Reset Method based on the Theory of Manifold Optimization on Real Manifolds

Anonymous authors Paper under double-blind review

ABSTRACT

In the fields of applied mathematics, statistics, and machine learning, particularly deep learning, manifold optimization assumes a prominent role. By leveraging the intrinsic geometric properties of manifolds, the endeavor to solve constrained optimization problems can be equivalently transformed into the pursuit of unconstrained optimization problems over manifold structures. However, manifold optimization is slow to converge and unstable. To address these issues, an innovative method is introduced, named Reset method that combines the other methods (SGD,Adam and AdamW), aiming to enhance both the improvement of precision and the reduction of convergence loss. Subsequently, our approaches have yielded notable outcomes in terms of the improvement of precision and enhanced stability of the model. The efficacy of our proposed methods is corroborated by the results of deep learning experiments, which provide compelling evidence in support of our initial hypothesis.

023 024 025

026

004

006

007 008 009

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Fast and stable optimization methods have long been pursued by numerous researchers across different generations. Stochastic gradient-based optimization methods, exemplified by stochastic gradient descent (SGD), have achieved notable success in various domains. However, their convergence rate remains relatively slow. In recent years, there has been a proliferation of innovative approaches aimed at accelerating optimization through the application of adaptive learning rates. Notably, Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter (2017) have gained widespread adoption due to their ability to facilitate rapid convergence.

034 Over the past few years, research into the manifold optimization has started to gain increasing attention. Several methods for manifold optimization have been proposed by leading scientists, such as trust domain method Absil et al. (2008), adaptively regularized Newton's method Wu et al. (2017) 037 , quasi-Newton-type method Huang et al. (2015), Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Huang et al. (2018) and Stochastic Variance Reduced Gradient (SVRG) method Zhang et al. (2016), and have established plenty of performance evaluation and analysis methods. In addition, some scholars have provided vast open source software packages, such as the Convex Optimization 040 Simulation System CVX, the First-order Conic Curve Solver Paradigm TFOCS software, etc. There 041 are numerous problems that are large in size themselves, but the data itself may fall on a low-042 dimensional manifold in a high-dimensional space, and thus can be transformed into an optimization 043 problem on the manifold. Manifold optimization has been the subject of considerable attention and 044 has been employed extensively in a number of fields, such as Douik & Hassibi (2022) and Hu et al. 045 (2020), including computational mathematics, applied mathematics, statistics and machine learning. 046 Of these, particular emphasis has been placed on the fields of deep learning. 047

- However, by leveraging the inherent geometric structure of the manifold, a significant constrained optimization problems, such as Ergen et al. (2022) and Ergen & Pilanci (2021), can be transformed into unconstrained optimization Hu et al. (2020) problems on the manifold itself. Extensive investigations have been conducted to explore the algebraic and topological structure, optimization conditions, and numerical analysis associated with manifold optimization Hu et al. (2020).
- 053 Building upon the existing theoretical foundation and analysing the advantages and disadvantages of the above optimization methods, this paper incorporates principles from machine learning, particularly

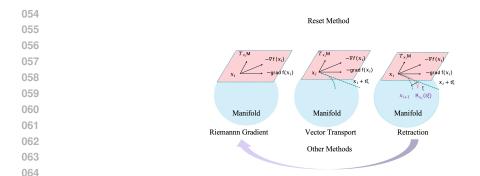


Figure 1: An illustrative diagram for Reset method based on the theory of manifold optimization on real manifolds. (1) Vector Transport in the section 4.1.2. In the Riemannian manifold, the gradient of different points is located on the tangent space of that point. To compare the Riemannian gradient at different points, for example, $gradf(x_i)$ and $gradf(x_{i+1})$, the solution is to transport one of them to the tangent space of the other one. (2) Contraction Operator in the section 4.1.3. With a negative gradient, the next step is how to go one step forward, assuming that $x_i \in M$, and the Riemannian gradient at that point: $gradf(x_i)$ is known in order to obtain $x_{i+1} \in M$, this process can be implemented by adopting the theory of linear self-isomorphisms in definition 6. (3) Reset method For more details, see eq. (5), where a novel method for updating the gradient is proposed.

deep learning, to propose novel optimization methods aimed at enhancing the stability of model
training. In simple terms, a manifold optimization algorithm perceives a constrained optimization
problem in Euclidean space as an unconstrained optimization problem Hu et al. (2020) on a manifold.
Similar to unconstrained optimization Hu et al. (2020) algorithms in Euclidean space, the algorithm
seeks an appropriate descent direction within the tangent space Hu et al. (2020) of the current iteration
point.

A restart technique is introduced by O'donoghue & Candes (2015), which can be interpreted to mean that different optimization methods are additive. Our main contribution is that the detailed analysis of the advantages and disadvantages of several existing manifold optimization methods is provided.
Based on that, Reset method is proposed to improve the convergence trajectory and model stability by utilizing other methods (SGD, Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter (2017)).

082 083

084

085

087

2 RELATED WORK

This section can be found in section A in the appendix

3 PRELIMINARY: MANIFOLD THEORY

This section can be found in section B in the appendix.

090 091 092

107

4 METHODOLOGY: RESET METHOD

While optimization methods in Euclidean space have been well-established, manifold optimization Hu et al. (2020) methods are different because not all the properties that hold in Euclidean space can be directly applied to Riemannian manifolds. Therefore, it becomes necessary to redefine some properties to suit the specific characteristics of the manifold.

In this section, motivated by the restart technique introduced by O'donoghue & Candes (2015) and a novel Reset method is proposed, i.e., the manifold optimization methods are ran for a few iterations and then reset it with other methods (SGD, Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter (2017)). Our methods in algorithm 1 are described, and the convergences of our methods are proved in theorem 4.1. In addition to its practicality, the advantage of our Reset method is that our methods can improve the convergence trajectory and increase the stability of the model.

- 104 4.1 PRELIMINARY ON MANIFOLD OPTIMIZATION
- 106 4.1.1 OBJECTIVE FUNCTION

The manifold optimization algorithm on the Riemannian manifold is to resolve the following problem:

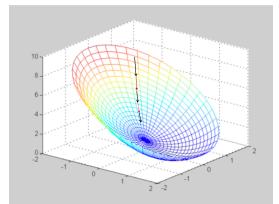


Figure 2: An illustrative diagram for Reset method based on the theory of manifold optimization on real manifolds. The black arrows represent the original gradients, and the red arrows represent the gradients of the Reset method, it is observed that the improvement in convergence is very powerful, and the purpose of our methods is to make the gradient approach the optimal point in the fastest way, so that the gradient update is more significant.

$$\min_{x \in \mathscr{M}} f(x)$$

 $f: \mathcal{M} \to \mathbb{R}$, the function is a smooth one. \mathcal{M} may be a smooth, possibly nonlinear space.

The manifold optimization is a well established optimization framework designed to solve optimization problems defined on certain nonlinear spaces. An example is presented to illustrate the theory of manifold optimization with the simplest nonlinear space:

130 131 132

133

134

142

156

 $\mathcal{M} = S^{n-1}, \, \mathcal{M} = \{ x \in \mathbb{R}^n : \|x\| = 1 \}$ (1)

To design optimization methods for manifolds, the gradient plays a crucial role. It is essential to define the gradient on the manifold, known as the Riemannian gradient, and ensure that it is constrained to the tangent space Hu et al. (2020) of the manifold. $\exists \operatorname{gradf}(x) \in T_x M$, it is expressed as the unique tangent vector Hu et al. (2020), which satisfies $\langle \operatorname{gradf}(x), \xi \rangle_x = df(x)[\xi], \forall \xi \in T_x M$.

The tangent space Hu et al. (2020) can be considered as a linear approximation of the manifold around a specific point. By considering a sufficiently small neighbourhood, the discrepancy between the tangent space Hu et al. (2020) and the manifold can be controlled.

143 4.1.2 VECTOR TRANSFER OPERATOR

In a Riemannian manifold, the gradients at different points are located within the tangent space Hu et al. (2020) of their respective points. To compare the Riemannian gradients at two different points, such as $\operatorname{grad} f(x_i)$ and $\operatorname{grad} f(x_{i+1})$, it is necessary to "translate" one of the gradients in to the tangent space Hu et al. (2020) of the other with Vector Transport Hu et al. (2020).

Definition 1 (Vector Transport Hu et al. (2020)). A vector transport Hu et al. (2020) is a smooth mapping on a manifold $\mathcal{M} : \mathcal{TM} \oplus \mathcal{TM} \to \mathcal{TM} : (\xi_x, \eta_x) \to \mathcal{T}_{\xi_x}(\eta_x) \in \mathcal{TM}$, which satisfies the following properties:

(i) There exists a retraction
$$\mathscr{R}$$
, which is linked with \mathscr{T} , such that $\mathscr{T}_{\eta_x}(\xi_x) \in \mathscr{T}_{\mathscr{R}_x(\xi_x)}M$.

(ii)
$$\mathscr{T}_{0_x}(\xi_x) = \xi_x, \forall \xi_x \in \mathscr{T}_z \mathscr{M}.$$

(iii) There exists a mapping: $\mathscr{T}_{\eta_x} : \mathscr{T}_z \mathscr{M} \to \mathscr{T}_{\mathscr{R}_x(\eta_x)} \mathscr{M} : \xi_x \to \mathscr{T}_{\eta_x}(\xi_x)$ is linear.

157 4.1.3 CONTRACTION OPERATOR

In order to progress from a given point $x_i \in \mathcal{M}$ on a Riemannian manifold, the known Riemannian gradient grad $f(x_i)$ at that point is employed, the following definitions are provided:

Definition 2. Contraction Operator Hu et al. (2020). \mathscr{M} is a smooth mapping, $\mathscr{R} : \mathscr{T} \mathscr{M} \to \mathscr{M}$ is a retractionHu et al. (2020) on the \mathscr{M} , let $\mathscr{R}_z : \mathscr{T}_z \mathscr{M} \to \mathscr{M}$ represent the restriction of \mathscr{R} to $\mathscr{T}_z \mathscr{M} :$

121

122

123

124 125 126

127

128

129

108

163	Table 1: Manifolds and Its Abbreviation		
164	Real Manifolds	Abbreviation	
	Euclidean Manifolds Phogat & Chang (2022)	e	
165	The Manifold of Fixed Rank MatricesVandereycken (2013)	fr	
166	Grassmann Manifold Gu et al. (2023)	g	
100	The Oblique Manifold Absil & Gallivan (2006)	0	
167	The Product Manifold Rovenski & Walczak (2023)	р	
107	Manifold of Positive Symmetric Definite Matrices Jayasumana et al. (2013)	psd	
168	Stiefel Manifold Chen et al. (2023)	s	
	The Special Orthogonal Group Mahony et al. (2008)	sog	
169	The Sphere Manifolds Trendafilov (2010)	sp	
	The Manifold of Strictly Positive Vectors	spv	
170	(i) $\mathscr{R}_z(0_z) = z, 0_z$ is the zero element of $\mathscr{T}_z \mathscr{M}$.		

180

181

195 196

199

201

203

205 206 207

208

209 210

211

162

(ii) $d\mathscr{R}_z(0_z) = id_{\mathscr{T}_z\mathscr{M}}, id_{\mathscr{T}_z\mathscr{M}}$ is the identity mapping on $\mathscr{T}_z\mathscr{M}$.

173 4.1.4 OTHER METHODS 174

175 **Stochastic Gradient Descent (SGD)** Stochastic Gradient Descent (SGD) is a commonly used type 176 of optimization algorithm, which is widely used for model training in machine learning and deep 177 learning. The core idea of SGD is to use only the gradient information of one sample in each iteration to update the model parameters, the parameters are updated for each iteration with the following 178 equation: 179

$$g_0 \leftarrow \frac{\partial J(\theta)}{\partial \theta}, \theta \leftarrow \theta - \eta g_0.$$
 (2)

182 $J(\theta)$ denotes the loss function, η denotes the learning rate, in general, $J(\theta)$ is not equal to f(x), f(x)183 is an objective function.

185 Adaptive Moment Estimation (Adam) Adaptive Moment Estimation (Adam) Kingma & Ba (2014) stands out as an efficient optimization algorithm. It aims to adjust the learning rate of each parameter. The Adam Kingma & Ba (2014) optimizer works by dynamically adjusting the step size, 187 which is larger in simpler regions and smaller in more complex regions, to ensure that the minimum 188 point, which represents the minimum loss in machine learning, is reached more efficiently and faster. 189

190 By adaptively adjusting the step size, the Adam Kingma & Ba (2014) optimizer is better able to adapt to gradient variations in different parameters and thus converge to the optimal solution faster. This 191 strategy of dynamically adjusting the learning rate makes Adam Kingma & Ba (2014) more robust 192 during training and overcomes the disadvantage of manually adjusting the learning rate in traditional 193 optimization algorithms, the parameters are updated for each iteration with the following equation: 194

$$v_t = \alpha v_{t-1} + (1 - \alpha) \frac{\partial J(\theta)}{\partial \theta}, \theta \leftarrow \theta - \eta v_t.$$
(3)

 $J(\theta)$ denotes the loss function, η denotes the learning rate, v_t refers to momentum, in general, $J(\theta)$ 197 is not equal to f(x), f(x) is an objective function.

Adam with Weight Decay Fix (AdamW) The AdamW Loshchilov & Hutter (2017) optimizer is a 200 variant of the Adam Kingma & Ba (2014) optimizer that combines weight decay (L2 regularization) with the Adam Kingma & Ba (2014) optimizer. The key to AdamW Loshchilov & Hutter (2017) is that 202 it treats weight decay separately from gradient updating, which helps to address the incompatibility of L2 regularization with adaptive learning rate algorithms(such as Adam Kingma & Ba (2014)), the 204 parameters are updated for each iteration with the following equation:

$$v_t = \alpha v_{t-1} + (1-\alpha) \frac{\partial J(\theta)}{\partial \theta}, \theta \leftarrow \theta - \eta v_t, \theta \leftarrow \theta - \lambda \eta v_t.$$
(4)

 $J(\theta)$ denotes the loss function, η denotes the learning rate, v_t refers to momentum, λ refers to the regularization parameter, in general, $J(\theta)$ is not equal to f(x), f(x) is an objective function.

4.2 PROPOSED METHODS

212 4.2.1**RESET METHOD ON THE REAL MANIFOLDS** 213

To enhance the stability of the optimizer, Reset method is proposed to cooperate optimization process. 214 The idea is to introduce a step size correction function, denoted as B_{x_i} , that operates on the step sizes 215 x_i and x_{i+1} , which is then used to compute x_{i+2} in the optimizer iteration.

The specific calculation steps of Reset method on the the real manifolds are given below:

$$\begin{cases} x_{i} = R_{x_{i-1}}(-\alpha_{i-1} \operatorname{gradf}(\mathbf{x}_{i-1})) \\ x_{i+1} = B_{x_{i}}(x_{i}) \\ x_{i+2} = R_{x_{i+1}}(-\alpha_{i+1} \operatorname{gradf}(\mathbf{x}_{i+1})) \end{cases}$$
(5)

 $J(\theta)$ denotes the loss function.

Regarding the selection of the function B_{x_i} , this paper selects the methods (SGD, Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter (2017)). Regarding the selection of the step size, the step size factor is a constant parameter to be determined in order to control the stability of the Reset method and the convergence speed of the Reset method.

In contrast to the linear search method commonly used in Euclidean space, the step size determination on a manifold involves conducting a curve search.

In optimization theory, there is a classical criterion for line search algorithms, namely the Armijo criterion. The definition of the Armijo criterion in two steps is given:

(i) Just set $\phi \in (0, 1), \psi \in (0, 0.5)$, the definition of the step size factor is given, and let the step size factor be defined as:

$$\psi_k = \phi^{\lambda_i}$$

(ii) λ_i is a non-negative integer and is the smallest one, d_i is the search direction vector and g_i is the gradient. λ_i satisfies the following inequality:

$$f(x_i + \phi^{\lambda_i} d_i) \le f(x_i) + \psi \phi^{\lambda_i} g_i^T d_i$$

Based upon the definitions above, the Armijo search is taken as an example, given $\alpha, \epsilon \in (0, 1)$, the smallest non-negative integer ϵ_0 is that:

$$f(R_{x_{i-1}}(-\alpha_{i-1}\operatorname{gradf}(\mathbf{x}_{i-1}))) \leq f(x_{i-1}) + \alpha(-\alpha_{i-1})\langle \operatorname{gradf}(\mathbf{x}_{i-1}), \operatorname{gradf}(\mathbf{x}_{i-1}) \rangle_{x_{i-1}}$$

$$f(B_{x_i}(x_i)) \leq f(x_i) + \alpha \langle \operatorname{gradf}(\mathbf{x}_i), x_i \rangle_{x_i}$$

$$f(R_{x_{i+1}}(-\alpha_{i+1}\operatorname{gradf}(\mathbf{x}_{i+1}))) \leq f(x_{i+1}) + \alpha(-\alpha_{i+1}) \langle \operatorname{gradf}(\mathbf{x}_{i+1}), \operatorname{gradf}(\mathbf{x}_{i+1}) \rangle_{x_{i+1}}$$

$$f(R_{x_{i-1}}(-\alpha_{i-1}\operatorname{gradf}(\mathbf{x}_{i-1}))) \leq C_{i-1} + \alpha(-\alpha_{i-1}) \langle \operatorname{gradf}(\mathbf{x}_{i-1}), \operatorname{gradf}(\mathbf{x}_{i-1}) \rangle_{x_{i-1}}$$

$$f(B_{x_i}(x_i)) \leq C_i + \alpha \langle \operatorname{gradf}(\mathbf{x}_i), x_i \rangle_{x_i}$$

$$f(R_{x_{i+1}}(-\alpha_{i+1}\operatorname{gradf}(\mathbf{x}_{i+1}))) \leq C_{i+1} + \alpha(-\alpha_{i+1}) \langle \operatorname{gradf}(\mathbf{x}_{i+1}), \operatorname{gradf}(\mathbf{x}_{i+1}) \rangle_{x_{i+1}}$$

$$(7)$$

where $-\alpha_{i-1} = \beta_i \epsilon^{\epsilon_0}$ and β_i is the initial step size. C_{i-1} is a convex combination of C_{i-1} and $f(x_{i-1})$ via $C_{i-1} = (\zeta R_{i-2}C_{i-2} + f(x_{i-1}))/R_{i-1}$, where $\zeta \in [0,1], C_0 = f(x_0), R_{i+1} = \zeta R_i + 1$ and $R_0 = 1$. The Barzilai-Borwein (BB) method is a gradient descent method, in order to avoid the computational complexity that comes from computing the second order derivatives, and with this, this method can speed up the convergence rate. The Barzilai-Borwein (BB) method may be generalized to Riemannian manifold as:

$$\zeta_{i_1} = \frac{\langle \omega_{i-1}, \omega_{i-1} \rangle_{x_i}}{|\langle \omega_{i-1}, v_{i-1} \rangle_{x_i}|}, \zeta_{i_2} = \frac{|\langle \omega_{i-1}, v_{i-1} \rangle_{x_i}|}{\langle \omega_{i-1}, v_{i-1} \rangle_{x_i}}$$
(8)

where

$$\omega_{i-1} = \alpha_{i-1} \mathscr{T}_{x_{i-1} \to x_i}(\operatorname{gradf}(\mathbf{x}_{i-1})), v_{i-1} = \operatorname{gradf}(\mathbf{x}_i) - \alpha_{i-1}^{-1} \omega_{i-1}.$$
(9)

4.2.2 THEOREMS OF RESET METHOD ON THE REAL MANIFOLDS

As for convergence, known from (Hu et al. (2020)) that the step size of manifold optimization is convergent, so whether or not the method converges after improving it, and whether there is a logically clear proof, theorem 4.1 returns to this question.

Theorem 4.1. Let x_i be the sequence generated by Reset method on the real manifolds using non-monotonic sequences, it is assumed that f is continuously differential on the real manifold \mathcal{M} and Euclidean space \mathscr{E} . In this context, every accumulation point x^* of the sequence x_i is considered a stationary point of the optimization problem, i.e., it holds $gradf(x^*) = 0$.

Input: $x_0 \in \mathcal{M}$.	Set $\zeta_{max} \in [1, +\infty), \zeta_{min} \in [0, 1], R_0 = 1, C_0 = f(x_0).$
while: $gradf(x_i)$	$\neq 0$ do
Compute ζ_i , acco	ording to eq. (7) and set
$\zeta_{i_1} = max(\zeta_{min},$	$min(\zeta_i, \zeta_{max}))$ or $\zeta_{i_2} = max(\zeta_{min}, min(\zeta_i, \zeta_{max})).$
Then, calculate <i>I</i>	R_i, C_i and seek a step size α_i contenting eq. (6).
Set $B_{x_i}(x_i) \leftarrow R$	$a_{x_{i-1}}(-\alpha_{i-1}\operatorname{gradf}(\mathbf{x}_{i-1})).$
Set $i - 1 \leftarrow i$.	
Set R_{r+1} $(-\alpha_{i+1})$	$\operatorname{gradf}(\mathbf{x}_{i+1})) \leftarrow B_{x_i}(x_i).$
Set $i \leftarrow i + 1$.	

283

The proof process can be found in section C.1.1 in the appendix.

It follows from the theorem 4.1 that this stabilization point exists and the Reset method may have
an error compared with the common optimization method, the Reset method improves convergence
since it can produce damped harmonic motion Yadav et al. (2018) that sinks into the saddle point.
From our knowledge of the dynamical system Yadav et al. (2018), it is understand that the damping
produced by the Reset method causes the orbit to converge to the saddle point and the error decays at
an exponential rate.

The above is from a mathematical point of view of the dynamical system Yadav et al. (2018) to explain that our methods make a more appropriate choice, but it may cause errors. So we need to calculate this error, and this error should be as small as possible, the smaller the error, the smaller the amount of loss(cost), which is the desired result. In fact, the error is very small, the theorem 4.2 explains this in detail.

Theorem 4.2. Let x_i be the sequence generated by Reset method on the real manifolds using a 295 non-monotonic sequence. It is assumed that the objective function f is continuously differentiable on 296 the real manifold \mathcal{M} . Every accumulation point x^* of the sequence x_i is considered a stationary point 297 of the optimization problem. Let x^{\bigstar} , x^{\heartsuit} and x^{\diamond} be a point obtained after backward propagation of the 298 gradient using other methods (SGD, Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter 299 (2017)) respectively. Furthermore, it is assumed that there exists a stochastic gradient which satisfies 300 $\mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{*})\|^{2}] \leq \epsilon_{0}^{2}, \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})\|^{2}] \leq \epsilon_{1}^{2}, \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{\heartsuit})\|^{2}] \leq \epsilon_{2}^{2}, \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{\diamondsuit})\|^{2}] \leq \epsilon_{3}^{2}, \text{the}$ 301 error bound is that: 302

 $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\bigstar})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \leq \frac{1}{2} \left(\frac{4i^{2}}{(i+1)^{2}}\epsilon_{1}^{2} + \epsilon_{0}^{2}\right),$ $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\heartsuit})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \leq \frac{1}{2} \left(\frac{4i^{2}}{(i+1)^{2}}\epsilon_{2}^{2} + \epsilon_{0}^{2}\right),$ $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\diamond})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \leq \frac{1}{2} \left(\frac{4i^{2}}{(i+1)^{2}}\epsilon_{3}^{2} + \epsilon_{0}^{2}\right).$ (10)

311

312 313

315

316 317

318

303

305

306

The process of prove can be found in section C.1.1 in the Appendix.

5 DEEP LEARNING EXPERIMENTS

314 5.1 DATASETS

Please review this section in section D.1 of the Appendix.

5.2 DEEP LEARNING EXPERIMENTS

5.2.1 STABLE GENERATIVE ADVERSARIAL NETWORK (STABLEGAN) FOR IMAGE
 GENERATION

The CIFAR-100 Krizhevsky et al. (2009) dataset, the STL-10 dataset, the SVHN (Street View House
 Numbers) dataset and the CIFAR-10 Krizhevsky et al. (2009) dataset are picked up as a measure of
 image generation performance. For our methods, it is evaluated at the Stable Generative Adversarial

Table 2: Image Generation of the Deep Convolutional Generative Adversarial Network (DCGAN) Yadav et al. (2017) on CIFAR-10 Krizhevsky et al. (2009) dataset

326	(2017) on CIFAR-10 Krizhevs	ky et al. (2009) dataset		
327		Methods	Average Precision(AP)	
		Adam Kingma & Ba (2014)	98.61	
328		Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours)	99.30 99.31	
329		Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours)	99.42 99.46	
330		Adam Kingma & Ba (2014) + p(Ours)	99.69	
331		Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + s (Ours)	99.58 99.61	
		Adam Kingma & Ba (2014) + sog (Ours)	99.65	
332		Adam Kingma & Ba (2014) + sp (Ours) Adam Kingma & Ba (2014) + spv(Ours)	99.68 99.72	
333		AdamW Loshchilov & Hutter (2017)	98.49	
334		AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + fr (Ours)	99.52 99.61	
335		AdamW Loshchilov & Hutter (2017) + g (Ours)	99.75	
		AdamW Loshchilov & Hutter (2017) + o (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours)	99.63 99.75	
336		AdamW Loshchilov & Hutter (2017) + psd (Ours)	99.62	
337		AdamW Loshchilov & Hutter (2017) + s (Ours) AdamW Loshchilov & Hutter (2017) + sog (Ours)	99.75 99.64	
338		AdamW Loshchilov & Hutter (2017) + sp(Ours) AdamW Loshchilov & Hutter (2017) + spv(Ours)	99.76 99.78	
339		SGD	98.20	
		SGD + e (Ours)	98.62	
340		SGD + fr (Ours) SGD + g (Ours)	98.56 98.63	
341		SGD + o (Ours)	98.59	
342		SGD + p (Ours) SGD + psd (Ours)	98.74 98.68	
343		SGD + s (Ours) SGD + sog (Ours)	98.72 98.74	
		SGD + sp (Ours)	98.75	
344		SGD + spv (Ours)	98.70	
345	Table 3. Image Generation of	the Deen Convolutional Generat	ive Adversarial N	
040				etwork (DCGAN) Yadav et al.
346	(2017) on CIFAR-100 Krizhev		ive Auversariai iv	etwork (DCGAN) Yadav et al.
			Average Precision(AP)	etwork (DCGAN) Yadav et al.
346 347		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014)	Average Precision(AP) 98.59	etwork (DCGAN) Yadav et al.
346 347 348		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours)	Average Precision(AP) 98.59 99.82 99.31	etwork (DCGAN) Yadav et al.
346 347		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fg(Ours) Adam Kingma & Ba (2014) + fg(Ours)	Average Precision(AP) 98.59 99.82 99.31 99.42	etwork (DCGAN) Yadav et al.
346 347 348		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + p(Ours)	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51	etwork (DCGAN) Yadav et al.
346 347 348 349		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fg(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours)	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46	etwork (DCGAN) Yadav et al.
346 347 348 349 350 351		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + tr(Ours) Adam Kingma & Ba (2014) + tr(Ours) Adam Kingma & Ba (2014) + tr(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + ts (Ours) Adam Kingma & Ba (2014) + s (Ours) Adam Kingma & Ba (2014) + s (Ours) Adam Kingma & Ba (2014) + s (Ours)	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61 99.65	etwork (DCGAN) Yadav et al.
346 347 348 349 350 351 352		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + s (Ours)	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61	etwork (DCGAN) Yadav et al.
346 347 348 349 350 351 352 353		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sod(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kingma &	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61 99.68 99.72 98.61	etwork (DCGAN) Yadav et al.
346 347 348 349 350 351 352		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + f(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Kingma & Ba (2014) + sy (Our	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61 99.65 99.68 99.72	etwork (DCGAN) Yadav et al.
346 347 348 349 350 351 352 353		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + te(Ours) Adam W Loshchilov & Hutter (2017) + te(Ours) Adam W Lo	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.68 99.61 99.68 99.72 98.61 99.56 99.61 99.56	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355		$ sky et al. (2009) dataset \\ \hline Methods \\ \hline Adam Kingma & Ba (2014) + e(Ours) \\ Adam Kingma & Ba (2014) + tr(Ours) \\ Adam Kingma & Ba (2014) + tr(Ours) \\ Adam Kingma & Ba (2014) + g(Ours) \\ Adam Kingma & Ba (2014) + p(Ours) \\ Adam Kingma & Ba (2014) + p(Ours) \\ Adam Kingma & Ba (2014) + p(Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + e (Ours) \\ Adam W Loshchilov & Hutter (2017) + g (Ours) \\ Adam W Loshchilov & Huter (2017) + g (Ours) $	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61 99.65 99.68 99.72 98.61 99.56 99.56 99.56 99.56 99.86 99.75	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356		$\frac{sky \ et \ al.}{2009} \ dataset \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.65 99.65 99.68 99.72 98.61 99.56 99.73 98.61 99.56 99.61 99.75 99.86 99.95 99.85	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + so(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + c (Ours) Adam W Loshchilov & Hutter (2017) + c (Ours) Adam W Loshchilov & Hutter (2017) + s (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) Adam W Loshchilov & Hutter (2017	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.65 99.65 99.68 99.72 98.61 99.56 99.61 99.56 99.61 99.56 99.61 99.55 99.86 99.55 99.86 99.85 99.85 99.86 99.44	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356		$ sky et al. (2009) dataset \\ \hline Methods \\ \hline Adam Kingma & Ba (2014) \\ Adam Kingma & Ba (2014) + e(Ours) \\ Adam Kingma & Ba (2014) + f(Ours) \\ Adam Kingma & Ba (2014) + f(Ours) \\ Adam Kingma & Ba (2014) + g(Ours) \\ Adam Kingma & Ba (2014) + g(Ours) \\ Adam Kingma & Ba (2014) + p(Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + e (Ours) \\ Adam W Loshchilov & Hutter (2017) + e (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + so (Ours) \\ Adam W Loshc$	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.65 99.68 99.72 98.61 99.72 98.61 99.56 99.69 99.72 99.86 99.55 99.38 99.38	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + so(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + c (Ours) Adam W Loshchilov & Hutter (2017) + c (Ours) Adam W Loshchilov & Hutter (2017) + s (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) Adam W Loshchilov & Hutter (2017	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.65 99.65 99.68 99.72 98.61 99.56 99.61 99.56 99.61 99.56 99.61 99.55 99.86 99.55 99.86 99.85 99.85 99.86 99.44	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357 358 359		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + ft(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + so (Ours) AdamW Loshchilov	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61 99.65 99.68 99.72 98.61 99.72 98.61 99.72 99.75 99.86 99.95 99.38 99.32	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357 358 359 360		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + ff(Ours) Adam Kingma & Ba (2014) + f(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + o (Ours) Adam W Loshchilov & Hutter (2017) + o (Ours) Adam W Loshchilov & Hutter (2017) + o (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) Adam W Loshchilov & Huter (2017) + so	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.65 99.68 99.72 98.61 99.68 99.72 98.61 99.75 99.68 99.72 98.61 99.75 99.86 99.75 99.86 99.75 99.86 99.75 99.86 99.75 99.86 99.75 99.86 99.75 99.86 99.75 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.86 99.95 99.38 99.32 99.36 99.32 99.33 99.36 99.32 99.33 99.34 99.33 99.34 99.34 99.35 99.35 99.35 99.36 99.36 99.36 99.36 99.37 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.37 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.37 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.36 99.37 99.36 99.36 99.37 99.36 99.37 99.36 99.37 99.36 99.37 99.36 99.37 99.36 99.37 99.36 99.37 99.36 99.37 99.36 99.37 99.36 99.37 99.37 99.36 99.37 99.37 99.36 99.37 99.37 99.36 99.37 99.37 99.36	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357 358 359 360 361		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + s0(Ours) Adam W Loshchilov & Hutter (2017) + c (Ours) Adam W Loshchilov & Hutter (2017) + c (Ours) Adam W Loshchilov & Hutter (2017) + f (Ours) Adam W Loshchilov & Hutter (2017) + s0(Ours) Adam W Loshchilov & Hutter (2017) + s0(Ours) SGD + c0(Ours) SGD + fr (Ours) SGD + g (Ours) SGD + g (Ours)	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61 99.65 99.65 99.72 98.61 99.75 99.86 99.72 98.61 99.55 99.75 99.86 99.75 99.86 99.75 99.38 99.925 99.38 99.44 99.56 99.79 98.24 99.36	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357 358 359 360		$ sky et al. (2009) dataset \\ \hline Methods \\ \hline Adam Kingma & Ba (2014) + e(Ours) \\ Adam Kingma & Ba (2014) + fr(Ours) \\ Adam Kingma & Ba (2014) + fr(Ours) \\ Adam Kingma & Ba (2014) + f(Ours) \\ Adam Kingma & Ba (2014) + g(Ours) \\ Adam Kingma & Ba (2014) + g(Ours) \\ Adam Kingma & Ba (2014) + p(Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam Kingma & Ba (2014) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + c (Ours) \\ Adam W Loshchilov & Hutter (2017) + c (Ours) \\ Adam W Loshchilov & Hutter (2017) + g (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ Adam W Loshchilov & Hutter (2017) + sog (Ours) \\ SGD + c (Ours) \\ SGD + g (Ours) \\ SGD + p (O$	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.51 99.58 99.61 99.65 99.68 99.72 98.61 99.72 98.61 99.56 99.74 99.55 99.95 99.95 99.95 99.38 99.44 99.56 99.79 98.24 99.32 99.36 99.43 99.43 99.43 99.58	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357 358 359 360 361		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + f(Ours) Adam Kingma & Ba (2014) + f(Ours) Adam Kingma & Ba (2014) + f(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sg(Ours) Adam Kingma & Ba (2014) + sg(Ours) Adam Kingma & Ba (2014) + sg (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + o (Ours) AdamW Loshchilov & Hutter (2017) + sg (Ours) SGD SGD + g (Ours) SGD + g (Our	Average Precision(AP) 98.59 99.82 99.31 99.42 99.46 99.65 99.68 99.68 99.72 98.61 99.68 99.72 98.61 99.75 99.86 99.95 99.86 99.95 99.38 99.44 99.56 99.79 98.29 99.38 99.44 99.56 99.79 98.59 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.36 99.79 99.36 99.32 99.36 99.32 99.36 99.33 99.43 99.43 99.43 99.58 99.58 99.68	etwork (DCGAN) Yadav et al.
346 347 348 350 351 352 353 354 355 356 357 358 359 360 361 362		sky et al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + so(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) SGD + e (Ours) SGD + g (Ours) SGD + g (Ours) SGD + p (Ours)	Average Precision(AP) 98.59 99.82 99.31 99.42 99.31 99.43 99.51 99.55 99.65 99.65 99.65 99.65 99.65 99.65 99.56 99.56 99.55 99.86 99.95 99.25 99.38 99.44 99.56 99.79 99.79 99.79 99.79 99.79 99.73 99.43 99.43 99.43 99.43 99.43 99.43 99.53 99.53 99.53 99.53 99.53	etwork (DCGAN) Yadav et al.

Network (StableGAN) Yadav et al. (2018) with an initial learning rate of 0.002, and the StableGAN
Yadav et al. (2018) is trained with 10,000 iterations on 4V100 GPUs at a scale of 64 batches. Through
experiments, the results confirm our intuition and validated the effectiveness and stability of our
methods. The average precision performance is summarized in table 4,table 5,table 6 and table 7, our
methods show a higher average precision than the competitors.

370 371

372

324

5.2.2 DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORK (DCGAN) FOR IMAGE GENERATION

The CIFAR-10 Krizhevsky et al. (2009) dataset, the STL-10 dataset, the SVHN (Street View House
Numbers) dataset and the CIFAR-100 Krizhevsky et al. (2009) dataset are selected as a measure of
domain adaptation performance. Our methods are evaluated on the Deep Convolutional Generative
Adversarial Network (DCGAN) Yadav et al. (2017) backbone with an initial learning rate of 0.0002,
and the model is trained with 5,000 iterations on 4 V100 GPUs at a scale of 32 batches and the
learning rate warmup He et al. (2019) is employed.

Table 4: Image Generation of the Stable Generative Adversarial Network (StableGAN) Yadav et al. (2018) on CIFAR-10 Krizhevsky et al. (2009) dataset

IFAR-10 Krizhevsky et a	Methods	Average Precision(AP)
	Adam Kingma & Ba (2014)	98.59
	Adam Kingma & Ba (2014) + e(Ours)	99.30
	Adam Kingma & Ba (2014) + fr(Ours)	99.31
	Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours)	99.42 99.46
	Adam Kingma & Ba (2014) + p(Ours)	99.69
	Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + s (Ours)	99.58 99.61
	Adam Kingma & Ba $(2014) + sog (Ours)$	99.65
	Adam Kingma & Ba (2014) + sp (Ours)	99.68
	Adam Kingma & Ba (2014) + spv(Ours)	99.70
	AdamW Loshchilov & Hutter (2017) AdamW Loshchilov & Hutter (2017) + e (Ours)	98.52 99.52
	AdamW Loshchilov & Hutter $(2017) + fr (Ours)$	99.61
	AdamW Loshchilov & Hutter (2017) + g (Ours)	99.75
	AdamW Loshchilov & Hutter (2017) + o (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours)	99.63 99.75
	AdamW Loshchilov & Hutter $(2017) + p(Outs)$ AdamW Loshchilov & Hutter $(2017) + psd (Ours)$	99.62
	AdamW Loshchilov & Hutter (2017) + s (Ours)	99.75
	AdamW Loshchilov & Hutter (2017) + sog (Ours)	99.64 00.76
	AdamW Loshchilov & Hutter (2017) + sp(Ours) AdamW Loshchilov & Hutter (2017) + spv(Ours)	99.76 99.78
	SGD	98.31
	SGD + e (Ours)	98.62
	SGD + fr (Ours)	98.56
	SGD + g (Ours) SGD + o (Ours)	98.63 98.59
	SGD + p (Ours)	98.64
	SGD + psd (Ours)	98.68
	SGD + s (Ours) SGD + sog (Ours)	98.62 98.64
	SGD + sog (Ours) SGD + sp (Ours)	98.65
	SGD + spv (Ours)	98.68
le 5: Image Generatio		Network (Stable
	on of the Stable Generative Adversarial	Network (Stable Average Precision(AP)
	on of the Stable Generative Adversarial al. (2009) dataset	
	n of the Stable Generative Adversarial al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours)	Average Precision(AP) 98.71 99.81
	n of the Stable Generative Adversarial al. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours)	Average Precision(AP) 98.71 99.81 99.79
	n of the Stable Generative Adversarial al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + o(Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78
	n of the Stable Generative Adversarial cal. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + e(Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.81
	n of the Stable Generative Adversarial cal. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + pod(Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.81 99.76
	n of the Stable Generative Adversarial cal. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + sd(Ours) Adam Kingma & Ba (2014) + sd(Ours) Adam Kingma & Ba (2014) + sog (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.81 99.76 99.76 99.77
	n of the Stable Generative Adversarial cal. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + s (Ours) Adam Kingma & Ba (2014) + s (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.76 99.76 99.78 99.77 99.79
le 5: Image Generatic AR-100 Krizhevsky et	n of the Stable Generative Adversarial cal. (2009) dataset Methods Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + ps0(Ours) Adam Kingma & Ba (2014) + s0(Ours) Adam Kingma & Ba (2014) + s0(Ours) Adam Kingma & Ba (2014) + s0 (Ours) Adam Kingma & Ba (2014) + sp (Ours) Adam Kingma & Ba (2014) + sp (Ours) Adam Kingma & Ba (2014) + sp (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.76 99.76 99.76 99.77 99.79 99.79
	n of the Stable Generative Adversarial cal. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + s (Ours) Adam Kingma & Ba (2014) + s (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.76 99.76 99.78 99.77 99.79
	n of the Stable Generative Adversarial al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Kuoshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.76 99.76 99.76 99.76 99.77 99.79 99.79 99.82 98.51 99.81
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.81 99.76 99.77 99.79 99.82 98.51 99.81 99.82 99.81 99.85
	n of the Stable Generative Adversarial al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Kuoshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.76 99.76 99.76 99.76 99.77 99.79 99.79 99.82 98.51 99.81
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.81 99.76 99.77 99.77 99.77 99.79 99.82 98.51 99.82 99.81 99.83 99.83 99.83 99.83
	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sof(Ours) Adam Kingma & Ba (2014) + sof(Ours) Adam Kingma & Ba (2014) + sof (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + o (Ours) AdamW Loshchilov & Hutter (2017) + o (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.78 99.77 99.79 99.82 98.51 99.82 99.81 99.82 99.81 99.82 99.83 99.83 99.83 99.83 99.83 99.83 99.83 99.83
	n of the Stable Generative Adversarial al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + g (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + s (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.76 99.76 99.76 99.77 99.79 99.82 98.51 99.81 99.82 99.81 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.81 99.83 99.83 99.81 99.83 99.81 99.83 99.83 99.81 99.83 99.81 99.83 99.83 99.81 99.83 99.83 99.83 99.83 99.81 99.83 99.81 99.83 99.83 99.81 99.83 99.83 99.83 99.83 99.81 99.83 99.83 99.83 99.83 99.81 99.83 99.84 99.84 99.84 99.84 99.84 99.83 99.84 99.84 99.84 99.84 99.84 99.83 99.84 99.84 99.84 99.83 99.84 90.84
	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + o (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.78 99.77 99.79 99.82 98.51 99.82 99.81 99.82 99.81 99.82 99.83 99.83 99.83 99.83 99.83 99.83 99.83 99.83
	n of the Stable Generative Adversarial al. (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kushchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + p(Ours) AdamW Loshchilov & Hutter (2017) + p(Ours) AdamW Loshchilov & Hutter (2017) + p(Ours) AdamW Loshchilov & Hutter (2017) + sog (Ours) AdamW Los	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.76 99.78 99.77 99.79 99.79 99.79 99.81 99.76 99.78 99.78 99.81 99.82 99.81 99.83 99.83 99.83 99.83 99.84 99.86 99.86
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + so(Ours) Adam Kongma & Ba (2014) + so(Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + p(Ours) AdamW Loshchilov & Hutter (2017) + p(Ours) AdamW Loshchilov & Hutter (2017) + so(Ours) AdamW Loshchilov & Hutter (2017) + so (Ours) AdamW Loshchilov & Hutter (2017) + so (Ours) AdamW Loshchilov & Hutter (2017) + so(Ours) AdamW Loshchilo	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.81 99.77 99.79 99.79 99.79 99.82 99.82 99.81 99.85 99.83 99.85 99.83 99.85 99.83 99.85 99.84 99.85 99.85 99.83 99.85 99.83 99.85 99.83 99.85 99.83 99.85 99.83 99.85 99.83 99.85 99.85 99.83 99.85 99.85 99.83 99.85 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.72
	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sog(Ours) Adam Kingma & Ba (2014) + sog(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours) Adam W Loshchilov & Hutter (2017) + sog (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.78 99.77 99.78 99.77 99.79 99.82 99.81 99.82 99.82 99.83 99.83 99.83 99.83 99.83 99.83 99.84 99.85 99.84 99.85 99.84 99.85 99.84 99.85 99.84 99.85 99.84 99.85 99.84 99.85 99.76
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + g (Ours) Adam W Loshchilov & Hutter (2017) + sog (Ours) Adam W Loshchilov & Hutter (2017) + sop (Ours) SGD + e (Ours) SGD + o (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.77 99.77 99.77 99.79 99.82 99.81 99.82 99.81 99.85 99.83 99.83 99.84 99.85 99.85 99.83 99.84 99.85 99.84 99.85 99.84 99.85 99.85 99.83 99.85 99.83 99.85 99.84 99.85 99.84 99.85 99.85 99.85 99.85 99.81 99.85 99.86 99.72 99.69
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + p(Ours) Adam W Loshchilov & Hutter (2017) + p(Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) SGD + f (Ours) SGD + f (Ours) SGD + p (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.76 99.78 99.77 99.79 99.82 99.81 99.82 99.82 99.83 99.83 99.83 99.83 99.83 99.83 99.84 99.85 99.84 99.85 99.83 99.83 99.83 99.84 99.85 99.73
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + sog (Ours) SGD + e (Ours) SGD + g (Ours) SGD + g (Ours) SGD + p d(Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.76 99.78 99.77 99.79 99.79 99.81 99.79 99.82 99.81 99.82 99.81 99.82 99.81 99.85 99.83 99.83 99.84 99.85 99.85 99.85 99.83 99.84 99.86 99.86 99.86 99.86 99.72 99.73 99.73 99.72
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + p(Ours) Adam W Loshchilov & Hutter (2017) + p(Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) SGD + f (Ours) SGD + f (Ours) SGD + p (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.78 99.76 99.78 99.77 99.79 99.82 99.81 99.82 99.82 99.83 99.83 99.83 99.83 99.83 99.83 99.84 99.85 99.84 99.85 99.83 99.83 99.83 99.84 99.85 99.73
	on of the Stable Generative Adversarial (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + g (Ours) AdamW Loshchilov & Hutter (2017) + g (Ours) AdamW Loshchilov & Hutter (2017) + sog (Ours) AdamW Loshchilov & Hutter (2017) + sop (Ours) SGD + sog (Ours) SGD + sog (Ours) SGD + sog (Ours) SGD + sog (Ours)	Average Precision(AP) 98.71 99.81 99.80 99.78 99.80 99.78 99.77 99.79 99.79 99.82 99.82 99.81 99.82 99.81 99.85 99.83 99.83 99.84 99.85 99.84 99.85 99.84 99.85 99.84 99.85 99.84 99.85 99.72 99.72 99.73 99.72 99.73 99.72 99.73
	on of the Stable Generative Adversarial (2009) dataset Methods Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + s(Ours) Adam Kuspma & Ba (2014) + s(Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + p(Ours) Adam W Loshchilov & Hutter (2017) + p(Ours) Adam W Loshchilov & Hutter (2017) + sog (Ours) Adam W Loshchilov & Hutter (2017) + sog (Ours) SGD + e (Ours) SGD + g (Ours) SGD + g (Ours) SGD + sog (Ours) SGD + sog (Ours)	Average Precision(AP) 98.71 99.81 99.79 99.80 99.78 99.76 99.76 99.78 99.77 99.79 99.81 99.76 99.79 99.82 99.81 99.82 99.83 99.83 99.83 99.83 99.83 99.83 99.83 99.83 99.83 99.84 99.85 99.78 99.78 99.78 99.78 99.78 99.73 99.73 99.75

425 426 427

428

429

precision than the competitors.

378

5.2.3 CLUSTER CONTRAST FOR UNSUPERVISED PERSON RE-IDENTIFICATION

The DukeMTMC-reID Zheng et al. (2017) dataset and Market1501 Zheng et al. (2015) dataset are
 selected as a measure of unsupervised learning tasks for object re-ID and person re-ID. Our methods are evaluated on the improved ResNet50 called Cluster Contrast Dai et al. (2022) backbone with an

table 11, from the table, it is known that our methods are more stable and shows a higher average

Δ.	-2	-9		
-	v	~		

Table 6: Image Generation of the Stable Generative Adversarial Network (StableGAN) Yadav et al. (2018) on 433

434	STL-10 dataset			
	-	Methods	Average Precision(AP)	
435		Adam Kingma & Ba (2014)	98.59	
436		Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours)	99.56 99.58	
437		Adam Kingma & Ba (2014) + g(Ours)	99.59	
438		Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + p(Ours)	99.61 99.59	
439		Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + s (Ours)	99.62 99.58	
440		Adam Kingma & Ba (2014) + sog (Ours)	99.62	
441		Adam Kingma & Ba (2014) + sp (Ours) Adam Kingma & Ba (2014) + spv(Ours)	99.65 99.71	
	-	AdamW Loshchilov & Hutter (2017)	98.52	
442		AdamW Loshchilov & Hutter (2017) + e (Ours)	99.56	
443		AdamW Loshchilov & Hutter (2017) + fr (Ours) AdamW Loshchilov & Hutter (2017) + g (Ours)	99.61 99.75	
444		AdamW Loshchilov & Hutter (2017) + o (Ours)	99.65	
445		AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + psd (Ours)	99.75 99.72	
446		AdamW Loshchilov & Hutter (2017) + s (Ours)	99.68	
		AdamW Loshchilov & Hutter (2017) + sog (Ours) AdamW Loshchilov & Hutter (2017) + sp(Ours)	99.74 99.76	
447	-	AdamW Loshchilov & Hutter (2017) + spv(Ours)	99.78	
448		SGD SGD + e (Ours)	98.28 99.62	
449		SGD + fr (Ours)	99.66	
450		SGD + g (Ours) SGD + o (Ours)	99.63 99.69	
451		SGD + p (Ours)	99.63	
452		SGD + psd (Ours) SGD + s (Ours)	99.68 99.63	
		SGD + sog (Ours)	99.68	
453		SGD + sp (Ours) SGD + spv (Ours)	99.62 98.69	
454	Table 7. Image Generation	of the Stable Generative Adversaria	l Network (StableG	AN) Yaday
155	Tuble 7. Inage Generation	of the Stuble Generative Adversaria	i i tet work (blubied	
455	SVHN dataset			
455 456	SVHN dataset	Methods	Average Precision(AP)	,
	SVHN dataset	Adam Kingma & Ba (2014)	98.63	
456 457	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours)	98.63 99.80	
456 457 458	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours)	98.63 99.80 99.81 99.82	
456 457 458 459	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours)	98.63 99.80 99.81 99.82 99.76	
456 457 458	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + po(Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78	
456 457 458 459	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + ps(Ours) Adam Kingma & Ba (2014) + s (Ours)	98.63 99.80 99.81 99.82 99.76 99.81	
456 457 458 459 460	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Kingma & Ba (2014) + so (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.81 99.77 99.78	
456 457 458 459 460 461	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kingma & Ba (2014) + sop (Ours) Adam Kingma & Ba (2014) + spv(Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.81 99.78 99.81 99.78 99.81	
456 457 458 459 460 461 462 463	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + ps(Ours) Adam Kingma & Ba (2014) + ps(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.77 99.78 99.83 99.84 99.77 99.78 99.82	
456 457 458 459 460 461 462 463 464	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kingma & Ba (2014) + sop (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + fr (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.81 99.78 99.82 98.51 99.86 99.81	
456 457 458 459 460 461 462 463 464 465	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + ps(Ours) Adam Kingma & Ba (2014) + ps(Ours) Adam Kingma & Ba (2014) + sp (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.78 99.78 99.78 99.78 99.78 99.81 99.77 99.78 99.82 99.82 99.82 99.85 99.85 99.85	
456 457 458 459 460 461 462 463 464	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + f (Ours) Adam W Loshchilov & Hutter (2017) + g (Ours) Adam W Loshchilov & Hutter (2017) + g (Ours) Adam W Loshchilov & Hutter (2017) + g (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.78 99.81 99.78 99.82 98.51 99.86 99.81 99.81 99.85 99.85	
456 457 458 459 460 461 462 463 464 465	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + po(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Kongma & Ba (2014) + so (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + s (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.78 99.78 99.78 99.78 99.78 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.85	
456 457 458 459 460 461 462 463 464 465 466	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.77 99.78 99.82 99.86 99.81 99.86 99.81 99.85 99.85 99.85 99.85 99.85	
456 457 458 459 460 461 462 463 464 465 466 467	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + sog (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.81 99.78 99.85 99.82 99.86 99.85	
456 457 458 459 460 461 462 463 464 465 466 466 467 468 469	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + s0 (Ours) Adam Kohchilov & Hutter (2017) + 6 (Ours) Adam Loshchilov & Hutter (2017) + e (Ours) Adam Loshchilov & Hutter (2017) + s0 (Ours) Adam Loshchilov & Huter (2017) + s0 (Ours) Adam Loshchilov & Huter (2017) + s0 (Ours) Adam Loshchil	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.78 99.78 99.78 99.78 99.78 99.78 99.82 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.88 99.88 99.88 99.88 99.88	
456 457 458 459 460 461 462 463 464 465 466 465 466 467 468 469 470	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + so (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) AdamW Loshchilov & Hutter (2017) + so (Ours) AdamW Loshchilov & Huter (2017) + so (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.81 99.78 99.85 99.86 99.85 99.86 99.85 99.86 99.85 99.86 99.85 99.86 99.85 99.86 99.82 99.88 99.84 99.86 99.88	
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kohchilov & Hutter (2017) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + sog (Ours) SGD SGD + e (Ours) SGD + t (Ours) SGD + g (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.78 99.78 99.78 99.78 99.82 98.51 99.86 99.81 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.88 99.88 99.88 99.88 99.88 99.88	
456 457 458 459 460 461 462 463 464 465 466 465 466 467 468 469 470	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sp (Ours) Adam Koshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours) Adam W Loshchilov & Hutter (2017) + p (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) SGD + e (Ours) SGD + e (Ours) SGD + g (Ours) SGD + g (Ours) SGD + g (Ours) SGD + p (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.78 99.78 99.78 99.78 99.78 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.86 99.85 99.86 99.85 99.86 99.88 99.88 99.88 99.88 99.88	
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + so(Ours) Adam Kingma & Ba (2014) + so(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kohchilov & Hutter (2017) Adam W Loshchilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + so (Ours) SGD SGD + e (Ours) SGD + g (Ours) SGD + g (Ours) SGD + p (Ours) SGD + p (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.81 99.78 99.78 99.78 99.78 99.78 99.82 98.51 99.86 99.81 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.89 99.70 99.73 99.73 99.73 99.73 99.73 99.76	
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + sp (Ours) Adam Kohenidou & Hutter (2017) + e (Ours) Adam Loshchilov & Hutter (2017) + p (Ours) Adam Loshchilov & Hutter (2017) + so (Ours) SGD + so (Ours) SGD + g (Ours) SGD + g (Ours) SGD + pod (Ours) SGD + pod (Ours) SGD + so (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.78 99.78 99.78 99.78 99.78 99.78 99.85 99.85 99.85 99.85 99.86 99.85 99.85 99.85 99.85 99.85 99.86 99.85 99.72 99.73 99.72 99.72 99.78	
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473	SVHN dataset	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + pol(Ours) Adam Kingma & Ba (2014) + pol(Ours) Adam Kingma & Ba (2014) + sog (Ours) Adam Kohilov & Hutter (2017) + e (Ours) Adam W Loshchilov & Hutter (2017) + sog (Ours) SGD + sog (Ours) SGD + g (Ours) SGD + g (Ours) SGD + p (Ours) SGD + sog (Ours)	98.63 99.80 99.81 99.82 99.76 99.81 99.82 99.81 99.83 99.78 99.85 99.86 99.86 99.86 99.85 99.86 99.85 99.86 99.85 99.86 99.86 99.86 99.88 99.84 99.86 99.86 99.84 99.86 99.72 99.73 99.73 99.79 99.73 99.79 99.72	

et al. (2018) on

476 initial learning rate of 0.001, and the model is trained with 400 iterations on 4 V100 GPUs at a scale of 256 batches and the learning rate warmup He et al. (2019) is employed. 477

478 Through experiments, the results confirm our intuition and validated the effectiveness and stability 479 of our methods. The average precision performance is summarized in table 8 and table 9, from the 480 table, it is known that our methods are more stable and shows a higher average precision than the 481 competitors. 482

6 CONCLUSION

- 483 484
- In this paper, the Reset method is introduced that combines other methods (SGD,Adam Kingma & Ba 485 (2014) and AdamW Loshchilov & Hutter (2017)) to address the challenges of convergence loss and

487	Table 8: Cluster Contrast Dai et al. (2022) for Unsupervised Person Re-Identification on the DukeMTMC-reID
488	Zheng et al. (2017) dataset

188	Zheng et al. (2017) uataset					
89	Datasets	DukeMTMC-reID Zheng et al. (2017) datas	et			
	Methods	mAP	top-1	top-5	top-10	
90	Adam Kingma & Ba (2014)	73.6	84.5	90.2	92.9	
)1	Adam Kingma & Ba (2014) + e(Ours)	82.6	86.6		94.0	
	Adam Kingma & Ba (2014) + fr(Ours)	81.9	85.7		93.5	
)2	Adam Kingma & Ba (2014) + g(Ours)	81.9	85.9		93.6	
)3	Adam Kingma & Ba (2014) + o(Ours)	82.0 80.3	85.6		93.3 93.0	
0	Adam Kingma & Ba (2014) + p(Ours) Adam Kingma & Ba (2014) + psd(Ours)	80.3 82.5	84.6 86.4		93.0 93.8	
4	Adam Kingma & Ba (2014) + s (Ours)	81.6	85.7		93.2	
5	Adam Kingma & Ba (2014) + sog (Ours)	82.0	85.4		93.8	
5	Adam Kingma & Ba (2014) + sp (Ours)	81.9	85.9	91.6	93.8	
6	Adam Kingma & Ba (2014) + spv(Ours)	82.1	85.6	91.4	93.6	
7	AdamW Loshchilov & Hutter (2017)	74.1	85.2		93.1	
	AdamW Loshchilov & Hutter (2017) + e (Ours)	81.6	85.8		93.7	
8	AdamW Loshchilov & Hutter (2017) + fr (Ours)	82.9	86.2		93.7	
~	AdamW Loshchilov & Hutter (2017) + g (Ours) AdamW Loshchilov & Hutter (2017) + o (Ours)	81.4 81.3	85.8 85.3		93.2 93.3	
9	AdamW Loshchilov & Hutter $(2017) + 0$ (Ours) AdamW Loshchilov & Hutter $(2017) + p$ (Ours)	81.3 81.3	85.1		93.3 93.4	
0	AdamW Loshchilov & Hutter $(2017) + p(Ours)$ AdamW Loshchilov & Hutter $(2017) + psd (Ours)$	81.3	85.3		93.3	
-	AdamW Loshchilov & Hutter (2017) + s (Ours)	82.3	86.1		93.8	
1	AdamW Loshchilov & Hutter (2017) + sog (Ours)	81.9	86.0		93.9	
0	AdamW Loshchilov & Hutter (2017) + sp(Ours)	81.4	85.8		93.3	
2	AdamW Loshchilov & Hutter (2017) + spv(Ours)	82.5	86.5		93.6	
3	SGD	54.9	65.9		80.5	
4	SGD + e(Ours)	57.3	67.9		80.0	
	SGD + fr (Ours) SGD + g (Ours)	56.8 57.4	68.0 67.7		79.2 79.9	
5	SGD + g (Ours) SGD + o (Ours)	57.4 57.0	67.4		79.9	
-	SGD + p (Ours)	57.5	67.7		80.1	
6	SGD + psd (Ours)	56.7	67.5		79.5	
7	SGD + s (Ours)	63.5	74.3		85.7	
	SGD + sog (Ours)	62.3	73.3		85.1	
8	SGD + sp (Ours)	63.4	74.6		85.9	
9	SGD + spv (Ours)	62.6	74.0	81.9	85.6	
	Table 9: Cluster Contrast Dai et al. (2022) for	Unsupervised Person Re-Ide	entifica	ation c	on the M	Market-
0	Zheng et al. (2015) dataset	_				
1	Datasets	Market-1501 Zheng et al. (2015) dataset				
2	Methods	mAP	ton-1	top-5	top-10	
			top-1		<u> </u>	
3	Adam Kingma & Ba (2014) Adam Kingma & Ba (2014) + e(Ours)	83.0 84.8	$90.1 \\ 90.5$	93.2 93.8	95.0 95.2	
4	Adam Kingma & Ba (2014) + fr(Ours)	84.8 86.2	90.5 90.9	93.8 94.5	95.2 95.4	
-	Adam Kingma & Ba (2014) + fi(Ours) Adam Kingma & Ba (2014) + g(Ours)	83.4	89.5	93.0	94.6	
15	Adam Kingma & Ba (2014) + o(Ours)	82.8	89.4	93.1	94.5	
			00.0	00.0		

	Adam Kingina & Da (2014) + g(Ours)	00.4	03.0	30.0	34.0
515	Adam Kingma & Ba (2014) + o(Ours)	82.8	89.4	93.1	94.5
516	Adam Kingma & Ba (2014) + p(Ours)	85.7	90.3	93.8	95.1
010	Adam Kingma & Ba (2014) + psd(Ours)	84.8	90.1	93.9	95.5
517	Adam Kingma & Ba (2014) + s (Ours)	84.5	90.3	93.8	95.3
	Adam Kingma & Ba (2014) + sog (Ours)	85.9	90.5	94.0	95.2
518	Adam Kingma & Ba (2014) + sp (Ours)	86.3 84.8	90.9 90.1	94.8 93.6	95.5 95.0
510	Adam Kingma & Ba (2014) + spv(Ours)		90.1	95.0	
519	AdamW Loshchilov & Hutter (2017)	83.2	90.4	93.7	95.1
520	AdamW Loshchilov & Hutter (2017) + e (Ours)	86.5	90.7	94.2	95.4
	AdamW Loshchilov & Hutter (2017) + fr (Ours)	85.6	90.2	94.1	95.6
521	AdamW Loshchilov & Hutter (2017) + g (Ours)	84.3	90.1	94.3	95.3
500	AdamW Loshchilov & Hutter (2017) + o (Ours)	84.7 85.0	90.6	94.0 93.7	94.9
522	AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + psd (Ours)	85.0 85.6	$89.8 \\ 90.4$	93.7 93.9	95.2 95.3
523	AdamW Loshchilov & Hutter (2017) + st (Ours)	86.4	90.4 90.6	93.9 94.1	95.3 95.3
525	AdamW Loshchilov & Hutter (2017) + s (Ours)	85.3	89.9	93.6	94.9
524	AdamW Loshchilov & Hutter (2017) + sog (Ours)	83.5	89.7	93.6	94.7
	AdamW Loshchilov & Hutter (2017) + spv(Ours)	86.0	90.1	93.9	94.9
525	SGD	60.8	72.7	80.5	83.8
526	SGD + e (Ours)	62.1	73.3	81.5	85.5
520	SGD + fr (Ours)	62.5	73.9	82.1	86.2
527	SGD + g (Ours)	63.2	74.0	82.0	85.8
	SGD + o (Ours)	63.4	74.0	82.6	86.1
528	SGD + p (Ours)	63.2	74.0	82.0	85.8
529	SGD + psd (Ours)	63.5	74.1	82.7	86.1
929	SGD + s (Ours)	62.2	73.5	80.9	84.6
530	SGD + sog (Ours)	62.9	73.9	81.8	85.1
	SGD + sp (Ours)	61.0	72.8	80.8	84.1
531	SGD + spv (Ours)	61.7	73.8	81.6	84.9

convergence speed in manifold optimization problems. Through a series of experiments, the results 532 validate our initial intuition and confirmed the correctness and stability of our proposed method. 533 The experiments demonstrate that Reset method combining other methods (SGD, Adam Kingma & 534 Ba (2014) and AdamW Loshchilov & Hutter (2017)) can effectively mitigate convergence loss and 535 improve convergence speed. These findings not only contribute to the field of optimization but also 536 have practical implications for various machine learning applications. The Reset method combining 537 other methods (SGD, Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter (2017)), offers a 538 promising avenue for accelerating convergence, and improves the overall performance of optimization 539 algorithms.

540 BIBLIOGRAPHY 541

542 543 544	Pierre-Antoine Absil and Kyle A. Gallivan. Joint diagonalization on the oblique manifold for independent component analysis. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP 2006, Toulouse, France, May 14-19, 2006, pp. 945–948. IEEE, 2006.
545 546 547	Pierre-Antoine Absil, Robert E. Mahony, and Rodolphe Sepulchre. <i>Optimization Algorithms on Matrix Manifolds</i> . Princeton University Press, 2008.
548 549 550 551	Kyriakos Axiotis and Maxim Sviridenko. Local search algorithms for rank-constrained convex optimization. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
552 553	William M Boothby and William Munger Boothby. <i>An introduction to differentiable manifolds and Riemannian geometry, Revised</i> , volume 120. Gulf Professional Publishing, 2003.
554 555 556	Shixiang Chen, Alfredo Garcia, Mingyi Hong, and Shahin Shahrampour. On the local linear rate of consensus on the stiefel manifold. <i>IEEE Transactions on Automatic Control</i> , 2023.
557 558 559 560	Albert Cheu, Matthew Joseph, Jieming Mao, and Binghui Peng. Shuffle private stochastic convex optimization. In <i>The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.</i> OpenReview.net, 2022.
561 562 563 564	Christopher Criscitiello and Nicolas Boumal. Negative curvature obstructs acceleration for strongly geodesically convex optimization, even with exact first-order oracles. In Po-Ling Loh and Maxim Raginsky (eds.), <i>Conference on Learning Theory</i> , 2-5 July 2022, London, UK, volume 178 of <i>Proceedings of Machine Learning Research</i> , pp. 496–542. PMLR, 2022.
565 566 567 568	Zuozhuo Dai, Guangyuan Wang, Weihao Yuan, Siyu Zhu, and Ping Tan. Cluster contrast for unsupervised person re-identification. In <i>Proceedings of the Asian conference on computer vision</i> , pp. 1142–1160, 2022.
569 570	Ahmed Douik and Babak Hassibi. Low-rank riemannian optimization for graph-based clustering applications. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 44(9):5133–5148, 2022.
571 572 573 574 575	Tolga Ergen and Mert Pilanci. Implicit convex regularizers of CNN architectures: Convex optimiza- tion of two- and three-layer networks in polynomial time. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
576 577 578 579	Tolga Ergen, Arda Sahiner, Batu Ozturkler, John M. Pauly, Morteza Mardani, and Mert Pilanci. Demystifying batch normalization in relu networks: Equivalent convex optimization models and implicit regularization. In <i>The Tenth International Conference on Learning Representations, ICLR</i> 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
580 581 582 583 584	Ioannis Exarchos, Marcus Aloysius Pereira, Ziyi Wang, and Evangelos A. Theodorou. NOVAS: non-convex optimization via adaptive stochastic search for end-to-end learning and control. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
585 586 587	Tanner Fiez, Chi Jin, Praneeth Netrapalli, and Lillian J. Ratliff. Minimax optimization with smooth algorithmic adversaries. In <i>The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.</i> OpenReview.net, 2022.
588 589 590 591	Dan Garber and Ben Kretzu. New projection-free algorithms for online convex optimization with adaptive regret guarantees. In Po-Ling Loh and Maxim Raginsky (eds.), <i>Conference on Learning Theory, 2-5 July 2022, London, UK</i> , volume 178 of <i>Proceedings of Machine Learning Research</i> , pp. 2326–2359. PMLR, 2022.
592 593	Ziqi Gu, Zihan Lu, Cao Han, and Chunyan Xu. Few shot class incremental learning via grassmann manifold and information entropy. <i>Electronics</i> , 12(21):4511, 2023.

594 595 596	Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image classification with convolutional neural networks. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 558–567, 2019.
597 598 599 600	Mohamed A. Helala, Faisal Z. Qureshi, and Ken Q. Pu. A stream algebra for performance optimization of large scale computer vision pipelines. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 44(2):905–923, 2022.
601 602 603	Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold optimization. Journal of the Operations Research Society of China, 8(2):199–248, 2020.
604 605	Wen Huang, Kyle A. Gallivan, and Pierre-Antoine Absil. A broyden class of quasi-newton methods for riemannian optimization. <i>SIAM J. Optim.</i> , 25(3):1660–1685, 2015.
606 607 608 609	Wen Huang, Pierre-Antoine Absil, and Kyle A. Gallivan. A riemannian BFGS method without differentiated retraction for nonconvex optimization problems. <i>SIAM J. Optim.</i> , 28(1):470–495, 2018.
610 611 612	Sadeep Jayasumana, Richard Hartley, Mathieu Salzmann, Hongdong Li, and Mehrtash Harandi. Kernel methods on the riemannian manifold of symmetric positive definite matrices. In <i>proceedings</i> <i>of the IEEE Conference on Computer Vision and Pattern Recognition</i> , pp. 73–80, 2013.
613 614	Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. <i>arXiv preprint arXiv:1412.6980</i> , 2014.
615 616	Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
617 618 619	John Lee. Introduction to topological manifolds, volume 202. Springer Science & Business Media, 2010.
620 621	John M Lee. <i>Riemannian manifolds: an introduction to curvature</i> , volume 176. Springer Science & Business Media, 2006.
622 623 624	Liu Liu, Ji Liu, and Dacheng Tao. Variance reduced methods for non-convex composition optimiza- tion. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 44(9):5813–5825, 2022.
625 626 627	Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond. <i>arXiv preprint arXiv:1908.03265</i> , 2019.
628 629 630	Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. <i>arXiv preprint arXiv:1711.05101</i> , 2017.
631 632 633 634	Haipeng Luo, Mengxiao Zhang, and Peng Zhao. Adaptive bandit convex optimization with het- erogeneous curvature. In Po-Ling Loh and Maxim Raginsky (eds.), <i>Conference on Learning</i> <i>Theory</i> , 2-5 July 2022, London, UK, volume 178 of Proceedings of Machine Learning Research, pp. 1576–1612. PMLR, 2022.
635 636 637 638	Xiang Lyu, Will Wei Sun, Zhaoran Wang, Han Liu, Jian Yang, and Guang Cheng. Tensor graphical model: Non-convex optimization and statistical inference. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 42(8):2024–2037, 2020.
639 640	Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear complementary filters on the special orthogonal group. <i>IEEE Transactions on automatic control</i> , 53(5):1203–1218, 2008.
641 642 643 644 645	Annie Marsden, Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Efficient convex optimization requires superlinear memory. In Po-Ling Loh and Maxim Raginsky (eds.), <i>Conference on Learning Theory</i> , 2-5 July 2022, London, UK, volume 178 of Proceedings of Machine Learning Research, pp. 2390–2430. PMLR, 2022.
646	Zakaria Mhammedi. Efficient projection-free online convex optimization with membership oracle. In

Examination of the projection-free online convex optimization with membership oracle. In
 Po-Ling Loh and Maxim Raginsky (eds.), *Conference on Learning Theory*, 2-5 July 2022, London, UK, volume 178 of *Proceedings of Machine Learning Research*, pp. 5314–5390. PMLR, 2022.

648 649 650 651	Andjela Mladenovic, Iosif Sakos, Gauthier Gidel, and Georgios Piliouras. Generalized natural gradient flows in hidden convex-concave games and gans. In <i>The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022</i> . OpenReview.net, 2022.
652 653 654	Feiping Nie, Danyang Wu, Rong Wang, and Xuelong Li. Truncated robust principle component analysis with A general optimization framework. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 44(2): 1081–1097, 2022.
655 656 657	Brendan O'donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes. <i>Foundations of computational mathematics</i> , 15:715–732, 2015.
658 659	Karmvir Singh Phogat and Dong Eui Chang. Model predictive regulation on manifolds in euclidean space. <i>Sensors</i> , 22(14):5170, 2022.
660 661 662	Vladimir Rovenski and Paweł Walczak. On isometric immersions of almost k-product manifolds. <i>Journal of Geometry and Physics</i> , 186:104764, 2023.
663 664 665	Itay Safran and Jason D. Lee. Optimization-based separations for neural networks. In Po-Ling Loh and Maxim Raginsky (eds.), <i>Conference on Learning Theory, 2-5 July 2022, London, UK</i> , volume 178 of <i>Proceedings of Machine Learning Research</i> , pp. 3–64. PMLR, 2022.
666 667 668 669	Arda Sahiner, Tolga Ergen, Batu Ozturkler, Burak Bartan, John M. Pauly, Morteza Mardani, and Mert Pilanci. Hidden convexity of wasserstein gans: Interpretable generative models with closed-form solutions. In <i>The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.</i> OpenReview.net, 2022.
670 671 672 673	Sina Sanjari, Tamer Basar, and Serdar Yuksel. Isomorphism properties of optimality and equilibrium solutions under equivalent information structure transformations: Stochastic dynamic games and teams. <i>SIAM Journal on Control and Optimization</i> , 61(5):3102–3130, 2023.
674 675 676 677	Arun Sai Suggala, Pradeep Ravikumar, and Praneeth Netrapalli. Efficient bandit convex optimization: Beyond linear losses. In Mikhail Belkin and Samory Kpotufe (eds.), Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of Machine Learning Research, pp. 4008–4067. PMLR, 2021.
678 679 680	Nickolay T. Trendafilov. PA. absil, r. mahony, and r. sepulchre. optimization algorithms on matrix manifolds. <i>Found. Comput. Math.</i> , 10(2):241–244, 2010.
681 682	Levent Tunçel. Optimization algorithms on matrix manifolds. <i>Math. Comput.</i> , 78(266):1233–1236, 2009.
683 684 685	Bart Vandereycken. Low-rank matrix completion by riemannian optimization. <i>SIAM J. Optim.</i> , 23 (2):1214–1236, 2013.
686 687 688 689 690	 Nuri Mert Vural, Lu Yu, Krishnakumar Balasubramanian, Stanislav Volgushev, and Murat A. Erdogdu. Mirror descent strikes again: Optimal stochastic convex optimization under infinite noise variance. In Po-Ling Loh and Maxim Raginsky (eds.), <i>Conference on Learning Theory</i>, 2-5 July 2022, London, UK, volume 178 of Proceedings of Machine Learning Research, pp. 65–102. PMLR, 2022.
691 692 693 694	Yifei Wang, Jonathan Lacotte, and Mert Pilanci. The hidden convex optimization landscape of regularized two-layer relu networks: an exact characterization of optimal solutions. In <i>The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.</i> OpenReview.net, 2022.
695 696 697 698 699 700	Blake E. Woodworth, Brian Bullins, Ohad Shamir, and Nathan Srebro. The min-max complexity of distributed stochastic convex optimization with intermittent communication. In Mikhail Belkin and Samory Kpotufe (eds.), <i>Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder,</i> <i>Colorado, USA</i> , volume 134 of <i>Proceedings of Machine Learning Research</i> , pp. 4386–4437. PMLR, 2021.

701 Xinming Wu, Zaiwen Wen, and Weizhu Bao. A regularized newton method for computing ground states of bose-einstein condensates. *J. Sci. Comput.*, 73(1):303–329, 2017.

702 703 704	Jiyang Xie, Zhanyu Ma, Jianjun Lei, Guoqiang Zhang, Jing-Hao Xue, Zheng-Hua Tan, and Jun Guo. Advanced dropout: A model-free methodology for bayesian dropout optimization. <i>IEEE Trans.</i> <i>Pattern Anal. Mach. Intell.</i> , 44(9):4605–4625, 2022.
705 706 707 708	Huan Xiong, Mengyang Yu, Li Liu, Fan Zhu, Jie Qin, Fumin Shen, and Ling Shao. A generalized method for binary optimization: Convergence analysis and applications. <i>IEEE Trans. Pattern Anal.</i> <i>Mach. Intell.</i> , 44(9):4524–4543, 2022.
709 710	Abhay Yadav, Sohil Shah, Zheng Xu, David Jacobs, and Tom Goldstein. Stabilizing adversarial nets with prediction methods. <i>arXiv preprint arXiv:1705.07364</i> , 2017.
711 712 713 714 715	Abhay Kumar Yadav, Sohil Shah, Zheng Xu, David W. Jacobs, and Tom Goldstein. Stabilizing adversarial nets with prediction methods. In 6th International Conference on Learning Representa- tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
716 717	Hongchao Zhang and William W. Hager. A nonmonotone line search technique and its application to unconstrained optimization. <i>SIAM J. Optim.</i> , 14(4):1043–1056, 2004.
718 719 720 721 722	Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Riemannian SVRG: fast stochastic optimization on riemannian manifolds. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (eds.), <i>Advances in Neural Information Processing Systems 29: Annual</i> <i>Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,</i> <i>Spain</i> , pp. 4592–4600, 2016.
723 724 725 726	Xinbang Zhang, Zehao Huang, Naiyan Wang, Shiming Xiang, and Chunhong Pan. You only search once: Single shot neural architecture search via direct sparse optimization. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 43(9):2891–2904, 2021.
727 728 729	Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jiahao Bu, and Qi Tian. Person re-identification meets image search. <i>arXiv preprint arXiv:1502.02171</i> , 2015.
729 730 731 732	Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In <i>Proceedings of the IEEE international conference on computer vision</i> , pp. 3754–3762, 2017.
733 734 735 736	Pan Zhou, Xiao-Tong Yuan, Shuicheng Yan, and Jiashi Feng. Faster first-order methods for stochastic non-convex optimization on riemannian manifolds. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 43(2): 459–472, 2021.
737 738	
739 740 741	
741 742 743	
744 745	
746 747 748	
749 750	
751 752	
753 754 755	

- 756 APPENDIX
- 758 759 A RELATED WORK

760 761 A.1 Optimization Theory

762 A.1.1 CONVEX OPTIMIZATION-BASED THEORY

The paper Ergen et al. (2022) shares similarities with Ergen & Pilanci (2021) in that they all combine the theory of critical normalization with convex optimization. However, they approach this combination from different perspectives, leading to distinct results. Additionally, convex pair-based analysis frameworks have been proposed in the Ergen et al. (2022), Suggala et al. (2021), and Ergen & Pilanci (2021) from various viewpoints. On the other hand, the theory in the Axiotis & Sviridenko (2021) and the theory in the Woodworth et al. (2021) are not only based on convex optimization theory alone but also incorporate greedy, local search algorithms, and statistical knowledge, etc.

771

772 A.1.2 CONSTRAINED OPTIMIZATION-BASED THEORY

Different researchers approach the problem from diverse perspectives. Methods like Marsden et al. (2022) and the methods in Hu et al. (2020) focus on transforming constrained optimization problems. Some experts utilize geometric theory for this purpose, as demonstrated by Marsden et al. (2022) and Hu et al. (2020). In detail, the method in the Marsden et al. (2022) specifically addresses the minimization of Lipschitz convex functions on the unit ball, while the method in the Mhammedi (2022) explores the Frank-Wolfe algorithm in the context of constrained optimization, achieving certain levels of success.

780 781

782

A.1.3 GRADIENT DESCENT-BASED THEORY

Most of the existing methods are based on gradient descent theory and propose new algorithms such as Cheu et al. (2022), Garber & Kretzu (2022), and Fiez et al. (2022), and some endeavors focus on on theoretical innovation, such as Safran & Lee (2022), Vural et al. (2022) and Mladenovic et al. (2022). These articles delve into topics such as topology and geometry, exploring concepts like spherical indicator functions and flows in differential topology.

788 789

A.2 OTHER THEORY

Researchers have approached this problem from different perspectives in fundamental mathematics, especially in topology, geometry, algebra, etc., and from the fields of statistics and dynamical system, etc., with some success.

Among the papers focusing on topology and geometry, the methods described in the Criscitiello & Boumal (2022) and Luo et al. (2022) explore the application of surface and curvature concepts. While the paper Douik & Hassibi (2022) and the paper Zhou et al. (2021) leverage the knowledge of Riemannian manifolds to address manifold optimization challenges.

From an algebraic perspective, papers such as Helala et al. (2022) and Xiong et al. (2022) propose algebraic frameworks for manifold optimization. In particular, a binary matrix optimization method is introduced in the Xiong et al. (2022), which provides experimental results to validate the theoretical correctness of the approach.

Additionally, statistical theory plays a significant role in manifold optimization. A range of methods
based on statistical theory have been proposed, including works like Liu et al. (2022), Nie et al. (2022)
and Xie et al. (2022).

805

806 A.3 Optimization Methods

807

Researchers have been actively exploring strategies to achieve a balance between stability and
 accelerated in optimization methods. Notably, stochastic gradient descent (SGD) has emerged as a
 highly successful approach in numerous scientific and engineering domains.

A.3.1 MACHINE LEARNING-BASED METHODS

The following articles are proposed within the framework of machine learning theory, with some focusing on sparse theory. Notably, the paper Zhang et al. (2021) and the paper Lyu et al. (2020) delve into sparse theory. Additionally, the paper Liu et al. (2019) explores the impact of learning rate on optimization, while the paper Exarchos et al. (2021) investigates the effects of changes in the objective function, yielding remarkable outcomes.

A.3.2 DEEP LEARNING-BASED METHODS

Researchers have devoted substantial efforts to integrating optimization problems with deep learning, resulting in a range of compelling works. Noteworthy examples include Sahiner et al. (2022) and
Wang et al. (2022).

822 823

824

B PRELIMINARY: MANIFOLD THEORY

825 B.1 CONCEPTIONS OF MANIFOLD

When it comes to manifold optimization, the concept of the manifold will be provided firstly. In mathematics, it is understand that a manifold in the Lee (2010) is a space that locally has the properties of a Euclidean space, and the properties of the whole space in terms of the local properties of the Euclidean space may be described. The canonical definition of a manifold is provided :

Definition 3. ManifoldLee (2010): It is determined a definition as the n- dimensional topological manifold:

(i) The half space defined by $x_1 \ge 0$ is represented by \mathbb{H}^n , in the dimensional Euclidean space \mathbb{R}^n ,

- (ii)Hausdorff space M,
- (iii) when each point p has an open neighborhood $\mathscr{U}(p)$, with \mathbb{R}^n or \mathbb{H}^n homeomorphic.

Boothby & Boothby (2003) are topological manifolds with differential structure, the manifolds for use in this paper are differential manifolds Boothby & Boothby (2003). Therefore the concepts of differential manifolds are assigned:

Definition 4. The topological space (M, \mathscr{F}) is defined as the n-dimensional differentiable manifold Boothby & Boothby (2003)(also called smooth manifold): if M has an open coverage \mathcal{O}_a , that is, $M = \mathscr{U}(\mathcal{O}_a)$.

A Riemannian manifold Lee (2006) is one of the differential manifolds Boothby & Boothby (2003) that defines a dot product in the tangent space Hu et al. (2020) at each point, and whose value changes smoothly with that point. Riemannian manifolds Lee (2006) permit us to determine numerous mathematical variables, such as the gradient of a function, the length and angle of an arc, as well as the area, volume, curvature, and scattering of a vector domain. The definition of a Riemannian manifold Lee (2006) is granted :

Definition 5. A Riemannian manifold Lee (2006) is a differential manifold of a Riemannian metric. Now the M is set as an kind of n- dimensional smooth manifold, then a tensor field g is put on M, the tensor field g is a second order covariant and smooth one, (M, g) is an n- dimensional Riemannian manifold, and g is given a definition as a fundamental tensor or Riemannian metric of this Riemannian manifold and if it satisfies:

(i) $g(X,Y) = g(Y,X)(X,Y \in T_pM, p \in M)$, i.e, g is symmetric.

(ii) $g(X,X) \ge 0 (X \in T_p M, p \in M)$, i.e, g is positive definite, and the equality sign holds only when X = 0.

Riemannian manifold Lee (2006) is a differential manifold that possesses additional geometric structures beyond the smoothness of its coordinate charts. This metric provides a geometric framework for various mathematical operations.

An isomorphism Sanjari et al. (2023) is interpreted as a state-project and there exists another stateproject so that the composite of the two is a constant state-project. The main aim of investigating the isomorphism Sanjari et al. (2023) is to extend the theory to different domains. If two structures are of isomorphism Sanjari et al. (2023), then the objects aboard them will share similar properties and operations, and propositions that are valid for one structure will be valid for the other. The definition of isomorphism Sanjari et al. (2023) is provided below:

Definition 6. An isomorphism Sanjari et al. (2023) between the group (G_1, \star) and the group (G_2, \star) is a one-to-one mapping compatible with the operator law. When a group is isomorphic to itself, it is referred to as a self-isomorphism Sanjari et al. (2023).

This is the basic concept of the manifold, if you would like to know more, please check it out in Hu et al. (2020).

874 875 876

877

872

873

B.2 CONCEPTIONS OF REAL MANIFOLD

The manifold of Fixed Rank Matrices, denoted as $\mathbf{FR}(n, m)$ Vandereycken (2013), consist of $n \times m$ matrices with columns of unit norm. By careful consideration, it is endowed with a Riemannian manifold structure. Moreover, it is known to be a Riemannian submanifold embedded in the Euclidean space $\mathbb{R}^{n \times m}$, subject to the constraint that the rank of matrices in the manifold is rank(X) = k.

The manifold $V_{n,k}$ represents the set of orthonormal frames in an *n*-dimensional Euclidean space, where the frames consist of *k* vectors. The Stiefel manifold Chen et al. (2023) is a real and compact analytic manifold, which can be associated with the classical compact groups O(n) and Sp(n) as homogeneous spaces.

The Product Manifold Rovenski & Walczak (2023) is just a natural development of single manifold 887 and product topology. So this concept is just briefly explained but ignore all the proofs with respect to its relevant arguments. The \mathcal{M}_1 manifold of the dimension is set as d_1 , and \mathcal{M}_2 manifold of the 889 dimension is d_2 , respectively. The set $\mathcal{M}_1 \times \mathcal{M}_2$ is given a definition as set of pairs (x_1, x_2) , and it is known a conclusion that it can be described as $x_1 \in \mathscr{M}_1$, $x_2 \in \mathscr{M}_2$, and if (\mathscr{U}_1, ϕ_1) are charts of 890 the manifolds $\mathcal{M}_1, (\mathcal{U}_2, \phi_2)$ are charts of the manifolds \mathcal{M}_2 , and the mapping $\phi_1 \times \phi_2 : (x_1, x_2) \to$ 891 $(\phi_1(x_1), \phi_2(x_2))$ is a chart for the set $\mathcal{M}_1 \times \mathcal{M}_2$. Analogously you could see that combining all 892 charts could get an atlas. And then the maximal atlas. So the set $\mathcal{M}_1 \times \mathcal{M}_2$ becomes a manifold, 893 which is defined as the product manifold, i.e, \mathcal{M}_1 and \mathcal{M}_2 . The manifold topology of the product 894 manifold bears comparison with the product topology. 895

The special orthogonal group Mahony et al. (2008) is a significant class of typical groups whose 896 elements obtain determinant one. The elements of the orthogonal group $\mathbb{O}_n(\mathbf{K}, \mathbf{Q})$ all have determi-897 nant one or minus one, and all orthogonal transformations of which the determinant is one form a 898 subgroup, a definition is just determined as special orthogonal group Mahony et al. (2008), made a 899 contribution to $\mathbb{SO}_n(\mathbf{K}, \mathbf{Q})$. When the identity of $\mathbf{K} \neq 2$, $[\mathbb{O}_n(\mathbf{K}, \mathbf{Q}) : \mathbb{SO}_n(\mathbf{K}, \mathbf{Q})] = 2$. At this 900 point $\mathbb{SO}_n(\mathbf{K}, \mathbf{Q})$ is also called the rotation group and is denoted as $\mathbb{O}_n(\mathbf{K}, \mathbf{Q})$. It is also the group 901 consisting of the entire product of an even number of symmetries. The rotation group of a real or-902 thogonal group $\mathbb{O}(n)$ is denoted as \mathbb{SO}_n or \mathbb{O}_n . When identity of $\mathbf{K} = 2$, $\mathbb{SO}_n(\mathbf{K}, \mathbf{Q}) = \mathbb{O}_n(\mathbf{K}, \mathbf{Q})$. 903 Let Q have no loss number, i.e. $f(x,y) = \mathbf{Q}(x+y) - \mathbf{Q}(x) - \mathbf{Q}(y)$, which is not a degenerate 904 intersection type on space \mathbb{V} given a definition by \mathbf{Q} . 905

The manifold of symmetric positive definite matrices Jayasumana et al. (2013) is of the bivariant geometry. The function M can be represented as sympositive definite factory(n). A point X on the manifold is expressed as a symmetric positive definite matrix $X_{n \times n}$. The Riemannian metric has the bi-invariant metric, whose tangent vectors are symmetric matrices.

The Euclidean manifold Phogat & Chang (2022) may be determined a definition on an Euclidean space. An Euclidean space is a finite real vector space \mathbb{R}^n whose inner product is $(x, y), x, y \in \mathbb{R}^n$, it is in an appropriate(Cartesian) coordinate system $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ is provided by the formula:

916 917

$$(x,y) = \sum_{i=1}^{n} x_i y_i.$$
 (11)

For more details, please consult the paper Hu et al. (2020).

918 C METHODOLOGY: RESET METHOD

920 C.1 PROPOSED METHODS

C.1.1 THEOREMS OF RESET METHOD ON THE REAL MANIFOLDS

As for convergence, known from (Hu et al. (2020)) that the step size of manifold optimization is convergent, so whether or not the method converges after improving it, and whether there is a logically clear proof, theorem 4.1 returns to this question.

Theorem C.1. Let x_i be the sequence generated by Reset method on the real manifolds using non-monotonic sequences, it is assumed that f is continuously differential on the real manifold \mathcal{M} and Euclidean space \mathscr{E} . In this context, every accumulation point x^* of the sequence x_i is considered a stationary point of the optimization problem, i.e., it holds $\operatorname{gradf}(x^*) = 0$.

Proof. By using

$$\langle \operatorname{gradf}(\mathbf{x}_{i}), -\operatorname{gradf}(\mathbf{x}_{i}) \rangle_{x_{i}} = -\|\operatorname{gradf}(\mathbf{x}_{i})\|_{x_{i}}^{2} < 0,$$

then applying Lemma 1.1 in the Zhang & Hager (2004), it is possible to:

$$f(x_i) \le C_i, \forall i \in \mathbb{N}, x_i \in \{x \in \mathscr{M} : f(x) \le f(x_0)\}\$$

Due to

$$\begin{split} &\lim_{t \to 0} \frac{(f \circ R(x_i)(-t \times \text{gardf}(\mathbf{x}_i)) - f(x_i)}{t} - \alpha \langle \text{gradf}(\mathbf{x}_i), -\text{gradf}(\mathbf{x}_i) \rangle_{x_i} \\ &= \frac{\partial f(R(x_i)(0))^T}{\partial x} dR(x_i)(0)(-\text{gradf}(\mathbf{x}_i)) + \alpha \|\text{gradf}(\mathbf{x}_i)\|_{x_i}^2 \\ &= -(1-\alpha)\|\text{gradf}(\mathbf{x}_i)\|_{x_i}^2 < 0, \end{split}$$

there always exists a positive step size satisfying the Armijo conditions (eq. (6) and eq. (7)), Let $x^* \in \mathcal{M}$ be an arbitrary accumulation point of x_i and let x_{ii} be a corresponding subsequence converge to x^* . By the definition of C_{i+1} , it is possible to:

$$C_{i+1} = \frac{\zeta R_i C_i + f(x_{i+1})}{R_{i+1}} < \frac{(\zeta R_i + 1)C_i}{R_{i+1}} = C_i.$$

 C_i is monotonically decreasing while converging to some limit $\overline{C} \in \mathbb{R} \bigcup -\infty$. Using $\forall i \rightarrow \infty, f(x_i) \rightarrow f(x^*)$, it can be deduced that $\overline{C} \in \mathbb{R}$. Therefore, it is possible to:

$$\sum_{i=0}^{\infty} \frac{\alpha(-\alpha_i) \|\operatorname{gradf}(\mathbf{x}_i)\|_{x_i}^2}{R_{i+1}} \le \sum_{i=0}^{\infty} C_i - C_{i+1} \le C_0 - \overline{C} < \infty.$$

Since

$$R_{i+1} = 1 + \zeta R_i = 1 + \zeta + \zeta^2 R_{i-1} = \sum_{i=0}^{i} \zeta^i < (1 - \zeta)^{-1},$$

this means $\{-\alpha_i \| \operatorname{gradf}(\mathbf{x}_i) \|_{x_i}^2\} \to 0$. Let us assume $\| \operatorname{gradf}(\mathbf{x}^*) \| \neq 0$, it is possible that $t_{ii} \to 0$, by the construction of Reset method on the real manifolds, the step size does not satisfy eq. (7), i.e., when $i \to +\infty$, it is possible to

$$\alpha \epsilon^{-1} \alpha_i \| \operatorname{gradf}(\mathbf{x}_i) \|_{x_i}^2 < f(R(x_i)(\epsilon^{-1} \alpha_i \operatorname{gradf}(\mathbf{x}_i)) - C_i \le f(R(x_i)(\epsilon^{-1} \alpha_i \operatorname{gradf}(\mathbf{x}_i)) - f(x_i).$$

Due to the sequence $gradf(x_i)_i$ is bounded, the rest of the proof is the same as the proof of Theorem in Tunçel (2009).

It is possible to already known from theorem 4.1 that our proposed algorithm converges, and the
Reset method improves convergence since it can produce damped harmonic motion Yadav et al.
(2018) that sinks into the saddle point. From our knowledge of the dynamical system Yadav et al.
(2018), it is understand that the damping produced by the Reset method causes the orbit to converge to the saddle point and the error decays at an exponential rate.

Theorem C.2. Let x_i be the sequence generated by Reset method on the real manifolds using a non-monotonic sequence. It is assumed that the objective function f is continuously differentiable on the real manifold \mathcal{M} . Every accumulation point x^* of the sequence x_i is considered a stationary point of the optimization problem. Let x^{\bigstar} , x^{\heartsuit} and x^{\diamond} be a point obtained after backward propagation of the gradient using other methods (SGD, Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter (2017)) respectively. Furthermore, it is assumed that there exists a stochastic gradient which satisfies $\mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{*})\|^{2}] \leq \epsilon_{0}^{2}, \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})\|^{2}] \leq \epsilon_{1}^{2}, \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{\heartsuit})\|^{2}] \leq \epsilon_{2}^{2}, \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{\diamondsuit})\|^{2}] \leq \epsilon_{3}^{2}, \text{the}$ error bound is that:

 $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\bigstar})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \leq \frac{1}{2} \left(\frac{4i^{2}}{(i+1)^{2}}\epsilon_{1}^{2} + \epsilon_{0}^{2}\right),$ $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\heartsuit})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \leq \frac{1}{2} \left(\frac{4i^{2}}{(i+1)^{2}}\epsilon_{2}^{2} + \epsilon_{0}^{2}\right),$ $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\diamond})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \leq \frac{1}{2} \left(\frac{4i^{2}}{(i+1)^{2}}\epsilon_{3}^{2} + \epsilon_{0}^{2}\right).$ (12)

Proof. Part I: Due to

$$\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\bigstar})] = \frac{1}{i+1} (i \times \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})] + \operatorname{gradf}(\mathbf{x}_{i+1}^{\bigstar})), \tag{13}$$

and the loss function is monotonically decreasing, then $gradf(x_{i+1}^{\bigstar}) \leq gradf(x_i^{\bigstar})$, and $gradf(x_i^{\bigstar}) \leq \mathbb{E}[gradf(x_i^{\bigstar})]$, due to

$$\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\bigstar})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] = \frac{1}{i+1} (\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})] + \operatorname{gradf}(\mathbf{x}_{i+1})) - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \\ \leq \frac{i}{i+1} (\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})] + \operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})) - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \\ \leq \frac{i}{i+1} (2 \times \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})]) - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})] \\ \leq \mathbb{E}[\langle \frac{2i}{i+1} \operatorname{gradf}(\mathbf{x}_{i}^{\bigstar}), \operatorname{gradf}(\mathbf{x}_{i})\rangle] \\ \leq \mathbb{E}[\|\frac{2i}{i+1} \operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})\|\|\operatorname{gradf}(\mathbf{x}_{i})\|] \\ \leq \frac{1}{2} (\mathbb{E}[\|\frac{2i}{i+1} \operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})\|^{2}] + \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i})\|^{2}]) \\ \leq \frac{1}{2} (\frac{4i^{2}}{(i+1)^{2}} \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i}^{\bigstar})\|^{2}] + \mathbb{E}[\|\operatorname{gradf}(\mathbf{x}_{i})\|^{2}]) \\ \leq \frac{1}{2} (\frac{4i^{2}}{(i+1)^{2}} \epsilon_{1}^{2} + \epsilon_{0}^{2}).$$

$$(14)$$

Part II: It is known that

$$\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\heartsuit})] = \frac{1}{i+1}(i \times \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i}^{\heartsuit})] + \operatorname{gradf}(\mathbf{x}_{i+1}^{\heartsuit})), \tag{15}$$

and the loss function is monotonically decreasing, then $gradf(x_{i+1}^{\heartsuit}) \leq gradf(x_i^{\heartsuit})$, and $gradf(x_i^{\heartsuit}) \leq \mathbb{E}[gradf(x_i^{\heartsuit})]$, inspired by the eq. (14), it is possible to:

$$\begin{array}{ll} 1021 & & & & & & & & & \\ 1022 & & & & & \\ 1023 & & & & & \\ 1024 & & & & \\ 1025 & & & & & \\ 1025 & & & & & \\ \end{array} \\ \begin{array}{ll} \mathbb{E}[gradf(\mathbf{x}_{i}^{\heartsuit})] - \mathbb{E}[gradf(\mathbf{x}_{i})] \\ \leq & & & & \\ \frac{1}{2}(\frac{4i^{2}}{(i+1)^{2}} \mathbb{E}[\|gradf(\mathbf{x}_{i}^{\heartsuit})\|^{2}] + \mathbb{E}[\|gradf(\mathbf{x}_{i})\|^{2}]) \\ \leq & & & \\ \frac{1}{2}(\frac{4i^{2}}{(i+1)^{2}} \epsilon_{2}^{2} + \epsilon_{0}^{2}). \end{array}$$

$$(16)$$

Part III: It is known that

1028 1029

1026

1027

1030 1031

1032 1033

- 1034 1035
- 1036
- 1038 1039

1040

1041

1042 1043 1044

1045 1046

D DEEP LEARNING EXPERIMENTS

1047 D.1 DATASETS

The CIFAR-100 Krizhevsky et al. (2009) dataset has 100 classes containing 600 images each, and each of size is 32×32 . There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 Krizhevsky et al. (2009) dataset are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs).

 $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\diamond})] = \frac{1}{i+1}(i \times \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i}^{\diamond})] + \operatorname{gradf}(\mathbf{x}_{i+1}^{\diamond})),$

and the loss function is monotonically decreasing, then $gradf(x_{i+1}^{\diamond}) \leq gradf(x_i^{\diamond})$, and

 $\leq \frac{1}{2}(\frac{4i^2}{(i+1)^2}\mathbb{E}[\|\mathrm{gradf}(x_i^\diamond)\|^2] + \mathbb{E}[\|\mathrm{gradf}(x_i)\|^2])$

 $\operatorname{gradf}(x_i^{\diamond}) \leq \mathbb{E}[\operatorname{gradf}(x_i^{\diamond})]$, inspired by the eq. (14), it is possible to:

 $\leq \frac{1}{2}(\frac{4i^2}{(i+1)^2}\epsilon_3^2 + \epsilon_0^2).$

 $\mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i+1}^{\diamond})] - \mathbb{E}[\operatorname{gradf}(\mathbf{x}_{i})]$

(17)

(18)

In the STL-10 dataset, there are 500 training images and 800 test images for each category. The
 unlabelled dataset comprises 100,000 unlabelled images, including animals and vehicles in categories
 other than the 10 categories. All images are sourced from the ImageNet.

1057The SVHN (Street View House Numbers) dataset is a real-world dataset for numerical recognition of1058street house numbers, which contains two formats: full numbers and cropped digit. The Cropped1059Digit format is a color image cropped to 32×32 , the training set contains 73257 images, the test set1060contains 26,032 images, and there is an extra training set containing 531131 images. an extra training1061set containing 531131 images. SVHN dataset is door number digits extracted from Google Street1062View images for developing machine learning and object recognition algorithms.

1063The CIFAR-10 Krizhevsky et al. (2009) dataset contains 10 RGB colour image categories, each of1064size 32×32 , with 6,000 images in each category, and 5,000 training images and 10,000 test images1065in the dataset.

1066 The Market-1501 Zheng et al. (2015) dataset is collected from Tsinghua University campus, including 1067 1501 persons, 32668 detected person rectangular frames. This dataset has 12,936 training images 1068 and 19,732 test images. The catalogue structure of the Market-1501 Zheng et al. (2015) dataset 1069 consists of a training set, a test set, and a query set, in which the training set contains 751 images of 1070 pedestrians, the test set contains 750 images of persons, and the query set contains 3,368 manually 1071 drawn pedestrian detection rectangles, the test set contains 750 person images, and the query set contains 3368 manually drawn rectangular box images for person detection. This dataset is collected 1072 to evaluate the performance of the person re-identification algorithm. 1073

The DukeMTMC-reID Zheng et al. (2017) dataset is a large-scale person re-identification image dataset, which is collected by Duke University specifically for person re-identification (ReID) research. The dataset consists of 16,522 training images, 2,228 query images and 17,661 gallery images involving 702 persons. In addition, the DukeMTMC-reID Zheng et al. (2017) dataset provides manually labelled bounding boxes, which are useful for training and testing person detection algorithms. Its wide application and recognition proves its significant value and influence in the field of person re-ID.

1081Table 10: Image Generation of the Deep Convolutional Generative Adversarial Network (DCGAN)1082Yadav et al. (2017) on STL-10 dataset

1082	1 a u a v et a i. (2017) 0 ii 31	L-10 ualasei	
1083		Methods	Average Precision(AP)
		Adam Kingma & Ba (2014)	98.59
1084		Adam Kingma & Ba (2014) + e(Ours)	99.56
1085		Adam Kingma & Ba (2014) + fr(Ours)	99.58
1005		Adam Kingma & Ba (2014) + g(Ours)	99.59
1086		Adam Kingma & Ba (2014) + o(Ours)	99.61
		Adam Kingma & Ba (2014) + p(Ours)	99.59
1087		Adam Kingma & Ba (2014) + psd(Ours)	99.62
1000		Adam Kingma & Ba (2014) + s (Ours)	99.58
1088		Adam Kingma & Ba (2014) + sog (Ours)	99.62
1089		Adam Kingma & Ba (2014) + sp (Ours)	99.65
1009		Adam Kingma & Ba (2014) + spv(Ours)	99.71
1090		AdamW Loshchilov & Hutter (2017)	98.52
1001		AdamW Loshchilov & Hutter (2017) + e (Ours)	99.56
1091		AdamW Loshchilov & Hutter (2017) + fr (Ours)	99.61
1092		AdamW Loshchilov & Hutter (2017) + g (Ours)	99.75
1092		AdamW Loshchilov & Hutter (2017) + o (Ours)	99.65
1093		AdamW Loshchilov & Hutter (2017) + p (Ours)	99.75
		AdamW Loshchilov & Hutter (2017) + psd (Ours) AdamW Loshchilov & Hutter (2017) + s (Ours)	99.72 99.68
1094		AdamW Loshchilov & Hutter $(2017) + s$ (Ours) AdamW Loshchilov & Hutter $(2017) + sog (Ours)$	99.08 99.74
1005		AdamW Loshchilov & Hutter $(2017) + sog (Ours)$ AdamW Loshchilov & Hutter $(2017) + sp(Ours)$	99.76
1095		AdamW Loshchilov & Hutter $(2017) + sp(Ours)$ AdamW Loshchilov & Hutter $(2017) + sp(Ours)$	99.78
1096		SGD	98.27
1007		SGD + e (Ours)	99.72
1097		SGD + fr (Ours)	99.66
1098		SGD + g (Ours)	99.63
1050		SGD + o(Ours)	99.69
1099		SGD + p (Ours)	99.63
		SGD + psd (Ours)	99.68
1100		SGD + s (Ours)	99.63
1101		SGD + sog (Ours)	99.68
1101		SGD + sp (Ours)	99.62
1102		SGD + spv (Ours)	99.69

1104 D.2 DEEP LEARNING EXPERIMENTS

1106 D.2.1 DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORK (DCGAN) FOR 1107 IMAGE GENERATION

The STL-10 dataset and the SVHN (Street View House Numbers) dataset are selected as a measure of domain adaptation performance. Our methods are evaluated on the Deep Convolutional Generative Adversarial Network (DCGAN) Yadav et al. (2017) backbone with an initial learning rate of 0.0002, and the model is trained with 5,000 iterations on 4 V100 GPUs at a scale of 32 batches and the learning rate warmup He et al. (2019) is employed.

Through experiments, the results confirm our intuition and validated the effectiveness and stability of our methods. The average precision performance is summarized in table 10 and table 11, from the table, it is known that our methods are more stable and shows a higher average precision than the competitors.

Г	1: Image Generation of the Deep Convolutional Ge	enerative Adve
	et al. (2017) on SVHN dataset	
1	Methods	Average Precision(AP)
	Adam Kingma & Ba (2014)	98.62
	Adam Kingma & Ba (2014) + e(Ours) Adam Kingma & Ba (2014) + fr(Ours)	99.82 99.31
	Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + g(Ours) Adam Kingma & Ba (2014) + o(Ours)	99.42 99.46
	Adam Kingma & Ba (2014) + p(Ours)	99.51
	Adam Kingma & Ba (2014) + psd(Ours) Adam Kingma & Ba (2014) + s (Ours)	99.58 99.61
	Adam Kingma & Ba (2014) + sog (Ours) Adam Kingma & Ba (2014) + sp (Ours)	99.65 99.68
	Adam Kingma & Ba (2014) + spv(Ours)	99.72
	AdamW Loshchilov & Hutter (2017) AdamW Loshchilov & Hutter (2017) + e (Ours)	98.47 99.56
	AdamW Loshchilov & Hutter (2017) + fr (Ours) AdamW Loshchilov & Hutter (2017) + g (Ours)	99.61 99.75
	AdamW Loshchilov & Hutter (2017) + o (Ours)	99.86
	AdamW Loshchilov & Hutter (2017) + p (Ours) AdamW Loshchilov & Hutter (2017) + psd (Ours)	99.95 99.25
	AdamW Loshchilov & Hutter (2017) + s (Ours) AdamW Loshchilov & Hutter (2017) + sog (Ours)	$99.38 \\ 99.44$
	AdamW Loshchilov & Hutter (2017) + sp(Ours)	99.56
	AdamW Loshchilov & Hutter (2017) + spv(Ours) SGD	99.77 98.35
	SGD + e (Ours)	99.62
	SGD + fr (Ours) SGD + g (Ours)	99.66 99.63
	SGD + o (Ours) SGD + p (Ours)	99.69 99.63
	SGD + psd (Ours)	99.66
	SGD + s (Ours) SGD + sog (Ours)	99.62 99.68
	SGD + sp (Ours) SGD + spv (Ours)	99.62 99.69