks. For example, given questions like "Which model achieves the best ImageNet accuracy?", a VLM can answer "SoftMoE" correctly without looking at the image input. This language-only shortcut occurs because VLMs memorize prior knowledge from web-scale data, enabling them to make correct guesses.

In this paper, we observe a new **Easy-Options Bias** (EOB) in multiple-choice VQA benchmarks when testing VLMs (see Figures 1a-1b). EOB happens when VLMs consider the negative options so irrelevant to vision inputs that they no longer require the question. In other words, given only "*vision+options*", a VLM can pick the correct answer just as well as if it saw the "*vision+question+options*". To verify that this bias holds across tasks and models, we evaluate on six VQA benchmarks: three video datasets (Xiao et al., 2021; Wu et al., 2021; Fu et al., 2024) and three image datasets (Chen et al., 2024a; xAI, 2024; Li et al., 2024). We tested four types of SOTA VLMs (Bai et al., 2025; Yao et al., 2024; Lin et al., 2024; Wu et al., 2024). When given only the vision inputs and the answer choices, VLMs still score an average of 52.27% across all datasets and models (i.e., VLM (V, O)). That's surprisingly high, just 9.07% below the 61.34% average when VLMs also see the question (i.e., VLM (V, Q, O)) (see Figure 2).

This phenomenon exposes a critical flaw in current VQA benchmarks: if vision-language models can reliably select the correct answer without reading the question, then benchmark accuracy is no longer a valid proxy for multimodal reasoning. We hypothesize that EOB may arise from four sources: (1) visually biased answer sets, where the correct option aligns more strongly with the image than the distractors; (2) question redundancy, where the question adds little beyond what is already implied by the image and options; (3) shortcut learning from spurious, dataset-specific correlations; and (4) language priors that favor statistically plausible choices irrespective of context.

To probe the cause of EOB, we conduct a grounding test with the CLIP model (Radford et al., 2021; Zhai et al., 2023). We compute the similarity between the visual embedding of the image (or sampled video frames) and the text embeddings of the answer options, without conditioning on the question. Across all evaluated benchmarks, a consistent pattern emerges: *the correct answer attains higher image-text similarity than the distractors* (see Figure 1c and Figure 2). This reveals a pronounced visual relevance imbalance: the correct answer is not only semantically appropriate but also more strongly grounded in the visual content than the negatives, so that CLIP alone can often pick the correct answer via similarity matching.

Addressing EOB is challenging given the inherent limitations of existing datasets. We therefore propose **GroundAttack**, a practical mitigation method that generates visually and semantically plausible hard negatives to rebalance option relevance. Experiments show that GroundAttack substantially reduces the impact of EOB across benchmarks, yielding more robust VQA evaluation.

2 GROUNDATTACK: CREATING GROUNDABLE ADVERSARIAL NEGATIVE OPTIONS

Definition 1: Given a visual input V , Question Q , options set O as potential answers and the correct answer $A \in O$, if a model $\pi(V, O)$ predicts or select the correct option answer A , without utilizing the Question Q as an input to $\pi(\cdot)$, then that question Q suffer from **Easy-Options Bias** under π .

Definition 2: Given V, Q, O, A tuple, if any one of the model π from a set of models Π ($\pi \in \Pi$) predicts or select the correct option answer A , without utilizing the Question Q as an input to it, then that question Q suffer from **Easy-Options Bias**.

Definition 3: Given V, Q, O, A tuple, if every model π in a given set of models Π selects the correct answer option A , without utilizing the Question Q as an input to them, then that question Q suffer from **Total Easy-Options Bias**.

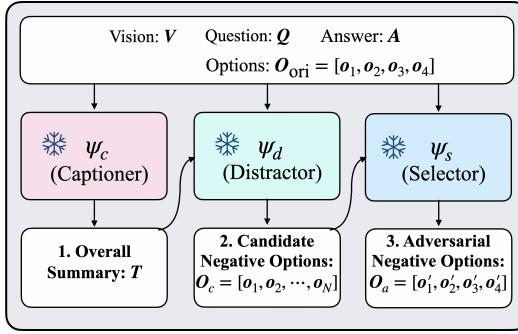


Figure 3: **GroundAttack** generates adversarial negative options that are more confusing, diverse, and visually groundable than original negatives. It mitigates Easy-Options Bias in VQA benchmarks through three components: (1) the Captioner (ψ_c), which converts visual content into detailed descriptions; (2) the Distractor (ψ_d), which produces plausible, groundable negative candidates; and (3) the Selector (ψ_s), which identifies the most adversarial negatives.

Lemma 1: If we assume all models in Π predicts randomly without the question as input, the expected proportion of questions suffer from **Easy-Options Bias** for a given benchmark is given by $1 - [(1 - \frac{1}{|\mathcal{O}|})^{|\Pi|} - (\lambda - 1)]$ where λ accounts for the number of correlated models ($0 \leq \lambda \leq |\Pi|$).

Table I presents the proportion of questions exhibiting Easy-Options Bias and Total Easy-Options Bias across a range of foundation models, including Qwen2.5VL-7B, Qwen2.5VL-3B, MiniCPM-V2.6, ViLA-3B, DeepSeek-VL2-Tiny. Here, “correlated models” refers to VLMs likely fine-tuned on overlapping training-set and therefore behaving similarly. If we assume the VLM behaviour is not random, then remarkably, over 80% of questions across all evaluated benchmarks are affected by Easy-Options Bias (Table I). Even more striking is the substantial fraction of questions that exhibit Total Easy-Options Bias, particularly in SEED-Bench and NExT-QA, indicating that in many cases, models can reliably predict the correct answer without any access to the question. It is also worth noting that among all the benchmarks considered, MMStar exhibits the lowest incidence of Easy-Options Bias. However, the issue remains significant and cannot be overlooked, underscoring the need for more robust evaluation.

Motivated by the recent works in distractor generators such as (Cavuşoğlu et al., 2024; Chung et al., 2020), we introduce **GroundAttack** (see Figure 3), which addresses the Easy-Options Bias in existing VQA benchmarks. Our GroundAttack replaces only the negative options in each tuple, while preserving the original vision, question, and answer. It consists of three modules: *Captioner* ψ_c , which converts visual inputs into concise textual descriptions T ; *Distractor* ψ_d , which generates visually grounded candidate options \mathbf{O}_c ; and *Selector* ψ_s , which mines adversarial hard negatives \mathbf{O}_a . We implement these modules as collaborating agents, making GroundAttack a pragmatic approach that minimizes human effort (Equations 1a-1c).

$$\begin{aligned} \psi_c(\mathbf{V}) &\rightarrow \mathbf{T}, & \psi_s(\mathbf{V}, \mathbf{O}_{\text{ori}}, \mathbf{O}_c) &\rightarrow \mathbf{O}_a, & (1a) & & (1c) \\ \psi_d(\mathbf{Q}, \mathbf{A}, \mathbf{T}) &\rightarrow \mathbf{O}_c, & (1b) & & & & \end{aligned}$$

Table 1: Ratio of questions that suffers from Easy-Options Bias and Total Easy-Options Bias under four types of SOTA VLMs (Qwen2.5VL-7B, Qwen2.5VL-3B, MiniCPM-V2.6, ViLA-3B, and DeepSeek-VL2-Tiny).

Percentage of Biased Samples	NExT-QA	STAR-QA	MMStar	RealWorld	SEED-Bench
Easy-Options Bias	87.04%	85.24%	78.86%	93.72%	80.23%
Total Easy-Options Bias	30.07%	20.56%	13.60%	17.64%	35.38%

216 **Captioner** ψ_c Given a video or image input V , model ψ_c serves to convert it into a concise text
 217 description T . Many off-the-shelf visual captioning models are available, such as BLIP (Li et al.,
 218 2022). These models are either trained on domain-specific video or image datasets, and fit only a
 219 small range of captioning tasks. We also want the ψ_c to extract fine-grained information, such as
 220 object locations, actions, and spatial relations. We resort to large-scale pre-trained VLMs as our
 221 captioner. This choice removes the need to pick and customize separate captioning models, ensuring
 222 GroundAttack (GDA) is compatible with different video and image benchmarks.

223 We use prompt engineering to guide the VLM in captioning complex visuals into detailed descriptions
 224 T . A simplified prompt is shown below; full prompts appear in the supplementary material.
 225

226 You are an expert that extracts descriptive facts, detailed object
 227 information (bounding boxes), actions, scene context, and spatial
 228 relations from images or videos, ...:

230 **Distractor** ψ_d Given the visual description T , the question Q , and the correct answer A , the agent
 231 ψ_d creates N negative choices: $O_c = [\mathbf{o}_1, \mathbf{o}_2, \dots, \mathbf{o}_N]$. In past VQA benchmarks, researchers did
 232 this by hand: they either wrote rules by hand (Wu et al., 2021) or hired annotators to check wrong
 233 answer options (Xiao et al., 2021). This manual process was slow but needed, since each wrong
 234 choice must be clearly wrong yet still confusing.

235 We employ an LLM as an agent to automatically generate negative answer choices using simple
 236 prompts. This approach reduces human effort and mitigates inter-annotator inconsistency, since the
 237 same LLM produces all negatives. Below we include an abbreviated version of our prompt; the full
 238 prompt is provided in the supplementary material.
 239

240 You are an expert at generating challenging negative distractors
 241 for image-based question answering.
 242 Given an image description, a question, and its correct answer,
 243 generate 128 clearly and definitively incorrect answer options...
 244 {Question}, {Correct Answer}, {Description}, Negative Options:

245
 246 **Selector** ψ_s Given the candidate negatives O_c and the original negatives O_{ori} , the agent ψ_s chooses
 247 a subset O_a that both confuses the model and keeps enough variety among the options. We implement
 248 three simple strategies: *random sampling*, *CLIP selector*, and *clustering + CLIP*. We experimentally
 249 verify that “clustering + CLIP” introduces enough confusion of negative options while maximizing
 250 options’ diversity. Below, describe the three ψ_s .

251 *Random sampling* selects a fixed number of negative options uniformly from O_c . This simple baseline
 252 is common in prior work on negative-option generation for VQA benchmarks, but it does not directly
 253 address Easy-Options Bias; it merely relies on the proposal agent ψ_d to produce sufficiently confusing
 254 distractors.

255 *CLIP selector* ranks candidate options by their visual similarity to the input V and selects hard
 256 negatives accordingly. First, it encodes all N candidate options O_c into text features $\{\mathbf{f}_c^{(i)}\}_{i=1}^N$
 257 with the CLIP text encoder (Eq. 2a). It then encodes the visual input with the CLIP vision encoder;
 258 for video, it applies temporal average pooling $\mathcal{F}_{\text{tavg}}$ to aggregate frame features into a single
 259 representation (Eq. 2b), whereas no temporal pooling is required for images. Next, it computes
 260 similarities between each $\mathbf{f}_c^{(i)}$ and the visual feature and ranks candidates by these scores. Finally, it
 261 selects the top- m options with the highest similarity to V as hard negatives (Eq. 2c).

263
 264

$$\mathbf{f}_c = \mathcal{F}_{\text{CLIP-Text}}(\mathbf{O}_c), \quad (2a)$$

$$\mathbf{f}_v = \mathcal{F}_{\text{tavg}}(\mathcal{F}_{\text{CLIP-Vision}}(\mathbf{V})), \quad (2b)$$

$$\mathbf{O}_a = \{\mathbf{o}_{i^*}\}_{i=1,2,\dots,m}, \quad i^* = \arg \max_i [(\mathbf{f}_c \mathbf{f}_v^\top)_i], \quad (2c)$$

$$\mathbf{f}_c \in \mathbb{R}^{N \times D}, \quad \mathbf{f}_v \in \mathbb{R}^{1 \times D}.$$

270 *Clustering + CLIP* selects adversarial negatives in two stages. (i) We apply k -means to cluster the
 271 candidate negatives into m groups based on their text features. (ii) Within each group, we use CLIP
 272 to select the highest-similarity (top-1) option to the visual input V . The union of these selections
 273 yields m groundable negatives, denoted O_a .

$$[f_{c1}, f_{c2}, \dots, f_{cm}] = \text{K-Means} (f_c, m), \quad (3a)$$

$$O_a = \{o_{i^*}\}_{j=1,2,\dots,m}, \quad i^* = \arg \max_1 [(f_{cj} f_v^\top)_i], \quad (3b)$$

280 We test different strategies for ψ_s in §3 and select “Clustering+CLIP” as it ensures that adversarial
 281 negative options are confusing, representative, and groundable. To this end, we built the GroundAttack
 282 toolkit with three frozen foundation models (i.e., VLM, LLM and CLIP) in an agent-collaborating
 283 manner.

285 3 EXPERIMENTS

287 3.1 DATASET & SETTING.

289 **MMStar** (Chen et al., 2024a) is a mixed ImageQA benchmark constructed from six existing
 290 datasets that reduce language biases. It includes an evaluation-only set of 1,500 samples spanning
 291 six categories: coarse perception, fine-grained perception, instance reasoning, logical reasoning,
 292 science & technology, and mathematics. We apply GroundAttack to generate new adversarial negative
 293 options for MMStar, except for the science and mathematics categories, whose questions are largely
 294 textbook-style; in these cases, GroundAttack does not outperform expert-curated options. We will
 295 release the resulting GDA-Annotation to support future research.

296 **NExT-QA** (Xiao et al., 2021) is a widely used VideoQA benchmark comprising 5,440 videos
 297 and 34,132/4,996 QA samples in the training and validation sets. It covers causal, descriptive, and
 298 temporal question types. However, its negative options are randomly sampled from similar questions
 299 and manually verified, a strategy akin to ψ_s = “random sampling”, which VLMs can easily exploit
 300 with Easy-Options Bias. To address this, we use GroundAttack to generate adversarial negative
 301 options for NExT-QA and will release the GDA-annotation for future research.

303 **Settings** We use GLM-4.1V-9B (Hong et al., 2025) as the captioner (ψ_c), Google Gemma-3n-
 304 E48 (Team et al., 2025) as the distractor generator (ψ_d), and MetaCLIP-2 (Chuang et al., 2025) as
 305 the selector (ψ_s). We purposely choose latest LLM/VLM/CLIP agents that are different from those
 306 used by the evaluated VQA models (VLMs) to avoid leakage and prevent model-specific advantages.
 307 Using ψ_d , we generate $N = 128$ candidate answers and apply GroundAttack to respectively generates
 308 $m=3/4$ adversarial negatives for the MMStar or NExT-QA benchmarks, matching the original number
 309 of negatives. For VideoQA, we sample 8 frames per video. All experiments are run on a single
 310 NVIDIA A100 GPU (80 GB).

311 3.2 ANALYSIS.

313 **Comparisons of different negative options.** We compare negative options generated by the original
 314 method, random sampling, CLIP-selector, and GroundAttack in Tables 2 and 3. All experiments are
 315 evaluated under the (V, Q, O) setting unless otherwise specified.

316 We observe that: (1) GroundAttack significantly decreases accuracies across all five VLMs compared
 317 to the original negative options, when Easy-Options Bias is mitigated on the MMStar benchmark. For
 318 example, Qwen2.5VL-7B drops from 61.73% to 52.00%, and DeepSeek-VL2-Tiny decreases from
 319 50.07% to 36.80%. A similar observation appeared on the NExT-QA benchmark. (2) Using random
 320 sampling in the selector ψ_s introduces minimal confusion on the MMStar benchmark (random:
 321 62.73% vs. original: 61.73% with Qwen2.5VL-7B). This suggests that random sampling fails to
 322 meet the necessary criteria that negative options are confusing. (3) Both the CLIP-Selector and
 323 GroundAttack (Clustering+CLIP) effectively mitigate Easy-Options Bias on the two benchmarks.
 Compared to the CLIP-Selector, GroundAttack selects more diverse and representative negatives

and produces stronger adversarial options. (4) We further evaluate the original and GroundAttack-generated options under the (V, O) setting, where the question is omitted. In this setting, VLM accuracies drop to the 20%–30% range, close to random guessing, compared to 50%–40% in the standard (V, Q, O) setting on the NExT-QA and MMStar benchmarks, respectively.

Table 2: Comparison of VLM performance with different negative option strategies on the MMStar benchmark. (\downarrow) indicates that lower values reflect more distracting (and thus better) negative options.

VLM \ Negative Options	Qwen2.5VL-7B (\downarrow)	Qwen2.5VL-3B (\downarrow)	MiniCPM-V2.6 (\downarrow)	ViLA-3B (\downarrow)	DeepSeek-VL2-Tiny (\downarrow)
Original [Chen et al. (2024a)]	61.73	55.27	53.87	41.00	50.07
Random Negatives	62.73	57.67	54.80	42.68	45.80
CLIP-Selector	<u>52.47</u>	<u>48.47</u>	<u>46.80</u>	<u>30.13</u>	<u>41.60</u>
GroundAttack	52.00	46.87	45.53	<u>32.33</u>	36.80
Original (V,O)	46.27	43.27	47.47	39.68	41.40
GroundAttack (V,O)	28.33	27.67	29.33	24.73	25.53

Table 3: Comparison of VLM performance with different negative option strategies on the NExT-QA benchmark. (\downarrow) indicates that lower values reflect more distracting (and thus better) negative options.

VLM \ Negative Options	Qwen2.5VL-7B (\downarrow)	Qwen2.5VL-3B (\downarrow)	MiniCPM-V2.6 (\downarrow)	ViLA-3B (\downarrow)	DeepSeek-VL2-Tiny (\downarrow)
Original [Xiao et al. (2021)]	81.04	78.80	76.62	65.55	61.29
Random Negatives	71.14	69.98	69.08	50.14	37.83
CLIP-Selector	54.96	53.02	52.18	31.59	21.06
GroundAttack	54.16	52.66	<u>53.24</u>	<u>33.21</u>	<u>24.98</u>
Original (V,O)	64.13	64.25	63.55	54.96	53.78
GroundAttack (V,O)	20.80	26.30	26.28	21.66	15.13

Impacts of the number of GroundAttack negative options. In Figure 4, we study the effect of varying the number of GroundAttack-generated negative options. We use Qwen2.5VL-7B as the evaluation model and report results under both (V, O) and (V, Q, O) settings. Because the original NExT-QA and MMStar annotations contain only 3 or 4 negatives, we extend random sampling as an approximate surrogate to mimic the original annotation size for reference.

We observe that accuracy decreases as the number of GroundAttack-generated negatives increases in both settings, unsurprising, as more confusing distractors make it harder for VLMs to select the correct answer. Notably, under (V, Q, O) , performance with GroundAttack is consistently lower than with random sampling, indicating that GroundAttack produces more optimally confusing negatives. Moreover, under (V, O) , the GroundAttack curve moves closer to chance performance than the random-sampling baseline, suggesting that Easy-Options Bias is mitigated by GroundAttack. We cap the number of options at 26, corresponding to labels A–Z.

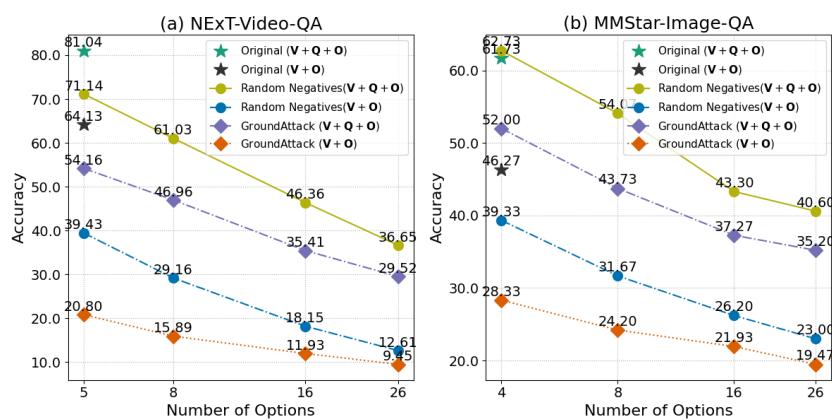


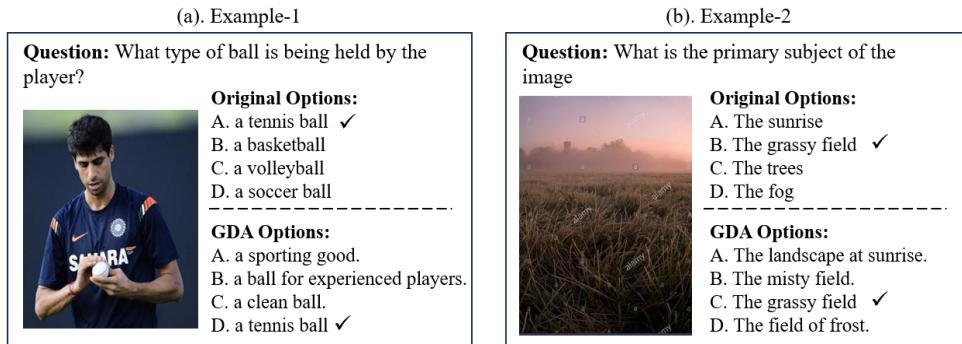
Figure 4: Impact of varying the number of GroundAttack-generated negative options on NExT-QA and MMStar benchmarks (Number of Options=1 Positive + N Negatives)

378 In Table 4 we compute the Easy-Options Bias proportion after GroundAttack on both NExT-QA and
 379 MMStar datasets. Evidence suggests that our GroundAttack enforces to models behave randomly
 380 achieving both theoretical expected performance as per the *Lemma 1* for Easy-Options Bias.
 381

382 Note that the theoretical expected proportion for random models for both datasets is around
 383 48.80%~59.04% for NExT-QA ($\lambda \in \{1, 2\}$, $|\Pi| = 5$, $|O| = 5$), and 57.81%~68.35% for MM-
 384 Star ($\lambda \in \{1, 2\}$, $|\Pi| = 5$, $|O| = 4$).

385 3.3 VISUALIZATION

387 We present a visual comparison between the original negatives and adversarial negatives generated
 388 by GroundAttack, as shown below on the MMStar dataset. We observe that GDA options are more
 389 visually relevant to image contents than original annotations. (Figure 5).



402 Figure 5: Visual comparison between original options and those generated by GroundAttack.

4 RELATED WORKS

408 Several studies have uncovered critical limitations in visual question answering (VQA) (Song et al.,
 409 [Song et al., 2023]; Qraitem et al., 2023; Agrawal et al., 2022), yet these findings have received limited attention
 410 in developing mainstream benchmarks. Sheng et al. (2021) demonstrated that VQA models fail
 411 dramatically when evaluated on datasets constructed using dynamic, human-adversarial approaches.
 412 Similarly, Li et al. (2021) introduced an adversarial benchmark to expose model vulnerabilities,
 413 while Zhao et al. (2023) examined the fragility of vision-language models (VLMs) in VQA settings.
 414 Shortcut learning in VQA, where models exploit superficial correlations across modalities, has also
 415 been addressed in several works (Dancette et al., 2021).

416 Zhang et al. (2023) identified a form of vision-answer bias in the NExT-QA dataset (Xiao et al., 2021),
 417 where the distribution of answers conditioned on visual inputs is skewed, leading to disproportionate
 418 vision-answer correlations. However, their analysis was confined to conventional VQA models and
 419 did not consider recent VLMs. In this work, we reveal an even more severe issue **Easy-Options Bias**,
 420 where models can often ignore the question entirely and still predict the correct answer based solely
 421 on the visual input and answer choices.

422 Wang et al. (2023) further identified two systematic dataset biases: (1) Unbalanced Matching, where
 423 the correct answer exhibits stronger alignment with the image and question than the distractors, and
 424 (2) Distractor Similarity, where incorrect answers are both dissimilar to the correct one and mutually
 425

(a) NExT-QA			(b) MMStar		
Percentage	Easy-Options Bias (↓)	Total Easy-Options Bias (↓)	Percentage	Easy-Options Bias (↓)	Total Easy-Options Bias (↓)
Original [Xiao et al., 2021]	87.04%	30.07%	Original [Xiao et al., 2021]	78.86%	13.60%
GroundAttack	50.99%	3.34%	GroundAttack	59.33%	3.40%

429 Table 4: By using GroundAttack, ratio of questions that suffer from Easy-Options Bias and total
 430 Easy-Options Bias under four types of SOTA VLMs. (↓) indicates that less samples suffer from
 431 Easy-Options Bias.

432 similar, thereby reducing discriminative challenge. A recent survey by [Ma et al. \(2024\)](#) provides a
 433 comprehensive overview of robustness in VQA.
 434

435 In contrast to prior work, we focus on how state-of-the-art VLMs, including Qwen-VL-2.5 and
 436 DeepSeek-VL2, behave under modern evaluation settings such as the MMStar, SEED-Bench, and
 437 benchmarks. Our findings show the urgent need for more diagnostic evaluation protocols that account
 438 for vision-answer biases and question insensitivity in contemporary VQA tasks.
 439

440 5 LIMITATIONS AND CONCLUSIONS

442 Limitations

444 Our findings are based on empirical observations and come with several limitations. First, while we
 445 analyzed the **EOB** phenomenon across a representative set of benchmarks and VLMs, our coverage
 446 is not exhaustive due to computational and resource constraints. Consequently, the generalizability of
 447 our conclusions may be limited.
 448

449 Second, although our proposed strategy shows promise in reducing **EOB** on the datasets and models
 450 tested, we do not claim it universally addresses the issue. Its effectiveness may vary depending on
 451 dataset properties, model architectures, and training regimes.
 452

453 Third, our analysis emphasizes empirical behavior over theoretical guarantees. Understanding the
 454 root causes of **EOB**, such as dataset artifacts, training dynamics, or modality interplay, requires
 455 further study.
 456

457 While the proposed GroundAttack is a practical contribution, its evaluation is limited. We have not
 458 conducted human studies to assess the quality, plausibility, or diversity of the generated distractors,
 459 relying instead on manual inspection and EOB reduction metrics. The grounding experiments use
 460 CLIP similarity as a proxy for visual relevance, but CLIP itself has known biases. Moreover, we
 461 did not compare our approach with alternative distractor generation methods (e.g., adversarial [\(Li et al., 2020\)](#),
 462 contrastive [\(Cao et al., 2025; Qu et al., 2024; Chung et al., 2020\)](#), or perturbation-based
 463 techniques [\(Cavuşoğlu et al., 2024; Geva et al., 2022\)](#)), nor did we test whether models trained on
 464 GroundAttack-augmented data generalize better or improve robustness across tasks. We leave these
 465 directions for future work.
 466

467 Despite these limitations, our work offers valuable insights and a practical diagnostic framework for
 468 identifying and addressing a previously underappreciated failure mode in VQA tasks. We hope this
 469 encourages the development of more robust and trustworthy benchmarks for evaluating multimodal
 470 reasoning in future vision-language systems.
 471

472 Conclusions

473 In this paper, we uncover a previously overlooked limitation in multiple-choice Visual Question
 474 Answering (VQA) benchmarks, which we term the Easy Negative Bias (EOB). This bias allows
 475 VLMs to correctly answer questions without ever reading them. Our systematic evaluation across
 476 six diverse VQA benchmarks and four SOTA VLMs reveals that EOB is pervasive, affecting more
 477 than 80% of questions and fundamentally undermining the credibility of benchmark accuracy as a
 478 measure of true multimodal reasoning.
 479

480 To analyze the roots of EOB, we leverage CLIP-based grounding experiments and show that correct
 481 answer choices consistently exhibit higher visual-text alignment scores than distractors, even without
 482 the question. This imbalance suggests that many benchmarks unintentionally favour answers that are
 483 visually obvious, reducing the need for genuine cross-modal reasoning.
 484

485 To address this flaw, we introduce GroundAttack, a practical and scalable method for generating
 486 visually and semantically grounded adversarial negative options. By augmenting existing benchmarks
 487 with harder, more plausible distractors, GroundAttack significantly mitigates EOB, thereby restoring
 488 the need for the question and enhancing the robustness of VQA evaluation.
 489

490 Our findings call for a rethinking of how VQA benchmarks are constructed and evaluated in the era
 491 of powerful pretrained VLMs. Future benchmarks must go beyond merely testing factual recall or
 492 language priors and ensure that answering truly depends on integrating both vision and language
 493 inputs, especially the question.
 494

486 REFERENCES
487

488 Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don't just assume;
489 look and answer: Overcoming priors for visual question answering. In *Proceedings of the IEEE*
490 *conference on computer vision and pattern recognition*, pp. 4971–4980, 2018.

491 Aishwarya Agrawal, Ivana Kajić, Emanuele Bugliarello, Elnaz Davoodi, Anita Gergely, Phil Blunsom,
492 and Aida Nematzadeh. Reassessing evaluation practices in visual question answering: A case
493 study on out-of-distribution generalization. *arXiv preprint arXiv:2205.12191*, 2022.

494 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
495 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
496 2025.

497 Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. Rubi: Reducing unimodal biases
498 for visual question answering. *Advances in neural information processing systems*, 32, 2019.

500 Runlin Cao, Zhixin Li, Zhenjun Tang, Canlong Zhang, and Huifang Ma. Enhancing robust vqa via
501 contrastive and self-supervised learning. *Pattern Recognition*, 159:111129, 2025.

502 Devrim Çavuşoğlu, Seçil Şen, and Ulaş Sert. Disgem: Distractor generation for multiple choice
503 questions with span masking. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 9714–9732, 2024.

504 Wei-Lun Chao, Hexiang Hu, and Fei Sha. Being negative but constructively: Lessons learnt from
505 creating better visual question answering datasets. *arXiv preprint arXiv:1704.07121*, 2017.

506 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
507 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
508 language models? In *The Thirty-eighth Annual Conference on Neural Information Processing
509 Systems*, 2024a. URL <https://openreview.net/forum?id=evP9mxNNxJ>.

510 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
511 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
512 models? *arXiv preprint arXiv:2403.20330*, 2024b.

513 Yung-Sung Chuang, Yang Li, Dong Wang, Ching-Feng Yeh, Kehan Lyu, Ramya Raghavendra, James
514 Glass, Lifei Huang, Jason Weston, Luke Zettlemoyer, et al. Meta clip 2: A worldwide scaling
515 recipe. *arXiv preprint arXiv:2507.22062*, 2025.

516 Ho-Lam Chung, Ying-Hong Chan, and Yao-Chung Fan. A bert-based distractor generation scheme
517 with multi-tasking and negative answer training strategies. *arXiv preprint arXiv:2010.05384*, 2020.

518 Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don't take the easy way out: Ensemble
519 based methods for avoiding known dataset biases. *arXiv preprint arXiv:1909.03683*, 2019.

520 Corentin Dancette, Remi Cadene, Damien Teney, and Matthieu Cord. Beyond question-based biases:
521 Assessing multimodal shortcut learning in visual question answering. In *Proceedings of the
522 IEEE/CVF International Conference on Computer Vision*, pp. 1574–1583, 2021.

523 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
524 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
525 benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.

526 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
527 Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
528 accuracy and robustness. In *International conference on learning representations*, 2018.

529 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
530 Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine
531 Intelligence*, 2(11):665–673, 2020.

532 Mor Geva, Tomer Wolfson, and Jonathan Berant. Break, perturb, build: Automatic perturbation of rea-
533 soning paths through question decomposition. *Transactions of the Association for Computational
534 Linguistics*, 10:111–126, 2022.

540 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 541 matter: Elevating the role of image understanding in visual question answering. In *Proceedings of*
 542 *the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

543

544 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 545 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 546 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.

547 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 548 Seed-bench: Benchmarking multimodal large language models. In *CVPR*, pp. 13299–13308, 2024.
 549 URL <https://doi.org/10.1109/CVPR52733.2024.01263>.

550

551 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 552 training for unified vision-language understanding and generation. In *International conference on*
 553 *machine learning*, pp. 12888–12900. PMLR, 2022.

554 Linjie Li, Zhe Gan, and Jingjing Liu. A closer look at the robustness of vision-and-language
 555 pre-trained models. *arXiv preprint arXiv:2012.08673*, 2020.

556

557 Linjie Li, Jie Lei, Zhe Gan, and Jingjing Liu. Adversarial vqa: A new benchmark for evaluating the
 558 robustness of vqa models. In *Proceedings of the IEEE/CVF International Conference on Computer*
 559 *Vision*, pp. 2042–2051, 2021.

560

561 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
 562 pre-training for visual language models. In *Proceedings of the IEEE/CVF conference on computer*
 563 *vision and pattern recognition*, pp. 26689–26699, 2024.

564

565 Jie Ma, Pinghui Wang, Dechen Kong, Zewei Wang, Jun Liu, Hongbin Pei, and Junzhou Zhao. Robust
 566 visual question answering: Datasets, methods, and future challenges. *IEEE Transactions on Pattern*

567 *Analysis and Machine Intelligence*, 2024.

568

569 Varun Manjunatha, Nirat Saini, and Larry S Davis. Explicit bias discovery in visual question
 570 answering models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*

571 *Recognition*, pp. 9562–9571, 2019.

572

573 Maan Qraitem, Kate Saenko, and Bryan A Plummer. Bias mimicking: A simple sampling approach
 574 for bias mitigation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*

575 *Recognition*, pp. 20311–20320, 2023.

576

577 Fanyi Qu, Hao Sun, and Yunfang Wu. Unsupervised distractor generation via large language model
 578 distilling and counterfactual contrastive decoding. *arXiv preprint arXiv:2406.01306*, 2024.

579

580 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 581 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 582 models from natural language supervision. In *International conference on machine learning*, pp.
 583 8748–8763. PMLR, 2021.

584

585 Ishaan Singh Rawal, Alexander Matyasko, Shantanu Jaiswal, Basura Fernando, and Cheston Tan.
 586 Dissecting multimodality in VideoQA transformer models by impairing modality fusion. In
 587 *Proceedings of the 41st International Conference on Machine Learning*, volume 235, pp. 42213–
 588 42244, 2024.

589

590 Daniel Reich and Tanja Schultz. On the role of visual grounding in vqa. *arXiv preprint*
 591 *arXiv:2406.18253*, 2024.

592

593 Sasha Sheng, Amanpreet Singh, Vedanuj Goswami, Jose Magana, Tristan Thrush, Wojciech Galuba,
 594 Devi Parikh, and Douwe Kiela. Human-adversarial visual question answering. *Advances in Neural*

595 *Information Processing Systems*, 34:20346–20359, 2021.

596

597 Qingyi Si, Fandong Meng, Mingyu Zheng, Zheng Lin, Yuanxin Liu, Peng Fu, Yanan Cao, Weiping
 598 Wang, and Jie Zhou. Language prior is not the only shortcut: A benchmark for shortcut learning in
 599 VQA. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, 2022.

594 Yaguang Song, Xiaoshan Yang, Yaowei Wang, and Changsheng Xu. Recovering generalization via
 595 pre-training-like knowledge distillation for out-of-distribution visual question answering. *IEEE*
 596 *Transactions on Multimedia*, 26:837–851, 2023.

597

598 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 599 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 600 report. *arXiv preprint arXiv:2503.19786*, 2025.

601 Zhecan Wang, Long Chen, Haoxuan You, Keyang Xu, Yicheng He, Wenhao Li, Noel Codella,
 602 Kai-Wei Chang, and Shih-Fu Chang. Dataset bias mitigation in multiple-choice visual question
 603 answering and beyond. *arXiv preprint arXiv:2310.14670*, 2023.

604

605 Bo Wu, Shoubin Yu, Zhenfang Chen, Josh Tenenbaum, and Chuang Gan. Star: A benchmark for
 606 situated reasoning in real-world videos. In J. Vanschoren and S. Yeung (eds.), *Proceedings of the*
 607 *Neural Information Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021.

608

609 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 610 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 611 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

612 xAI. Grok-1.5v: Multimodal model with visual understanding. <https://x.ai/news/grok-1.5v>. 2024.

613

614 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 615 answering to explaining temporal actions. In *Proceedings of the IEEE/CVF conference on computer*
 616 *vision and pattern recognition*, pp. 9777–9786, 2021.

617

618 Jianing Yang, Yuying Zhu, Yongxin Wang, Ruitao Yi, Amir Zadeh, and Louis-Philippe Morency.
 619 What gives the answer away? question answering bias analysis on video qa datasets. *arXiv preprint*
 620 *arXiv:2007.03626*, 2020.

621

622 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 623 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 624 *arXiv:2408.01800*, 2024.

625

626 Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueling Zhuang, and Dacheng Tao. Activitynet-qa:
 627 A dataset for understanding complex web videos via question answering. In *Proceedings of the*
 628 *AAAI Conference on Artificial Intelligence*, volume 33, pp. 9127–9134, 2019.

629

630 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 631 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
 632 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 633 Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert
 634 agi. In *Proceedings of CVPR*, 2024.

635

636 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 637 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 638 pp. 11975–11986, 2023.

639

640 Xi Zhang, Feifei Zhang, and Changsheng Xu. Next-ood: Overcoming dual multiple-choice vqa
 641 biases. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(4):1913–1931, 2023.

642

643 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min
 644 Lin. On evaluating adversarial robustness of large vision-language models. *Advances in Neural*
 645 *Information Processing Systems*, 36:54111–54138, 2023.

646

647 Yaoyao Zhong, Junbin Xiao, Wei Ji, Yicong Li, Weihong Deng, and Tat-Seng Chua. Video question
 648 answering: Datasets, algorithms and challenges. *arXiv preprint arXiv:2203.01225*, 2022.