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Abstract

Layer-wise preconditioning methods are a family of memory-efficient optimization algorithms
that introduce preconditioners per axis of each layer’s weight tensors. These methods have seen
a recent resurgence, demonstrating impressive performance relative to entry-wise (“diagonal”)
preconditioning methods such as Adam(W) on a wide range of neural network optimization tasks.
Complementary to their practical performance, we demonstrate that layer-wise preconditioning
methods are provably necessary from a statistical perspective. To showcase this, we consider two
prototypical models, linear representation learning and single-index learning, which are widely
used to study how typical algorithms efficiently learn useful features to enable generalization.
In these problems, we show SGD is a suboptimal feature learner when extending beyond ideal
isotropic inputs x ∼ N(0, I) and well-conditioned settings typically assumed in prior work. We
demonstrate theoretically and numerically that this suboptimality is fundamental, and that
layer-wise preconditioning emerges naturally as the solution. We further show that standard
tools like Adam preconditioning and batch-norm only mildly mitigate these issues, supporting
the unique benefits of layer-wise preconditioning.

1 Introduction

Well-designed optimization algorithms have been an enabler to the staggering growth and success of
machine learning. For the broader ML community, the Adam (Kingma & Ba, 2015) optimizer is likely
the go-to scalable and performant choice for most tasks. However, despite its popularity in practice,
it has been notoriously challenging to understand Adam-like optimizers theoretically, especially from
a statistical (e.g. generalization) perspective.1 In fact, there exist many theoretical settings where
Adam and similar methods underperform in convergence or generalization relative to, e.g., well-tuned
SGD (see e.g. Wilson et al. (2017); Keskar & Socher (2017); Reddi et al. (2018); Gupta et al. (2021);
Xie et al. (2022); Dereich et al. (2024)), further complicating a principled understanding the role of
Adam-like optimizers in deep learning. Given these challenges, is there an alternative algorithmic
paradigm that is comparable to the Adam family in practice that is also well-motivated from a
statistical learning perspective? Encouragingly, in a recent large-scale deep learning optimization

∗Equal Contribution. Correspondence to: {ttz2, bemoniri}@seas.upenn.edu
1To be contrasted with an “optimization” perspective, e.g. guarantees of convergence to a critical point of the training
objective.
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competition, AlgoPerf (MLCommons, 2024), Adam and its variants were outperformed in various
“hold-out error per unit-compute”2 metrics by a method known as Shampoo (Gupta et al., 2018),
a member of a layer-wise “Kronecker-Factored” family of preconditioners, formally described in
Section 2, contrasted with “diagonal” preconditioning methods like Adam.

Notable members of the Kronecker-Factored preconditioning family include Shampoo and KFAC

(Martens & Grosse, 2015), as well as their many variants and descendants. These algorithms are
motivated from an approximation-theoretic perspective, aiming to approximate some ideal curvature
matrix (e.g. the Hessian or Fisher Information) in a way that mitigates the computational and
memory challenges associated with second-order algorithms such as Newton’s Method (NM) or
Natural Gradient Descent (NGD). However, towards establishing the benefit of these preconditioners,
an approximation viewpoint is bottlenecked by our limited understanding of how the idealized second-
order methods perform on neural-network learning tasks, even disregarding the computational
considerations. It in fact remains unclear whether these second-order methods are inherently
superior to the approximations designed to emulate them. For example, recent work has shown
that, surprisingly, KFAC generally outperforms its ideal counterpart NGD in convergence rate and
generalization error on typical deep learning tasks (Benzing, 2022). Thus, a key question remains:

How do we explain the performance of Kronecker-Factored preconditioned optimizers?

In a seemingly distant area, the learning theory community has been interested in studying the
solutions learned by abstractions of “typical” deep learning set-ups, where the overall goal is to
theoretically demonstrate how neural networks learn features from data to perform better than
classical “fixed features” methods, e.g. kernel machines. Much of this line of work focuses on
analyzing the performance of SGD on simplified models of deep learning (see e.g. Collins et al.
(2021); Damian et al. (2022); Ba et al. (2022); Barak et al. (2022); Abbe et al. (2023); Dandi et al.
(2024a); Berthier et al. (2024); Nichani et al. (2024b); Collins et al. (2024)). Almost invariably,
certain innocuous-looking assumptions are made, such as isotropic covariates x ∼ N(0, I). Under
these conditions, SGD has been shown to exhibit desirable generalization properties. However, some
works deviate from these assumptions in specific settings (Amari et al., 2020; Zhang et al., 2024b),
and suggest that SGD can exhibit severely suboptimal generalization. Thus, toward extending our
understanding of feature learning, it seems beneficial to consider a broader family of optimizers.
This raises the following question:

What is a practical family of optimization algorithms that overcomes the deficiencies of
SGD for standard feature learning tasks?

We answer the above two questions by focusing on two prototypical problems used to theoretically
study feature learning: linear representation learning and single-index learning. In both problems,
we show that SGD is clearly suboptimal outside ideal settings, such as when the ubiquitous isotropic
data N(0, I) assumption is violated. By inspecting the root cause behind these suboptimalities, we
show that Kronecker-Factored preconditioners arise naturally as a first-principles solution to these
issues. We provide novel non-approximation-theoretic motivations for this class of algorithms, while
establishing new and improved learning-theoretic guarantees. We hope that this serves as strong
evidence of an untapped synergy between deep learning optimization and feature learning theory.

2See Dahl et al. (2023, Section 4.2) for details.
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Contributions. Here we discuss the main contributions of the paper.

• We study the linear representation learning problem under general anisotropic x ∼ N(0,Σx)
covariates and show that the convergence of SGD can be drastically slow, even under mild
anisotropy. Also, the convergence rate suffers an undesirable dependence on the “conditioning” of
the instance even for ideal step-sizes. We arrive at a variant of KFAC as the natural solution to
these deficiencies of SGD, giving rise to the first condition-number-free convergence rate for the
problem (Section 3.1).

• Next, we consider the problem of learning a single-index model using a two-layer neural network
in the high-dimensional proportional limit. We show that for anisotropic covariates x ∼ N(0,Σx),
SGD fails to learn useful features, whereas it is known that it learns suitable features in the
isotropic setting. Furthermore, we show that KFAC is a natural fix to SGD, greatly enhancing the
learned features in anisotropic settings (Section 3.2).

• Lastly, we carefully numerically verify our theoretical predictions. Notably, we confirm the findings
in Benzing (2022) that full second-order methods heavily underperform KFAC in convergence rate
and stability. We also show standard tools like Adam-like preconditioning and batch-norm (Ioffe &
Szegedy, 2015) do not fix the issues we identify, even for our simple models, and may even hurt
generalization in the latter’s case.

In addition to the works discussed earlier, we provide extensive related work and background in
Appendix A.

Notation. We denote vector quantities by bold lower-case, and matrix quantities by bold
upper-case. We use ⊙ to denote element-wise (Hadamard) product, ⊗ for Kronecker product,
and vec(·) the column-major vectorization operator. Positive (semi-)definite matrices are denoted
by Q ≻ (⪰) 0, and the corresponding partial order P ⪯ Q =⇒ Q − P ⪰ 0. We use ∥·∥op,
∥·∥F to denote the operator (spectral) and Frobenius norms, and κ(A) = σmax(A)/ σmin(A)
denote the condition number. We use E[f(x)] to denote the expectation of f(x), and P[A(x)] to
denote the probability of event A(x). Given a batch {xi}ni=1, we denote the empirical expectation

Ê[f(x)] = 1
n

∑n
i=1 f(xi). Given an indexed set of vectors, we use the upper case to denote the

(row-wise) stacked matrix, e.g. X ≜
[
x1 · · · xn

]⊤ ∈ Rn×dX . We reserve Σ (Σ̂) for (sample)

covariance matrices, e.g. Σx = E[xx⊤], Σ̂x = Ê[xx⊤] = 1
nX

⊤X. We use ≲,≳,≈ to omit universal
numerical constants, and standard asymptotic notation o(·),O(·),Ω(·),Θ(·). Lastly, we use the index
shorthand [n] = {1, . . . , n}, and subscript + to denote the “next iterate”, e.g. G+ = Next(G).

2 Kronecker-Factored Approximation

One of the longest-standing research efforts in optimization literature is dedicated to understanding
the role of (local) curvature toward accelerating convergence rates of optimization methods. An
example is Newton’s method, where the curvature matrix (Hessian) serves as a preconditioner of
the gradient, enabling one-shot convergence in quadratic optimization, in which gradient descent
enjoys at best a linear convergence rate dictated by the conditioning of the problem. However, for
high-dimensional variables, computing and storing the full curvature matrix is often infeasible. Thus
enter Quasi-Newton and (preconditioned) Conjugate Gradient methods, where the goal is to reap
the benefits of curvature under computational or structural specifications, such as {block-diagonal,
low-rank, sparsity, etc.} constraints (e.g. BFGS family (Goldfarb, 1970; Liu & Nocedal, 1989; Nocedal
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& Wright, 1999)), or accessing the curvature matrix only through matrix-vector products (see e.g.
Pearlmutter (1994); Schraudolph (2002); Martens (2010)).

Nevertheless, the use of these methods for neural network optimization introduces new considerations.
Consider an L-layer fully-connected neural network (omitting biases)

fθ(x) ≜ WLσ(WL−1 · · ·σ(W1x) · · · ),

where Wℓ ∈ Rd×d, ℓ ∈ [L] and θ ∈ RLd2 is the concatenation of θℓ ≜ vec(Wℓ), ℓ ∈ [L]. Firstly,
establishing convergence of SGD (Arora et al., 2019), NGD (Zhang et al., 2019), or Gauss-Newton (Cai
et al., 2019) (or their corresponding gradient flows) to global minima of the training objective is
non-trivial, as optimization over θ is non-convex. Moreover, these results do not directly characterize
the structure of the resulting features learned by the algorithms. Secondly, on the practical front,
full preconditioners on θ require memory O(L2d4), which grows prohibitively with depth and width.
Block-diagonal approximations (where one curvature block Mℓ ∈ Rd2×d2 corresponds to a layer θℓ)
still require O(Ld4). Thus, entry-wise preconditioning as in Adam, with footprint O(Ld2) ≈ dim(θ),
is usually considered the only scalable class of preconditioners.

However, a distinct notion of “Kronecker-Factored” preconditioning emerged approximately concur-
rently with Adam, with representative examples such as KFAC and Shampoo. As its name suggests,
since full block-diagonal approximations are too expensive, a Kronecker-Factored approximation is
made instead, where M−1

ℓ ∇θℓL(θ) = (Qℓ⊗Pℓ)
−1∇θℓL(θ), Pℓ,Qℓ ⪰ 0. Using properties of the Kro-

necker product (see Lemma E.1), this has the convenient interpretation of pre- and post-multiplying
the weights in their matrix form:

(Qℓ ⊗Pℓ)
−1∇θℓL(θ) ⇐⇒ P−1

ℓ ∇Wℓ
L(θ)Q−1

ℓ . (1)

As such, the memory requirement of Kronecker-Factored layer-wise preconditioning is O(Ld2),
matching that of entry-wise preconditioning. The notion of curvature differs from case to case, e.g.,
for KFAC, this is the Fisher Information matrix corresponding to the distribution parameterized
by fθ(x), whereas for Shampoo this is the full-matrix Adagrad preconditioner, in turn closely
related to the Gauss-Newton matrix.3 We provide some sample derivations and background in
Appendix D. However, as aforementioned, an approximation viewpoint falls short of explaining
the practical performance of Kronecker-Factored methods, as they typically converge faster than
their corresponding second-order method (Benzing, 2022) on deep learning tasks. This motivates
understanding the unique benefits of layer-wise preconditioning methods from first principles, which
brings us to the following section.

3 Feature Learning via Kronecker-Factored Preconditioning

We present two prototypical models of feature learning, linear representation learning and single-
index learning, and demonstrate how typical guarantees for the features learned by SGD break down
outside of idealized settings. We then show how to rectify these issues by deriving a modified
algorithm from first principles, and demonstrate that both cases in fact coincide with a particular
Kronecker-factored preconditioning method. We now set-up the model architecture and algorithm
primitive considered in both problems. We consider two-layer feedforward neural network predictors:

fF,G(x) = Fσ(Gx), (2)

3This is itself a positive-definite approximation of the Hessian.
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where F ∈ RdY×dh , G ∈ Rdh×dX denote the weight matrices and σ(·) is a predetermined activation
function. For scalar outputs dY = 1, we use ff ,G(x) = f⊤σ(Gx). For our purposes, we omit the bias
vectors from both layers. We further denote the intermediate covariate pre- and post-activation
h ≜ Gx, z ≜ σ(Gx). We consider a standard mean-squared-error (MSE) regression objective and
its (batch) empirical counterpart:

L(F,G) ≜
1

2
E(x,y)

[
∥y − fF,G(x)∥2

]
, L̂(F,G) ≜

1

2
Ê
[
∥y − fF,G(x)∥2

]
. (3)

Given a batch of inputs {xi}ni=1, we define the left and right preconditioners of the two layers (recall
equation (1)):

QG = Σ̂x = Ê[xx⊤], QF = Σ̂z = Ê[zz⊤],

PG = Ê

[(
∂fF,G

∂h

)⊤ ∂fF,G

∂h

]
(or Idh), PF = IdY .

(4)

We introduce the flexibility of PG = Idh for when PG does not play a significant role; notably,
this recovers certain Kronecker-Factored preconditioners that avoid extra backwards passes (see
Appendix D). We consider a stylized alternating descent primitive, where we iteratively perform

G+ = G− ηGP
−1
G ∇GL̂(F,G) (QG + λGIdX)

−1

F+ = F− ηFP
−1
F ∇FL̂(F,G+)Q

−1
F ,

(5)

where ηG, ηF > 0 are layer-wise learning rates, and λG ∈ R is a regularization parameter. In line
with most prior work, we consider an alternating scheme for analytical convenience. We also assume
that G+,F+ are computed on independent batches of data, equivalent to sample-splitting strategies
in prior work (Collins et al. (2021); Zhang et al. (2024b); Ba et al. (2022); Moniri et al. (2024) etc).

The preconditioners (4) and update (5) bear a striking resemblance to KFAC (cf. Appendix D). In
fact, the preconditioners align exactly with KFAC if we view L(F,G) as a negative log-likelihood
of a conditionally Gaussian model with fixed variance: ŷ(x) ∼ N(fF,G(x), σ2I). This is in some
sense a coincidence (and a testament to the prescience of KFAC’s design): rather than deriving
the above preconditioners via approximating the Fisher Information matrix, we will show shortly
how they arise as a natural adjustment to SGD in our featured problems. We note that Kronecker-
Factored preconditioning methods often involve further moving parts such as damping exponents
P−ρ, additional ridge parameters on various preconditioners, and momentum. Though of great
importance in practice, they are beyond the scope of this paper,4 and we only feature parameters
that play a role in our analysis.

A convenient observation that unifies various stylized algorithms on two-layer networks is that the
F-update in (5) can be interpreted as an exponential moving average (EMA) over least-squares
estimators conditioned on z.

Lemma 3.1. Given G, define the least-squares estimator:

F̂ls ≜ argmin
F̂

1

2
Ê
[
∥y − F̂σ(Gx)︸ ︷︷ ︸

z

∥2
]
= Y⊤Z (Z⊤Z)−1

4We refer the interested reader to Ishikawa & Karakida (2023) for discussion of these settings in the “maximal-update
parameterization” framework (Yang & Hu, 2021b).
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Given ηF ∈ (0, 1], then the F-update in (5) can be re-written as an EMA of F̂ls; i.e.,

F+ = (1− ηF)F+ ηFF̂ls.

In particular, many prior works (e.g. Collins et al. (2021); Nayer & Vaswani (2022); Thekumparampil
et al. (2021); Zhang et al. (2024b)) consider an alternating “minimization-descent” approach, where
out of analytical convenience F is updated by performing least-squares regression holding the hidden
layer G fixed. In light of Lemma 3.1, this corresponds to the case where ηF = 1.

3.1 Linear Representation Learning

Assume we have data generated by the following process

xi
i.i.d.∼ N(0,Σx), yi = F⋆G⋆xi + εi, (6)

where Σx is the input covariance, F⋆ ∈ RdY×k, G⋆ ∈ Rk×dX are (unknown) rank-k matrices, and

εi
i.i.d.∼ N(0,Σε) is additive label noise independent of all other randomness. We consider Gaussian

data throughout the paper for conciseness; all results in this section can be extended to subgaussian
x, ε via standard tools, affecting only the universal constants (see Appendix E). Let us define
σ2
ε ≜ λmax(Σε). Accordingly, our predictor model is a two-layer feed-forward linear network (2)

with F ∈ RdY×k, G ∈ Rk×dX .

The goal of linear representation learning is to learn the low-dimensional feature space that G⋆ maps
to, which is equivalent to determining its row-space rowsp(G⋆). Recovering F⋆,G⋆ is an ill-posed
problem, as for any invertible L ∈ Rk×k, the matrices F⋆L, L

−1G⋆ remain optimal. Therefore, we
measure recovery of rowsp(G⋆) via a subspace distance.

Definition 3.2 (Subspace Distance (Stewart & Sun, 1990)). Let G,G⋆ ∈ Rk×dX be matrices whose
rows are orthonormal. Let P⊥

⋆ ∈ RdX×dX be the projection matrix onto rowsp(G⋆)
⊥. Define the

distance between the subspaces spanned by the rows of G and G⋆ by

dist(G,G⋆) ≜ ∥GP⊥
⋆ ∥op (7)

The subspace distance quantitatively captures the alignment between two subspaces, ranging between
0 (occurring iff rowsp(G⋆) = rowsp(G)) and 1 (occurring iff rowsp(G⋆) ⊥ rowsp(G)). We further
make the following non-degeneracy assumptions.

Assumption 3.3. We assume G⋆ is row-orthonormal, and F⋆ is full-rank, rank(F⋆) = k ≤ dY.
This is without loss of generality: if k > dY, then recovering a k-dimensional row-space from yi is
underdetermined. If rank(F⋆) = k′ < k, then it suffices to consider G⋆ ∈ Rk′×dX .

The linear representation learning problem has often been studied in the context of multi-task
learning (Du et al., 2021; Tripuraneni et al., 2020; Collins et al., 2021; Thekumparampil et al., 2021;
Zhang et al., 2024b).

Remark 3.4 (Multi-task Learning). Multi-task learning considers data generated as y
(t)
i = F

(t)
⋆ G⋆x

(t)
i +

ε
(t)
i for distinct tasks t = 1, . . . , T , with the same goal of recovering the shared representation G⋆.

Our algorithm and guarantees naturally extend here, see Appendix B.3 for full details. In particular,

by embedding F⋆ =
[
F
(1)
⋆

⊤ · · · F
(T )
⋆

⊤
]⊤

, Assumption 3.3 is equivalent to the “task-diversity”

conditions in the above works: rank(F⋆) = rank
(∑T

t=1F
(t)
⋆

⊤F
(t)
⋆

)
= k.
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We maintain the “single-task” setting in this section for concise bookkeeping while preserving
the essential features of the representation learning problem. Various algorithms have been pro-
posed toward provably recovering the representation G⋆. A prominent example is an alternating
minimization-SGD scheme (Collins et al., 2021; Vaswani, 2024). In the cited works, a local conver-
gence result5 is established for isotropic data Σx = IdX . In Zhang et al. (2024b), it is shown that
using SGD can drastically slow convergence even under mild anisotropy; their proposed algorithmic
adjustment equates to applying the right-preconditioner QG = Σ̂x. However, their local convergence
result suffers a dependence on the condition number of F⋆, slowing the linear convergence rate
for ill-conditioned F⋆. Let us now specify the algorithm template used in this section, that also
encompasses the above work:

G+ via (5), G+ = Ortho(G+), F+ via (5). (8)

Notably, we row-orthonormalize the representation after each update. Besides ease of analysis, we
have observed this numerically mitigates the elements of G from blow-up when running variants
of SGD. The alternating min-SGD algorithms in Collins et al. (2021); Vaswani (2024) are equivalent
to iterating (8) setting PG = QG = I, ηF = 1 in (4), whereas Zhang et al. (2024b) use PG = I,
QG = Σ̂x, ηF = 1. Let us now write out the full-batch gradient update.

Full-Batch SGD. Given a fresh batch of data {(xi,yi)}ni=1, and current weights (F,G), we have
the representation gradient and corresponding SGD step:

∇GL̂(F,G) =
1

n
F⊤
(
FGX⊤X−Y⊤X

)
G+ = G− ηG∇GL̂(F,G). (9)

When x is isotropic Σx = IdX , the key observation is that by multiplying both sides of (9) by P⊥
⋆ ,

recalling Y⊤ = F⋆G⋆X
⊤ + E⊤, we have

G+P⊥
⋆ =

(
G− ηGF

⊤
(
(FG− F⋆G⋆)Σ̂x − 1

n
E⊤X

))
P⊥
⋆

≈ (Ik − ηGF
⊤F)GP⊥

⋆ +
ηG

n
F⊤E⊤XP⊥

⋆ ,

where the approximate equality hinges on covariance concentration Σ̂x ≈ IdX and G⋆P⊥
⋆ = 0.

Therefore, in the isotropic setting, for sufficiently large n ≳ dX, and appropriately chosen ηG ≈
1

λmax(F⊤
⋆ F⋆)

, then (omitting many details) we have the one-step contraction (Collins et al., 2021;

Vaswani, 2024):

dist(G+,G⋆) ≲

(
1− λmin(F

⊤
⋆ F⋆)

λmax(F⊤
⋆ F⋆)

)
dist(G,G⋆) +O

(
σε
√
dX/n

)
, (10)

where O(·) here hides different problem parameters depending on the analysis. Therefore, in low-
noise/large-batch settings, this demonstrates SGD on the representation G converges geometrically to
G⋆ (in subspace distance). However, there are clear suboptimalities to SGD. Firstly, the above analysis
critically relies on Σx = IdX such that G⋆Σ̂xP⊥

⋆ ≈ 0. As aforementioned, this is demonstrated to
be crucial in Zhang et al. (2024b) for dist(G,G⋆) to converge using SGD. Secondly, the convergence

5By local convergence here we mean dist(G,G⋆) is sufficiently (but non-vanishingly) small.
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of SGD is bottlenecked by the conditioning of F⋆. In fact, we show the dependence on F⋆ in the
contraction rate bound (10) cannot be improved in general, even under the most benign assumptions.
Following Collins et al. (2021); Vaswani (2024), we define GT = SGD(G0; ηG, T ) as the output of
alternating min-SGD, i.e. iterating (8) setting PG = QG = I, ηF = 1 in (4), for T steps with fixed
step-size ηG starting from G0.

Proposition 3.5. Let Σx = IdX, n = ∞. Choose any dX > k, dY ≥ k ≥ 2. Let the learner be
given knowledge of F⋆,G⋆ and dist(G0,G⋆). However, assume the learner must fix ηG > 0 before
observing G0. Then, there exists F⋆ ∈ RdY×k, G⋆,G0 ∈ Rk×dX, such that GT = SGD(G0; ηG, T )
satisfies:

dist(GT ,G⋆) ≥
(
1− 4

λmin(F
⊤
⋆ F⋆)

λmax(F⊤
⋆ F⋆)

)T

dist(G0,G⋆).

The proof can be found in Appendix B.1. Since we set Σx = I, the lower bound also holds for the
algorithm in Zhang et al. (2024b). We remark departing from a worst-case analysis to a generic
performance lower bound, e.g. random initialization or varying step-sizes, is a nuanced topic even
for the simple case of convex quadratics; see e.g. Bach (2024); Altschuler & Parrilo (2024). In light
of Proposition 3.5 and (9), a sensible alteration might be to pre- and post- multiply ∇GL̂(F,G) by
(F⊤F)−1 and Σ̂−1

x . These observations bring us to the proposed recipe in (5).

Stylized KFAC. By analyzing the shortcomings of the SGD update, we arrive at the proposed
representation update:

G+ = G− ηG(F
⊤F)−1∇GL̂(F,G) Σ̂−1

x .

We can verify from (4) and (5) that PG = F⊤F and QG = Σ̂x. Thus, we have recovered a stylized
variant of KFAC as previewed. Our main result in this section is a local convergence guarantee.

Theorem 3.6. Consider running (8) with λG = 0, ηG ∈ [0, 1], and ηF = 1. Define σ2 ≜
σ2
ε

σmin(F⋆)2 λmin(Σx)
. As long as dist(G,G⋆) ≤ 0.01

κ(Σx)κ(F⋆)
and n ≳ max{1, σ2} (dX + log(1/δ)), we

have with probability ≥ 1− δ:

dist(G+,G⋆) ≤ (1− 0.9ηG)dist(G,G⋆) +O(1) ηGσ

√
dX + log(1/δ)

n
.

Crucially, the contraction factor is condition-number-free, subverting the lower bound in Proposi-
tion 3.5 for sufficiently ill-conditioned F⋆. Therefore, setting ηG near 1 ensures a universal constant
contraction rate. Curiously, our proposed stylized KFAC (8) aligns with an alternating “min-min”
scheme (Jain et al., 2013; Thekumparampil et al., 2021), where F,G are alternately updated
via solving the convex quadratic least-squares problem, by setting ηF = ηG = 1. However, our
experiments (see Figure 5) demonstrate ηG = 1 is generally suboptimal, highlighting the flexibility
of viewing KFAC as a descent method.

3.1.1 Transfer Learning

The upshot of representation learning is the ability to transfer (e.g. fine-tune) to a distinct, but
related, task by only retraining F (Du et al., 2021; Kumar et al., 2022). Assume we now have target
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data generated by:

x
(t)
i

i.i.d.∼ N(0,Σ
(t)
x ), y

(t)
i = F

(t)
⋆ G⋆x

(t)
i + εi, (11)

where εi
i.i.d.∼ N(0,Σε), F

(t)
⋆ ∈ RdY×k. Notably, G⋆ is shared with the “training” distribution (6).

Given Ĝ (e.g. by running (8) on training task), we consider fitting the last layer F given a batch of
n(t) data from the target task (11).

Lemma 3.7. Let F̂
(t)
ls = argmin

F̂
Ê(t)[∥y(t) − F̂z(t)∥22], z(t) ≜ Ĝx(t) be the optimal F on the batch

of n(t) target data (11) given Ĝ. Defining ν = dist(Ĝ,G⋆), given n(t) ≳ k + log(1/δ), we have with
probability ≥ 1− δ:

L(t)(F̂
(t)
ls , Ĝ) ≜ E

[
∥y(t) − F

(t)
⋆ G⋆x

(t)∥22
]
≲ ∥F(t)

⋆ ∥2F λmax(Σ
(t)
x )ν2 +

σ2
ε(dYk + log(1/δ))

n(t)
.

As hoped, the MSE of the fine-tuned predictor decomposes into a bias term scaling with the quality
of Ĝ, and a noise term scaling with dim(F)/n(t). We comment the required data is ≈ k rather than
≈ dX resulting from doing regression from scratch (Wainwright, 2019). Additionally, the noise term
scales with dim(F) = dYk rather than dYdX of the full predictor space. The transfer learning set-up
(11) also reveals why data normalization (e.g. whitening, batch-norm (Ioffe & Szegedy, 2015)) can be

counterproductive. To illustrate this, consider perfectly whitening the training covariates v = Σ
−1/2
x x.

By this change of variables, the ground-truth predictor changes y ≈ F⋆G⋆x = F⋆G⋆Σ
1/2
x v. This is

unproblematic so far—in fact, since the covariates v are isotropic, SGD now may converge. However,

instead of rowsp(G⋆), the representation now converges to rowsp(G⋆Σ
1/2
x ). Deploying on the target

task, since Σx ̸= Σ
(t)
x , we have rowsp(Ĝ) ≈ rowsp(G⋆Σ

1/2
x ) ̸= rowsp(G⋆(Σ

(t)
x )1/2). In other words,

in return for stabilizing optimization, normalizing the data destroys the shared structure of the
predictor model! We illustrate this effect in Figure 2.

3.2 Single Index Learning

Assume that we observe n i.i.d. samples generated according to the following single-index model:

xi
i.i.d.∼ N(0,Σx), yi = σ⋆(β

⊤
⋆ xi) + εi (12)

where Σx ∈ RdX×dX is the input covariance, σ⋆ : R → R is the teacher activation function, β⋆ ∈ RdX

is the (unknown) target direction, and εi is an additive noise εi
i.i.d.∼ N(0, σ2

ε) independent of all
other sources of randomness. We also make the following common assumption on β⋆ (Dicker (2016);
Dobriban & Wager (2018); Tripuraneni et al. (2021a); Moniri et al. (2024); Moniri & Hassani
(2024a), etc.) that ensures the covariates xi alone do not carry any information about the target
direction.

Assumption 3.8. The vector β⋆ is drawn from β⋆ ∼ N(0, d−1
X IdX) independent of other sources of

randomness.

In this section, we study the problem of fitting a two-layer feedforward neural network ff ,G for
prediction of unseen data points drawn independently from (12) at test time. When G is kept at a
random initialization and f is trained using ridge regression, the model coincides with a random
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features model (Rahimi & Recht, 2007; Montanari et al., 2019; Hu & Lu, 2023) and has repeatedly
used as a toy model to study and explain various aspects of practical neural networks (see Lin &
Dobriban (2021); Adlam & Pennington (2020); Tripuraneni et al. (2020); Hassani & Javanmard
(2024); Bombari et al. (2023); Lee et al. (2023a); Bombari & Mondelli (2024a,b), etc.).

When the covariates are isotropic Σx = IdX , it is shown that a single step of full-batch SGD update
on G can drastically improve the performance of the model over random features as a result of
feature learning by aligning the top right-singular-vector of the updated representation layer G with
the direction β⋆ (Damian et al., 2022; Ba et al., 2022; Moniri et al., 2024; Cui et al., 2024; Dandi
et al., 2024a,b,c). In this section, we assume that the covariates are anisotropic and show that in this
case, the one-step full batch SGD is suboptimal and can learn an ill-correlated direction even when
the sample size n is large. We then demonstrate that the KFAC update with the preconditioners
from (4) is in fact the natural fix to the full batch SGD.

Full-Batch SGD. Following the prior work, at initialization, we set f = d
−1/2
h f0 with f0 ∼

N(0,d−1
h IdX), and G = G0 with i.i.d. N(0,d−1

X ) entries. We update G with one step of full batch
SGD with step size ηG = η

√
dh; i.e.,

GSGD ≜ G0 − η
√
dh ∇GL̂(f0,G0).

In the following theorem, we provide an approximation of the updated first layer GSGD, which is a
generalization of (Ba et al., 2022, Proposition 2.1) for Σx ̸= IdX .

Theorem 3.9. Assume that the activation function σ is O(1)-Lipschitz and that Assumption 3.8
holds. In the limit where n,dX,dh tend to infinity proportionally, the matrix GSGD, with probability
1− o(1), satisfies ∥∥∥G0 + αη f0β

⊤
SGD −GSGD

∥∥∥
op

→ 0,

in which α = Ez[σ
′(z)] with z ∼ N(0, d−1

X Tr(Σx)), and the vector βSGD is given by βSGD = n−1X⊤y.

This theorem shows that one step of full batch SGD update approximately adds a rank-one component
αη f0β

⊤
SGD to the initialized weights G0. Thus, the pre-activation features for a given input x ∈ RdX

after the update are given by

hSGD = GSGDx ≈ G0x+ αη
(
β⊤
SGDx

)
f0 ∈ Rdh

where the first and second term correspond to the random feature, and the learned feature
respectively. To better understand the learned feature component, note that defining c⋆,1 =
Ez∼N(0,d−1

X Tr(Σx))
[σ′

⋆(z)], the target function σ⋆(β
⊤
⋆ x) can be decomposed as

σ⋆(β
⊤
⋆ x) = c⋆,1β

⊤
⋆ x+ σ⋆,⊥(β

⊤
⋆ x)

satisfying Ex

[
c⋆,1(β

⊤
⋆ x)σ⋆,⊥(β

⊤
⋆ x)

]
= 0. Therefore, when c⋆,1 ≠ 0, the target function has a

linear part. Full batch SGD is estimating the direction of β⋆ using this linear part with the
estimator βSGD = X⊤y/n. However, the natural choice for this task is in fact ridge regression
β̂λ = (Σ̂x + λ IdX)

−1X⊤y/n, and βSGD is missing the prefactor (Σ̂x + λIdX)
−1. In the isotropic case

Σx = IdX , we expect Σ̂x ≈ IdX when n ≫ dX. Thus, in this case the estimator βSGD is roughly
equivalent to the ridge estimator and can recover the direction β⋆. However, in the anisotopic case,
βSGD is biased even when n ≫ dX. To make these intuitions rigorous, we characterize in the following
proposition the correlation between the learned direction βSGD and the true direction β⋆.
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Lemma 3.10. Under the assumptions of Theorem 3.9, the correlation between β⋆ and βSGD satisfies∣∣∣∣∣∣∣∣
β⊤
⋆ βSGD

∥βSGD∥2∥β⋆∥2
−

c⋆,1
dX

Tr(Σx)√
c2⋆+σ2

ε
n Tr(Σx) +

c2⋆,1
dX

Tr(Σ2
x)

∣∣∣∣∣∣∣∣→ 0

with probability 1− o(1), in which c⋆,1 = Ez[σ
′
⋆(z)] and c2⋆ = Ez[σ

2
⋆(z)] with z ∼ N(0, d−1

X Tr(Σx)).

This lemma shows that the correlation is increasing in the strength of the linear component c⋆,1
while keeping the signal strength c⋆ fixed. Also, based on this lemma, when n ≫ dX, the correlation

is given by d−1
X Tr(Σx)/

√
d−1

X Tr(Σ2
x), which is equal to one if and only if Σx = σ2 IdX for some

σ ∈ R. This means these are the only covariance matrices for which applying one step of full batch
SGD update learns the correct direction of β⋆.

Stylized KFAC. This time, we update G using the stylized KFAC update from (5) with the
regularized PG. We use the same initialization as full-batch SGD. The updated representation layer
in this case is given by

GKFAC ≜ G0 − η
√
dh ∇GL̂(f0,G0) (QG + λGIdX)

−1.

The preconditioning factor (QG + λGIdX)
−1 with QG = Σ̂x is precisely the factor required so that

the direction learned by the one-step update to match the ridge regression estimator with ridge
parameter λG as shown in the following immediate corollary of Theorem 3.9.

Corollary 3.11. Under the same set of assumptions as Theorem 3.9, the matrix GKFAC, satisfies∥∥∥G0 + αη f0β
⊤
KFAC −GKFAC

∥∥∥
op

→ 0

with probability 1− o(1), where α is defined in Theorem 3.9, and βKFAC = (QG + λGIdX)
−1X⊤y/n.

Because βKFAC is equivalent to ridge regression, we expect it to align well with β⋆ even for anisotropic
Σx, given a proper choice of λG. The following lemma formally characterizes the correlation between
βKFAC and β⋆ for any λG ∈ R.

Lemma 3.12. Under the assumptions of Theorem 3.9, the correlation between β⋆ and βKFAC satisfies∣∣∣∣∣∣ β⊤
KFAC β⋆

∥βKFAC∥2∥β⋆∥2
− c⋆,1Ψ1√

c2⋆,1Ψ2 +
dX
n (c2⋆,>1 + σ2

ε)Ψ3

∣∣∣∣∣∣→ 0

with probability 1− o(1), where c2⋆,1 = E2
z[σ

′
⋆(z)], c

2
⋆,>1 = Ez[σ

2
⋆,⊥(z)] with z ∼ N(0, d−1

X Tr(Σx)), and
Ψ1,Ψ2,Ψ3 are defined in (34) and depend on Σx, dX/n, and λG. In particular, as λG → 0 and
dX/n → 0, we have

β⊤
KFAC β⋆

∥βKFAC∥2∥β⋆∥2
→ 1.
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Figure 1: From left to right: the training loss, subspace distance, and transfer loss induced
by various algorithms on a linear representation learning task. We note that various algorithms
converge in training loss, but negligibly in subspace distance, and thus transfer loss.

This lemma shows that when n ≫ dX, and λG → 0, the one-step stylized KFAC update—unlike the
one-step full-batch SGD—perfectly recovers the target direction β⋆, fixing the issue with full batch
SGD with anisotropic covariances.

Remark 3.13. It is well-known that, given features that align with β⋆, applying least-squares on
Z = σ(GKFACX), which from Lemma 3.1 is equivalent to the KFAC f -update with ηf = 1, leverages
the feature to obtain a solution with good generalization. See Appendix C.4 for more details.

4 Numerical Validation

4.1 Linear Representation Learning

We numerically study the behavior of different algorithms for a transfer learning setting (11), where
the model is to be trained on data generated by (Ftrain

⋆ ,G⋆), and the transfer task has data generated
by (Ftest

⋆ ,G⋆), i.e. the embedding G⋆ is shared, but the task heads Ftrain
⋆ and Ftest

⋆ are different. The
training and test covariates have anisotropic covariance matrices Σx,train and Σx,test respectively.
Our data generation process for the training task and the transfer task are as follows:

ys
i = Fs

⋆G⋆x
s
i + εsi, xs

i
i.i.d.∼ Σ

1/2
x,s Unif({±1}dX , εsi

i.i.d.∼ N(0, σ2
ε,s IdY), s ∈ {test, train}, (13)

where σε,train = 0.1 and σε,test = 1. We use dX = 100, dY = 15, k = 8, and batch size n = 1024. We
present additional experiments and details in Appendix F, including discussions on the learning
rates, and how Fs

⋆,G
s
⋆, Σx,s are precisely generated.

Head-to-head Evaluations. We track the training loss, subspace distance, and transfer loss of
different algorithms during the update (Figure 1). Alongside SGD, KFAC, Adam, and NGD, we also
consider Alternating Min-SGD (AMGD) (Collins et al., 2021; Vaswani, 2024), and De-bias & Feature-
Whiten (DFW) (Zhang et al., 2024b) (corresponding to (5) with PF = IdY), two algorithms studied in

linear representation learning. The transfer loss is the loss incurred by fitting a least-squares F̂test
ls

on the current G iterate (see Lemma 3.7). Although various algorithms converge on s = train, KFAC
outperforms all others in terms of subspace distance and transfer loss, as suggested by the theory.

Effect of Batch Normalization. We track the subspace distance and the training loss of AMGD
(with and without batch-norm) and KFAC, see Figure 2. As theoretically predicted in Section 3.1.1,
since batch-norm approximately whitens xtrain

i , AMGD+batch-norm converges in training loss. However,
as predicted, it does not recover the correct representation, whereas KFAC does.
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Figure 2: Subspace distance and the training loss of KFAC and AMGD (with and without batch-norm).
Notably, batch-norm enables AMGD’s train loss to converge, but not its subspace distance.
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Figure 3: The correlation of the direction learned by SGD and KFAC with the the true direction
by numerical simulations averaged over 30 trials, and theoretical predictions. (Left) For different
values of λG the theoretical predictions match the simulations very well. (Right) The alignment
of the feature learned by SGD deteriorates as anisotropy is increased (larger ε), whereas the KFAC

update remains accurate.

4.2 Single-Index Learning

Consider the single-index learning setting of Section 3.2 with σ⋆(z) = z + 1√
2
(z2 − 1), and σε = 1.

Different Levels of Anisotropy. In this experiment, we set dX = 200, n = 6000, and dh = 1000

and set λG → 0. For a parameter ε ∈ R, we define Σx = Σ
(ε)
x with

Σ
(ε)
x = diag(1 + ε, . . . , 1 + ε︸ ︷︷ ︸

dX/2

, 1− ε, . . . , 1− ε︸ ︷︷ ︸
dX/2

). (14)

For different values of ε, we simulate the KFAC and SGD updates numerically and compute their
correlation with the true direction. We also theoretically predict the correlation using Lemma 3.10
and 3.12; see Figure 3 (Right). The SGD update fails to recover the true direction in highly anisotropic
settings (large ε), whereas the one-step KFAC update remains accurate.

Theory vs. Simulations. We set dX = 900, n = 5000, dh = 1000, and Σx = Σ
(0.5)
x . For different

λG, we simulate the correlation between the directions learned by KFAC and SGD with the true
direction and compare it with predictions of Lemma 3.10 and 3.12; see Figure 3 (Left). We see that
the theoretical results match very well with numerical simulations, even for moderately large n, dX,
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and dh. The direction learned by KFAC has a larger correlation with the true direction compared to
that learned by SGD, as predicted.

5 Discussion

We study two models of feature learning in which we identify key issues of SGD-based feature learning
approaches when departing from ideal settings. We then present Kronecker-Factored preconditioning—
recovering variants of KFAC—to provably overcome these issues and derive improved guarantees. Our
experiments on these simple models also confirm the suboptimality of full second-order methods,
as well as the marginal benefit of Adam preconditioning and data normalization. We believe that
analyzing properties of statistical learning problems can lead to fruitful insights into optimization
and normalization schemes.
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A Extended Background and Related Work

Preconditioners for Neural Network Optimization. A significant research effort in neural
network optimization has been dedicated to understanding the role of preconditioning in convergence
speed and generalization. Perhaps the most widespread paradigm falls under the category of
entry-wise (“diagonal”) preconditioners, whose notable members include Adam (Kingma & Ba, 2015),
(diagonal) AdaGrad (Duchi et al., 2011), RMSprop (Tieleman & Hinton, 2012), and their innumerable
relatives and descendants (see e.g. Schmidt et al. (2021); Dahl et al. (2023) for surveys). However,
diagonal preconditioners inherently do not fully capture inter-parameter dependencies, which are
better captured by stronger curvature estimates, e.g. Gauss-Newton approximations (Botev et al.,
2017; Martens, 2020), L-BFGS (Byrd et al., 2016; Bollapragada et al., 2018; Goldfarb et al., 2020).
Toward making non-diagonal preconditioners scalable to neural networks, many works (including the
above) have made use of layer-wise Kronecker-Factored approximations, where each layer’s curvature
block is factored into a Kronecker product Q ⊗ P. Perhaps the two most well-known examples
are Kronecker-Factored Approximate Curvature (KFAC) (Martens & Grosse, 2015) and Shampoo

(Gupta et al., 2018; Anil et al., 2020), where approximations are made to the Fisher Information
and Gauss-Newton curvature, respectively. Many works have since expanded on these ideas, such as
by improving practical efficiency (Ba et al., 2017; Shi et al., 2023; Jordan et al., 2024; Vyas et al.,
2024) and defining generalized constructions (Dangel et al., 2020; Amid et al., 2022; Benzing, 2022).
An interesting alternate view subsumes certain preconditioners via steepest descent with respect
to layer-wise (“modular”) norms (Large et al., 2024; Bernstein & Newhouse, 2024a,b). We draw a
connection therein by deriving the steepest descent norm that Kronecker-Factored preconditioners
correspond to; see Appendix D.3.

Multi-task Representation Learning (MTRL). Toward a broader notion of generalization, the
goal of MTRL is to characterize the benefits of learning a shared representation across distinct tasks.
Various works focus on the generalization properties given access to an empirical risk minimizer
(ERM) (Maurer et al., 2016; Du et al., 2021; Tripuraneni et al., 2020; Zhang et al., 2024a), with
the latter work resolving the setting where distinct tasks may have different covariate distributions.
Closely related formulations have been studied in the context of distribution shift (Kumar et al.,
2022; Lee et al., 2023b). While these works consider general non-linear representations, access
to an ERM obviates the (non-convex) optimization component. As such, multiple works have
studied algorithms for linear representation learning (Tripuraneni et al., 2021b; Collins et al., 2021;
Thekumparampil et al., 2021; Nayer & Vaswani, 2022) and specific non-linear variants (Collins
et al., 2024; Nakhleh et al., 2024). In contrast to the ERM works, which are mostly agnostic to the
covariate distribution, all the listed algorithmic works assume isotropic covariates N(0, I). Zhang
et al. (2024b) show that isotropy is in fact a key enabler, and propose an adjustment to handle
general covariances. In this paper, we show that many prior linear representation learning algorithms
belong to the same family of (preconditioned) optimizers. We then propose an algorithm coinciding
with KFAC that achieves the first condition-number-free convergence rate.

Nonlinear Feature Learning. In the early phase of training, neural networks are shown to be
essentially equivalent to the kernel methods, and can be described by the neural tangent kernel
(NTK). See Jacot et al. (2018); Mei & Montanari (2022); Hu & Lu (2023). However, kernel methods
are inherently limited and have a sample complexity superlinear in the input dimension d for learning
nonlinear functions (Ghorbani et al., 2021a,b). The main reason for this limitation is that kernel
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methods use a set of fixed features that are not task specific. There has been a lot of interest in
studying the benefits of feature learning from a theoretical perspective (Bai & Lee (2020); Hanin
& Nica (2020); Yang & Hu (2021a); Shi et al. (2022); Abbe et al. (2022), etc.). In a setting with
isotropic covariates N(0, I), it is shown that even a one-step of SGD update on the first layer of a
two-layer neural networks can learn good enough features to provide a significant sample complexity
improvement over kernel methods assuming that the target function has some low-dimensional
structure (Damian et al., 2022; Ba et al., 2022; Moniri et al., 2024; Cui et al., 2024; Dandi et al.,
2024a,b,c; Arnaboldi et al., 2024; Lee et al., 2024) and this has became a very popular model for
studying feature learning. These results were later extended to three-layer neural networks in which
the first layer is kept at random initialization and the second layer is updated using one step of SGD
(Wang et al., 2024; Nichani et al., 2024a; Fu et al., 2024). Recently, Ba et al. (2024); Mousavi-Hosseini
et al. (2023) considered an anisotropic case where the covariance contains a planted signal about
the target function and showed that a single step of SGD can leverage this to better learn the target
function. However, the general case of anisotropic covariate distributions remains largely unexplored.
In this paper, we study feature learning with two-layer neural networks with general anisotropic
covariates in single-index models and that one-step of SGD update has inherent limitations in this
setting, and the natural fix will coincide with applying the KFAC layer-wise preconditioner.

B Proofs and Additional Details for Section 3.1

B.1 Convergence Rate Lower Bound of SGD

Our goal is to establish the following lower bound construction.

Proposition 3.5. Let Σx = IdX, n = ∞. Choose any dX > k, dY ≥ k ≥ 2. Let the learner be
given knowledge of F⋆,G⋆ and dist(G0,G⋆). However, assume the learner must fix ηG > 0 before
observing G0. Then, there exists F⋆ ∈ RdY×k, G⋆,G0 ∈ Rk×dX, such that GT = SGD(G0; ηG, T )
satisfies:

dist(GT ,G⋆) ≥
(
1− 4

λmin(F
⊤
⋆ F⋆)

λmax(F⊤
⋆ F⋆)

)T

dist(G0,G⋆).

Proof of Proposition 3.5. We prove the lower bound by construction. First, we write out the
one-step SGD update given step size ηG.

G+ = G− ηG∇GL̂(F,G)

= G− 1

n
F⊤
(
FGX⊤X−Y⊤X

)
= G− F⊤(FG− F⋆G⋆) . (Y⊤ = F⋆G⋆X

⊤ + E⊤, n = ∞, Σx = I)

G+ = Ortho(G+).

We recall F is given by the F-update in (5) with ηF = 1, which by Lemma 3.1 is equivalent to
setting F to the least-squares solution conditional on G:

F = Y⊤Z (Z⊤Z)−1 = F⋆G⋆ΣxG
⊤
(
GΣxG

⊤
)−1

(z = Gx, n = ∞)

= F⋆G⋆G
⊤
(
GG⊤

)−1
= F⋆G⋆G

⊤. (G row-orthonormal)
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Therefore, plugging in F into the SGD update yields:

G+ = G− ηGF
⊤(FG− F⋆G⋆) = G− ηGGG⊤

⋆ F
⊤
⋆ (F⋆G⋆G

⊤G− F⋆G⋆)

Before proceeding, let us present the construction of F⋆,G⋆. We focus on the case dX = 3, k = 2, as
it will be clear the construction is trivially embedded to arbitrary dX > k ≥ 2. We observe that F⋆

only appears in the SGD update in the form F⊤
⋆ F⋆ ∈ Rk×k, thus dY ≥ k can be set arbitrarily as

long as F⊤
⋆ F⋆ satisfies our specifications. Set F⋆,G⋆ such that

F⊤
⋆ F⋆ =

[
1− λ 0
0 λ

]
, λ ∈ (0, 1/2], G⋆ =

[
1 0 0
0 1 0

]
.

Accordingly, the initial representation G0 (which the learner is not initially given) will have form

G0 =

[
1 0 0

0
√

1− ε20 ε0

]
, or

[√
1− ε20 0 ε0
0 1 0

]
.

We prove all results with the first form of G0, as all results will hold for the second with the only
change swapping λ, 1− λ. It is clear that we may extend to arbitrary dX > k ≥ 2 by setting:

F⊤
⋆ F⋆ =

[
(1− λ)Ik−1 0

0 λ

]
, G⋆ =

[
Ik 0dX−k

]
, G0 =

[
Ik−1 0 · · ·
0

√
1− ε20 ε0 0

]
.

Returning to the dX = 3, k = 2 case, we first prove the following invariance result.

Lemma B.1. Given G0 =

[
1 0 0

0
√

1− ε20 ε0

]
, then for any t ≥ 0, Gt =

[
1 0 0
0 c1 c2

]
for some

c21 + c22 = 1. Furthermore, we have dist(Gt,G⋆) = |c2|.

Proof of Lemma B.1. This follows by induction. The base case follows by definition of G0. Now

given Gt =

[
1 0 0
0 c1 c2

]
for some c1, c2, we observe that

GtG
⊤
⋆ =

[
1 0
0 c1

]
, F⊤

⋆ F⋆ =

[
1− λ 0
0 λ

]
.

Notably, we may write

Gt+1 = Gt − ηGGtG
⊤
⋆ F

⊤
⋆ (F⋆G⋆G

⊤
t Gt − F⋆G⋆)

=
(
Ik − ηGGtG

⊤
⋆ F

⊤
⋆ F⋆G⋆G

⊤
t

)
Gt + ηGGtG

⊤
⋆ F

⊤
⋆ F⋆G⋆

=

(
Ik − ηG

[
1− λ 0
0 c21λ

])
Gt + ηG

[
1− λ 0
0 c1λ

]
G⋆

=

[
1 0 0
0 c1(1 + ηGc

2
2λ) c2(1− ηGc

2
1λ)

]
Gt+1 = Ortho(Gt+1).

(15)

Therefore, Gt+1 shares the same support as Gt, and by the orthonormalization step, the squared
entries of the second row of Gt+1 equal 1, completing the induction step.
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To prove the second claim, we see that P⊥
⋆ =

[
02

1

]
, and since Gt is by assumption row-

orthonormal, we have

dist(Gt,G⋆) = ∥GtP⊥
⋆ ∥ =

∥∥∥[0 0 c2
]⊤∥∥∥

op
= |c2|,

completing the proof.

With these facts in hand, we prove the following stability limit of the step-size, and the consequences
for the contraction rate.

Lemma B.2. If ηG ≥ 4
1−λ , then for any given dist(G0,G⋆) we may find G0 such that

lim supt dist(Gt,G⋆) ≥ 1
2 .

Proof of Lemma B.2. By assumption λ ≤ 1/2 and thus λ ≤ 1− λ. Evaluating Lemma B.1 instead

on G0 =

[√
1− ε20 0 ε0
0 1 0

]
, writing out (15) yields symmetrically:

dist(Gt,G⋆) = |c2|

Gt+1 =

[
c1(1 + ηGc

2
2(1− λ)) 0 c2(1− ηGc

2
1(1− λ))

0 1 0

]
Gt+1 = Ortho(Gt+1).

We first observe that regardless of ηG, the norm of the first row Gt+1 is always greater than 1
pre-orthonormalization. Let us define ω = ηG(1 − λ). Then, the squared-norm of the first row
satisfies: (

c1(1 + ωc22)
)2

+
(
c2(1− ωc21)

)2
= 1 + ω2c21c

2
2.

Therefore, the norm is strictly bounded away from 1 when ω > 0 and either c1, c2 ̸= 0 by the
constraint c21 + c22 = 1. Importantly, this implies that regardless of the step-size taken, the resulting
first-row norm of G+ must exceed 1 prior to orthonormalization. Given this property, we observe
that for ω ≥ 1/c21, we have:

|1− ωc21|
|1 + ωc22|

=
ωc21 − 1

1 + ωc22
.

When this ratio is greater than 1, we are guaranteed that the first-row coefficients c′1, c
′
2 of Gt+1

post-orthonormalization satisfy c′2/c
′
1 > c2/c1, and recall from Lemma B.1 dist(Gt+1,G⋆) = c′2, and

thus dist(Gt+1,G⋆) > dist(Gt,G⋆). Rearranging the above ratio, this is equivalent to the condition
ω = ηG(1− λ) ≥ 2

c21−c22
, ω = ηG(1− λ) ≥ 1/c21. Setting c21 = 3/4, c22 = 1/4, this implies for ηG ≥ 4

1−λ ,

the moment dist(Gt,G⋆) ≤ c2 = 1/2, then we are guaranteed dist(Gt+1,G⋆) > dist(Gt,G⋆), and
thus lim supt→∞ dist(Gt,G⋆) ≥ 1

2 , irregardless of dist(G0,G⋆).

Now, to finish the construction of the lower bound, Lemma B.2 establishes that ηG ≤ 4
1−λ is

necessary for convergence (though not sufficient!). This implies that when we plug back in G0 =
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[
1 0 0

0
√
1− ε20 ε0

]
, we have Gt+1:

Gt+1 =

[
1 0 0
0 c1(1 + ηGc

2
2λ) c2(1− ηGc

2
1λ)

]
Gt+1 = Ortho(Gt+1) =

[
1 0 0
0 c′1 c′2

]
.

We have trivially 1 − ηGc
2
1λ ≥ 1 − ηGλ. Therefore, for λ ≤ 1/5 such that λ

1−λ ≤ 1/4, we have

1 − ηGλ ≥ 1 − 4λ
1−λ ≥ 0. As shown in the proof of Lemma B.2, the norm of the second row

pre-orthonormalization is strictly greater than 1, and thus:

dist(Gt+1,G⋆) = c′2 ≥ c2(1− ηGλc
2
1) ≥ (1− ηGλ)dist(Gt,G⋆) ≥

(
1− 4

λ

1− λ

)
dist(Gt,G⋆).

Applying this recursively to G0 yields the desired lower bound.

B.2 Proof of Theorem 3.6

Recall that running an iteration of stylized KFAC (5) with λF, λG = 0, ηF = 1 yields:

G+ = G− ηGP
−1
G ∇GL̂(F,G) (QG + λGIdX)

−1

= G− ηG(F
⊤F)−1F⊤(FGΣ̂x − F⋆G⋆Σ̂x − 1

n
E⊤X)Σ̂−1

x

= G− ηG(F
⊤F)−1F⊤(FG− F⋆G⋆) + (F⊤F)−1F⊤E⊤X(X⊤X)−1,

(16)

where the matrix F is given by

F = Fprev − ηFP
−1
F ∇FL̂(Fprev,G) (QF + λFIdh)

−1 = Y⊤Z(Z⊤Z)−1

= F⋆G⋆X
⊤Z(Z⊤Z)−1 + E⊤Z(Z⊤Z)−1,

recalling that z ≜ Gx. Focusing on the representation update, we have

G+P⊥
⋆ = (1− ηG)GP⊥

⋆ + ηG(F
⊤F)−1F⊤E⊤X(X⊤X)−1.

Therefore, to prove a one-step contraction of rowsp(G+) toward rowsp(G⋆), we require two main
components:

• Bounding the noise term ηG(F
⊤F)−1F⊤E⊤X⊤(X⊤X)−1.

• Bounding the orthonormalization factor; the subspace distance measures distance between two
orthonormalized bases (a.k.a. elements of the Stiefel manifold (Absil et al., 2008)), while a step
of SGD or KFAC does not inherently conform to the Stiefel manifold, and thus the “off-manifold”
shift must be considered when computing dist(G+,G⋆). This amounts to bounding the
“R”-factor of the QR-decomposition (Trefethen & Bau, 2022) of G+.

Thanks to the left-preconditioning by (F⊤F)−1, the contraction factor is essentially determined by
(1− ηG); however, the second point about the “off-manifold” shift is what prevents us from setting
ηG = 1.
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Bounding the noise term

We start by observing E⊤X(X⊤X)−1 =
∑n

i=1 εix
⊤
i

(∑n
i=1 xix

⊤
i

)−1
(and thus

(F⊤F)−1F⊤E⊤X(X⊤X)−1) is a least-squares error-like term, and thus can be bounded by
standard self-normalized martingale arguments. In particular, defining F ≜ (F⊤F)−1F⊤ we may
decompose ∥∥∥FE⊤X(X⊤X)−1

∥∥∥
op

≤
∥∥∥FE⊤X(X⊤X)−1/2

∥∥∥
op

λmin(X
⊤X)−1/2,

where the first factor is the aforementioned self-normalized martingale (see e.g. Abbasi-Yadkori &
Szepesvári (2011); Ziemann et al. (2023)), and the second can be bounded by standard covariance
lower-tail bounds. Toward bounding the first factor, we invoke a high-probability self-normalized
bound:

Lemma B.3 (cf. Ziemann et al. (2023, Theorem 4.1)). Let {vi,wi}i≥1 be a Rdv ×Rdw -valued process
and {Fi}i≥1 be a filtration such that {vi}i≥1 is adapted to {Fi}i≥1, {wi}i≥1 is adapted to {Fi}i≥2,
and {wi}i≥1 is a σ2-subgaussian martingale difference sequence6. Fix (non-random) positive-definite

matrix Q. For k ≥ 1, define Σ̂k ≜
∑k

i=1 viv
⊤
i . Then, given any fixed n ∈ N+, with probability at

least 1− δ:∥∥∥∥∥
n∑

i=1

wiv
⊤
i

(
Q+ Σ̂n

)−1/2
∥∥∥∥∥
2

op

≤ 4σ2 log

det
(
Q+ Σ̂n

)
det(Q)

+ 13dwσ
2 + 8σ2 log(1/δ). (17)

Instantiating this for Gaussian wi
i.i.d.∼ N(0,Σw), vi

i.i.d.∼ N(0,Σv), we may set Q ≈ Σv to yield:

Lemma B.4. Consider the quantities defined in Lemma B.3 and assume wi
i.i.d.∼ N(0,Σw), vi

i.i.d.∼
N(0,Σv), defining σ2

w ≜ λmax(Σw), σ
2
v ≜ λmax(Σv). Then, as long as n ≳ 18.27

c2
(dv + log(1/δ)),

with probability at least 1− δ:∥∥∥∥∥
n∑

i=1

wiv
⊤
i

(
Σ̂n

)−1/2
∥∥∥∥∥
2

op

≤ 8dv log

(
1 + c

1− c

)
σ2
w + 26dwσ

2
w + 16σ2

w log(1/δ)

λmin(Σ̂n) ≥ (1− c)λmin(Σv).

Proof of Lemma B.4. We observe that if Σ̂n ⪰ Q, then

2Σ̂n ⪰ Q+ Σ̂n =⇒
(
Σ̂n

)−1
⪯ 2

(
Q+ Σ̂n

)−1
.

This implies

1
{
Σ̂n ⪰ Q

}∥∥∥∥∥
n∑

i=1

wiv
⊤
i

(
Σ̂n

)−1/2
∥∥∥∥∥
2

≤ 21
{
Σ̂n ⪰ Q

}∥∥∥∥∥
n∑

i=1

wiv
⊤
i

(
Q+ Σ̂n

)−1/2
∥∥∥∥∥
2

. (18)

Let us consider the event:
(1− c)Σv ⪯ Σ̂n ⪯ (1 + c)Σv,

6See Appendix E.3 for discussion of formalism. It suffices for our purposes to consider w
i.i.d.∼ N(0,Σw).
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which by Lemma E.2 occurs with probability at least 1− δ as long as n ≳ 18.27
c2

(dv + log(1/δ)). This
immediately establishes the latter desired inequality. Setting Q = (1− c)nΣv and conditioning on
the above event, we observe that by definition Σ̂n ⪰ Q, and

log

det
(
Q+ Σ̂n

)
det(Q)

 = log det
(
Idv + Σ̂n (Q)−1

)
≤ log det

((
1 +

1 + c

1− c

)
Idv

)
≤ dv log

(
1 + c

1− c

)
.

Plugging this into Lemma B.3, applied to the RHS of (18), we get our desired result.

Therefore, instantiating w → Fε, v → x, (xi, εi)i≥1 is a RdX × Rk-valued process. Furthermore,
since we assumed out of convenience that F,G+ are computed on independent batches of data, we

have that Fε ∼ N(0,FΣεF
⊤
). In order to complete the noise term bound, it suffices to provide a

uniform bound on ∥F∥ = 1/ σmin(F) in terms of F⋆.

Lemma B.5. Assume the following conditions hold:

n ≳ max

{
k + log(1/δ), σ2

ε

dY + k + log(1/δ)

σmin(F⋆)2 λmin(Σx)

}
dist(G,G⋆) ≤

2

5
κ(F⋆)

−1κ(Σx)
−1,

then with probability at least 1− δ, we have ∥F∥ = 1/ σmin(F) ≤ 2σmin(F⋆)
−1.

Proof of Lemma B.5. Recall we may write F as

F = F⋆G⋆X
⊤Z(Z⊤Z)−1 + E⊤Z(Z⊤Z)−1

= F⋆G⋆G
⊤ + F⋆G⋆(IdX −G⊤G)X⊤Z(Z⊤Z)−1 + E⊤Z(Z⊤Z)−1 (19)

By Weyl’s inequality for singular values (Horn & Johnson, 2012), we have

σmin(F) ≥ σmin(F⋆G⋆G
⊤)− σmax

(
F⋆G⋆(IdX −G⊤G)X⊤Z(Z⊤Z)−1 + E⊤Z(Z⊤Z)−1

)
Since G⋆G

⊤ is an orthogonal matrix, the first term is equal to σmin(F⋆). On the other hand,
applying triangle inequality on the second term, for n ≳ k + log(1/δ) we have:∥∥∥F⋆G⋆(IdX −G⊤G)X⊤Z(Z⊤Z)−1

∥∥∥
op

≤ ∥F⋆∥op
∥∥∥G⋆(IdX −G⊤G)

∥∥∥
op

∥∥∥X⊤Z(Z⊤Z)−1
∥∥∥
op

≤ ∥F⋆∥op dist(G,G⋆)

(
5

4
∥Σx∥op λmin(GΣxG

⊤)

)
≤ 5

4
∥F⋆∥op dist(G,G⋆)κ(Σx),
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where we used covariance concentration for the second inequality Lemma E.2 and the trivial bound
λmin(AΣA⊤) ≥ λmin(Σ) for the last inequality. In turn, we may bound:∥∥∥E⊤Z(Z⊤Z)−1

∥∥∥
op

≤
∥∥∥E⊤Z(Z⊤Z)−1/2

∥∥∥
op

λmin(Z
⊤Z)−1/2

≲
∥∥∥E⊤Z(Z⊤Z)−1/2

∥∥∥
op

n−1/2 λmin(Σx)
−1/2 (Lemma E.2)

≲ σε

√
dY + k + log(1/δ)

λmin(Σx)n
.

Therefore, setting dist(G,G⋆) ≤ 2
5κ(F⋆)

−1κ(Σx)
−1, and n ≳ σ2

ε
dY+k+log(1/δ)

σmin(F⋆)2 λmin(Σx)
, we have σmin(F) ≥

1
2 σmin(F⋆), which leads to our desired bound on ∥F∥.

With a bound on
∥∥F∥∥

op
, bounding the noise term is a straightforward application of Lemma B.4.

Proposition B.6 (KFAC noise term bound). Let the conditions in Lemma B.5 hold. In addition,
assume n ≳ dX + log(1/δ). Then, with probability at least 1− δ:

∥∥∥FE⊤X(X⊤X)−1
∥∥∥
op

≲ σε

√
dX + k + log(1/δ)

σmin(F⋆)2 λmin(Σx)n
.

Proof of Proposition B.6. Condition on the event of Lemma B.5. Then, assuming n ≳ dX+log(1/δ),
we may apply covariance concentration (Lemma E.2) on Σ̂x and Lemma B.4 to bound the noise
term by:∥∥∥FE⊤X(X⊤X)−1

∥∥∥
op

≤
∥∥∥FE⊤X(X⊤X)−1/2

∥∥∥
op

λmin(X
⊤X)−1/2

≤
∥∥F∥∥

op

∥∥∥E⊤X(X⊤X)−1/2
∥∥∥
op

n−1/2 λmin(Σx)
−1/2 (Lemma E.2)

≲ σε

√
dX + k + log(1/δ)

σmin(F⋆)2 λmin(Σx)n
., (Lemma B.4)

which completes the proof.

This completes the bound on the noise term. We proceed to the orthonormalization factor.

Bounding the orthonormalization factor

Toward bounding the orthonormalization factor from (8). Defining G+ as the updated representation
pre-orthonormalization, we write G+ = RG+, where G+ is the orthonormalized representation
and R ∈ Rk×k is the corresponding orthonormalization factor. Therefore, defining the shorthand
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Sym(A) = A+A⊤, we have

RR⊤ = RG+(RG+)
⊤

=
(
G− ηG(F

⊤F)−1F⊤(FG− F⋆G⋆) + (F⊤F)−1F⊤E⊤X(X⊤X)−1
)
(· · · )⊤ (from (16))

≻ Ik − ηGSym
(
F(FG− F⋆G⋆)G

⊤︸ ︷︷ ︸
≜Γ1

)
+ ηGSym

(
FE⊤X(X⊤X)−1G⊤︸ ︷︷ ︸

≜Γ2

)

− η2GSym

(
F(FG− F⋆G⋆)

(
FE⊤X(X⊤X)−1

)⊤)
,

where the strictly inequality comes from discarding the positive-definite “diagonal” terms of the
expansion. Therefore, by Weyl’s inequality for symmetric matrices (Horn & Johnson, 2012), we
have:

λmin(RR⊤) ≥ 1− 2ηG

(
∥Γ1∥op + ∥Γ2∥op + ηG ∥Γ1∥op ∥Γ2∥op

)
.

Toward bounding ∥Γ1∥op, let the conditions of Lemma B.5 hold. Then,

∥Γ1∥op =
∥∥∥F(FG− F⋆G⋆)G

⊤
∥∥∥
op

=
∥∥∥(F⊤F)−1F⊤FGG⊤ − (F⊤F)−1F⊤F⋆G⋆G

⊤
∥∥∥
op

=
∥∥∥F(F⋆G⋆(IdX −G⊤G)X⊤Z(Z⊤Z)−1 + E⊤Z(Z⊤Z)−1

)∥∥∥
op

(from (19))

≤ 5

4
σmin(F) ∥F⋆∥op dist(G,G⋆)κ(Σx) + σmin(F)σ

2
ε

√
k + log(1/δ)

λmin(Σx)n

≤ 5

2
κ(F⋆)dist(G,G⋆)κ(Σx)︸ ︷︷ ︸

≜γ1

+σ2
ε

√
k + log(1/δ)

σmin(F⋆)2 λmin(Σx)n
. (Lemma B.5)

Similarly, letting the conditions of Proposition B.6 hold, we have

∥Γ2∥op =
∥∥∥FE⊤X(X⊤X)−1G⊤

∥∥∥
op

≤ σε

√
dX + k + log(1/δ)

σmin(F⋆)2 λmin(Σx)n
(Proposition B.6)

≜ γ2.

We observe that γ2 will always dominate the second term of the bound on ∥Γ1∥op, and therefore:

λmin(RR⊤) ≥ 1− 2ηG(γ1 + 2γ2 + ηG(γ1 + γ2)γ2).

Therefore, we have the following bound on the orthonormalization factor.

Proposition B.7. Let the following conditions hold:

n ≳ max

{
dX + log(1/δ),

σ2
ε

γ22

dX + log(1/δ)

σmin(F⋆)2 λmin(Σx)

}
dist(G,G⋆) ≤

2

5γ1
κ(F⋆)

−1κ(Σx)
−1.
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Then, with probability at least 1− δ, we have the following bound on the orthonormalization factor:

σmin(R) ≥
√

1− 2ηG(γ1 + 2γ2 + ηG(γ1 + γ2)γ2).

The constants γ1, γ2 will be instantiated to control the deflation of the contraction factor 1−ηG =⇒
1− cηG due to the orthonormalization factor.

Completing the bound

We are almost ready to complete the proof. By instantiating the noise bound Proposition B.6 and
the orthonormalization factor bound Proposition B.7, we have:∥∥∥G+P⊥

⋆

∥∥∥
op

=
∥∥∥R−1

(
(1− ηG)GP⊥

⋆ + ηG(F
⊤F)−1F⊤E⊤X(X⊤X)−1

)∥∥∥
op

≤ 1− ηG

σmin(R)

∥∥∥GP⊥
⋆

∥∥∥
op

+ ηG

∥∥∥(F⊤F)−1F⊤E⊤X(X⊤X)−1
∥∥∥
op

≤ 1− ηG√
1− 2ηG(γ1 + 2γ2 + ηG(γ1 + γ2)γ2)

∥∥∥GP⊥
⋆

∥∥∥
op

+ ηGσε

√
dX + k + log(1/δ)

σmin(F⋆)2 λmin(Σx)n
.

To understand the effective deflation of the convergence rate, we prove the following numerical
helper lemma.

Lemma B.8. Given c, d ∈ (0, 1) and ε ∈ (0, 1/2), if ε ≥ c, then the following holds:

1− d√
1− cd

< 1− (1− ε)d.

Additionally, as long as ε ≤ 1− 1−
√
1−d
d , then 1− (1− ε)d ≤

√
1− d.

Proof of Lemma B.8: squaring both sides of the desired inequality and re-arranging some terms, we
arrive at

c ≤ 1

d

(
1− (1− d)2

(1− (1− ε)d)2

)

=
1

d

1− 1− d

1− (1− ε)d︸ ︷︷ ︸
<1

(1 + 1− d

1− (1− ε)d

)
︸ ︷︷ ︸

>1

.

To certify the above inequality, it suffices to lower-bound the RHS. Since c, d ∈ (0, 1), the last factor
is at least 1, such that we have

1

d

(
1− 1− d

1− (1− ε)d

)(
1 +

1− d

1− (1− ε)d

)
>

1

d

(
1− 1− d

1− (1− ε)d

)
=

1

d

(1− ε)d

1− (1− ε)d

> ε.
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Therefore, c ≤ ε is sufficient for certifying the desired inequality. The latter claim follows by squaring
and rearranging terms to yield the quadratic inequality:

(1− ε)2d− 2(1− ε) + 1 ≤ 0,

Setting λ := 1− ε, the solution interval is λ ∈
(
1−

√
1−d
d , 1+

√
1−d
d

)
. The upper limit is redundant as

it exceeds 1 and ε ∈ (0, 1), leaving the lower limit as the condition on ε proposed in the lemma.

Plugging in ηG = d ∈ (0, 1] and 2(γ1 + 2γ2 + ηG(γ1 + γ2)γ2) ≤ (γ1 + 2γ2 + (γ1 + γ2)γ2 = c, we try
candidate values γ1 = 1/40, γ2 = 1/100 and set ε = c to get:

1− ηG√
1− 2ηG(γ1 + 2γ2 + ηG(γ1 + γ2)γ2)

< (1− 0.9ηG).

Plugging in our candidate values of γ1, γ2 into the burn-in conditions of Proposition B.7 finishes the
proof of Theorem 3.6.

Theorem 3.6. Consider running (8) with λG = 0, ηG ∈ [0, 1], and ηF = 1. Define σ2 ≜
σ2
ε

σmin(F⋆)2 λmin(Σx)
. As long as dist(G,G⋆) ≤ 0.01

κ(Σx)κ(F⋆)
and n ≳ max{1, σ2} (dX + log(1/δ)), we

have with probability ≥ 1− δ:

dist(G+,G⋆) ≤ (1− 0.9ηG)dist(G,G⋆) +O(1) ηGσ

√
dX + log(1/δ)

n
.

B.3 Multi-Task and Transfer Learning

We first discuss how the ideas in our “single-task” setting directly translate to multi-task learning.
For example, taking our proposed algorithm template in (8), an immediate idea is, given the current
task heads and shared representation ({F(t)},G), to form task-specific preconditioners formed
locally on each task’s batch data:

P
(t)
F = Ê(t)[zz⊤], P

(t)
G = F(t)⊤F(t), Q

(t)
G = Ê(t)[xx⊤],

and perform a local update on F(t),G before a central agent averages the resulting updated G:

F
(t)
+ = F(t) − ηF∇FL̂(F(t),G(t))Q

(t)
F

−1

G
(t)
+ = G− ηGP

(t)
G

−1
∇GL̂(t)(F

(t)
+ ,G)Q

(t)
G

−1
, t ∈ [T ]

G+ =
1

T

T∑
t=1

G
(t)
+ .

However, this presumes F(t) are invertible, i.e. the task-specific dimension dY > k. As opposed to the
single-task setting, where as stated in Remark 3.4 we are really viewing F as the concatentation of of
F(t) to make recovering the representation a well-posed problem, in multi-task settings dY may often
be small, e.g. dY = 1 (Tripuraneni et al., 2021b; Du et al., 2021; Collins et al., 2021; Thekumparampil

et al., 2021). Therefore, (pseudo)-inverting away (F(t)⊤F(t))† may be highly suboptimal. However,
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we observe that writing out the representation gradient (9), as long as we invert away Q
(t)
G

−1
first,

then we have:

G
(t)
+ = G− ηG∇GL̂(t)(F

(t)
+ ,G)Q

(t)
G

−1

G+P⊥
⋆ =

1

T

T∑
t=1

G
(t)
+ P⊥

⋆

=

(
Ik − ηG

1

T

T∑
t=1

F(t)⊤F(t)

)
GP⊥

⋆ + (task-averaged) noise term.

Since by assumption 1
T

∑T
t=1F

(t)⊤F(t) is full-rank (otherwise recovering the rank k representation
is impossible), then suggestively, we may instead invert away the task-averaged preconditioner

PG = 1
T

∑T
t=1F

(t)⊤F(t) on the task-averaged G(t) descent direction before taking a representation
step G+. To summarize, we propose the following two-stage preconditioning:

F
(t)
+ = F(t) − ηF∇FL̂(F(t),G(t))Q

(t)
F

−1
(20)

D(t) = ∇GL̂(t)(F
(t)
+ ,G)Q

(t)
G

−1
, t ∈ [T ] (21)

G+ = G− ηGP
−1
G

(
1

T

T∑
t=1

D(t)

)
(22)

such that G+P⊥
⋆ = (1− ηG)GP⊥

⋆ + (task-averaged) noise term. (23)

The exact same tools used in the proof of Theorem 3.6 apply here, with the requirement of a few
additional standard tools to study the “task-averaged” noise term(s). As an example, we refer to
Zhang et al. (2024b) for some candidates. However, we note the qualitative behavior is unchanged.
As such, since we are using n data points per each of T tasks to update the gradient, the scaling of
the noise term goes from O(σε

√
dX/n) in our bounds to O(σε

√
dX/nT ).

We remark that in the multi-task setting, where each task may have differing covariances and

task-heads F
(t)
⋆ , the equivalence of our stylized KFAC variant and the alternating min-min algorithm

proposed in Jain et al. (2013); Thekumparampil et al. (2021) breaks down. In particular, the
alternating min-min algorithm no longer in general admits G iterates that can be expressed as a
product of matrices as in (5) or (20), and rather can only be stated in vectorized space vec(G).
This means that whereas (20) can be solved as T parallel small matrix multiplication problems, the
alternating min-min algorithm nominally requires operating in the vectorized-space dXk.

Transfer Learning

We first prove the proposed fine-tuning generalization bound.

Lemma 3.7. Let F̂
(t)
ls = argmin

F̂
Ê(t)[∥y(t) − F̂z(t)∥22], z(t) ≜ Ĝx(t) be the optimal F on the batch

of n(t) target data (11) given Ĝ. Defining ν = dist(Ĝ,G⋆), given n(t) ≳ k + log(1/δ), we have with
probability ≥ 1− δ:

L(t)(F̂
(t)
ls , Ĝ) ≜ E

[
∥y(t) − F

(t)
⋆ G⋆x

(t)∥22
]
≲ ∥F(t)

⋆ ∥2F λmax(Σ
(t)
x )ν2 +

σ2
ε(dYk + log(1/δ))

n(t)
.
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Proof of Lemma 3.7. We observe that we may write:

L(t)(F̂
(t)
ls , Ĝ) = E

[
∥y(t) − F̂

(t)
ls Ĝx(t)∥22

]
= E

[
∥(F̂(t)

ls Ĝ− F
(t)
⋆ G⋆)x

(t)∥22
]

=

∥∥∥∥(F̂(t)
ls Ĝ− F

(t)
⋆ G⋆)Σ

(t)
x

1/2
∥∥∥∥2
F

.

Now writing out the definition of F̂
(t)
ls , defining z(t) = Ĝx(t), we have

F̂
(t)
ls = argmin

F̂

Ê(t)[∥y(t) − F̂Ĝx(t)∥22]

= Y(t)⊤Z(t)(Z(t)⊤Z(t))−1

= F
(t)
⋆ G⋆X

(t)⊤Z(t)(Z(t)⊤Z(t))−1 + E⊤Z(t)(Z(t)⊤Z(t))−1

= F
(t)
⋆ G⋆Ĝ

⊤ + F
(t)
⋆ G⋆P⊥

Ĝ
X(t)⊤Z(t)(Z(t)⊤Z(t))−1 + E⊤Z(t)(Z(t)⊤Z(t))−1,

where P⊥
Ĝ

= IdX − Ĝ⊤Ĝ is the projection matrix onto the rowspace of Ĝ, using the fact that Ĝ is

row-orthonormal (8). Therefore, plugging in the last line into error expression, we have

L(t)(F̂
(t)
ls , Ĝ) =

∥∥∥∥(F̂(t)
ls Ĝ− F

(t)
⋆ G⋆)Σ

(t)
x

1/2
∥∥∥∥2
F

≤ 2

∥∥∥∥(F(t)
⋆ G⋆Ĝ

⊤Ĝ+ F
(t)
⋆ G⋆P⊥

Ĝ
X(t)⊤Z(t)(Z(t)⊤Z(t))−1Ĝ− F

(t)
⋆ G⋆

)
Σ

(t)
x

1/2
∥∥∥∥2
F

+ 2

∥∥∥∥E⊤Z(t)(Z(t)⊤Z(t))−1ĜΣ
(t)
x

1/2
∥∥∥∥2
F

. ((a+ b)2 ≤ 2a2 + 2b2)

Focusing on the first term, we have:

F
(t)
⋆ G⋆Ĝ

⊤Ĝ+ F
(t)
⋆ G⋆P⊥

Ĝ
X(t)⊤Z(t)(Z(t)⊤Z(t))−1Ĝ− F

(t)
⋆ G⋆

= F
(t)
⋆ G⋆P⊥

Ĝ

(
X(t)⊤Z(t)(Z(t)⊤Z(t))−1Ĝ− IdX

)
.

By a covariance concentration argument Lemma E.2, since X(t)⊤Z(t) and Z(t)⊤Z(t) are rank-k
matrices, as long as n(t) ≳ k + log(1/δ), we have with probability at least 1− δ:

X(t)⊤Z(t) ≈ n(t)Σ
(t)
x Ĝ⊤, (Z(t)⊤Z(t))−1 ≈ n(t)ĜΣ

(t)
x Ĝ⊤,

and thus

∥F(t)
⋆ G⋆P⊥

Ĝ

(
X(t)⊤Z(t)(Z(t)⊤Z(t))−1Ĝ− IdX

)
Σ

(t)
x

1/2
∥F

≈ ∥F(t)
⋆ G⋆P⊥

Ĝ
Σ

(t)
x

1/2
(
Σ

(t)
x

1/2
Ĝ⊤(ĜΣ

(t)
x Ĝ⊤)−1ĜΣ

(t)
x

1/2
− IdX

)
∥F

≲ ∥F(t)
⋆ ∥F

∥∥∥G⋆P⊥
Ĝ

∥∥∥
op

∥∥∥∥Σ(t)
x

1/2
∥∥∥∥
op

∥∥∥∥Σ(t)
x

1/2
Ĝ⊤(ĜΣ

(t)
x Ĝ⊤)−1ĜΣ

(t)
x

1/2
− IdX

∥∥∥∥
op

≤ ∥F(t)
⋆ ∥F dist(Ĝ,G⋆)λmax(Σ

(t)
x )1/2,
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where in the last line we applied the definition dist(Ĝ,G⋆) =
∥∥∥G⋆P⊥

Ĝ

∥∥∥
op

=
∥∥∥ĜP⊥

⋆

∥∥∥
op
, and the fact

that the matrix P ≜ Σ
(t)
x

1/2
Ĝ⊤(ĜΣ

(t)
x Ĝ⊤)−1ĜΣ

(t)
x

1/2
can be verified to be a projection matrix

P2 = P, P⊤ = P, such that P − I = P⊥ is also an orthogonal projection and
∥∥P⊥∥∥

op
= 1. Now,

we analyze the noise term:

E⊤Z(t)(Z(t)⊤Z(t))−1ĜΣ
(t)
x

1/2
≈ E⊤Z(t)(Z(t)⊤Z(t))−1/2(n(t))−1/2

(
ĜΣ

(t)
x Ĝ⊤

)−1/2
ĜΣ

(t)
x

1/2
,

where we observed Z(t)⊤Z(t) = nGΣ̂xG
⊤ and applied covariance concentration. Now, defining the

(compact) SVD of ĜΣ
(t)
x

1/2
= UzDzV

⊤
z , we find

∥E⊤Z(t)(Z(t)⊤Z(t))−1ĜΣ
(t)
x

1/2
∥F ≲

1√
n(t)

∥E⊤Z(t)(Z(t)⊤Z(t))−1/2UzV
⊤
z ∥F

≲
1√
n(t)

∥E⊤Z(t)(Z(t)⊤Z(t))−1/2∥F

≲
1√
n(t)

σε
√
dYk + log(1/δ),

for n(t) ≳ k + log(1/δ). The last line comes from the Frobenius norm variants of Lemma B.3 and
Lemma B.4 (see Ziemann et al. (2023, Theorem 4.1) or Zhang et al. (2024b, Lemma A.3) for details).
Putting the two bounds together yields the desired result.

C Proofs and Additional Details for Section 3.2

C.1 Proof of Theorem 3.9

Theorem 3.9. Assume that the activation function σ is O(1)-Lipschitz and that Assumption 3.8
holds. In the limit where n,dX,dh tend to infinity proportionally, the matrix GSGD, with probability
1− o(1), satisfies ∥∥∥G0 + αη f0β

⊤
SGD −GSGD

∥∥∥
op

→ 0,

in which α = Ez[σ
′(z)] with z ∼ N(0, d−1

X Tr(Σx)), and the vector βSGD is given by βSGD = n−1X⊤y.

Proof. To prove this theorem, we first note that

∇GL̂ (f0,G0) = − 1

n

n∑
i=1

(
yi −

1√
dh

f⊤0 σ (G0xi)

)(
1√
dh

f0 ⊙ σ′ (G0xi)

)
x⊤
i .

Adopting the matrix notation X = [x1| . . . |xn]
⊤ ∈ Rn×dX and y = [y1, . . . , yn]

⊤ ∈ Rn, we can write

∇GL̂ (f0,G0) = − 1

n

[(
d
−1/2
h f0y

⊤ − d−1
h f0f

⊤
0 σ(G0X

⊤)
)
⊙ σ′(G0X

⊤)
]
X. (24)

Let z ∼ N(0,d−1
X Tr(Σx)) and define α = Ez [σ

′(z)], and σ⊥ : R → R as σ⊥(z) = σ(z) − αz. This
function satisfies Ez [σ

′
⊥(z)] = 0. With this, we decompose the gradient into three components as
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∇GL̂ (f0,G0) = T1 +T2 +T3 with

T1 = −α d
−1/2
h f0

(
X⊤y

n

)⊤

, T2 = −n−1d
−1/2
h

[
f0 y

⊤ ⊙ σ′
⊥(G0X

⊤)
]
X,

T3 = n−1d−1
h

[ (
f0f

⊤
0 σ(G0X

⊤)
)
⊙ σ′(G0X

⊤)
]
X.

We will analyze each of these components separately.

• Term 1: For this term, using the facts that ∥f0∥2 = O(1) and ∥X⊤y/n∥2 = O(1), we have

∥T1∥op = O
(
d
−1/2
h

)
.

• Term 2: To analyze this term, note that

f0 y
⊤ ⊙ σ′

⊥(G0X
⊤) = diag(f0)σ

′
⊥(G0X

⊤) diag(y),

which gives ∥∥∥f0 y⊤ ⊙ σ′
⊥(G0X

⊤)
∥∥∥
op

≤ ∥f0∥∞∥y∥∞∥σ′
⊥(G0X

⊤)∥op.

Using basic concentration arguments, we have ∥f0∥∞ = Õ(d
−1/2
h ), and ∥y∥∞ = Õ(1), with

probability 1− o(1). By construction of σ⊥(·), the matrix σ′
⊥(G0X

⊤) has mean zero entries,

thus using (Vershynin, 2012, Theorem 5.44), we have ∥σ′
⊥(G0X

⊤)∥op = Õ(d
1/2
h + n1/2) with

probability 1− o(1) Thus, the norm of T2 can be upper bounded as

∥T2∥op = Õ

(
1

dh

(
1 +

√
dh
n

)(
1 +

√
dX

n

))
= Õ

(
d−1
h

)
.

• Term 3: Similar to the second term, note that(
f0 f

⊤
0 σ(G0X

⊤)
)
⊙ σ′(G0X

⊤) = diag(f0)σ
′(G0X

⊤) diag
(
f⊤0 σ(G0X

⊤)
)
.

Thus, the norm of the third term can be upper bounded as

∥T3∥op =

∥∥∥∥ 1

n dh

[ (
f0f

⊤
0 σ(G0X

⊤)
)
⊙ σ′(G0X

⊤)
]
X

∥∥∥∥
op

≤ n−1d−1
h ∥X∥op∥f0∥∞∥f⊤0 σ(G0X

⊤)∥∞
∥∥∥σ′(G0X

⊤)
∥∥∥
op
.

To analyze the right hand side, note that assuming that σ is O(1)-Lipschitz, the entries of
σ′(G0X

⊤) are bounded by the Lipschitz constant, and we have ∥σ′(G0X
⊤)∥op = O(

√
ndh).

Also, using a simple orderwise analysis we have ∥f⊤0 σ(G0X
⊤)∥∞ = Õ(1), which gives

∥T3∥op = Õ

(
1

dh

(
1 +

√
dX

n

))
= Õ(d−1

h ).

To wrap up, note that d
1/2
h ∥T1∥op = O(1), whereas d

1/2
h ∥T2∥op and d

1/2
h ∥T3∥op = o(1). Thus, with

probability 1− o(1) we have

GSGD = G0 + η d
1/2
h ∇GL̂ (f0,G0) = G0 + αη f0

(
n−1X⊤y

)⊤
+∆

with ∥∆∥op = o(1), finishing the proof.

35



C.2 Proof of Lemma 3.10

Lemma 3.10. Under the assumptions of Theorem 3.9, the correlation between β⋆ and βSGD satisfies∣∣∣∣∣∣∣∣
β⊤
⋆ βSGD

∥βSGD∥2∥β⋆∥2
−

c⋆,1
dX

Tr(Σx)√
c2⋆+σ2

ε
n Tr(Σx) +

c2⋆,1
dX

Tr(Σ2
x)

∣∣∣∣∣∣∣∣→ 0

with probability 1− o(1), in which c⋆,1 = Ez[σ
′
⋆(z)] and c2⋆ = Ez[σ

2
⋆(z)] with z ∼ N(0, d−1

X Tr(Σx)).

Proof. Recall that βSGD = 1
nX

⊤y and y = σ⋆(Xβ⋆) + ε where ε = [ε1, . . . , εn]
⊤. Therefore, with

probability 1− o(1) we have

β⊤
SGDβ⋆ =

1

n
(Xβ⋆)

⊤y =
1

n
(Xβ⋆)

⊤σ⋆(Xβ⋆) + o(1)

where we have used the fact that ε is mean zero. Thus, using the weak law of large numbers,

β⊤
SGDβ⋆ → Ez [zσ⋆(z)] = d−1

X Tr(Σx)Ez

[
σ′
⋆(z)

]
= c⋆,1d

−1
X Tr(Σx) (25)

in probability, where z ∼ N(0,d−1
X Tr(Σx)). Similarly, ∥βSGD∥22 can be written as

∥βSGD∥22 = n−2y⊤XX⊤y = n−2ε⊤XX⊤ε+ n−2σ⋆(Xβ⋆)
⊤XX⊤σ⋆(Xβ⋆) + o(1).

We will analyze each of the two remaining term separately. For the first term, recall that ε is
independent of X. Using the Hanson-Wright inequality (Theorem E.6) we have

n−2ε⊤XX⊤ε = σ2
εn

−1Tr(XX⊤/n) + o(1) = σ2
εn

−1Tr(Σx) + o(1).

For the second term, note that Xβ⋆ is a vector with i.i.d. elements x⊤
i β⋆, each of them distributed

according to N(0,β⊤
⋆ Σxβ⋆). Let z be a random variable distributed as z ∼ N(0,β⊤

⋆ Σxβ⋆). We
decompose the function σ⋆ into a linear and a nonlinear part as

σ⋆(z) = c⋆,1z + σ⋆,⊥(z). (26)

This decomposition satisfies

Ez[σ⋆,⊥(z)] = Ez[σ⋆(z)] = 0

Ez [z σ⋆,⊥(z)] = Ez z σ⋆(z)− c⋆,1 Ez [z
2] = Ez [z σ⋆(z)]− c⋆,1 β

⊤
⋆ Σxβ⋆ = 0,

where the last equality is due to Stein’s lemma (Lemma E.7). This shows that the random variables
z and σ⋆,⊥(z) are uncorrelated. With this, we have

n−2σ⋆(Xβ⋆)
⊤XX⊤σ⋆(Xβ⋆) = n−2(c⋆,1Xβ⋆ + σ⋆,⊥(Xβ⋆))

⊤XX⊤(c⋆,1Xβ⋆ + σ⋆,⊥(Xβ⋆))

= c2⋆,1n
−2β⊤

⋆ (X
⊤X)2β⋆ + 2c⋆,1n

−2(Xβ⋆)
⊤XX⊤σ⋆,⊥(Xβ⋆) + n−2σ⋆,⊥(Xβ⋆)

⊤XX⊤σ⋆,⊥(Xβ⋆).

(27)

For the first term in this sum, by assumption 3.8 and the Hanson-Wright inequality (Theorem E.6),
we can write

c2⋆,1n
−2β⊤

⋆ (X
⊤X)2β⋆ = c2⋆,1 d

−1
X Tr(n−2(X⊤X)2) + o(1) = c2⋆,1d

−1
X Tr(Σ2

x) + c2⋆,1n
−1d−1

X Tr2(Σx),
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where in the last we plugged in the second Wishart moment. For the second term in (27), although
by construction Xβ⋆ and σ⋆,⊥(Xβ⋆) are uncorrelated, the vector Xβ⋆ and the matrix XX⊤ are
dependent, which complicates the analysis. To resolve this issue, we define X̃ = X−Xβ⋆β

⊤
⋆ which

satisfies Xβ⋆ ⊥⊥ X̃ and write

XX⊤ = X̃X̃⊤ + X̃β⋆β
⊤
⋆ X

⊤ +Xβ⋆β
⊤
⋆ X̃

⊤ +Xβ⋆β
⊤
⋆ X

⊤.

Thus, the second term in (27) can be written as

n−2(Xβ⋆)
⊤XX⊤σ⋆,⊥(Xβ⋆) = n−2(Xβ⋆)

⊤
[
X̃X̃⊤ + X̃β⋆β

⊤
⋆ X

⊤ +Xβ⋆β
⊤
⋆ X̃

⊤ +Xβ⋆β
⊤
⋆ X

⊤
]
σ⋆,⊥(Xβ⋆)

= n−2(Xβ⋆)
⊤X̃X̃⊤σ⋆,⊥(Xβ⋆)︸ ︷︷ ︸

T1

+ n−2(Xβ⋆)
⊤
[
X̃β⋆β

⊤
⋆ X

⊤ +Xβ⋆β
⊤
⋆ X̃

⊤ +Xβ⋆β
⊤
⋆ X

⊤
]
σ⋆,⊥(Xβ⋆)︸ ︷︷ ︸

T2

.

The term T1 can be shown to be o(1) by using the Hanson-Wright inequality (Theorem E.6) and
noting that X̃X̃⊤ is independent of Xβ⋆, and also the fact that Xβ⋆ and σ⋆,⊥(Xβ⋆) are orthogonal,
by construction. Similarly, T2 can also be shown to be o(1) using a similar argument. For this, we
also use that fact that by construction we have X̃β⋆ ⊥⊥ Xβ⋆ which alongside E [X̃β⋆] = 0n proves
that n−1(Xβ⋆)

⊤X̃β⋆ = o(1) and n−1(X̃β⋆)
⊤σ⋆,⊥(X̃β⋆) = o(1). Hence,

2c⋆,1n
−2(Xβ⋆)

⊤XX⊤σ⋆,⊥(Xβ⋆) → 0.

For the third term in (27), we can use a similar argument and replace X with X̃ to show that

n−2σ⋆,⊥(Xβ⋆)
⊤XX⊤σ⋆,⊥(Xβ⋆) → Ez[σ⋆,⊥(z)]

2 n−1Tr(Σx).

Putting everything together, we have

∥βSGD∥22 = c2⋆,1d
−1
X Tr(Σ2

x) + σ2
ε n

−1 Tr(Σx) + Ez[σ⋆,⊥(z)]
2 n−1Tr(Σx) + c2⋆,1n

−1d−1
X Tr2(Σx) + o(1)

= c2⋆,1d
−1
X Tr(Σ2

x) + n−1Tr(Σx)
(
σ2
ε + Ez[σ⋆,⊥(z)]

2 + c2⋆,1d
−1
X Tr(Σx)

)
+ o(1).

Note that given the decomposition (26), we have

Ez

[
σ2
⋆(z)

]
= Ez

[
σ2
⋆,⊥(z)

]
+ c2⋆,1d

−1
X Tr(Σx)

given the orthogonality of the linear and nonlinear terms. Hence,

∥βSGD∥22 = c2⋆,1d
−1
X Tr(Σ2

x) + n−1Tr(Σx)
(
σ2
ε + c2⋆

)
+ o(1),

which alongside (25) proves the lemma.

C.3 Proof of Lemma 3.12

Lemma 3.12. Under the assumptions of Theorem 3.9, the correlation between β⋆ and βKFAC satisfies∣∣∣∣∣∣ β⊤
KFAC β⋆

∥βKFAC∥2∥β⋆∥2
− c⋆,1Ψ1√

c2⋆,1Ψ2 +
dX
n (c2⋆,>1 + σ2

ε)Ψ3

∣∣∣∣∣∣→ 0
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with probability 1− o(1), where c2⋆,1 = E2
z[σ

′
⋆(z)], c

2
⋆,>1 = Ez[σ

2
⋆,⊥(z)] with z ∼ N(0, d−1

X Tr(Σx)), and
Ψ1,Ψ2,Ψ3 are defined in (34) and depend on Σx, dX/n, and λG. In particular, as λG → 0 and
dX/n → 0, we have

β⊤
KFAC β⋆

∥βKFAC∥2∥β⋆∥2
→ 1.

Proof. Recall that QG = n−1X⊤X and let R = (QG + λGIdX)
−1. The inner product of β⋆ and

βKFAC is given by

β⊤
⋆ βKFAC = n−1β⊤

⋆ RX⊤σ⋆(Xβ⋆) + o(1),

where we have used the fact that ε is mean zero and is independent of all other randomness in the

problem. Defining R̄ =
(
XX⊤/n+ λGIn

)−1
, we can use the push-through identity to rewrite the

inner product as

β⊤
⋆ βKFAC = n−1(Xβ⋆)

⊤R̄σ⋆(Xβ⋆) + o(1).

Note that Xβ⋆ is a vector with i.i.d. elements x⊤
i β⋆, each of them distributed according to

N(0,β⊤
⋆ Σxβ⋆). Using the same decomposition for σ⋆ as the one used in the proof of Lemma 3.10 in

(26), we have

β⊤
⋆ βKFAC =

1

n
(Xβ⋆)

⊤R̄ (c⋆,1Xβ⋆ + σ⋆,⊥(Xβ⋆)) + o(1)

= c⋆,1d
−1
X Tr

(
X⊤(XX⊤ + λGnIn)

−1X
)
+ n−1(Xβ⋆)

⊤R̄σ⋆,⊥(Xβ⋆) + o(1), (28)

where for the first term we have used Assumption 3.8 and the Hanson-Wright inequality (Theo-
rem E.6). To analyze the second term, note that although by construction Xβ⋆ and σ⋆,⊥(Xβ⋆) are
uncorrelated, the vectors Xβ⋆ and R̄ are dependent, which complicates the analysis. To resolve
this issue, we use the same trick used in the proof of Lemma 3.10 and set X̃ = X−Xβ⋆β

⊤
⋆ which

satisfies Xβ⋆ ⊥⊥ X̃, and use it to write

R̄−1 = n−1XX⊤ + λGIn = n−1
(
X̃+Xβ⋆β

⊤
⋆

)(
X̃+Xβ⋆β

⊤
⋆

)⊤
+ λGIn

=
(
n−1X̃X̃⊤ + λGIn

)
+ n−1(Xβ⋆)(Xβ⋆)

⊤ + n−1(X̃β⋆)(Xβ⋆)
⊤ + n−1(Xβ⋆)(X̃β⋆)

⊤.

Defining R̃ =
(
X̃X̃⊤/n+ λGIn

)−1
∈ Rn×n, V = [n−1/2Xβ⋆ |n−1/2X̃β⋆] ∈ Rn×2, and

D =

[
1 1

1 0

]
,

we have R̄ = R̃+VDV⊤. Using Woodbury matrix identity (Theorem E.8), R̄ is given by

R̄ = R̃− R̃V(D−1 +V⊤R̃V)−1V⊤ R̃ (29)

and plugging this expression into the second term in (28) gives

n−1(Xβ⋆)
⊤R̄σ⋆,⊥(Xβ⋆) = n−1(Xβ⋆)

⊤
(
R̃− R̃V(D−1 +V⊤R̃V)−1V⊤ R̃

)
σ⋆,⊥(Xβ⋆) + o(1)

= n−1(Xβ⋆)
⊤R̃ σ⋆,⊥(Xβ⋆)− n−1(Xβ⋆)

⊤R̃
(
V(D−1 +V⊤R̃V)−1V⊤

)
R̃σ⋆,⊥(Xβ⋆) + o(1).
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The first term can be shown to be o(1) in probability by using the fact that R̃ is independent of
Xβ⋆ and the orthogonality of Xβ⋆ and σ⋆,⊥(Xβ⋆). To analyze the second term, first note that the
elements of the matrix Ω = (D−1 +V⊤R̃V)−1 ∈ R2×2 can all be shown to be O(1) by a simple
norm argument. Moreover,

n−1(Xβ⋆)
⊤R̃V(D−1 +V⊤R̃V)−1V⊤ R̃σ⋆,⊥(Xβ⋆)

= n−2(Xβ⋆)
⊤R̃
(
Ω11(Xβ⋆)(Xβ⋆)

⊤ +Ω12(Xβ⋆)(X̃β⋆)
⊤

+Ω21(X̃β⋆)(Xβ⋆)
⊤ +Ω22(X̃β⋆)(X̃β⋆)

⊤
)
R̃σ⋆,⊥(Xβ⋆)

where Ωij are the elements of the matrix Ω. We analyze each term in this sum separately and show
that all of them are o(1).

• First Term. Using a simple norm argument, n−1(Xβ⋆)R̃(Xβ⋆) = O(1). Also, by construction
of σ⋆,⊥, we have

n−1(Xβ⋆)
⊤R̃σ⋆,⊥(Xβ⋆) → 0.

Thus, the whole term is o(1).

• Second Term. Similar to the first term, we have n−1(Xβ⋆)R̃(Xβ⋆) = O(1). Also,
n−1(X̃β⋆)

⊤R̃σ⋆,⊥(Xβ⋆) → 0 in probability, using the weak law of large numbers by noting
that σ⋆,⊥(Xβ⋆) is independent of n

−1(X̃β⋆)
⊤R̃ by construction and that it has mean zero.

Hence, the whole term is o(1).

• Third Term. By construction, the vector Xβ⋆ is independent of R̃(X̃β⋆) and has mean
zero, which gives n−1(Xβ⋆)

⊤R̃(X̃β⋆) → 0. Also, using a simple norm argument, we have
n−1(Xβ⋆)

⊤R̃σ⋆,⊥(Xβ⋆) = O(1) which proves that the third term is also o(1).

• Fourth Term. This term can be shown to be o(1) with an argument very similar to the
argument for the third term.

Putting these all together and using (28), we have

β⊤
⋆ βKFAC = c⋆,1d

−1
X Tr

(
(X⊤X/n)R

)
+ o(1). (30)

Next we move to the analysis of the squared ℓ2-norm of the vector βKFAC. By decomposing the
function σ⋆ into a linear and an orthogonal nonlinear component similar to the one used for the
analysis of the inner product term above, we write

∥βKFAC∥22 = n−2 y⊤XR2X⊤y = n−2ε⊤XR2X⊤ε+ c2⋆,1n
−2β⊤

⋆ X
⊤XR2X⊤Xβ⋆

+ n−2σ⋆,⊥(Xβ⋆)
⊤XR2X⊤σ⋆,⊥(Xβ⋆) + 2 c⋆,1 n

−2β⊤
⋆ X

⊤XR2X⊤σ⋆,⊥(Xβ⋆).

We will analyze each of these terms separately.

• First Term. Recalling that ε ∼ N(0, σ2
εIn) independent of all randomness in the problem,

using the Hanson-Wright inequality (Theorem E.6) we have

n−2ε⊤XR2X⊤ε = σ2
εn

−1Tr((X⊤X/n)R2) + o(1).
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• Second Term. Using Assumption 3.8, and by the Hanson-Wright inequality we have

n−2c2⋆,1 β
⊤
⋆ X

⊤XR2X⊤Xβ⋆ = c2⋆,1d
−1
X Tr

[
(X⊤X/n)2R2

]
+ o(1)

• Third Term. Note that R̄ and Xβ⋆ are dependent. Note that XR2X⊤ = XX⊤R̄ =
nR̄−λGnR̄

2. Thus, an almost identical argument to the argument used above for the analysis
of β⊤

⋆ βKFAC using X̃ = X−Xβ⋆β
⊤
⋆ gives

n−2σ⋆,⊥(Xβ⋆)
⊤XR2X⊤σ⋆,⊥(Xβ⋆) = Ez[σ

2
⋆,⊥(z)] · n−1Tr

(
(X⊤X/n)R2

)
+ o(1)

• Fourth Term. This term can readily be shown to be o(1) in the analysis of β⊤
⋆ βKFAC; i.e.,

2 c⋆,1 n
−2β⊤

⋆ X
⊤XR2X⊤σ⋆,⊥(Xβ⋆) = o(1).

Putting everything together, we find

∥βKFAC∥22 = c2⋆,1d
−1
X Tr

[
(X⊤X/n)2R2

]
+ (σ2

ε + Ez[σ
2
⋆,⊥(z)]) n

−1Tr
(
(X⊤X/n)R2

)
(31)

Now, given (30) and (31), defining c⋆,>1 = Ez[σ
2
⋆,⊥(z)], we have

β⊤
⋆ βKFAC

∥βKFAC∥∥β⋆∥
=

c⋆,1d
−1
X Tr

(
(X⊤X/n)R

)√
c2⋆,1d

−1
X Tr [(X⊤X/n)2R2] + (σ2

ε + c2⋆,>1) n
−1Tr ((X⊤X/n)R2)

. (32)

Thus, noting that if dX/n → 0 and λG → 0, we have R → Σ−1
x , we find

lim
λ→0

lim
dX/n→∞

β⊤
⋆ βKFAC

∥βKFAC∥∥β⋆∥
= 1,

proving the second part of the lemma. For the first part, we define m(z) : R → R as the limiting
Stieltjes transform of the the empirical eigenvalue distribution of n−1X⊤X; i.e.,

m(z) = lim
dX,n→∞

d−1
X Tr

[(
X⊤X/n− z IdX

)−1
]

(33)

where the limit is taken under the assumption that dX/n → ϕ > 0. For a general covariance matrix
ΣX, m(z) does not have a closed form except for very special cases; however, it it can be efficiently
computed. See Section E.8 for more details. The derivative of the function m is given by

m′(z) = − lim
dX,n→∞

d−1
X Tr

[(
X⊤X/n− z IdX

)−2
]
.

We can write all the traces appearing in (32) in terms of the function m and its derivative:

d−1
X Tr

(
(X⊤X/n)R

)
= d−1

X Tr
(
(X⊤X/n+ λGIdX − λGIdX)R

)
= d−1

X Tr (IdX − λGR) = 1− λG m(−λG),

d−1
X Tr

(
(X⊤X/n)2R2

)
= d−1

X Tr
(
(X⊤X/n+ λGIdX − λGIdX)

2R2
)
= 1− λ2

G m′(−λG)− 2λG m(−λG),

n−1Tr
(
(X⊤X/n)R2

)
= n−1Tr

(
R− λGR

2
)
= ϕm(−λG) + ϕλG m′(−λG).
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With these, the correlation is given by

β⊤
KFACβ⋆

∥βKFAC∥2∥β⋆∥2
=

c⋆,1[ 1− λG m(−λG) ]√
c2⋆,1[ 1− λ2

G m′(−λG)− 2λG m(−λG) ] + ϕ(c2⋆,>1 + σ2
ε)[m(−λG) + λGm′(−λG) ]

,

which defining

Ψ1 = 1− λG m(−λG)

Ψ2 = 1− λ2
G m′(−λG)− 2λG m(−λG)

Ψ3 = m(−λG) + λGm
′(−λG) (34)

concludes the proof.

C.4 From Feature Learning to Generalization

In Section 3.2, we showed that after one step of SGD and KFAC, the first layer weights will become
approximately equal to

Ĝa ≈ Ĝ0 + αη f0β̂
⊤
a , a ∈ {SGD, KFAC}. (35)

Given Lemma 3.10 and Lemma 3.12, we argued that compared to SGD, the weights obtained by the
KFAC algorithm are more aligned to the true direction β⋆. Given a nontrivial alignment between the
weights and the target direction, the second layer f can be trained using least squares (or based on
Lemma 3.1, equivalently using one step of the KFAC update on f with ηf = 1) with Θ(d) samples to
achieve good generalization performance (See e.g., Ba et al. (2022, Theorem 11) and Dandi et al.
(2024c, Section 3.4)). The existence of nontrivial alignment of the learned weights and the true
direction in a single index model is often called weak recovery and has been subject to extensive
investigation (see e.g., Ben Arous et al. (2021); Dandi et al. (2024c); Troiani et al. (2024); Arnaboldi
et al. (2024), etc.).

To see this, consider the feature matrix Za ∈ Rn×dh as Za = σ(XĜ⊤
a ), where the activation function

is applied element-wise. Based on equation (35), this matrix can be written as

Za ≈ σ
(
XG⊤

0 + αη (Xβ̂a)f
⊤
0

)
.

This is an example of a random matrix in which a nonlinear function is applied element-wise to
a random component plus a rank-one signal component which has been studied in the literature
(Guionnet et al., 2023; Moniri et al., 2024; Moniri & Hassani, 2024b). In particular, by Taylor
expanding the activation function, the feature matrix Za can be written as

Za ≈ σ(XG⊤
0 ) +

ℓ∑
k=1

αkηk

k!

(
σ(k)(XG⊤

0 )
)
⊙
(
(Xβ̂a)

◦k f◦k⊤0

)
+ Eℓ,

where ◦ denotes element-wise power and Eℓ is the reminder term. Let η = nα for some α ∈ [0, 0.5).

Given α, the integer ℓ is chosen to be large enough so that the operator norm of Eℓ is o(d
1/2
X ) and

the reminder term is negligible compared to σ(XG⊤
0 ). By a simple concentration argument, the

matrix σ(k)(XG⊤
0 ) can be replaced with its mean E

(
σ(k)(XG⊤

0 )
)
= µ11⊤ to get

Za ≈ σ(XG⊤
0 ) +

ℓ∑
k=1

αkηkµ

k!
(Xβ̂a)

◦k f◦k⊤0 .
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The first term σ(XG⊤
0 ) is the feature matrix of a random feature model and based on the Gaussian

Equivalence Theorem (GET) (see e.g., Goldt et al. (2022); Hu & Lu (2023); Dandi et al. (2024a);
Moniri et al. (2024)), we can linearize it; i.e., we can replace it with αXG⊤

0 + N where N is a
properly scaled independent Gaussian noise. The vectors (Xβ̂a)

◦k are nonlinear functions of the
covariates with different degrees. The least squares estimator f̂a is then fit on the features Za in a
way that L̂(f̂a, Ĝa) is minimized; i.e.

y ≈ σ(XG⊤
0 )f̂a +

ℓ∑
k=1

αkηkµ (f◦k⊤0 f̂a)

k!
(Xβ̂a)

◦k. (36)

Based on the GET, the random feature component can only learn linear functions with sample
complexity of learning n = Θ(dh) = Θ(dX). When η is large enough and βa is aligned to β⋆, with the
finite dimensional correction to the random features model, the model can also represent nonlinear
functions (x⊤β̂a)

k of degree k ≤ ℓ by matching the coefficients αkηkµ (f◦k⊤0 f̂a)/k! with the Taylor
coefficients of the teacher function σ⋆(x

⊤β̂⋆).

Although we have provided a complete proof sketch for providing generalization guarantees given
weight alignment, a complete analysis require tedious computations and is beyond the scope of this
work as we mainly focus on feature learning properties of different optimization algorithms.

D Additional Information on Kronecker-Factored Preconditioners

Here, we provide some additional background information regarding key Kronecker-Factored pre-
conditioning methods, including their derivation and relations to various methods in the literature.
We recall the running example of a fully-connected net omitting biases, introducing layer-wise
dimensionality and a final non-linear layer (e.g. softmax) for completeness:

fθ(x) = ϕ(WLσ(WL−1 · · ·σ(W1x) · · · )), Wℓ ∈ Rdℓ×dℓ−1 , d0 = dX. (37)

As before, we define θ as the concatenation of θℓ = vec(Wℓ), ℓ ∈ [L]. We define an expected loss
induced by the neural network L(θ) = E(x,y)[ℓ(fθ(x),y)], and its batch counterpart L̂(θ). Here, we
define the family of Kronecker-Factored preconditioned optimizers as those that update weights in
the following fashion:

Wℓ+ = Wℓ − η P−1
ℓ ∇Wℓ

L̂(θ)Q−1
ℓ , ℓ ∈ [L],

where Pℓ ∈ Rdℓ×dℓ , Qℓ ∈ Rdℓ−1×dℓ−1 , ℓ ∈ [L] are square matrices. For simplicity, we ignore moving
parts such as momentum, damping exponents, adaptive learning rate schedules/regularization
etc. We now demonstrate the basic principles and derivation of certain notable members of these
preconditioning methods on the feedforward network (37).

D.1 Kronecker-Factored Approximate Curvature KFAC

As described in the main paper, KFAC (Martens & Grosse, 2015) is at its core an approximation
to natural gradient descent. Given that we are approximating NGD, a crucial presumption on
fθ(x) and L(θ) is that the network output fθ(x) parameterizes a conditional distribution p(y|x;θ),
and L(θ) ∝ E(x,y)[− log p(y|x;θ)] is the corresponding negative log-likelihood. As such, KFAC is
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technically only applicable to settings where such an interpretation exists. However, this notably
subsumes cases L(θ) = E(x,y)[ℓ(fθ(x),y)], where ℓ(·) is a strictly convex function in fθ(x), as
this admits an interpretation as fθ(x) parameterizing an exponential family distribution. In
particular, the square-loss regression case ℓ(ŷ,y) = ∥ŷ − y∥2 corresponds to a conditionally-
Gaussian predictive distribution with fixed variance ŷ(x) ∼ N(fθ(x), σ

2I), and if ϕ(·) is a softmax
layer and ℓ(ŷ,y) = CrossEnt(ŷ,y), the multi-class classification case corresponds to a conditionally-
multinomial predictive distribution.

Defining hℓ = Wℓzℓ−1, zℓ = σ(h), z0 = x, the Fisher Information of the predictive distribution
p(y|x;θ) at θ can be expressed in block form:

FI(θ) ≜ Ex

[
∂p(y|x;θ)

∂θ

(
∂p(y|x;θ)

∂θ

)⊤
]

(recall θ is vec-ed parameters)

=


Ex

[
∂p(y|x;θ)

∂θ1

(
∂p(y|x;θ)

∂θ1

)⊤]
· · · Ex

[
∂p(y|x;θ)

∂θ1

(
∂p(y|x;θ)

∂θL

)⊤]
...

. . .
...

Ex

[
∂p(y|x;θ)

∂θL

(
∂p(y|x;θ)

∂θ1

)⊤]
· · · Ex

[
∂p(y|x;θ)

∂θL

(
∂p(y|x;θ)

∂θL

)⊤]


Looking at the (i, j)th block, we have

Ex

[
∂p(y|x;θ)

∂θi

(
∂p(y|x;θ)

∂θj

)⊤
]
= Ex

[
vec

(
∂p(y|x;θ)

∂Wi

)
vec

(
∂p(y|x;θ)

∂Wj

)⊤
]

= Ex

[
(zi−1 ⊗ gi)(zj−1 ⊗ gj)

⊤
]

(gℓ ≜ −∂p(y|x;θ)
∂hℓ

)

= Ex

[
(zi−1z

⊤
j−1)⊗ (gig

⊤
j )
]
, (Lemma E.1, item 2)

where the second line comes from writing out the backpropagation formula. KFAC makes two key
approximations:

1. The matrix FI(θ)−1 is approximated by a block-diagonal, and hence so is FI(θ). We note the
original formulation of KFAC in Martens & Grosse (2015) also supports a tridiagonal inverse
approximation.

2. The vectors zℓ−1 and gℓ are independent for all ℓ ∈ [L], such that

Ex

[
(zℓ−1 z

⊤
ℓ−1)⊗ (gℓ g

⊤
ℓ )
]
= E[zℓ−1 z

⊤
ℓ−1]⊗ E[gℓ g

⊤
ℓ ].

Now replacing the true expectation with the empirical estimate, and defining Pℓ = Ê[gℓ g
⊤
ℓ ],

Qℓ = Ê[zℓ−1 z
⊤
ℓ−1] completes the Kronecker-Factored approximation to the Fisher Information. It is

clear to see from the derivation that, as we previewed in the introduction and expressed emphatically
in Martens & Grosse (2015), this approximation is never expected to be tight.

Some related preconditioners

Having introduced KFAC, we introduce some related preconditioners. Notably, it has been noted that
computing gℓ requires a backwards gradient computation, whereas zℓ only requires a forward pass.
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In particular, various works have recovered the right preconditioner Qℓ of KFAC via various notions
of “local” (layer-wise) losses. Notably, these alternative views allow KFAC-like preconditioning to
extend beyond the negative-log-likelihood interpretation.

• LocoProp, square-loss case (Amid et al., 2022):

Update rule : Wℓ+ = argmin
W

1

2
Ê
[
∥Wzℓ−1 − hℓ∥2

]
+

1

2η
∥W −Wℓ∥2F

= Wℓ − η∇Wℓ
L̂(θ)

(
Idℓ−1

+ η Ê[zℓ−1z
⊤
ℓ−1]

)−1
.

As noted in Amid et al. (2022), this update is also closely related to ProxProp (Frerix et al.,
2018).

• FOOF (Benzing, 2022):

Update rule : ∆Wℓ = argmin
∆W

Ê
[
∥∆Wzℓ−1 − η gℓ∥2

]
+

λ

2
∥∆W∥2F

(
gℓ =

∂ℓ(fθ(x),y)

∂hℓ

)
= η∇Wℓ

L̂(θ)
(
Ê[zℓ−1z

⊤
ℓ−1] + λ Idℓ−1

)−1
,

Wℓ+ = Wℓ −∆Wℓ.

Interestingly, we note that these right-preconditioner-only variants subsume the DFW algorithm for
two-layer linear representation learning proposed in Zhang et al. (2024b); thus we may see the
guarantee therein as support of the above algorithms from a feature learning perspective, albeit
weaker than Theorem 3.6.

D.2 Shampoo

Shampoo is designed to be a Kronecker-Factored approximation of the full AdaGrad preconditioner,
which we recall is the running sum of the outer-product of loss gradients. Turning off the AdaGrad
accumulator and instead considering the empirical batch estimate Ê[∇θ ℓ(fθ(x),y) ∇θ ℓ(fθ(x),y)

⊤],
the curvature matrix being estimated can also be viewed as the Gauss-Newton matrix
E(x,y)[∇θ ℓ(fθ(x),y) ∇θ ℓ(fθ(x),y)

⊤]. As documented in various works (see e.g. Martens (2020)),
the (generalized) Gauss-Newton matrix in many cases is related or equal to the Fisher Information,
establishing a link between the target curvatures of KFAC and Shampoo.

However, the Shampoo preconditioners differ from KFAC’s. Let us define the zℓ,hℓ as before, and

gℓ =
∂ℓ(fθ(x),y)

∂hℓ
. Then, the Shampoo preconditioners are given by

Pℓ = Ê
[
gℓz

⊤
ℓ−1(gℓz

⊤
ℓ−1)

⊤
]1/4

, Qℓ = Ê
[
zℓ−1g

⊤
ℓ (zℓ−1g

⊤
ℓ )

⊤
]1/4

.

Notably, Shampoo takes the fourth root in the preconditioners, as its target is the AdaGrad precon-
ditioner which is (modulo scaling) the square-root of the empirical Gauss-Newton matrix–analogous
to the square-root of the second moment in Adam. Whether the target curvature should be the
square-root or not of the Gauss-Newton matrix is the topic of recent discussion (Morwani et al.,
2024; Lin et al., 2024).
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D.3 Kronecker-Factored Preconditioners and the Modular Norm

The “modular norm” (Large et al., 2024; Bernstein & Newhouse, 2024a,b) is a recently introduced
notion that provides a general recipe for producing different optimization algorithms that act
layer-wise. By specifying different norms customized for different kinds of layers (e.g. feed-forward,
residual, convolutional etc.), one in principle has the flexibility to customize an optimizer to handle
the different kinds of curvature induced by different parameter spaces. Given a choice of norm on the
weight tensor Wℓ, the descent direction is returned by steepest descent with respect to that norm.
To introduce steepest descent, we require a few definitions (cf. Bernstein & Newhouse (2024a)):

Definition D.1 (Dual norms, steepest direction). Given a norm ∥·∥ defined over a finite-dimensional
real vector space V. The dual norm ∥·∥† is defined by

∥v∥† = max
∥u∥=1

⟨u,v⟩ .

With g ∈ V and a “sharpness” parameter η > 0, the steepest direction(s) are given by the following
variational representation:

argmin
d

[
⟨g,d⟩+ 1

2η
∥d∥2

]
= −η∥g∥† · argmax

∥u∥=1
⟨g,u⟩ .

Here we focus on finite-dimensional normed spaces, but note that these concepts extend mutatis
mutandis to general Banach spaces. The aforementioned works derive various standard optimizers

by choosing different norms, including induced matrix norms ∥Wℓ∥α→β = maxx
∥Wℓx∥β
∥x∥α , applied to

a given layer’s weight space, for example (Bernstein & Newhouse, 2024b):

• SGD: induced by Frobenius (Euclidean) norm ∥·∥ = ∥·∥F . Note the Frobenius norm is not an
induced matrix norm.

• Sign-descent (“ideal” Adam with EMA on moments turned off): induced by ∥·∥ = ∥·∥ℓ1→ℓ∞ .

• Shampoo (“ideal” variant with moment accumulator turned off): induced by ∥·∥ = ∥·∥ℓ2→ℓ2 =
∥·∥op.

Therefore, in light of this characterization, a natural question to ask is what norm induces a given
Kronecker-Factored preconditioner (which includes Shampoo). We provide a simple derivation that
determines the norm.

Proposition D.2 (Kronecker-Factored matrix norm). Recall the fully-connected network (37).
Given preconditioners {(Pℓ,Qℓ)}Lℓ=1, where Pℓ ∈ Rdℓ×dℓ, Qℓ ∈ Rdℓ−1×dℓ−1, ℓ ∈ [L] are invertible
square matrices. Then, the layer-wise Kronecker-Factored update:

Wℓ+ = Wℓ − ηP−1
ℓ ∇Wℓ

L(θ) Q−1
ℓ , ℓ ∈ [L]

is equivalent to layer-wise steepest descent with norm ∥Mℓ∥ ≜ ∥P⊤
ℓ MℓQ

⊤
ℓ ∥F :

argmin
M

[
⟨∇Wℓ

L(θ),M⟩+ 1

2η
∥M∥2

]
= −ηP−1

ℓ ∇Wℓ
L(θ) Q−1

ℓ .
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Proof of Proposition D.2. It is straightforward to verify ∥M∥ ≜ ∥P⊤MQ⊤∥F for invertible P,Q
satisfies the axioms of a norm. It remains to verify the steepest descent direction:

argmin
M

[
⟨∇Wℓ

L(θ),M⟩+ 1

2η
∥M∥2

]
= −η ∥∇Wℓ

L(θ)∥† · argmax
∥M∥=1

⟨∇Wℓ
L(θ),M⟩ = P−1

ℓ ∇Wℓ
L(θ) Q−1

ℓ .

We start by writing:

∥∇Wℓ
L(θ)∥† ≜ max

∥M∥=1
⟨∇Wℓ

L(θ),M⟩

= max
∥P⊤

ℓ MQ⊤
ℓ ∥F=1

Tr(M⊤∇Wℓ
L(θ))

= max
∥D∥F=1

Tr(Q−1
ℓ D⊤P−1

ℓ ∇Wℓ
L(θ)) (P⊤

ℓ MQ⊤
ℓ → D)

= ∥P−1
ℓ ∇Wℓ

L(θ) Q−1
ℓ ∥F . (trace cyclic property, ∥·∥F is self-dual)

Similarly, it is straightforward to verify that the maximizing matrix is:

argmax
∥M∥=1

⟨∇Wℓ
L(θ),M⟩ =

P−1
ℓ ∇Wℓ

L(θ) Q−1
ℓ

∥P−1
ℓ ∇Wℓ

L(θ) Q−1
ℓ ∥F

,

such that plugging it into the steepest descent expression yields:

argmin
M

[
⟨∇Wℓ

L(θ),M⟩+ 1

2η
∥M∥2

]
= −η ∥P−1

ℓ ∇Wℓ
L(θ) Q−1

ℓ ∥F ·
P−1

ℓ ∇Wℓ
L(θ) Q−1

ℓ

∥P−1
ℓ ∇Wℓ

L(θ) Q−1
ℓ ∥F

= −η P−1
ℓ ∇Wℓ

L(θ) Q−1
ℓ ,

as required.

We remark that for complex-valued matrices, the above holds without modification for the Hermitian
transpose AH. Notably, the layer-wise norm corresponding to Kronecker-Factored preconditioning is
not an induced matrix norm, though modified optimizers can certainly be derived via induced-norm
variants, such as a “Mahalonobis-to-Mahalonobis” induced norm:

∥M∥Q−1→P ≜ max
x

√
(Mx)⊤P(Mx)√

x⊤Q−1x
(P,Q ≻ 0)

= max
∥x∥=1

∥P1/2MQ1/2∥

=
∥∥∥P1/2MQ1/2

∥∥∥
op

.

E Auxiliary Results

E.1 Properties of Kronecker Product

Recall the definition of the Kronecker Product: given A ∈ Rm×n, B ∈ Rp×q

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 ∈ Rmp×nq.
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Complementarily, the vectorization operator vec(A) is defined by stacking the columns of A on top
of each other (i.e. column-major order)

vec(A) =
[
A11 · · · Am1 · · · A1n · · · Amn

]⊤ ∈ Rmn.

We now introduce some fundamental facts about the Kronecker Product.

Lemma E.1 (Kronecker-Product Properties). The following properties hold:

1. (A⊗B)−1 = A−1 ⊗B−1. Holds for Moore-Penrose pseudoinverse † as well.

2. For size-compliant A,B,C,D, we have (A⊗B)(C⊗D) = (AC)⊗ (B⊗D).

3. vec(AXB) = (B⊤ ⊗A)vec(X).

E.2 Covariance Concentration

We often use the following Gaussian covariance concentration result.

Lemma E.2 (Gaussian covariance concentration). Let xi
i.i.d.∼ N(0,Σx) for i = 1, . . . , n, where xi ∈

Rd. Defining the empirical covariance matrix Σ̂x ≜ 1
n

∑n
i=1 xix

⊤
i , as long as n ≥ 18.27

c2
(d+log(1/δ)),

we have with probability at least 1− δ,

(1− c)Σx ⪯ Σ̂x ⪯ (1 + c)Σx.

Proof of Lemma E.2. The result follows essentially from combining a by-now standard concentration
inequality for Gaussian quadratic forms and a covering number argument. To be precise, we observe
that ∥∥∥Σ̂x −Σx

∥∥∥
op

≤ c∥Σx∥ =⇒ (1− c)Σx ⪯ Σ̂x ⪯ (1 + c)Σx.

Therefore, it suffices to establish a concentration bound on ∥Σ̂x −Σx∥ and invert for c∥Σx∥. To do
so, we recall a standard covering argument (see e.g. Vershynin (2018, Chapter 4)) yields: given an
ε-covering of Sd−1, N ≜ N (Sd−1, ∥·∥2, ε), the operator norm of a symmetric matrix Σ is bounded by

∥Σ∥ ≤ 1

1− 2ε
max
u∈N

u⊤Σu,

where the corresponding covering number is bounded by:

|N (Sd−1, ∥·∥2, ε)| ≤
(
1 +

2

ε

)d

.

As such it suffices to provide a concentration bound on u⊤Σu for each u ∈ N and then union-bound.
Toward establishing this, we first state the Gaussian quadratic form concentration bound due to Hsu
et al. (2012), which is in turn an instantiation of a chi-squared concentration bound from Laurent &
Massart (2000).

Proposition E.3 (Prop. 1 in (Hsu et al., 2012)). Let A ∈ Rm×d be a fixed matrix. Let g ∼ N(0, Id)
be a mean-zero, isotropic Gaussian random vector. For any δ ∈ (0, 1), we have

P[∥Ag∥2 > Tr(A⊤A) + 2
√

Tr((A⊤A)2) log(1/δ) + 2
∥∥∥A⊤A

∥∥∥
op

log(1/δ)] ≤ δ.
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Now, given u ∈ Sd−1, setting A = u⊤Σ1/2 such that u⊤Σ1/2g
d
= u⊤x, instantiating Proposition E.3

yields:

P

[
u⊤Σ̂xu > u⊤Σxu+ 2u⊤Σxu

√
log(1/δ)

n
+ 2u⊤Σxu

log(1/δ)

n

]
≤ δ.

Put another way, this says with probability at least 1− δ:

u⊤(Σ̂x −Σ)u ≤ 2u⊤Σxu

(√
log(1/δ)

n
+

log(1/δ)

n

)
.

Taking a union bound over u ∈ N , we get with probability at least 1− δ:

max
u∈N

u⊤(Σ̂x −Σ)u ≤ max
u∈N

2u⊤Σxu

(√
log(|N |/δ)

n
+

log(|N |/δ)
n

)

≤ 2 ∥Σx∥op

√d log
(
1 + 2

ε

)
+ log(1/δ)

n
+

d log
(
1 + 2

ε

)
+ log(1/δ)

n


≤ 4

√
log

(
1 +

2

ε

)
∥Σx∥op

√
d+ log(1/δ)

n
,

as long as n ≥ d log
(
1 + 2

ε

)
+ log(1/δ). Chaining together inequalities, this yields with probability

at least 1− δ under the same condition on n:∥∥∥Σ̂x −Σx

∥∥∥
op

≤ ∥Σx∥op
2

1− ε

√
log

(
1 +

2

ε

)√
d+ log(1/δ)

n
.

Minimizing the RHS for ε ≈ 0.0605 yields the result.

E.3 Extensions to subgaussianity

As previewed, many results can be extended from the Gaussian setting to subgaussian random
vectors.

Definition E.4. A (scalar) random variable X is subgaussian with variance proxy σ2 if the following
holds on its moment-generating function:

E[exp(λX)] ≤ exp

(
λ2σ2

2

)
.

A mean-zero random vector x ∈ Rd, E[x] = 0, is subgaussian with variance proxy σ2 if every linear
projection is a σ2-subgaussian random variable:

E[exp(λv⊤x)] ≤ exp

(
λ2∥v∥2σ2

2

)
, for all v ∈ Rd.

With this in hand, we may introduce the subgaussian variant of covariance concentration and the
Hanson-Wright inequality.
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E.4 Subgaussian Covariance Concentration

We state the subgaussian variant of Lemma E.2, whose proof is structurally the same, replacing the χ2

random variables with a generic subexponential (c.f. Vershynin (2018, Chapter 2)) random variable,
and using a generic Bernstein’s inequality rather than the specific χ2 concentration inequality. The
result is qualitatively identical, sacrificing tight/explicit universal numerical constants. The result
is relatively standard, and can be found in e.g., Vershynin (2018, Chapter 5) or Du et al. (2021,
Lemma A.6).

Lemma E.5 (Subgaussian covariance concentration). Let xi be i.i.d. zero-mean σ2-subgaussian
random vectors for i = 1, . . . , n, where xi ∈ Rd, and E[xx⊤] = Σx. Defining the empirical covariance
matrix Σ̂x ≜ 1

n

∑n
i=1 xix

⊤
i , there exists a universal constant C1 > 0 such that with probability at

least 1− 2δ: ∥∥∥Σ̂x −Σx

∥∥∥
op

≤ Cσ2 ∥Σx∥op

(√
d+ log(1/δ)

n
+

d+ log(1/δ)

n

)
.

Therefore, as long as n ≥ C2
σ2

c2
(d+ log(1/δ)), we have with probability at least 1− δ,

(1− c)Σx ⪯ Σ̂x ⪯ (1 + c)Σx.

E.5 Hanson-Wright Inequality

We often use the following theorem to prove the concentration inequality for quadratic forms. A
modern proof of this theorem can be found in Rudelson & Vershynin (2013).

Theorem E.6 (Hanson-Wright Inequality (Hanson & Wright, 1971)). Let x = (X1, . . . , Xn) ∈ Rd

be a random vector with independent sub-gaussian components Xi with EXi = 0. Let D be an n× n
matrix. Then, for every t ≥ 0, we have

P
{∣∣∣x⊤Dx− E

[
x⊤Dx

]∣∣∣ > t
}
≤ 2 exp

[
−cmin

(
t2

∥D∥2F
,

t

∥D∥op

)]
,

where c is a constant that depends only on the subgaussian constants of Xi.

E.6 Stein’s Lemma

We use the following simple lemma which is an application of integration by parts for Gaussian
integrals.

Lemma E.7 (Stein’s Lemma). Let X be a random variables drawn from N(µ, σ2) and g : R → R
be a differentiable function. We have E [ g(X)(X − µ) ] = σ2 E [ g′(X)].

E.7 Woodbury Matrix Identity

In the proofs, we use the following elementary identity which states that the inverse of a rank-k
correction of a matrix is equal to a rank-k correction to the inverse of the original matrix.
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Theorem E.8 (Woodbury Matrix Identity (Woodbury, 1950)). Let A ∈ Rn×n,C ∈ Rk×k,U ∈ Rn×k,
and V ∈ Rk×n. The following matrix identity holds:

(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1,

assuming that the inverse matrices in the expression exist.

E.8 Stieltjes Transform of Empirical Eigenvalue Distribution

For a distribution µ over R, its Stieltjes transform is defined as

mµ(z) =

∫
dµ(x)

x− z
.

Let Hd be the (discrete) empirical eigenvalue distribution of Σx ∈ Rd×d and let Fd be the (dis-
crete) empirical eigenvalue distribution of the sample covariance matrix Σ̂ ∈ Rd×d. Consider the
proportional limit where d, n → ∞ with d/n → ϕ > 0. Suppose that the eigenvalue distribution Hd

converges to a limit population spectral distribution HΣx ; i.e., Hd ⇒ HΣx in distribution. Given the
definition of m(z) from equation (33), we have m(z) = mF (z). The following theorem characterizes
mF in terms of HΣx .

Theorem E.9 (Silverstein Equation (Silverstein & Choi, 1995)). Let νF (z) = ϕ(mF (z)+1/z)−1/z.
The function νF is the solution of the following fixed-point equation:

− 1

νF (z)
= z − ϕ

∫
t

1 + t νF (z)
dHΣx(t).

Thus, using this theorem, given HΣx , we can numerically compute νF (and hence, mF ) using

fixed-point iteration. For example, for Σ
(ε)
x from equation (14), we have F = 1/2 δ1−ε + 1/2 δ1+ε.

F Additional Numerical Results and Details

F.1 Details of the Experiment Setups

In the experiments, we generate F0 ∈ RdY×k with i.i.d. N(0, 1) entries. Then, for each task s
we randomly draw a matrix Bs ∈ RdY×dY and set Fs

⋆ = exp
(
0.005(Bs −B⊤

s )
)
F0, where exp(·) is

the matrix exponential. The shared representation matrix G⋆ ∈ Rk×dX is generated by sampling
uniformly from the space of row-orthonormal matrices in Rk×dX .

We consider two settings for the covariance matrices Σx,s; the low-anisotropic, and the high-
anisotropic settings. In the low-anisotropic setting, we define E = 5 IdX +N where N ∈ RdX×dX has
i.i.d. N(0, 1) entries, and set Σx,s = 0.5 (E+E⊤). For the high-anisotropic setting, we first sample
uniformly a rotation matrix O ∈ RdX×dX and set Σx,,s = ODO⊤ where D = diag(logspace(0, 5, dX)).
In the experiments for the main paper, we always consider the high-anisotropic setting.

In the following experiments, in addition to the data generation process in equation (13) used in
the experiment in the main paper, we also consider a Gaussian data setup where samples for task s
are generated according to

ys
i = Fs

⋆G⋆x
s
i + εsi, xs

i ∼ N(0,Σx,s), εsi
i.i.d.∼ N(0, σε,sIdY), s ∈ {test, train}. (38)
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F.2 Additional Experiments

F.2.1 Effect of Batch Normalization

We used the same experiment setting described in Section 4 to generate the plots in Figure 9.
Explicitly, we use data dimension dX = 100, task dimension dY = 15, and representation dimension
k = 8. We use the same learning rate 10−2 for each optimizer except for NGD, in which we used
10−4. The batch size is 1024. In Figure 2 we considered the Uniform data (13) with high anisotropy.
Here, we consider the other three setting: Uniform data (13) with low anisotropy, Gaussian data
(38) with low anisotropy, and Gaussian data (38) with high anisotropy.
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Figure 4: The effect of batch normalization (on AMGD) vs. KFAC in our experiment settings (Left)
Uniform with low anisotropy. (Middle) Gaussian with low anisotropy. (Right) Gaussian with
high anisotropy.

As discussed in the main paper Section 3.1.1, we expect AMGD with batch-norm to converge in
training loss but to perform poorly with respect to the subspace distance from the optimal in
settings in the case with high anistropy (Right). However, in the experiment settings with low
anisotropy (Left and Center), we expect reasonable performance from this algorithm because
rowsp(G⋆Σx) is close to the target rowsp(G⋆).

F.2.2 Learning Rate Sweep

We further test the performance of each learning algorithm at different learning rates from
10−6, 10−5.5, . . . , 10−0.5, 100, with results shown in Figure 5, where we plot the subspace distance at
1000 iterations for different algorithms. If the algorithm encounters numerical instability, then we
report the subspace distance as the maximal value of 1.0. We observe that KFAC and DFW coverage
to a solution with small subspace distance to the true representation for a wide range of step sizes,
whereas the set of suitable learning rates for other algorithms is much narrower. Furthermore, we
observe the poor performance of various algorithms in Figure 1 and Figure 9 is not due to specific
choice of learning rate.

F.2.3 Head-to-Head Experiments

We again consider the same experimental setting used for Figure 1. In particular, we use data
dimension dX = 100, task dimension dY = 15, and representation dimension k = 8. We use the
same learning rate 10−2 for each optimizer except for NGD optimizer, in which we used 10−4. The
batch size is 1024. In Figure 1 we considered the Uniform data (13) with high anisotropy. Here, we
consider the other three setting: Uniform data (13) with low anisotropy, Gaussian data (38) with
low anisotropy, and Gaussian data (38) with high anisotropy. We plot the training loss, subspace
distance to the ground truth shared representation, and the transfer loss obtained by different
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Figure 5: The subspace distance of representations learned by different algorithms after 1000
iterations and the true representation as a function of learning rate.

algorithms. See Figure 9. We observe that in all three settings, various algorithms converge in
training loss. In the case with high anisotropy (second row), methods other than KFAC do not
converge to the optimal representation in subspace distance and transfer loss. However, in the low
anisotropy settings (first and third rows), the performance of other algorithms also improve, but are
notably still suboptimal relative to KFAC, confirming the theoretical results showing that anisotropy
is a root cause behind the sub-optimality of prior algorithms and analysis.
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Figure 6: Gaussian with low anisotropy
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Figure 7: Gaussian with high anisotropy
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Figure 8: Bernoulli with low anisotropy

Figure 9: From left to right: the training loss, subspace distance, and transfer loss induced by
various algorithms on a linear representation learning task.
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