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ABSTRACT

In this early study, we observe an Easy-Options Bias (EOB) issue in several
multiple-choice Visual Question Answering (VQA) benchmarks, including MM-
Star, RealWorldQA, SEED-Bench, NExT-QA, STAR benchmark, and Video-MME.
This bias allows vision-language models (VLMs) to select the correct answer using
only the vision (V ) and options (O) as inputs, without the need for the question
(Q). Through grounding experiments, we attribute the bias to an imbalance in
visual relevance: the correct answer typically aligns more closely with the visual
contents than the negative options in feature space, creating a shortcut for VLMs
to infer the answer via simply vision-option similarity matching. To mitigate this,
we introduce GroundAttack, an agentical method that automatically generates
hard negative options as visually plausible as the correct answer. We apply it to
the NExT-QA and MMStar datasets, creating new EOB-free annotations. On these
EOB-free annotations, current VLMs approach random accuracies under (V +O)
settings, and drop to non-saturated accuracies under (V +Q+O) settings, providing
a more realistic evaluation of VLMs’ QA ability.

1 INTRODUCTION

(a) VLM (V ,Q,O) → A (b) VLM (V ,O) → A (c) CLIP (V ,O) → A

Figure 1: Easy-Options Bias lets a VLM pick the correct answer without seeing the question. Here,
V , Q, O, A denote the vision input, question, options, and the correct answer.

Visual Question Answering (VQA) is a core benchmark in multimodal research, designed to test a
model’s ability to jointly reason over visual and linguistic inputs (Yu et al., 2019; Xiao et al., 2021;
Wu et al., 2021; Yue et al., 2024; Chen et al., 2024b). In particular, multiple-choice VQA tasks
require a model to select the correct answer from a set of options given an image and a natural
language question. Such tasks are widely used to evaluate vision-language models (VLMs), under
the assumption that correct performance necessitates understanding and integrating both the visual
content and the question semantics.

Over the past few years, VLMs have made remarkable progress across VQA benchmarks, often
surpassing human-level performance. These gains have been enabled by advances in large-scale
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Figure 2: Easy-Options Bias across six VQA benchmarks and four VLM series. Across all
datasets and models, VLMs with “vision+options” inputs achieve an mean accuracy of 52.27%,
just 9.07% lower than the 61.34% mean accuracy with “vision+question+options” inputs. When
use CLIP to select the most visually similar options (“vision+options”), the mean accuracy reaches
42.82%. This shows that negative options are less groundable than the correct answer in these VQA
benchmarks, creating shortcuts that VLMs can exploit.

pretraining, attention-based architectures, and integration of vision and language modalities via
contrastive and generative learning. However, there is growing concern that such improvements may
not reflect genuine multimodal reasoning. Instead, models may be exploiting dataset biases (Rawal
et al., 2024), superficial correlations, or artifacts in the benchmark design, echoing earlier concerns
in natural language processing, where models often succeed through spurious cues rather than deep
understanding (Geirhos et al., 2020; Chao et al., 2017; Yang et al., 2020; Manjunatha et al., 2019;
Cadene et al., 2019; Clark et al., 2019; Zhong et al., 2022).

Before the VLM/LLMs era, shortcut learning (Dancette et al., 2021) posed a critical challenge
for Visual Question Answering (VQA). Shortcut learning happens when a model relies on shallow
patterns in the <vision, question> inputs instead of truly understanding or reasoning about the contents.
For example, on some VQA benchmarks, “what colour...” questions often get the answers “white”.
These biases emerge because the answer distributions for colour-relevant questions are long-tailed,
with “white” appearing most frequently. During training, VQA models unconsciously learn these
statistics. Since most VQA datasets split the training/testing sets in an identical distribution manner
(IID), models can exploit these shortcuts to achieve spurious high accuracy on the testing set.

Several well-known biases in VQA benchmarks that lead to shortcut learning include language bias
(Goyal et al., 2017), texture bias (Geirhos et al., 2018), and type bias (Agrawal et al., 2018). Their key
characteristic is that the model predicts the most frequent associated answer whenever a particular
visual or linguistic cue appears. As a result, VQA models often reach performance saturation on
standard benchmarks but generalize poorly to out-of-domain inputs. To reduce shortcut learning,
researchers have created de-biased VQA benchmarks. They rebalance the testing set so it no longer
mirrors the training set (OOD), forcing models to go beyond shallow patterns and combine vision
and language. Representative works include VQA-CP (Agrawal et al., 2018), VQA-CE (Dancette
et al., 2021), VQA-VS (Si et al., 2022), and GQA-AUG (Reich & Schultz, 2024). By breaking the
training–testing correlations, these benchmarks compel models to learn beyond superficial shortcuts
and focus on genuine understanding and reasoning.
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In the VLM/LLM era, VLMs benefit from pre-training on web data, and show strong performances
on existing VQA benchmarks under zero-shot conditions. Unlike predecessor VQA models, which
were trained on publicly available training data, VLMs are trained behind the scenes on large-scale,
weakly labeled web data by industrial companies. That means we can’t guarantee their training and
testing sets meet the OOD standards. Besides, VLMs store more prior knowledge than predecessor
VQA models and learns human-like answering skills; they can exploit even subtler shortcuts than
before. For example, Chen et al. (Chen et al., 2024a) show that VLMs suffer from a language bias:
they can predict the correct answer using only the question, without looking at the image. They
call this a “Lack of Visual Dependency” issue in VQA benchmarks. For example, given questions
like “Which model achieves the best ImageNet accuracy?”, a VLM can answer “SoftMoE” correctly
without looking at the image input. This language-only shortcut occurs because VLMs memorize
prior knowledge from web-scale data, enabling them to make correct guesses.

In this paper, we observe a new Easy-Options Bias (EOB) in multiple-choice VQA benchmarks
when testing VLMs (see Figures 1a–1b). EOB happens when VLMs consider the negative op-
tions so irrelevant to vision inputs that they no longer require the question. In other words,
given only “vision+options”, a VLM can pick the correct answer just as well as if it saw the
“vision+question+options”. To verify that this bias holds across tasks and models, we evaluate on
six VQA benchmarks: three video datasets (Xiao et al., 2021; Wu et al., 2021; Fu et al., 2024) and
three image datasets (Chen et al., 2024a; xAI, 2024; Li et al., 2024). We tested four types of SOTA
VLMs (Bai et al., 2025; Yao et al., 2024; Lin et al., 2024; Wu et al., 2024). When given only the
vision inputs and the answer choices, VLMs still score an average of 52.27% across all datasets and
models (i.e., VLM (V ,O)). That’s surprisingly high, just 9.07% below the 61.34% average when
VLMs also see the question (i.e., VLM (V ,Q,O)) (see Figure 2).

This phenomenon exposes a critical flaw in current VQA benchmarks: if vision–language models can
reliably select the correct answer without reading the question, then benchmark accuracy is no longer
a valid proxy for multimodal reasoning. We hypothesize that EOB may arise from four sources: (1)
visually biased answer sets, where the correct option aligns more strongly with the image than the
distractors; (2) question redundancy, where the question adds little beyond what is already implied
by the image and options; (3) shortcut learning from spurious, dataset-specific correlations; and (4)
language priors that favor statistically plausible choices irrespective of context.

To probe the cause of EOB, we conduct a grounding test with the CLIP model (Radford et al., 2021;
Zhai et al., 2023). We compute the similarity between the visual embedding of the image (or sampled
video frames) and the text embeddings of the answer options, without conditioning on the question.
Across all evaluated benchmarks, a consistent pattern emerges: the correct answer attains higher
image–text similarity than the distractors (see Figure 1c and Figure 2). This reveals a pronounced
visual relevance imbalance: the correct answer is not only semantically appropriate but also more
strongly grounded in the visual content than the negatives, so that CLIP alone can often pick the
correct answer via similarity matching.

Addressing EOB is challenging given the inherent limitations of existing datasets. We therefore pro-
pose GroundAttack, a practical mitigation method that generates visually and semantically plausible
hard negatives to rebalance option relevance. Experiments show that GroundAttack substantially
reduces the impact of EOB across benchmarks, yielding more robust VQA evaluation.

2 GROUNDATTACK: CREATING GROUNDABLE ADVERSARIAL NEGATIVE
OPTIONS

Definition 1: Given a visual input V, Question Q, options set O as potential answers and the correct
answer A → O, if a model ω(V,O) predicts or select the correct option answer A, without utilizing
the Question Q as an input to ω(·), then that question Q suffer from Easy-Options Bias under ω.

Definition 2: Given V,Q,O,A tuple, if any one of the model ω from a set of models ! (ω → !)
predicts or select the correct option answer A, without utilizing the Question Q as an input to it,
then that question Q suffer from Easy-Options Bias.

Definition 3: Given V,Q,O,A tuple, if every model ω in a given set of models ! selects the correct
answer option A, without utilizing the Question Q as an input to them, then that question Q suffer
from Total Easy-Options Bias.
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Figure 3: GroundAttack generates adversarial negative options that are more confusing, diverse,
and visually groundable than original negatives. It mitigates Easy-Options Bias in VQA benchmarks
through three components: (1) the Captioner (εc), which converts visual content into detailed
descriptions; (2) the Distractor (εd), which produces plausible, groundable negative candidates; and
(3) the Selector (εs), which identifies the most adversarial negatives.

Lemma 1: If we assume all models in ! predicts randomly without the question as input, the
expected proportion of questions suffer from Easy-Options Bias for a given benchmark is given by
1↑ [(1↑ 1

|O| )
|!|→(ω→1)] where ϑ accounts for the number of correlated models (0 ↓ ϑ ↓ |!|).

Table 1 presents the proportion of questions exhibiting Easy-Options Bias and Total Easy-Options
Bias across a range of foundation models, including Qwen2.5VL-7B, Qwen2.5VL-3B, MiniCPM-
V2.6, ViLA-3B, DeepSeek-VL2-Tiny. Here, “correlated models” refers to VLMs likely fine-tuned
on overlapping training-set and therefore behaving similarly. If we assume the VLM behaviour is
not random, then remarkably, over 80% of questions across all evaluated benchmarks are affected
by Easy-Options Bias (Table 1). Even more striking is the substantial fraction of questions that
exhibit Total Easy-Options Bias, particularly in SEED-Bench and NExT-QA, indicating that in many
cases, models can reliably predict the correct answer without any access to the question. It is also
worth noting that among all the benchmarks considered, MMStar exhibits the lowest incidence of
Easy-Options Bias. However, the issue remains significant and cannot be overlooked, underscoring
the need for more robust evaluation.

Motivated by the recent works in distractor generators such as (Çavuşoğlu et al., 2024; Chung
et al., 2020), we introduce GroundAttack (see Figure 3), which addresses the Easy-Options Bias
in existing VQA benchmarks. Our GroundAttack replaces only the negative options in each tuple,
while preserving the original vision, question, and answer. It consists of three modules: Captioner
εc, which converts visual inputs into concise textual descriptions T; Distractor εd, which generates
visually grounded candidate options Oc; and Selector εs, which mines adversarial hard negatives Oa.
We implement these modules as collaborating agents, making GroundAttack a pragmatic approach
that minimizes human effort (Equations 1a-1c).

εc (V ) ↔ T , (1a)
εd (Q,A,T ) ↔ Oc, (1b)

εs (V ,Oori,Oc) ↔ Oa, (1c)

Table 1: Ratio of questions that suffers from Easy-Options Bias and Total Easy-Options Bias under
four types of SOTA VLMs (Qwen2.5VL-7B, Qwen2.5VL-3B, MiniCPM-V2.6, ViLA-3B, and
DeepSeek-VL2-Tiny).

Percentage of Biased Samples NExT-QA STAR-QA MMStar RealWorld SEED-Bench

Easy-Options Bias 87.04% 85.24% 78.86% 93.72% 80.23%
Total Easy-Options Bias 30.07% 20.56% 13.60% 17.64% 35.38%
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Captioner εc Given a video or image input V , model εc serves to convert it into a concise text
description T . Many off-the-shelf visual captioning models are available, such as BLIP (Li et al.,
2022). These models are either trained on domain-specific video or image datasets, and fit only a
small range of captioning tasks. We also want the εc to extract fine-grained information, such as
object locations, actions, and spatial relations. We resort to large-scale pre-trained VLMs as our
captioner. This choice removes the need to pick and customize separate captioning models, ensuring
GroundAttack (GDA) is compatible with different video and image benchmarks.

We use prompt engineering to guide the VLM in captioning complex visuals into detailed descriptions
T . A simplified prompt is shown below; full prompts appear in the supplementary material.

You are an expert that extracts descriptive facts, detailed object

information (bounding boxes), actions, scene context, and spatial

relations from images or videos, ...:

Distractor εd Given the visual description T , the question Q, and the correct answer A, the agent
εd creates N negative choices:Oc = [o1,o2, . . . ,oN ]. In past VQA benchmarks, researchers did
this by hand: they either wrote rules by hand (Wu et al., 2021) or hired annotators to check wrong
answer options (Xiao et al., 2021). This manual process was slow but needed, since each wrong
choice must be clearly wrong yet still confusing.

We employ an LLM as an agent to automatically generate negative answer choices using simple
prompts. This approach reduces human effort and mitigates inter-annotator inconsistency, since the
same LLM produces all negatives. Below we include an abbreviated version of our prompt; the full
prompt is provided in the supplementary material.

You are an expert at generating challenging negative distractors

for image-based question answering.

Given an image description, a question, and its correct answer,

generate 128 clearly and definitively incorrect answer options...

{Question}, {Correct Answer}, {Description}, Negative Options:

Selector εs Given the candidate negatives Oc and the original negatives Oori, the agent εs chooses
a subset Oa that both confuses the model and keeps enough variety among the options. We implement
three simple strategies: random sampling, CLIP selector, and clustering + CLIP. We experimentally
verify that “clustering + CLIP” introduces enough confusion of negative options while maximizing
options’ diversity. Below, describe the three εs.

Random sampling selects a fixed number of negative options uniformly from Oc. This simple baseline
is common in prior work on negative-option generation for VQA benchmarks, but it does not directly
address Easy-Options Bias; it merely relies on the proposal agent εd to produce sufficiently confusing
distractors.

CLIP selector ranks candidate options by their visual similarity to the input V and selects hard
negatives accordingly. First, it encodes all N candidate options Oc into text features {f (i)

c }N
i=1

with the CLIP text encoder (Eq. 2a). It then encodes the visual input with the CLIP vision encoder;
for video, it applies temporal average pooling Ftavg to aggregate frame features into a single
representation (Eq. 2b), whereas no temporal pooling is required for images. Next, it computes
similarities between each f

(i)
c and the visual feature and ranks candidates by these scores. Finally, it

selects the top-m options with the highest similarity to V as hard negatives (Eq. 2c).

.

fc = FCLIP-Text(Oc) , (2a)
fv = Ftavg

(
FCLIP-Vision(V )

)
, (2b)

Oa = {oi→}i=1,2,··· ,m, i
↑ = argmax

i

[
(fc f

↓
v
)i
]
, (2c)

fc → RN↔D
, fv → R1↔D

.
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Clustering + CLIP selects adversarial negatives in two stages. (i) We apply k-means to cluster the
candidate negatives into m groups based on their text features. (ii) Within each group, we use CLIP
to select the highest-similarity (top-1) option to the visual input V . The union of these selections
yields m groundable negatives, denoted Oa.

[fc1,fc2, · · · ,fcm] = K-Means (fc,m) , (3a)

Oa = {oi→}j=1,2,··· ,m, i
↑ = argmax

1

[
(fcj f

↓
v
)i
]
, (3b)

We test different strategies for εs in §3 and select “Clustering+CLIP” as it ensures that adversarial
negative options are confusing, representative, and groundable. To this end, we built the GroundAttack
toolkit with three frozen foundation models (i.e., VLM, LLM and CLIP) in an agent-collaborating
manner.

3 EXPERIMENTS

3.1 DATASET & SETTING.

MMStar (Chen et al., 2024a) is a mixed ImageQA benchmark constructed from six existing
datasets that reduce language biases. It includes an evaluation-only set of 1,500 samples spanning
six categories: coarse perception, fine-grained perception, instance reasoning, logical reasoning,
science & technology, and mathematics. We apply GroundAttack to generate new adversarial negative
options for MMStar, except for the science and mathematics categories, whose questions are largely
textbook-style; in these cases, GroundAttack does not outperform expert-curated options. We will
release the resulting GDA-Annotation to support future research.

NExT-QA (Xiao et al., 2021) is a widely used VideoQA benchmark comprising 5,440 videos
and 34,132/4,996 QA samples in the training and validation sets. It covers causal, descriptive, and
temporal question types. However, its negative options are randomly sampled from similar questions
and manually verified, a strategy akin to εs = “random sampling”, which VLMs can easily exploit
with Easy-Options Bias. To address this, we use GroundAttack to generate adversarial negative
options for NExT-QA and will release the GDA-annotation for future research.

Settings We use GLM-4.1V-9B (Hong et al., 2025) as the captioner (εc), Google Gemma-3n-
E48 (Team et al., 2025) as the distractor generator (εd), and MetaCLIP-2 (Chuang et al., 2025) as
the selector (εs). We purposely choose latest LLM/VLM/CLIP agents that are different from those
used by the evaluated VQA models (VLMs) to avoid leakage and prevent model-specific advantages.
Using εd, we generate N = 128 candidate answers and apply GroundAttack to respectively generates
m=3/4 adversarial negatives for the MMStar or NExT-QA benchmarks, matching the original number
of negatives. For VideoQA, we sample 8 frames per video. All experiments are run on a single
NVIDIA A100 GPU (80 GB).

3.2 ANALYSIS.

Comparisons of different negative options. We compare negative options generated by the original
method, random sampling, CLIP-selector, and GroundAttack in Tables 2 and 3. All experiments are
evaluated under the (V ,Q,O) setting unless otherwise specified.

We observe that: (1) GroundAttack significantly decreases accuracies across all five VLMs compared
to the original negative options, when Easy-Options Bias is mitigated on the MMStar benchmark. For
example, Qwen2.5VL-7B drops from 61.73% to 52.00%, and DeepSeek-VL2-Tiny decreases from
50.07% to 36.80%. A similar observation appeared on the NExT-QA benchmark. (2) Using random
sampling in the selector εs introduces minimal confusion on the MMStar benchmark (random:
62.73% vs. original: 61.73% with Qwen2.5VL-7B). This suggests that random sampling fails to
meet the necessary criteria that negative options are confusing. (3) Both the CLIP-Selector and
GroundAttack (Clustering+CLIP) effectively mitigate Easy-Options Bias on the two benchmarks.
Compared to the CLIP-Selector, GroundAttack selects more diverse and representative negatives
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and produces stronger adversarial options. (4) We further evaluate the original and GroundAttack-
generated options under the (V ,O) setting, where the question is omitted. In this setting, VLM
accuracies drop to the 20%–30% range, close to random guessing, compared to 50%–40% in the
standard (V ,Q,O) setting on the NExT-QA and MMStar benchmarks, respectively.

Table 2: Comparison of VLM performance with different negative option strategies on the MMStar
benchmark. (↗) indicates that lower values reflect more distracting (and thus better) negative options.

Negative
Options

VLM
Qwen2.5VL-7B (↗) Qwen2.5VL-3B (↗) MiniCPM-V2.6 (↗) ViLA-3B (↗) DeepSeek-VL2-Tiny (↗)

Original Chen et al. (2024a) 61.73 55.27 53.87 41.00 50.07
Random Negatives 62.73 57.67 54.80 42.68 45.80
CLIP-Selector 52.47 48.47 46.80 30.13 41.60
GroundAttack 52.00 46.87 45.53 32.33 36.80

Original (V,O) 46.27 43.27 47.47 39.68 41.40
GroundAttack (V,O) 28.33 27.67 29.33 24.73 25.53

Table 3: Comparison of VLM performance with different negative option strategies on the NExT-QA
benchmark. (↗) indicates that lower values reflect more distracting (and thus better) negative options.

Negative
Options

VLM
Qwen2.5VL-7B (↗) Qwen2.5VL-3B (↗) MiniCPM-V2.6 (↗) ViLA-3B (↗) DeepSeek-VL2-Tiny (↗)

Original Xiao et al. (2021) 81.04 78.80 76.62 65.55 61.29
Random Negatives 71.14 69.98 69.08 50.14 37.83
CLIP-Selector 54.96 53.02 52.18 31.59 21.06

GroundAttack 54.16 52.66 53.24 33.21 24.98

Original (V,O) 64.13 64.25 63.55 54.96 53.78
GroundAttack (V,O) 20.80 26.30 26.28 21.66 15.13

Impacts of the number of GroundAttack negative options. In Figure 4, we study the effect of
varying the number of GroundAttack-generated negative options. We use Qwen2.5VL-7B as the
evaluation model and report results under both (V ,O) and (V ,Q,O) settings. Because the original
NExT-QA and MMStar annotations contain only 3 or 4 negatives, we extend random sampling as an
approximate surrogate to mimic the original annotation size for reference.

We observe that accuracy decreases as the number of GroundAttack-generated negatives increases
in both settings, unsurprising, as more confusing distractors make it harder for VLMs to select the
correct answer. Notably, under (V ,Q,O), performance with GroundAttack is consistently lower than
with random sampling, indicating that GroundAttack produces more optimally confusing negatives.
Moreover, under (V ,O), the GroundAttack curve moves closer to chance performance than the
random-sampling baseline, suggesting that Easy-Options Bias is mitigated by GroundAttack. We cap
the number of options at 26, corresponding to labels A–Z.

Figure 4: Impact of varying the number of GroundAttack-generated negative options on NExT-QA
and MMStar benchmarks (Number of Options=1 Positive + N Negatives)

7
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In Table 4 we compute the Easy-Options Bias proportion after GroundAttack on both NExT-QA and
MMStar datasets. Evidence suggests that our GroundAttack enforces to models behave randomly
achieving both theoretical expected performance as per the Lemma 1 for Easy-Options Bias.

Note that the theoretical expected proportion for random models for both datasets is around
48.80%↘59.04% for NExT-QA (ϑ → {1, 2}, |!| = 5, |O| = 5), and 57.81%↘68.35% for MM-
Star (ϑ → {1, 2}, |!| = 5, |O| = 4).

3.3 VISUALIZATION

We present a visual comparison between the original negatives and adversarial negatives generated
by GroundAttack, as shown below on the MMStar dataset. We observe that GDA options are more
visually relevant to image contents than original annotations. (Figure 5).

Figure 5: Visual comparison between original options and those generated by GroundAttack.

4 RELATED WORKS

Several studies have uncovered critical limitations in visual question answering (VQA) (Song et al.,
2023; Qraitem et al., 2023; Agrawal et al., 2022), yet these findings have received limited attention
in developing mainstream benchmarks. Sheng et al. (2021) demonstrated that VQA models fail
dramatically when evaluated on datasets constructed using dynamic, human-adversarial approaches.
Similarly, Li et al. (2021) introduced an adversarial benchmark to expose model vulnerabilities,
while Zhao et al. (2023) examined the fragility of vision-language models (VLMs) in VQA settings.
Shortcut learning in VQA, where models exploit superficial correlations across modalities, has also
been addressed in several works (Dancette et al., 2021).

Zhang et al. (2023) identified a form of vision-answer bias in the NExT-QA dataset(Xiao et al., 2021),
where the distribution of answers conditioned on visual inputs is skewed, leading to disproportionate
vision-answer correlations. However, their analysis was confined to conventional VQA models and
did not consider recent VLMs. In this work, we reveal an even more severe issue Easy-Options Bias,
where models can often ignore the question entirely and still predict the correct answer based solely
on the visual input and answer choices.

Wang et al. (2023) further identified two systematic dataset biases: (1) Unbalanced Matching, where
the correct answer exhibits stronger alignment with the image and question than the distractors, and
(2) Distractor Similarity, where incorrect answers are both dissimilar to the correct one and mutually

(a) NExT-QA
Percentage Easy-Options Bias (↗) Total Easy-Options Bias (↗)

Original Xiao et al. (2021) 87.04% 30.07%
GroundAttack 50.99% 3.34%

(b) MMStar
Percentage Easy-Options Bias (↗) Total Easy-Options Bias (↗)

Original Xiao et al. (2021) 78.86% 13.60%
GroundAttack 59.33% 3.40%

Table 4: By using GroundAttack, ratio of questions that suffer from Easy-Options Bias and total
Easy-Options Bias under four types of SOTA VLMs. (↗) indicates that less samples suffer from
Easy-Options Bias.
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similar, thereby reducing discriminative challenge. A recent survey by Ma et al. (2024) provides a
comprehensive overview of robustness in VQA.

In contrast to prior work, we focus on how state-of-the-art VLMs, including Qwen-VL-2.5 and
DeepSeek-VL2, behave under modern evaluation settings such as the MMStar, SEED-Bench, and
benchmarks. Our findings show the urgent need for more diagnostic evaluation protocols that account
for vision-answer biases and question insensitivity in contemporary VQA tasks.

5 LIMITATIONS AND CONCLUSIONS

Limitations

Our findings are based on empirical observations and come with several limitations. First, while we
analyzed the EOB phenomenon across a representative set of benchmarks and VLMs, our coverage
is not exhaustive due to computational and resource constraints. Consequently, the generalizability of
our conclusions may be limited.

Second, although our proposed strategy shows promise in reducing EOB on the datasets and models
tested, we do not claim it universally addresses the issue. Its effectiveness may vary depending on
dataset properties, model architectures, and training regimes.

Third, our analysis emphasizes empirical behavior over theoretical guarantees. Understanding the
root causes of EOB, such as dataset artifacts, training dynamics, or modality interplay, requires
further study.

While the proposed GroundAttack is a practical contribution, its evaluation is limited. We have not
conducted human studies to assess the quality, plausibility, or diversity of the generated distractors,
relying instead on manual inspection and EOB reduction metrics. The grounding experiments use
CLIP similarity as a proxy for visual relevance, but CLIP itself has known biases. Moreover, we
did not compare our approach with alternative distractor generation methods (e.g., adversarial (Li
et al., 2020), contrastive (Cao et al., 2025; Qu et al., 2024; Chung et al., 2020), or perturbation-based
techniques (Çavuşoğlu et al., 2024; Geva et al., 2022)), nor did we test whether models trained on
GroundAttack-augmented data generalize better or improve robustness across tasks. We leave these
directions for future work.

Despite these limitations, our work offers valuable insights and a practical diagnostic framework for
identifying and addressing a previously underappreciated failure mode in VQA tasks. We hope this
encourages the development of more robust and trustworthy benchmarks for evaluating multimodal
reasoning in future vision-language systems.

Conclusions

In this paper, we uncover a previously overlooked limitation in multiple-choice Visual Question
Answering (VQA) benchmarks, which we term the Easy Negative Bias (EOB). This bias allows
VLMs to correctly answer questions without ever reading them. Our systematic evaluation across
six diverse VQA benchmarks and four SOTA VLMs reveals that EOB is pervasive, affecting more
than 80% of questions and fundamentally undermining the credibility of benchmark accuracy as a
measure of true multimodal reasoning.

To analyze the roots of EOB, we leverage CLIP-based grounding experiments and show that correct
answer choices consistently exhibit higher visual-text alignment scores than distractors, even without
the question. This imbalance suggests that many benchmarks unintentionally favour answers that are
visually obvious, reducing the need for genuine cross-modal reasoning.

To address this flaw, we introduce GroundAttack, a practical and scalable method for generating
visually and semantically grounded adversarial negative options. By augmenting existing benchmarks
with harder, more plausible distractors, GroundAttack significantly mitigates EOB, thereby restoring
the need for the question and enhancing the robustness of VQA evaluation.

Our findings call for a rethinking of how VQA benchmarks are constructed and evaluated in the era
of powerful pretrained VLMs. Future benchmarks must go beyond merely testing factual recall or
language priors and ensure that answering truly depends on integrating both vision and language
inputs, especially the question.
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