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Abstract

The modeling of complicated time-evolving physical dynamics from partial ob-
servations is a long-standing challenge. Particularly, observations can be sparsely
distributed in a seemingly random or unstructured manner, making it difficult to
capture highly nonlinear features in a variety of scientific and engineering prob-
lems. However, existing data-driven approaches are often constrained by fixed
spatial and temporal discretization. While some researchers attempt to achieve
spatio-temporal continuity by designing novel strategies, they either overly rely on
traditional numerical methods or fail to truly overcome the limitations imposed
by discretization. To address these, we propose CoPS, a purely data-driven meth-
ods, to effectively model continuous physics simulation from partial observations.
Specifically, we employ multiplicative filter network to fuse and encode spatial
information with the corresponding observations. Then we customize geometric
grids and use message-passing mechanism to map features from original spatial
domain to the customized grids. Subsequently, CoPS models continuous-time
dynamics by designing multi-scale graph ODEs, while introducing a Markov-based
neural auto-correction module to assist and constrain the continuous extrapolations.
Comprehensive experiments demonstrate that CoPS advances the state-of-the-art
methods in space-time continuous modeling across various scenarios. The source
code is available at https://github.com/Sunxkissed/CoPS.

1 Introduction

Achieving accurate global modeling and forecasting of a complex time-evolving physical system from
a limited number of observations has been a long-standing challenge [5, 52, 11]. This has widespread
applications in chaotic physical systems such as geophysics [12, 38], atmospheric science [9, 40], and
fluid dynamics [56, 29, 55, 4], et al. For instance, in meteorology and oceanography, sensors are often
deployed in areas with scarce or non-existent network connectivity. This renders the analysis and
modeling of the system a formidable obstacle. From empirical knowledge, dynamical systems can be
fully described by complicated and not yet fully elucidated partial differential equations (PDEs) [16].
Traditional numerical methods such as finite element [13] and finite volume [2] methods excessively
rely on prior knowledge of essential PDEs and suffer from high time complexity, making it difficult to
accommodate the increasing demands for grid granularity. Recently, data-driven approaches partially
overcome these by integrating advanced neural networks to directly learn dynamic latent features
with high nonlinearity from existing observations or simulations.

Although data-driven methods [18, 31, 45] have the capacity to learn complex relationships from
observations, they still have serious limitations in changeable actual scenes. One significant challenge
in modeling physical fields from partial observations is that the field may not adhere to a Cartesian
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grid [34, 1], and convolutional neural networks are inherently not adapted to such structures. When
employing graph neural networks [22, 51], the graph topology is often determined by the locations
of existing observation points, making the model difficult to generalize to unseen spatial locations.
Additionally, some methods use padding or interpolation [6] to enforce spatiotemporal continuity.
This may distort the inherent inductive bias of the observed data and significantly increases the
computational burden in sparse data scenarios.

Recently, to better explore the space- Grid- and timestep-free evoluti
time continuous formulation from par- t -
tial observations [19, 53], a few no-
table works stand out. Example of
continuous time and space dynamic
system evolution is illustrated in Fig-
ure 1. For space-continuous learn-
ing, the multiplicative filter network
(MFN) [10], combined with implicit
neural representations (INRs) [17], Figure 1: Example of continuous time and space dynamic
has been proposed to incorporate co- system evolution. (Non-discretized)

ordinate information through linear

Fourier or wavelet functions in an efficient manner. However, this approach requires iterating
for hundreds of steps to obtain the corresponding implicit neural representation for new samples,
severely lacking real-time applicability. Further, for continuous-time learning, neural ordinary differ-
ential equations (Neural ODEs) [7] address the limitation of fixed time extrapolation windows by
learning continuous ODEs from discrete data using explicit solvers such as the Euler or Runge-Kutta
methods [3, 33]. However, if the system’s nonlinearity is high, Neural ODE may struggle to capture
the essential features of the complex dynamics. Additionally, Neural ODE is solved through numer-
ical integration, which leads to errors accumulating as time progresses. As a result, conventional
Neural ODEs may lead to poor stability in long-term predictions and potentially worse fitting.
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To address these, we propose CoPS, a purely data-driven methods, to effectively achieve space-
time continuous prediction of dynamical systems based on partial observations. Specifically, we
employ multiplicative filter networks to fuse and encode spatial information with the corresponding
observations. Then we customize geometric grids and use message passing mechanism to map
features from original spatial domain to the customized grids. Subsequently, CoPS models continuous
dynamics by designing multi-scale Graph ODEs, while introducing a local refinement feature extractor
to assist and constrain the parametric evolutions. Finally, the predicted latent features are mapped
back to original spatial domain through a GNN decoder.

In summary, we make the following key contributions: @ Encoding Mechanism. We propose
a novel encoding approach to integrate partial observations with spatial coordinate information,
effectively encoding these features into a customized geometric grid. @ Novel Methodology. We
introduce a multi-scale Graph ODE module to model continuous-time dynamics, complemented by a
neural auto-regressive correction module to assist and constrain the parametric evolution, ensuring
robust and accurate predictions. @ Superior Performance. Our method demonstrates state-of-the-art
performance on complex synthetic and real-world datasets, showcasing the possibility for accurate
and efficient modeling of intricate dynamical processes and precise long-term predictions.

2 Related Work
2.1 Deep Learning for Physical Simulations

Recent advancements in deep neural networks have established them as effective tools for addressing
the complexities of dynamics modeling [15, 52, 50], demonstrating their ability to efficiently capture
the intricacies of high-dimensional systems. Physics-Informed Neural Networks (PINNs) [21, 44, 25],
which optimize weights by minimizing the residual loss derived from the PDE, have received
considerable attention due to their flexibility in tackling a wide range of data-driven solutions [27, 46].
Recently, neural operators [24, 29, 49, 35] map between infinite—dimensional function spaces by
replacing standard convolution with continuous alternatives. Specifically, they utilize kernels in
fourier space [29, 28, 42] or graph structure [30, 54, 57, 14] to learn the correspondence from the
initial condition to the solution at a fixed horizon. However, most existing methods are limited
by static observation grids, restricting their ability to evaluate points outside training grids and
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Figure 2: The overview of CoPS. Stage 1: Employ multiplicative filter network to encode the initial
representation, and map it to the customized grids with message passing scheme. Stage 2: Model the
latent dynamics with multi-scale Graph ODE module and auto-correction module in a continuous-
time way. Stage 3: Extrapolate results for arbitrary future time step and coordinates.

confining queries to fixed time intervals. In this work, we aim to overcome discretization and achieve
spatiotemporal modeling in a continuous way.

2.2 Advanced Space-Continuous Modeling

Interpolation has been widely adopted in numerous applications [6, 20, 47], which also holds wide
prospects in spatiotemporal modeling. For instance, researchers employed interpolation as a post-
processing technique to generate continuous predictions. Recently, MAgNet [5] proposes to predict
the dynamical solution after interpolating the observation graph in latent space to new query points.
Another approach for space-continuous or grid-independence modeling is a kind of coordinate-based
neural networks, called Implicit Neural Representations (INRs) [17, 23]. Typically, INRs take the
spatial coordinates as inputs along with other conditions, which can be utilized to enhance real
space-continuous modeling and dynamical evolution predicting. DINO [52] overcomes the limitation
of failing to generalize to new grids or resolution via a continuous dynamics model of the underlying
flow. MMGN [32] learns relevant basis functions from sparse observations to obtain continuous
representations after factorizing spatiotemporal variability into spatial and temporal components.

3 Methodology

Problem Definition. In this work, we focus on modeling spatiotemporal dynamical systems through
partial observations. The systems are defined over the temporal domain 7 and spatial domain €.
The observations are recorded at L arbitrary consecutive time points ¢1.;, := (¢1,...,t) € T,
and N arbitrary local sensor measurements at locations x; € Q,i = (1,...,N). To adapt to
general real-world scenarios, we assume that all dynamics are learned from the initial observation
u(ty) = (u(x1,to),. .., u(xn,t0))?. Moreover, the values of time steps and observation locations
may vary across different observed trajectories during the inference phase. Thus, for prediction, our
goal is to learn a neural function Q(-), which maps the initial observation at the first time step to
future dynamical predictions at arbitrary time steps ¢; and locations ;.

Q(ulto, x0); T, Q) = V(ti, x;), ti €T, z; €. (1)

Framework Overview. In this section, we introduce the proposed CoPS, which achieves the
continuous spatiotemporal modeling from partial observations within complicated dynamical systems.
We aim to simultaneously overcome the discretization limitations in both the spatial and temporal
domains. To better align with the form of numerical solutions, we begin with partial observations
of the initial state and apply constraints based on real observations during the continuous evolution
process. An overview of our CoPS can be seen in Figure 2.

3.1 [Initial Encoding via Multiplicative Filter Network

Initial Encoder. Further, we follow the multiplicative filter network and choose nonlinear Gabor
filter [10] g«(-) to generate a continuous global frequency representation. The formulation is as
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where p(*) € R% and v(*) € R 4= denote the respective mean and scale term of the x-th
Gabor filter. Subsequently, the filters are multiplied by the linear transformation of previous layer’s
embedding and the historical sequence representation w,. The iteration process is defined as follows:
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p;} =q (z;) = pEKH) = (u; + Wipf +0f)®ge(x), for k=1,..., M —1,

where ©® denotes element-wise multiplication, W/ and bf are the learnable parameters. Finally,
H,, (ui, ;) is the obtained vector that contain coordinate information and feature of node .

3

Customized Grids and Message Passing Scheme. For our observational data, the spatial domain is
non-discrete. Recent works like MeshGraphNet [34] rely on fixed meshes, which present challenges
when generalizing to previously unseen coordinate points. We propose a novel customized grid
mapping approach. Specifically, for any arbitrary coordinate, it can be mapped onto a uniform grid
structure. Let p; = (z;,y;) denote an arbitrary point in the continuous 2D space, we will discover
the appropriate grid cell according to it. To enrich the representation, we connect each point p, to the
four vertices {v;1, v;1, Vi3, via} of the associated grid cell.

Based on the encoded initial state 4? = #,,(u;, x;) and the customized grids, the next step involves
a message-passing scheme that propagates the features from the original continuous space to the
customized grids. To further preserve spatial continuity, the scheme encodes and incorporates the
relative positions of the connected points during message passing. The transformation is as follows:
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where W} and b* are learnable parameters, and ¢(x;,x;) denotes the relative position embedding of
node ¢ and j. In this way, we collaboratively encode both the feature information and rich spatial
information onto the customized grids, completing the initial encoding process.

3.2 Latent Dynamics Modeling

Further, we view high-dimensional features on the customized grids as latent states and aim to
efficiently model complicated dynamics in a continuous-time way.

Multi-scale Graph ODE. To capture spatiotemporal dynamics over complex domains, we build
a hierarchical graph representation inspired by GraphCast [26] on top of the customized grids.
Our objective is to progressively encode both coarse global behaviors and refined local structures.
Concretely, let {G (s) le be a collection of graphs, where G coincides with the finest-scale grid
obtained from the initial encoding process. Specifically, within each graph G(*), we connect each
node to its spatial neighbors by "jump adjacency” on the underlying 2D grid, thus G&,... G5
providing graph topologies with longer-range dependencies.

To perform hierarchical message passing, we process each scale independently and then fuse the
features using an attention mechanism. For each scale s, the message passing is defined as follows:

n*) = AGGREGATE ({n{"": j e NO())} ) ,n{" = COMBINE (n{" ), ("), (5)

where /(%) (4) denotes the neighbors of node i at s-th scale. After propagating messages within each
scale, we employ an attention mechanism to fuse the features across scales.

S
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where az(-s) denotes the attention weight, Wyery and Wy, are learnable parameters, and * denotes

the cosine similarity computation. Building on this hierarchical representation, we parametrize a
coupled Graph ODE to model the continuous-time evolution of it’s latent state.

dhf t t t
7 =@ (hi,hh, - hiy,G,0). @)




Here, ® denotes the multi-scale message passing function, G represents the hierarchical graph
structure, and © encapsulates the model parameters. Given the ODE function @, the node initial
values, and the corresponding contextual vector, the latent dynamics can be solved by any ODE solver
like Runge-Kutta [37].

it ...h!T = ODESolve(®, [k, hY - - hY]). ®)

This formulation allows the model to theoretically obtain the hidden state at any arbitrary timestep,
provided that the Neural ODE fits the underlying dynamics well.

Neural Auto-correction. Although the multi-scale Graph ODE framework provides a global
continuous-time evolution, it still relies on the strong assumption that a learnable ODE exists
to model the concrete physical dynamics. Moreover, neural ODEs relying on numerical solvers may
fail to capture the system’s intrinsic nonlinear features, making it difficult to handle error divergence
during evolution. To address this, we introduce a neural auto-correction module that imposes a
discrete dynamical regime in the latent space. Thus we can capture complex corrections at selected
time steps in a heuristic Markov chain manner.

At each correction step, a convolutional encoder first compresses the current latent representation
into a compact state. Subsequently, after the discrete evolution block, a transposed convolution-based
decoder reconstructs the refined latent field. This operation acts as a "Markov state observer" [8],
learning a discrete single-step mapping in a more compact latent space. The formulation is as follows:

E(-) = o(LN(Conv2d(-))), D(-) = Tanh(UnConv2d(-)). )

Further, between the encoder and decoder lies a neural block that embodies a discrete transition
operator similar to a Markov kernel. Technically, it consists of a 1 x 1 Conv2D, which strips away
extraneous channels to focus on the most critical latent features. Then, it is followed by parallel
GroupConv2D [41] operators to process these features in multiple subspaces. We utilize R to
represent the combination of the 1 x 1 Conv2D and the parallel GroupConv2D. Then the whole
evolution can be formulated as:

2(k+1) = D(R(E(2(k)))), (10)

where z(k) denotes the latent embedding at discrete step k. Crucially, this transformation depends
only on the current embedding z(k), thus fulfilling a Markov property at each correction step. By
encapsulating key spatiotemporal features in z(k) and evolving them into z(k + 1) via R(-), the
neural auto-correction module adaptively regularizes the global continuous-time solution. On one
hand, it provides a local perspective on how errors can be contained and corrected in each interval.
On the other hand, it retains a sufficient memory of the system’s evolving states without requiring
full historical trajectories.

Inference Strategy. During inference, we employ an iterative strategy that combines the multi-
scale Graph ODE module and the neural auto-correction module to generate continuous accurate
predictions. Starting from the initial state h; (), the model proceeds as follows:

* Continuous Evolution: The multi-scale Graph ODE module evolves the latent states continuously
from tj, to tg41:

tr41
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* Discrete Correction: At each discrete time step 11, the neural auto-correction module refines the

predicted state:

B (tk1) = hilte41) + Ary (hi(te)) , (12)
where 7, denotes the neural auto-correction module, and A is the hyperparameter for balance.
The corrected state hY (t,41) is used as the initial state for the next time step, and the process
repeats until the final prediction time is reached. This inference strategy ensures that the model can
generate accurate and stable predictions over long time horizons, while maintaining the continuity
and smoothness of the learned dynamics.

3.3 Decoder

Upon obtaining the latent states on the customized grids, we project them back to the original
continuous spatial domain for final predictions. Specifically, for a query coordinate ¢, = {Zm, Ym },



we first identify the corresponding grid cell v,,, and establish connections to its four vertices, denoted
{Vm1;Um2, Um3, Uma }. We then initialize the representation of ¢,, with a single step Gabor filter
transformation h,,, = g1(¢m ), and then perform a message-passing update just as in Eq (4). Further,
we can obtain the corresponding predictions through a 2-layer MLP decoder D(-).

3.4 Theoretical Analysis

Theorem 3.1 (Error Bounding via Hybrid Continuous-Discrete Latent Corrections). Consider
a spatiotemporal dynamical system whose latent representation y(t) is intended to follow an ideal
trajectory y*(t). The learned dynamics are modeled by a Neural ODE:

Sult) = Fly(1),6,0), (13)

with initial condition y(to). The function F, representing the multi-scale graph message passing,
is assumed to be L r-Lipschitz continuous with respect to y(t). Periodic corrections are applied at
discrete time steps ty, = to + k - Atcorr. Let y(t;, ) be the state before correction and y(t}) be the
state after applying a neural auto-correction operator Cy,:

y(t) = y(t) + Cuy(t,)). (14)
The error is defined as e(t) = ||y*(t) — y(¢)||. We assume:

(a) The combined error from the ODE model discrepancy (vis-a-vis y*(t)) and numerical
solver inaccuracies over one interval Atco, is bounded by Eopg, such that e(t,; +1) <
eLfAtC‘)”e(t;_) + gODE‘

(b) The correction operator Cy, reduces the error proportionally and introduces a bounded
residual, i.e., e(t}) < k- e(t;) + dc, where 0 < r < 1 is a contraction coefficient and
bc > 0 is a base error from the corrector.

Then, for K = |(t — to)/Ateore| correction steps, if the effective error amplification per cycle
Qo = KeLFBleorr < 1 the error at time t &~ to + K Atcopr is bounded by:

x€opE + Oc kEopE + dc
] < ok (e(to) — : 15
e(0] < off (eft) - o2 T 0 ), Ko+ 15)
This can be expressed more generally as:
le(®)]] < Cr-agy ™20 + €, (16

where C1; = max (0, e(tg) — C2) or simply e(tg) for a looser bound, Cy = %
error floor, and aex € [0, 1) quantifies the error decay rate per correction cycle, dependent on
the system’s Lipschitz constant, the correction interval, and the corrector’s efficacy. This bound

demonstrates that the error converges to a non-zero floor Cs if aeg < 1.

is the asymptotic

4 Experiment

4.1 Experimental Settings

Datasets. To comprehensively illustrate the property and efficacy of the extrapolations obtained from
CoPS, we conduct experiments on diverse synthetic and real-world datasets. < For synthetic datasets,
we first choose Navier-Stokes [29] and Rayleigh—Bénard Convection [43], which are directly generated
by numeric PDE solvers. Then, we select Prometheus [48], which is a large-scale combustion dataset
simulated with industrial software. < For real-world datasets, we choose WeatherBench [36], a
dataset for weather forecasting and climate modeling. We also select Kuroshio [49], which provides
vector data of sea surface stream velocity from the Copernicus Marine Service. See Appendix A for
detailed descriptions of all these datasets.

Baselines. We evaluate our model against three baselines representing the state-of-the-art in continu-
ous modeling. MAgNet [5] employs an "Encode-Interpolate-Forecast" scheme. Specifically,
MAgNet employs the nearest neighbor interpolation technique to generalize to new query points.



Subsequently, it forecasts the evolutionary trends by leveraging a GNN-based message passing neural
network. DINO [52] learns PDE’s flow to forecast its dynamical evolution by leveraging a spatial
implicit neural representation modulated by a context vector and modeling continuous-time evolution
with a learned latent ODE. This is the closest approach to our method. ContiPDE [39] formulates
the task as a double observation problem. It utilizes recurrent GNNss to roll out predictions of anchor
states from the IC, and employs spatiotemporal attention observer to estimate the state at the query
position from these anchor states. We utilize the official implementation for all models and tune their
experimental settings to follow the requirements of our tasks.

Tasks. We assess the performance of CoPS across diverse forecasting tasks to evaluate their efficacy in
various scenarios. We use the mean squared error (MSE) as the performance measurement. (i) Sparse
Flexibility - Gauging the effectiveness of predicting global field evolution based on observations
with diverse degrees of sparsity (subsampling ratio of 25%, 50%, 75%). (ii) Time Flexibility -
Evaluating our model’s performance in extrapolating beyond the training horizon. Here we design
two experimental setups: long-term extrapolation beyond the training horizon, and continuous-time
prediction for intermediate points between discrete time steps. (iii) Resolution Generalization -
Investigating the performance of generalizing to new resolution (up or down). (iv) Super-resolution
- Investigating the model’s effectiveness of super-resolution query and extrapolation. (v) Noise
Robustness - Exploring the robustness of our model against varying noise ratios. (vi) Ablation Study
- Investigating contributes of each key component to the performance of CoPS.

Implementation. For synthetic data like Navier-Stokes, the train and test sets differ only by their
initial conditions. The samples are partitioned in a 7:2:1 ratio into training, validation, and test sets.
For real-world data like WeatherBench, we use the historical ERAS5 global atmospheric reanalysis
data. The data was partitioned strictly by date to prevent any data leakage from the future into the
training process. Specifically, the train set uses data from 1979-2018, the validation set from 2019,
and the test set from 2020-2022. To ensure fairness, we use partial observations of the initial state
as input and supervise the training with future real observations at discrete time steps (only using
observed future values). In evaluating spatial continuity, we perform subsampling of the full initial
state at rates of {25%, 50%, and 75%}, assessing both observed and unobserved points. For temporal
continuity, we evaluate three criteria based on different subsampling rates: predictions within the
training horizon, long-term predictions beyond the training horizon, and continuous-time predictions
for intermediate points between discrete time steps. More details are illustrated in Appendix C.

4.2 Main Results

Space Flexibility. To evaluate the spatial querying ability of our method, we adjust the number of
available measurement points by using different proportions of observation points (25%, 50%, 75%)
in the training data. We report the MSE compared to the ground truth on four datasets, as shown
in Table 1. From the table, we see that our method (Ours) significantly outperforms the baseline
methods on all datasets and at all observation sparsity levels. On the Navier-Stokes dataset, with
only 25% of the observation data, our method achieves MSE of 2.964E-03 and 5.743E-03 under
the In-s and Ext-s settings, which are much better than ContiPDE (5.456E-03 and 9.523E-03) and
DINo (1.074E-02 and 2.537E-02). As the observation ratio increases to 50% and 75%, our model’s
performance further improves. The MSE for In-s decrease to 2.253E-03 and 1.464E-03, and for Ext-s
decrease to 4.571E-03 and 2.872E-03. On the Kuroshio dataset, even with only 25% observation
data, our method achieves MSE of 1.285E-03 and 2.381E-03 under In-s and Ext-s, significantly better
than other methods. For example, ContiPDE’s MSE are 2.352E-03 and 3.763E-03, and DINo’s are
3.737E-03 and 5.923E-03. As the observation ratio increases, our method’s MSE further decreases,
and its accuracy becomes higher. On the Prometheus and WeatherBench datasets, our method also
performs excellently. Especially on the WeatherBench dataset, when the observation ratio is 75%,
our method achieves MSE of 3.585E-03 and 8.472E-03 under In-s and Ext-s, much lower than other
baseline methods. These results show that our method effectively recovers the global scene from
partial observations on different datasets and observation sparsity levels. It demonstrates robustness
in handling sparse data and spatial generalization.

Time Flexibility. To evaluate our method’s performance in temporal extrapolation, we train and
evaluate the model with observation subsampling ratio of 50% and 100%. We use three extrapolation
modes: (1) Extrapolation within the discrete training range (In-t); (2) Extrapolation beyond the
discrete training range (Ext-t); (3) Extrapolation at intermediate points between time steps (Con-t).



Table 1: To evaluate the spatial inquiry power of our method, we vary the number of available
measurement points in the data for training from 25%, 50% and 75% amount of observations. We
report MSE compared to the ground truth solution.

WEATHERBENCH
5=25% $=50% 5=75%

PROMETHEUS
5=25% 5=50% $=75%

KUROSHIO
$=25% $=50% $=75%

NAVIER-STOKES
$=25% $=50% $=75%

MODEL

1.694E-02  1.273E-02  1.186E-02
2.775E-02  2.322E-02  1.724E-02

3.635E-02  3.028E-02 2.483E-02
5.356E-02  4.972E-02 3.295E-02

3.164E-02  2.775E-02 2.268E-02
5.846E-02 4.285E-02  3.114E-02

7.104E-03  6.523E-03  4.845E-03
9.464E-03  8.173E-03  7.518E-03

IN-§
EXT-s

MAGNET

1.223E-02  8.005E-03  5.657E-03
1.784E-02  1.246E-02  8.324E-03

2.365E-02  2.186E-02 1.922E-02
3.823E-02 2.746E-02  2.588E-02

1.074E-02  9.564E-03  7.554E-03
2.537E-02  1.764E-02  9.248E-03

3.737E-03  3.332E-03  2.884E-03
5.923E-03 5.271E-03 4.487E-03

IN-s
EXT-$

DINo

1.542E-02  1.294E-02 1.056E-02
2.172E-02  1.653E-02  1.474E-02

5.456E-03  4.176E-03  3.825E-03
9.523E-03  7.975E-03  6.231E-03

IN-s
EXT-s

CoNTIPDE
3.763E-03  2.531E-03 2.084E-03 | 1.125E-02 8.355E-03 6.674E-03

2.352E-03  1.947E-03 1.503E-03‘S.462E-03 6.084E-03  4.763E-03

IN-s
EXT-s

OURS

2.964E-03 2.253E-03 1.464E-03 | 1.285E-03 7.253E-04 5.253E-04 | 5.176E-03 3.722E-03 2.746E-03 | 8.766E-03 5.249E-03 3.585E-03
5.743E-03 4.571E-03 2.872E-03 | 2.381E-03 1.577E-03 9.272E-04 | 8.264E-03 5.142E-03 4.287E-03 | 1.769E-02 1.056E-02 8.472E-03
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Figure 3: Figure(a) and (b) shows the perdiction performance based on observations with diverse
ratio of subsampling (25%, 50%, 75%) on the Navier-Stokes and Kuroshio dataset. Figure(c)
demonstrates long-term extrapolation beyond the training horizon on the Prometheus dataset, and
Figure(e) shows the evolution of prediction errors over time steps, revealing the increasing error with
longer prediction steps. Figure(d) illustrates continuous-time prediction for intermediate points
between discrete time steps on the WeatherBench dataset.

We report the mean squared error (MSE) on the Navier-Stokes, Rayleigh—Bénard Convection, and
Prometheus datasets, as shown in Table 2. From Table 2, we see that our method achieves the
best performance on mostly all datasets and extrapolation settings. For example, on the Navier-
Stokes dataset with a subsampling ratio of 50%, our method achieves MSE of 2.832E-03 (In-t),
5.764E-03 (Ext-t), and 4.135E-03 (Con-t). These are significantly better than ContiPDE (5.054E-03,
8.342E-03, 6.447E-03) and DINo (7.651E-03, 1.074E-02, 9.971E-03). When the subsampling ratio
increases to 100%, the performance improves further. Our method’s MSE decrease to 1.132E-03
(In-t), 2.364E-03 (Ext-t), and 1.735E-03 (Con-t). On the Rayleigh-Bénard Convection dataset, our
method also achieves MSE of 6.522E-04 (In-t) and 1.327E-03 (Ext-t), significantly better than other
baseline methods. This shows that our method can make accurate predictions within the discrete
training range. It can also effectively extrapolate to time points beyond the training range. When we
perform continuous-time prediction at intermediate points between time steps (Con-t), our method
also performs excellently. It achieves the smallest prediction error. Overall, these results demonstrate
the strong capability of our method in continuous-time modeling. It provides accurate and reliable
predictions under different temporal extrapolation settings.

Visualization and Analysis. Figure 3 provides compelling visual evidence for the superior per-
formance of our proposed CoPS across a range of challenging tasks. Specifically, Figure 3 (a) and
(b) demonstrate that CoPS can effectively model the entire physical field and learn the evolution
trends of unobserved points only with partial observations. When the subsampling ratio reaches 75%,
our model can achieve a precise prediction on Navier-Stokes and Kuroshio datasets. As observed
in Figure 3 (c) and (e), our method significantly outperforms DINO and ContiPDE in long-term
forecasting on the Prometheus dataset by effectively suppressing error accumulation, thereby main-
taining high-fidelity details where baselines exhibit blurring. This robust temporal modeling is further
evidenced in Figure 3 (d), where CoPS accurately predicts intermediate states between discrete time
steps. This showcases its ability to perform true, dynamically consistent integration rather than simple
interpolation, confirming its superior continuous-time modeling capabilities.



Table 2: We evaluate the temporal extrapolation performance of our method. Models are trained
and evaluated with observation subsampling ratio of 50% and 100%. We employ three kinds of
extrapolation, containing: (1) extrapolation within discrete training horizon (In-t); (2) extrapolation
exceeding discrete training horizon (Ext-t); and (3) extrapolation of intermediate points between time
steps (Con-t). We report MSE compared to the ground truth solution.

NAVIER-STOKES RAYLEIGH-BENARD CONVECTION PROMETHEUS
IN-T EXT-T CON-T IN-T EXT-T CON-T IN-T EXT-T CON-T

s = 50% subsampling ratio
MAGNET 1.253E-02 2.601E-02 — 9.421E-03 1.335E-02 - 1.138E-02  1.824E-02 —
DINo 7.651E-03 1.074E-02 9.971E-03 5.748E-03 8.472E-03 7.342E-03 8.321E-03 1.117E-02 8.852E-03
CONTIPDE  5.054E-03 8.342E-03 6.447E-03 3.744E-03 3.814E-03 2.908E-03 5.435E-03 8.154E-03 6.637E-03
OURS 2.832E-03 5.764E-03 4.135E-03 1.526E-03 2.328E-03 1.765E-03 3.374E-03 6.678E-03 5.355E-03

s = 100% subsampling ratio
MAGNET  7.429E-03 1.273E-02 — 4.837E-03  7.235E-03 — 7.938E-03  1.024E-02 —
DINo 4.352E-03 7.374E-03 5.271E-03 2.248E-03 4.872E-03 3.742E-03 5.721E-03 8.217E-03 6.288E-03
CONTIPDE  2.655E-03  4.742E-03 3.847E-03 1.244E-03 3.214E-03 2.308E-03 3.835E-03 6.554E-03 4.037E-03
OURS 1.132E-03 2.364E-03 1.735E-03 6.522E-04 1.327E-03 1.061E-03 2.877E-03 5.174E-03 3.852E-03
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Figure 4: Left shows the inference performance for super-resolution on Navier-Stokes dataset. Right
demonstrates the resolution generalization capability compared with MAgNet, DINo, and ContiPDE.

4.3 Model Analysis

Analysis of Super-resolution. In the super-resolution experiment presented in Figure 4 (lef?), the
results illustrate the inference performance on the Navier-Stokes dataset across resolutions of 32 x 32,
64 x 64, 128 x 128, and 256 x 256. The results consistently demonstrate improved prediction
quality as resolution increases. Compared to baseline models (MAgNet, DINo, and ContiPDE), the
proposed model effectively reduces prediction error at high resolutions, maintaining a lower MSE
and providing clearer, more accurate predictions of the original Navier-Stokes patterns.

Resolution Generalization. As observed in Figure 4 (right), the folding diagrams depict the
resolution generalization capabilities for both Prometheus and WeatherBench datasets. The proposed
CoPS consistently outperforms the comparative models (MAgNet, DINo, ContiPDE) at all resolution
levels, achieving the lowest MSE value. This result highlights CoPS’s robustness and effectiveness
in handling resolution variations. The findings emphasize the model’s ability to generalize across
different resolutions, which is crucial for applications requiring detailed and precise predictions in
complex dynamic systems.

Ablation Study. To evaluate the contri-  Typle 3: Ablation study on Kuroshio. (Report MSE)
bution and importance of each component

in the pI‘OpOSCd CoPS, we conduct corre- ‘ IN-s /IN-T  EXT-S/IN-T IN-S/EXT-T EXT-S/EXT-T
ponding ablation experiments, and use L7500 LS SO Sosse0r 4 17se0s

MSE error as metric. Our model variants w/(()) NAC | 1.428E-03  2.216E-03  2.742B-03  3.657E-03

are as follows: @ CoPS w/o MFN, we re- OURS  7.253E-04 1.577E-03  2.161E-03  2.938E-03

move the multiplicative filter network and
use an MLP. ® CoPS w/o MGO, we remove the multi-scale Graph ODE module. & CoPS w/o
NAC, we remove the neural auto-correction module. Table 3 shows the comprehensive results of
our ablation experiment. The results of the ablation experiments show that removing any component
results in a decrease in predictive performance, further proving the critical role of these components in
CoPS framework. Specifically, the performance declines after removing the multi-scale Graph ODE
module is particularly evident, proving its importance in capturing internal dynamic representations.




5 Conclusion

In this paper, we introduce CoPS, a novel data-driven framework for modeling continuous spatiotem-
poral dynamics from partial observations. To overcome discretization, we first customize geometric
grids and employ multiplicative filter network to fuse and encode spatial information with the corre-
sponding observations. After encoding to the concrete grids, CoPS model continuous-time dynamics
by designing multi-scale graph ODEs, while introducing a Marcov-based neural auto-correction
module to assist and constrain the continuous extrapolations. Extensive experiments on both synthetic
and real-world datasets demonstrate the superior performance of CoPS, which underlines the potential
to provide a robust method for accurate long-term predictions in face of sparse and unstructured data.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions regarding the
CoPS framework.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We thoroughly discuss the limitations of our work and propose potential
directions for future research in Appendix.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The proofs of corresponding theorems are provided in Appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide detailed workflow and experimental model settings in Appendix.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the abstract, we provide URL link to both the source code.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental settings in Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The experiments in this paper report variance measurements.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide information on the computer resources in Experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All aspects of this work comply with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed broader impacts in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all used public datasets and compared baselines.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study did not involve human participants, so no risks, disclosures, or IRB
approvals were required or obtained.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core ideas proposed in this paper were developed without any involvement
of large language models.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Description of Datasets

Navier-Stokes Equations. Navier-Stokes Equations [29] describe the motion of fluid substances
such as liquids and gases. These equations are a set of partial differential equations that predict
weather, ocean currents, water flow in a pipe, and air flow around a wing, among other phenomena.
The equations arise from applying Newton’s second law to fluid motion, together with the assumption
that the fluid stress is the sum of a diffusing viscous term proportional to the gradient of velocity, and
a pressure term. The equations are expressed as follows:

p<687:+u-Vu) =-Vp+V. -7+ f,

9p _ (17)
5 + V- (pu) =0,

o(pE
(gt ) +V-((pE+pu)=V-(r-u)+ V- (kVT) + pf - u,
where u denotes the velocity field, p represents the density of the fluid, p is the pressure, 7 is the
viscous stress tensor, given by p(Vu + (Vu)”) — 2u(V - u)L. E is the total energy per unit mass,

E=e+ %|u 2 e s the internal energy per unit mass, T’ denotes the temperature, and k represents
the thermal conductivity. All simulations were generated from the Navier-Stokes equation with a
constant Reynolds number of le-5. We utilized a total of 1200 independent simulation samples.

Rayleigh-Bénard Convection. Rayleigh-Bénard Convection [43] is generated using the Lattice
Boltzmann Method to solve the 2-dimensional fluid thermodynamics equations for two-dimensional
turbulent flow. The general form of the equations is expressed as:

V-u=0,

1
Gu + (u-V)u= fp—Ver vV + 1 — T — Tp)] X,
0

ot

oT
— + (u- V)T = V2T,
ot
where g is the gravitational acceleration, X is the acceleration due to the body-force of the fluid
parcel, pg is the relative density, T" represents temperature, Ty is the average temperature, o denotes
the coefficient of thermal expansion, and « is the thermal conductivity coefficient. The simulation
parameters for the dataset are as follows: Prandtl number = 0.71, Rayleigh number = 2.5 x 10%, and
the maximum Mach number = 0.1.

(18)

Prometheus. Prometheus [48] is a large-scale, out-of-distribution (OOD) fluid dynamics dataset
designed for the development and benchmarking of machine learning models, particularly those that
predict fluid dynamics under varying environmental conditions. This dataset includes simulations
of tunnel and pool fires (representated as Prometheus-T and Prometheus-P in experiments), encom-
passing a wide range of fire dynamics scenarios modeled using fire dynamics simulators that solve
the Navier-Stokes equations. Key features of the dataset include 25 different environmental settings
with variations in parameters such as Heat Release Rate (HRR) and ventilation speeds. In total, the
Prometheus dataset encompasses 4.8 TB of raw data, which is compressed to 340 GB. It not only
enhances the research on fluid dynamics modeling but also aids in the development of models capable
of handling complex, real-world scenarios in safety-critical applications like fire safety management
and emergency response planning.

WeatherBench. WeatherBench [36] is a benchmark dataset designed for the evaluation and compar-
ison of machine learning models in the context of medium-range weather forecasting. It is intended
to facilitate the development of data-driven models that can improve weather prediction, particularly
in the range from 1 to 14 days ahead. The dataset consists of historical weather data from multiple
atmospheric variables, including temperature, pressure, humidity, wind speed, and geopotential
height, at various global locations. The data is derived from the ERAS reanalysis, which provides
hourly estimates of the atmosphere’s state at a resolution of 31 km for the period from 1950 to
present. Its primary goal is to serve as a benchmarking tool to compare the performance of machine
learning-based models against traditional numerical weather prediction methods. By focusing on
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data-driven techniques, it aims to push forward the development of models that can predict weather
patterns in an interpretable and scalable manner, and thus contribute to improving operational weather
forecasting systems.

Kuroshio. Kuroshio [49] is a dataset designed to study the dynamics of the Kuroshio Current,
a major oceanic current in the Pacific Ocean that flows from the east coast of Taiwan and Japan,
obtained from the Copernicus Marine Environment Monitoring Service (CMEMS). Key features of
the dataset include high temporal and spatial resolution measurements, covering daily and monthly
intervals, which allow for in-depth studies on the seasonal and inter-annual variability of the Kuroshio
Current. It also includes data on associated oceanic phenomena such as eddy formation, upwelling,
and interactions with surrounding currents like the Tsushima Current. This dataset covers the period
from 1993 to 2024, and we use data from 1993-2020 for training, while data from 2021-2024 for
validation and testing.

B Pseudocode of CoPS

Algorithm 1 Algorithm workflow of CoPS

1: Input: Initial observations Uy = {(u(z;, to), xz)}f\ff, Query set (s¢; Model parameters © ;;

Hyperparameters Atcory, Ac.
2: Output: Predictions Y = {u(ty, x4)} for (¢4, 4) € Qset-

3: /* Stage 1: Initial Encoding and Grid Mapping */
4: {h;(to)} + Encoderg_,_(Up) > Encode observations to point embeddings >Eq. 2,3
50 z(to)t GridMapperg,  ({hi(to)}) > Map to initial latent grid state > Eq. 4

6: /* Stage 2: Iterative Latent Dynamics Prediction with Correction */
7oz 2(to) Tt = to; Zirag < {(to, 2(to) ™)}
8: while ¢;, < Max(t,, )EQaet {tq} do

9: tnext?corr — tk + Atcorr

100 2, < ODESolve(®g_,., z,j, [tky tnewt_corr]) > Continuous evolution > Eq. 7, 8, 11

11:  Store evolution from z,j 10 25 1 in Zpqj.

120 2y < 2z + Ae - Ao, (2) > Apply discrete correction > Eq. 9, 10, 12

13: Z]j — Z;:r+1§ ti < thext_corr
14: end while

15: /* Stage 3: Decoding to Query Locations */

16: Y « {}

17: for each query (¢, z4) in Qse; do

18:  Identify grid cell v.; and its vertices {v; } for zq.

19:  hg,init < GaborFilter(x,) > Initialize query point representation
200 hg gria < MessagePass({z(tq)v; }+ R init, Tq, {Tv; }; Omap) > Refine using grid states > Eq.
4 variant

21:  a(tq, zq) < MLPDecoder(hg, grid; ©dec)
22: Addd(ty,z4) to Y.
23: end for

24: /* Training: Parameters Oq; = {Ocnc; Omap, Oode, Oac, Odec} are learned end-to-end by
minimizing prediction error. */
25: return Y

C Details of Implementation
To ensure fairness, we conducted all experiments on an NVIDIA-A100 GPU using the MSE loss over

200 epochs. We used Adam optimizer with a learning rate of 10~2 for training. The batch size was
set to 16.
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C.1 Model hyper-parameters

The core architecture of the model consists of three main modules: the spatial information encoder,
the multi-scale graph ODE module, and the neural auto-regressive correction module. The spatial
information encoder employs Multiplicative Filter Networks to fuse partial observations with spatial
coordinate information and encode them into customized geometric grids. For regular arranged
datasets, the customized grid is set to the general resolution. For irregular arranged datasets, it is
uniformly set to 128x128. The MFN is configured with 5 layers and uses ReLLU as the activation
function to ensure efficient feature extraction. The hidden dimension is set to 128. Then the multi-
scale graph ODE module utilizes a Runge-Kutta ode solver for numerical integration, with a time step
size of 0.25 to ensure accurate modeling of temporal continuity. Further, the neural auto-regressive
correction module performs corrections per integer time step. For this module, the Conv2d layer
is downsampled to half the resolution, while the UpConv2d layer restores the grid to the original
resolution. The parallel GroupConv2d operations are implemented with filter sizes of 3x3, 5x5, and
7x7. For inference, the correction weight A is set to 0.5 to balance correction strength and model
stability. Finally, in the decoder, we use a single step Gabor filter transformation to initial the features
of query coordinates, and perform a 2-layers message-passing update to obtain the corresponding
predictions.

C.2 Baseline implementation

MAgNet [5]. We utilize the official implementation of MAgNet, utilizing a graph neural network
variant of the model. The configuration involves five message-passing steps. The architecture of
all MLPs includes four layers, with each layer containing 128 neurons. Additionally, we set the
dimensionality of the latent state at 128.

DINo [52]. We utilize the official implementation of DINo. Specifically, the encoder features an MLP,
comprising three hidden layers with 512 neurons each, and Swish non-linearities. The dimension
of each hidden layer is set to 100. Similarly, the dynamics function is realized through an MLP,
which also includes three hidden layers, each containing 512 neurons and employing Swish activation
function. The decoder is constructed with three layers, each with a capacity of 64 channels.

ContiPDE [39]. ContiPDE formulates the task as a double observation problem. It utilizes recurrent
GNN s to roll out predictions of anchor states from the IC, and employs spatio-temporal attention
observer to estimate the state at the query position from these anchor states. First, it utilize a two-
layered MLP with 128 neurons, with Swish activation functions to encode features form sparse
observations. Further, it uses a two-layered gated recurrent unit with a hidden vector of size 128, and
a two-layered MLP with 128 neurons activated by the Swish function to realize the recurrent GNNs.
Finally, it employs multi-head attention mechanism to decode and utilizes multi-head attention
mechanism to realize continuous query.

D Broader impacts

The CoPS framework has broad positive impacts in several areas. First, it provides crucial technical
support in scientific research, especially in geophysics, atmospheric science, and fluid dynamics.
By performing continuous spatiotemporal simulations from sparse observational data, this method
achieves high-precision predictions with limited sensor numbers, significantly improving the accuracy
and timeliness of weather forecasts and disaster warnings.

E Limitations of This Study

While our proposed CoPS framework demonstrates significant advancements in modeling continuous
spatiotemporal dynamics from partial observations, we acknowledge several limitations that provide
avenues for future research. The first is the computational cost of multi-scale graph ODE:s. It can
be computationally intensive, especially for very fine-grained customized grids or a large number
of scales. Future work could explore more efficient graph neural network architectures or adaptive
scaling mechanisms to mitigate this. The second is the assumption of Markov property in auto-
correction. While this simplifies the model and makes it computationally tractable, real-world
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physical systems might exhibit longer-range temporal dependencies that are not fully captured by
this discrete correction mechanism.

F Proofs of Theorem 3.1

Let e, = e(t; ) denote the error just before the k-th correction (or at the start of the k-th ODE
integration interval), and e: = e(t}i‘) denote the error just after the k-th correction. The initial error
isey = e(to).

From assumption (b), after a correction at time ¢:

ez < ke, +dc. (19)
From assumption (a), after ODE evolution from t; to £ 1:
6]:+1 < 6L]:Atw”€;r ~+ EODE.- (20)

We want to establish a recurrence relation for e;. Substitute Eq(2) (with k replaced by k + 1 for
ej,1) into Eq(1) (for e} ):

eerl < I‘ielerl +0c < KZ(@L}_Atcorrez + SODE) +6c = K:eL}_Atcorrez' + k€opE + Oc. 20

Let o = keLFBleorr Let B = k€ope + dc. Then the recurrence relation for the error after
correction is:
ef .y < aeefl + B. (22)
This is a linear first-order non-homogeneous recurrence relation. Unrolling this for K steps, starting
from e :
e} < aeffe;r{_l + B

< aeff(aeﬁ“ez',g +B)+ B = agﬂfel,*G2 + aegB+ B

(23)
K-1
K+ J
< aggey + B E s
7=0
. . . . K-1 j _ 1-ak;
Since aer < 1, the geometric series sumis » ;" alg = 7=, So,
1—alf
K
e}; S aeﬁ‘eg + Blieff (24)
— Qleff

This can be rewritten as:

B BaX B B
Tt < K _+ _ eff _ K + . 25
€ < Qg€ + - o 1—ou Qefr (60 — aeﬂ) + 1= oun (25)

The constant C'y defined in the theorem is Cy = ”f"_]’z:ffc = 1—](? o This is the asymptotic error
floor for e}.. Substituting Cs into Eq(7), we get:
el <ol (ef — Cs) + Co. (26)

This matches the form of Equation (15) in the theorem statement, if we interpret ||e(t)|| as e}
(error after K corrections) and e(tg) as ear (error after the initial, possibly hypothetical, correction,
which serves as the starting point for this recurrence). The number of correction steps is K =
[(t —to)/Atcorr]-
Now for:

le(t)]| < Cy - L=tV Atend 4, 27)
From e} < agf(ea' —C) + Cy:

* If e — Cy > 0, then we can set C; = ej — Cy. The bound becomes Cy o + Co.
* If e(')" — C5y < 0, then 63' < (. Since af}f > 0, the term ozgf(ear — () is negative.
Thus, e} < Oy — a5 (Cy—ef) < Csy. Inthi tting C; = 0 t <0 +0Cy=0C
sep < Cr—asyz(Cr—eg 5. In this case, setting C; = 0 ensures e < 0z +Co = Co,

which is true. So, C; = max(0, ej — Cs) correctly captures both cases and matches the definition in

the theorem. The bound demonstrates that if aeg < 1, the term agf — 0 as K — oo. Consequently,

the error e}; converges towards the asymptotic error floor Cl.
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G External Results

G.1 More Visualization Cases.
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Figure 5: Qualitative comparison of our method and ContiPDE on the Navier-Stokes dataset under
sparse initial observations (25% and 75%). In each panel, the first row displays the ground truth
evolution, spanning both in-horizon (training) and out-horizon (extrapolation) timesteps. The second
and third rows depict the predictions generated by our proposed CoPS and ContiPDE.
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Figure 6: Qualitative comparison of our method and ContiPDE on the WeatherBench dataset under
sparse initial observations (25% and 75%). In each panel, the first row displays the ground truth
evolution, spanning both in-horizon (training) and out-horizon (extrapolation) timesteps. The second
and third rows depict the predictions generated by our proposed CoPS and ContiPDE.

To more clearly demonstrate the performance of our method, we present detailed visualizations here.
Figure 5 and Figure 6 provide qualitative illustrations of CoPS’s capabilities in modeling complex
fluid dynamics from sparse initial data on the Navier-Stokes dataset and the WeatherBench dataset,
comparing its performance against ground truth and the ContiPDE baseline. We examine scenarios
with initial conditions derived from both 25% and 75% of the full observations. The ground truth
(first row in each panel) clearly shows the evolution of intricate flow patterns, including vortex
formation and propagation, across both in-horizon and out-of-horizon time steps. When initialized
with only 25% observations (top panel), our CoPS model (second row) successfully captures the
essential dynamics, maintaining structural integrity and accurately predicting the advection of vortices
well into the extrapolation phase. In contrast, ContiPDE (third row), while capturing the general
flow, struggles more with the sparsity, leading to predictions that are smoother and lose some of the
high-frequency details present in the ground truth, particularly in the out-of-horizon predictions. This
suggests CoPS’s encoding mechanism and the interplay between its continuous ODE evolution and
discrete auto-correction are more effective in inferring the complete state from limited information and
robustly propagating it. Even with 75% initial data (bottom panel), where both models perform better,
CoPS consistently exhibits a closer match to the ground truth’s finer details and long-term behavior,
highlighting its enhanced capacity for accurate and stable long-range forecasting in continuous
spatio-temporal domains.
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G.2 Hyperparameter Analysis

We conduct sensitivity experiments with regard to correction hyperparameter (\) on Navier-Stokes
and Prometheus datasets. To resolve your concern, we conduct experiments on both In-t and Ext-t
settings with observation subsampling ratio of 50%. The results on Ext-t setting demonstrate the
long-term prediction performance. The results are shown in Table 4, which indicate that neural
auto-correction can indeed improve the performance of our method, and the experimental results are
robust to hyperparameter .

Table 4: Hyperparameter sensitivity of A on the Navier-Stokes and Prometheus datasets with 50%
subsampling ratio. We report MSE for In-t and Ext-t settings.

A=0 A=0.1 A=0.2 A=0.5 A=1.0
NAVIER-STOKES (IN-T) 3.244E-03 3.017E-03 2.925E-03 2.832E-03 2.964E-03
NAVIER-STOKES (EXT-T) 6.635E-03 6.172E-03 5.873E-03 5.764E-03 5.828E-03
PROMETHEUS (IN-T) 3.623E-03 3.542E-03 3.495E-03 3.374E-03 3.545E-03
PROMETHEUS (EXT-T) 7.016E-03 6.823E-03 6.747E-03 6.678E-03 6.837E-03

G.3 Noise Disturbance Robustness.

To evaluate the robustness of our model, we present the effects of observational noise on its per-
formance and compare these results with those of other models. We quantify the noise using the
channel-specific standard deviation tailored to the dataset and have trained the model under various
noise intensities (noise ratios set at 1%, 5%, 10%, 15%, and 20%). Experiments are conducted on
and Navier-Stokes and Prometheus datasets. Observations from Figure 7 reveal that the proposed
CoPS effectively maintains its performance with noise ratio below 5%, and demonstrates significant
advantages over other baseline models when noise ratio increases over 10%. In contrast, we observe
a more pronounced performance degradation in the two interpolation-based baseline models as noise
ratio raises over 10%, which indicates their weaker robustness against noise interference.

Navier-Stokes Prometheus
0.007 0.012
MAgNet : MAgNet
DINo DINo
0.006 | —gm ContiPDE 0.010 ] = ContiPDE
—4— Ours ’ —4— Ours
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Figure 7: Performance with regard to noise disturbance.
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