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ABSTRACT

Time series forecasts are often influenced by exogenous contextual features in ad-
dition to their corresponding history. For example, in financial settings, it is hard to
accurately predict a stock price without considering public sentiments and policy
decisions in the form of news articles, tweets, etc. Though this is common knowl-
edge, the current state-of-the-art (SOTA) forecasting models fail to incorporate
such contextual information, owing to its heterogeneity and multimodal nature. To
address this, we introduce ContextFormer, a novel plug-and-play method to sur-
gically integrate multimodal contextual information into existing pre-trained fore-
casting models. ContextFormer effectively distills forecast-specific information
from rich multimodal contexts, including categorical, continuous, time-varying,
and even textual information, to significantly enhance the performance of existing
base forecasters. ContextFormer outperforms SOTA forecasting models by up to
30% on a range of real-world datasets spanning energy, traffic, environmental, and
financial domains.

1 INTRODUCTION

Numerous state-of-the-art (SOTA) solutions to time series forecasting (Lin et al., 2021) have
predominantly depended only on the time series history. However, in many real-world fore-
casting applications, such as predicting stock prices, air quality, or household energy con-
sumption, future values are frequently influenced by external contextual factors like geo-
graphical and economic indicators. Industrial solutions for forecasting, such as predict-
ing the demand for online food delivery (Chad Akkoyun, 2022), have shown the poten-
tial to improve forecasting accuracy by incorporating macroeconomic factors like tax refunds.

Context-agnostic
Models

ContextFormer
(ours)

Contextual 
Information

ForecastHistory

{

News Articles       Mining Quantity               Market Cap          Transaction Data         Search  Trends

Bitcoin Prices

Real
Context-Agnostic
ContextFormer

Figure 1: Forecasting with context. A context-
aware forecaster like ContextFormer can incorpo-
rate multimodal contextual information, such as daily
news articles, online search trends, and market data,
to enhance the accuracy of time-series forecasts.

However, the current SOTA forecasting models
(Liu et al., 2024; Nie et al., 2023) still are unable
to handle these contextual factors and solely rely
on the historical time series to predict the future.
We attribute this to the inherent diversity and mul-
timodality of these contextual factors. For exam-
ple, consider the task of predicting the price of a
stock. The contextual factors can vary from cat-
egorical indicators like stock category (e.g., en-
ergy, technology, or healthcare), continuous and
time-varying indicators like market cap and inter-
est rates, or even textual information in the form
of news articles. We refer to this multimodal
contextual information as metadata and use both
these terms interchangeably in this work. Incor-
porating metadata into forecasting models is hard
for the following reasons:

1. Lack of multimodal metadata encoders. We note that the time series domain lacks the avail-
ability of foundation models trained on multimodal datasets to extract aligned representations
(e.g., CLIP Radford et al. (2021)). These are key to mapping the time series history and multi-
modal metadata into the same representation space from which the forecast can be decoded.
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2. Non-uniformity in metadata across datasets. The metadata associated with stock price predic-
tion, such as new articles, tweets and opinions, interest rates, etc., are completely different from
the metadata associated with weather prediction, such as rainfall levels, pollution levels, wind di-
rection, and speed, etc. This prevents us from pooling datasets together to train a context-aware
foundation model for forecasting.

3. Diversity of metadata within datasets. For a given dataset, the metadata could be categorical
(e.g., national holidays), continuous (e.g., interest rates), or even time-varying (e.g., oil prices).
Current approaches often end up modeling such diverse metadata through simple linear regressors
(Das et al., 2024), which may be insufficient to capture the complex correlations.

12/08/2023 12/10/202312/09/2023 12/11/2023 12/12/2023

Optimistic about the 
spot ETF approval, 
CrediBULL predicts 
that Bitcoin's price 
will break above 
$50K by next week.

NEWS
A Forbes report 
states that reserve 
markets are 
expecting the FOMC 
to cut interest rates 
for the next year.

NEWS

Govt. reveals that 
U.S. has witnessed 
a dramatic spike 
in national debt, 
with an increase 
of $240 billion in 
1 month.

NEWS

Bloomberg reports 
a broad crypto 
selloff and 
anticipates Bitcoin 
prices to drop 
below $40K amid a 
market correction.
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Figure 2: ContextFormer estimates the true effect of the ex-
plainable contextual factors on the forecast. Here, we show an
example of a bitcoin price forecast using news articles and the his-
torical price for the past four days. Note that the sharp decline
in price is attributed to an ongoing market correction. Existing
context-agnostic forecasting models treat this as a transient shock,
leading to an overcorrection in price recovery. In contrast, our Con-
textFormer comprehends the underlying market dynamics, result-
ing in a more accurate and reliable forecast.

Consequently, for these exact rea-
sons, we note that the recent wave
of foundation models for forecast-
ing relies only on history. To this
end, we propose a plug-and-play ap-
proach to build context-aware fore-
casting models on top of context-
agnostic SOTA forecasting models.
Our approach includes novel archi-
tectural additions to handle categor-
ical, continuous, time-varying, and
even textual metadata. Additionally,
we introduce novel training modifi-
cations to ensure that the context-
aware forecast is at least as good
as the context-agnostic forecast with
respect to the traditional forecasting
metrics. Our architectural and train-
ing modifications are inspired by the-
oretical insights on improving any re-
gression model with new, correlated
features. Our primary contributions
are as follows:

1. We propose ContextFormer, a novel framework for incorporating diverse multimodal metadata
into any context-agnostic forecasting model. ContextFormer surgically inserts aligned represen-
tation of metadata using cross-attention blocks (Vaswani et al., 2017) into the existing forecasting
model architectures.

2. We introduce a plug-and-play fine-tuning approach to effectively incorporate metadata and ensure
that the resulting forecasting performance is at least as good as that of the context-agnostic base
model.

3. We show definitive improvements in the forecasting performance of state-of-the-art context-
agnostic forecasting models, such as PatchTST (Nie et al., 2023) and iTransformer (Liu et al.,
2024) across a wide range of real-world forecasting tasks spanning retail, finance, energy, and
environmental domains.

2 RELATED WORKS

Classical methods. These methods predict future values for time series using statistical techniques.
Established approaches include ARMA (AutoRegressive Moving Average), which captures tempo-
ral dependencies through autoregression and moving averages, and exponential smoothing methods
like Holt-Winters and STL (Seasonal-trend decomposition using LOESS), which account for trends
and seasonality. The Box-Jenkins methodology is also used for building models to handle non-
stationary data (Shumway & Stoffer, 2017; Hyndman & Athanasopoulos, 2018). These techniques
have long been the foundation of time series forecasting, providing reliable ways to analyze past
trends and make accurate predictions. Prophet (Taylor & Letham, 2017), developed by Facebook,
builds upon the traditional techniques by incorporating additional features such as holiday effects
and non-linear trends, thus providing greater flexibility and accuracy. Prophet is capable of manag-
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ing complex seasonal patterns and irregularities and is known for its robustness in handling missing
data and outliers. Classical time series forecasters, despite their capability to integrate covariates,
often struggle against deep learning models because they lack the adaptability to fully utilize large
datasets and automatically learn intricate temporal dependencies.

Deep-learning methods. These methods have been the go-to method to learn the time series fea-
tures perform forecasting, utilizing the recent advancements in neural network architectures, such as
RNNs (Sherstinsky, 2020) and transformers (Vaswani et al., 2017). Notable RNN-based approaches
include DeepAR (Salinas et al., 2019) and LSTNet (Lai et al., 2018). SOTA transformer-based
approaches include iTransformer (Liu et al., 2024), which applies the attention and feed-forward
network on the inverted dimensions and PatchTST (Nie et al., 2023), a channel-independent trans-
former which takes time series segmented into subseries-level patches as input tokens. Other promi-
nent approaches include Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), FEDformer
(Zhou et al., 2022) and TimesNet (Wu et al., 2022). Recent works have focused on foundation mod-
els, which are deep models pre-trained on large amounts of data, enabling them to learn extensive
information and a variety of patterns. They can be fine-tuned or adapted to specific tasks with rela-
tively small amounts of task-specific data, showcasing remarkable flexibility and efficiency. Popular
foundation models include Time-LLM (Jin et al., 2024), Chronos (Ansari et al., 2024), Lag-Llama
(Rasul et al., 2024), and TimesFM (Das et al., 2024). Existing deep learning forecasters fail against
context-aware models because they lack the ability to incorporate external factors and dynamic con-
textual information into predictions.

Forecasting with covariates. One of the earliest approaches to conditional forecasting was pro-
posed by Borovykh et al. (2018), which employed a CNN-based model with dilated convolutions
to capture extensive historical data for improved forecasting. Recent advancements include models
such as TFT (Lim et al., 2021), NBEATSx (Olivares et al., 2023), TiDE (Das et al., 2023), TSMixer
(Chen et al., 2023), and TimeXer (Wang et al., 2024b), which integrate covariates in various ways.
For instance, TiDE uses dense MLPs to encode past time series data and decode it with future covari-
ates, while TimeXer employs transformer-based architectures to incorporate metadata. LLM-based
models like Ploutos (Tong et al., 2024) embed metadata as part of textual queries. Some pre-trained
models, such as TimesFM (Das et al., 2024), have extended fine-tuning capabilities to handle co-
variates through exogenous linear models (see Appendix B), though they require access to future
covariate values. Among the other time-series models, TimeWeaver (Narasimhan et al., 2024),
a diffusion-based framework for conditional synthesis, integrates metadata using attention-based
encoders. Acknowledging the results shown by the aforementioned models, we propose a novel
approach to build such context-aware forecasting models from the existing context-agnostic archi-
tectures. Our technique enables these models to effectively incorporate contextual information while
preserving and utilizing the time-series features acquired by the base models during pre-training.

3 PROBLEM FORMULATION

In this section, we formally define the context-aware time series forecasting problem. We are given
a multivariate time series Xhist =

(
x1,x2, . . . ,xL

)
, with xi ∈ RF . Here, L denotes the history

time series length, while F represents the number of channels. Each sample xi is associated with
contextual metadata ci, comprising both categorical features cicat ∈ NKcat and continuous features
cicont ∈ RKcont . The symbols Kcat and Kcont represent the number of categorical and continuous
metadata features, respectively. Together, these features form a vector ci = cicat ⊕ cicont, where
⊕ denotes vector concatenation. Note that ci can include both time-varying and time-invariant
metadata features. Now, we can define a metadata sequence as Chist =

(
c1, c2, . . . , cL

)
, having the

same number of timesteps as Xhist.

To understand this better, let us take the example of the Beijing AQ dataset, which contains the
time series data of six air pollutant concentrations: CO, NO2, SO2, O3, PM2.5, and PM10
concentration (F = 6), sampled on an hourly basis for four days (L = 96). The metadata here
includes information on the location, air pressure, amount of rainfall, temperature, dew point, wind
speed, and wind direction for each time series sample. In this dataset, location (12 unique labels)
and wind direction (17 unique labels) are categorical values (Kcat = 2), while the other features
are continuous (Kcont = 5). All metadata except for location is time-varying. Therefore, given
such historical time series data and its paired metadata, the task is to predict the future data samples
Xfuture =

(
xL+1,xL+2, . . . ,xL+T

)
for a forecasting horizon T .

3
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We now go on to define a dataset D = {(Xn
hist,C

n
hist,X

n
future)}

N
n=1 , which consists of N inde-

pendent and identically distributed (Xn
hist,C

n
hist,X

n
future) triplets sampled from a joint distribution

Pdata. Formally, the context-aware time series forecasting problem is stated as follows.

Problem. For a dataset D with history length L and forecasting horizon T , the goal is to
learn the parameters of a model f(Xhist,Chist; θforecast) that predicts the forecast X̂future =(
x̂L+1, x̂L+2, . . . , x̂L+T

)
for the input (Xhist,Chist), where (Xhist,Chist,Xfuture) ∈ D, such

that the following loss function is minimized.
L (θforecast) = EXhist,Chist,Xfuture∼Pdata

∥Xfuture − X̂future∥2, (1)

where X̂future = f(Xhist,Chist; θforecast). (2)
Note that here ∥.∥2 represents the l2 norm, while E denotes the expectation over a distribution. Thus,
the optimal learned parameters are given by

θ∗forecast = argmin
θforecast

L (θforecast) . (3)

The above forecasting model is said to be context-aware as the forecast X̂future is modeled on both
Xhist and Chist. In contrast, for a context-agnostic model, the forecast will be based only on the
history time series Xhist, with no contribution from the contextual metadata.

4 THEORETICAL MOTIVATION

This section provides theoretical justifications for enhancing forecasting accuracy by incorporating
context. From an information-theoretic perspective, we show that including context reduces fore-
casting uncertainty, thereby improving model accuracy. We then examine the integration of contex-
tual information into a simple linear regression model, illustrating how this approach improves the
performance of a simple autoregressive forecaster.

4.1 A PERSPECTIVE FROM INFORMATION THEORY

(a) Context-aware Forecaster

(b) Context-agnostic Forecaster
Figure 3: Graphical models for fore-
casting. The figures represent the
graphical models for the two forecast-
ing approaches. In the context-aware
model, the forecast X̂future follows
from both the history Xhist and context
Chist, while for the context-agnostic
model, X̂future depends only on Xhist.

Taking inspiration from a recent work on retrieval-based fore-
casting (Jing et al. (2022)), we illustrate the relationship be-
tween the variables Xhist, Chist, X̂future, and Xfuture for
context-aware and context-agnostic forecasters in the form of
the graphical models given in Fig. 3. On analyzing the mod-
els from an information theoretic perspective, we can show
that

I (Xfuture;Xhist,Chist) ≥ I (Xfuture;Xhist) (4)
where the quantity I (A;B) represents the mutual information
between the variables A and B. This inequality stems from
the fact that I (Xfuture;Xhist,Chist) = I (Xfuture;Xhist) +
I (Xfuture;Chist|Xhist) and I (Xfuture;Chist|Xhist) ≥ 0 for
any value of (Xfuture,Xhist,Chist).

The increase in mutual information between the input vari-
ables and the forecast, driven by the inclusion of contex-
tual information, demonstrates that adding any relevant meta-
data always reduces forecast uncertainty. Additionally, under
the premise of commonly assumed Gaussian noise between
Xfuture and X̂future, maximizing mutual information inher-
ently corresponds to minimizing the MSE loss (Jing et al., 2022). This statement can be mathemati-
cally expressed as

minEPdata
∥Xfuture − X̂future∥2 ⇐⇒ max I

(
Xfuture; X̂future

)
, (5)

thus, context-aware models (Fig. 3a) are more suitable for forecasting under an MSE loss objective.
Further discussion on Eq. 5 has been provided in Appendix A. Having demonstrated how incorpo-
rating contextual information can enhance the forecasting accuracy of general forecasting models,
we now turn our attention to integrating context into a simple autoregressive model. We will also
explore the guarantees we can provide for this approach.

4
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4.2 ADDING CONTEXT TO AN AUTOREGRESSIVE FORECASTER

Let yt be a time-varying quantity influenced by past values and additional contextual information.
Here, the underlying assumption is that the true forecast yt is a linear combination of p lag terms and
q context terms. First, we model yt only as a p-order autoregressive (AR) process yt = xtβ + ϵ.
Here, xt =

[
yt−1 yt−2 · · · yt−p

]
is a vector of the previous p lagged values, β is a vector

of AR coefficients with β ∈ Rp, and ϵ is the error term. Note that even though yt depends on
additional contextual information, the assumed linear model only depends on the lag parameters,
reflecting the context-agnostic case.

Given n + p observations, we construct an n × p matrix X of lagged values, allowing the model
to be written as Y = Xβ + ϵ, where Y is the vector of observed values and Y ∈ Rn. This for-
mulation enables the least squares estimation of β and the corresponding error in an autoregressive
framework. The least squares estimate of β and the associated error are defined as

βopt =
(
XTX

)−1
XTY , Eorig = ∥Y −Xβopt∥2. (6)

Figure 4: Adding context improves the forecasting
accuracy of an AR model. In this experiment, we vary
the number of contextual features from 0 to 5 to demon-
strate how the inclusion of these features reduces the
MSE for a simple Autoregressive forecaster.

Now, we shift to the context-aware case. Let
C be an n × q matrix representing the con-
textual metadata corresponding to X . Our key
intuition is that a straightforward way to inte-
grate this contextual information into an AR
model without altering its structure is by per-
forming an exogenous regression on the resid-
uals. This approach preserves the original au-
toregressive framework, allowing the contex-
tual information to account for the variance un-
explained by the AR model. In this method,
the AR model first captures the time dependen-
cies, and the metadata refines the forecast by re-
ducing the residual error, leading to improved
accuracy. The new context-aware autoregres-
sive model can be expressed as Y ′ = Cγ + ϵ′,
where Y ′ = Y −Xβopt represents the residuals from the AR model, γ ∈ Rq is the vector of co-
efficients for the contextual metadata, and ϵ′ is the new error term. For this model, the least squares
estimate of γ and the regression error is represented by

γopt = (CTC)−1CTY ′, Enew = ∥Y ′ −Cγopt∥2. (7)

We can demonstrate that the error Enew for the context-aware model is less than or equal to the error
Eorig of the original model. The error for this model can be expressed as

Enew = min
γ

∥Y −Xβopt −Cγ∥2. (8)

Since 0q , the zero vector in Rq , is a feasible solution for γ, we have

Enew = ∥Y −Xβopt −Cγopt∥2 ≤ ∥Y −Xβopt∥2 = Eorig. (9)

The inequality holds because γopt minimizes ∥Y − Xβopt − Cγ∥2. This shows that a context-
aware autoregressive forecaster is guaranteed to match or exceed the performance of its base model.
Additionally, our key intuition here is that a context-aware model with zeroed coefficients for the
contextual features (γ = 0q) will perform identically to its context-agnostic counterpart, ensuring
no degradation in performance when the context is not useful.

To empirically support our theoretical justification, we conducted an experiment where samples
were generated from variables dependent on their past values and underlying contextual factors. We
modeled the sequences using an AR(10) process, varying the number of contextual variables q from
1 to 5. Fig. 4 illustrates how incorporating contextual information improves forecasting accuracy of
autoregressive model. Additional details about this experiment can be found in Appendix D.1.

5
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Figure 5: ContextFormer Architecture. The architecture incorporates the multimodal contextual information
in the form of metadata and temporal embeddings through a cross-attention-based method to improve the
performance of an existing forecaster. During the fine-tuning phase of ContextFormer, the base model remains
frozen, with only the final layer and newly added components being trained on paired contextual information.

5 METHODOLOGY

In this section, we propose our method, ContextFormer, to incorporate multimodal information into
deep-learning forecasting models to enhance forecasting accuracy. Additionally, we propose a plug-
and-play fine-tuning approach for this architecture to optimize its performance further.

5.1 MODEL STRUCTURE

The ContextFormer architecture, illustrated in Fig. 5, consists of a metadata embedding module, a
temporal embedding module, and multiple cross-attention blocks. These components complement
the base model architecture. The working of these components and the required pre-processing steps
for time series forecasting are described herein:

Base Model. The base model for the ContextFormer can be any forecasting model capable of
processing input time series and generating a hidden state representation. Neural network-based
forecasters usually have an input layer, some hidden layers, and a final projection layer. The input
layer processes the time series to generate embeddings, which are passed through the hidden layers.
The projection layer maps the final hidden state to the dimensionality of the output X̂future.

Metadata Embedding. The metadata embedding block processes the paired metadata for a given
time series sample xi ∈ RF . As described in Sec. 3, the paired metadata ci comprises both cate-
gorical and continuous features denoted by cicat and cicont, respectively. For ease of processing, we
represent the categorical features through one-hot encoding. These categorical and continuous fea-
tures are initially passed through separate dense encoders tailored to their respective types, producing
individual embeddings. The resulting embeddings are then concatenated and fed into a transformer
network (Vaswani et al., 2017), enabling the model to effectively capture and leverage correlations
across categorical and continuous domains while respecting their distinct characteristics.

Temporal Embedding. Similar to the metadata embedding block, this module generates temporal
embeddings from the timestamps of a given sample. Timestamps are first decomposed into com-
ponents such as year, month, day, hour, and minute, depending on the dataset’s granularity. These
components are processed through a transformer network to extract temporal embeddings in a way
similar to metadata processing. These embeddings help the model capture long-range correlations
and periodic patterns within the time series.

Cross-attention Layers. The cross-attention layers are transformer blocks that use the hidden state
representations of the historical time series, along with either the temporal or metadata embeddings,
to extract relevant contextual information for forecasting.

Further details on the architectural implementation of the base models and the ContextFormer ad-
ditions are provided in the Appendix D.2, with the information on design parameters, including all
the time-series and metadata embedding dimensions given in Table 8 and Table 9, respectively.

6
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5.2 TRAINING

The ContextFormer architecture can either be fully trained from scratch along with the base model
using paired contextual metadata or can be used to fine-tune a pre-trained base model. One potential
fine-tuning strategy involves a plug-and-play approach, where the context-aware model builds on a
pre-trained forecaster that has already been trained on historical time-series data. In this approach,
the pre-trained base model (except for the final layer) is frozen, and the ContextFormer components
are added with their weights initialized to zero. The zero-initialization approach is motivated by the
AR example in Sec. 4.2, where the model with zero-initialized parameters performs identically to
the context-agnostic model. Subsequently, the temporal and metadata embedding modules, along
with the cross-attention blocks and final projection layers, are trained for a specified number of
epochs.

Why do we opt for fine-tuning rather than training the context-aware model from scratch?
The advantages of using the plug-and-play fine-tuning setup with a pre-trained forecaster, compared
to training a context-aware model from scratch, are as follows:

1. The fine-tuned model is guaranteed to perform at least as well as the context-agnostic base model,
provided the test distribution matches the training distribution. However, this guarantee does not
apply to a context-aware model trained from scratch.

2. For datasets with irrelevant metadata, training a context-aware model from scratch can be unsta-
ble, potentially hindering the model from effectively learning the time series’ trend and season-
ality. In contrast, fine-tuning can utilize a pre-trained model, which has already captured time
series dependencies, allowing it to focus solely on learning the contextual information.

3. If a time series dataset includes metadata for only some data points, training a context-aware
model from scratch would either require ignoring data points without metadata or augmenting
new metadata, both of which are undesirable. With our fine-tuning approach, the model can be
pre-trained on the entire dataset and then fine-tuned using only the data points that have metadata.

4. The plug-and-play design of our model allows the creation of multiple context-aware models
from a single forecaster. This flexibility motivates the development of dataset-agnostic universal
forecasting models, which can be fine-tuned to generate dataset-specific models.

6 EXPERIMENTS

MODEL METHOD MAE MSE

PATCHTST
CONTEXT-AGNOSTIC 0.749 1.076

CONTEXT-AWARE (OURS) 0.702 0.968

ITRANSFORMER
CONTEXT-AGNOSTIC 0.764 1.118

CONTEXT-AWARE (OURS) 0.704 0.971

Table 1: Context-aware forecasters outperform
Context-agnostic models on the synthetic dataset.
An average of 11.6% improvement in MSE over base-
line is observed on the ContextFormer fine-tuning of
both the transformer models on the synthetic data.

We have extensively evaluated the Con-
textFormer framework using two state-
of-the-art transformer-based forecasters,
PatchTST (Nie et al., 2023) and iTrans-
former (Liu et al., 2024), across vari-
ous forecasting applications and time hori-
zons. These evaluations showcase the
impact of incorporating contextual meta-
data to enhance forecast accuracy. Al-
though transformer-based forecasters were
utilized as the base models in our study,
the ContextFormer method is highly ver-
satile and not limited to any particular model architecture. Its flexible design allows it to be inte-
grated with any pre-existing forecasting model, irrespective of its internal implementation.

Preliminary Experiment. Before experimenting with real-world data, we validated our architec-
tural implementation using a synthetic dataset. In the first experiment with the ContextFormer ar-
chitecture, we generated a dataset from samples of ARMA(2,2) processes with randomly chosen
coefficients and added Gaussian noise to perturb the sequences (see Appendix C.1 for more details).
Though the time-domain variations were minor, ARMA decomposition of the perturbed sequences
revealed a significant divergence between the estimated and original generating coefficients.

The initial ARMA coefficients, treated as latent variables, represented the true underlying struc-
ture of each series but were unrecoverable from the noisy data. For our context-aware forecasting
task, we utilized these latent coefficients as metadata. These coefficients were continuous and time-
invariant for each series and provided critical information that could potentially enhance forecasting

7
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MODEL PATCHTST ITRANSFORMER BASELINES

METHOD CONTEXT-AGNOSTIC CONTEXT-AWARE CONTEXT-AGNOSTIC CONTEXT-AWARE TIDE TIMEXER

DATASET T MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

48 0.573 0.770 0.524 0.674 0.577 0.771 0.540 0.696 0.533 0.682 0.522 0.659
AIR QUALITY

96 0.622 0.901 0.572 0.802 0.631 0.919 0.591 0.813 0.590 0.822 0.570 0.770

48 0.038 0.058 0.029 0.036 0.042 0.067 0.028 0.035 0.030 0.038 0.029 0.042
ELECTRICITY

96 0.031 0.040 0.024 0.027 0.038 0.055 0.024 0.028 0.023 0.029 0.025 0.030

48 1.101 3.527 0.865 2.922 1.022 3.265 0.848 2.868 1.045 3.178 0.912 3.058
TRAFFIC

96 1.084 3.415 0.845 2.767 1.025 3.165 0.830 2.766 0.967 2.916 0.901 2.899

48 0.123 0.238 0.115 0.228 0.129 0.257 0.124 0.257 0.124 0.245 0.123 0.237
RETAIL

96 0.139 0.291 0.128 0.265 0.145 0.309 0.143 0.310 0.136 0.282 0.136 0.283

48 0.854 1.231 0.821 1.192 0.832 1.177 0.810 1.153 0.790 1.102 0.964 1.434
BITCOIN

96 0.971 1.561 0.948 1.537 0.992 1.650 0.951 1.547 0.974 1.655 1.079 2.081

48 0.267 0.131 0.243 1.118 0.281 0.143 0.242 0.116 0.240 0.118 0.257 0.126
ETT

96 0.299 0.162 0.281 0.148 0.313 0.173 0.280 0.147 0.283 0.150 0.286 0.151

Table 2: ContextFormer enhances forecasting accuracy. We compare the PatchTST and iTrans-
former models, with and without the ContextFormer additions for time series forecasting on the
specified datasets, with a fixed lookback length of L = 96 and forecast horizon of T ∈ {48, 96}.
The best results for each of the base architectures in each row are highlighted in bold, and the overall
best results are underlined. Notably, the ContextFormer-enhanced models consistently surpass their
context-agnostic counterparts across all rows and evaluation metrics. Furthermore, these models
demonstrate superior performance compared to the context-aware baselines like TiDE and TimeXer
in the majority of experiments.

accuracy. Since the synthetic data lacked timestamps, this experiment did not employ temporal
embeddings. As shown in Table 1, the preliminary results were promising, with the inclusion of
contextual information significantly improving forecasting accuracy for both architectures. Encour-
aged by these findings, we extended our experiments to a wide range of real-world datasets.

Real-world Datasets. We have validated our proposed ContextFormer approach across five fore-
casting tasks, each from a different domain, using a diverse group of datasets. These include the
PEMS-SF (Traffic) and Electricity Transformer Temperature (ETT) dataset (specifically ETTm2)
used in Wu et al. (2021), the ECL (Electricity Load) dataset from Trindade (2015), the Beijing AQ
(Air Quality) dataset from Chen (2019), the Store Sales Competition (Retail) dataset from Kaggle
(2022), and the Monash (Bitcoin) dataset from Godahewa et al. (2021) . Some of these datasets,
such as Monash, ETT, and Store Sales, feature complex time-varying metadata, including online
search trends and daily oil prices. On the other hand, datasets like ECL and PEMS-SF primarily
contain discrete, time-invariant metadata. Additional details about the datasets and their metadata
can be found in Appendix C.

Metrics and Baselines. The context-aware models were evaluated for forecasting on the aforemen-
tioned datasets, using a lookback length of L = 96 and forecasting horizons of T = 48 and T = 96.
Forecast accuracy was evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE)
as performance metrics. The ContextFormer-enhanced models were benchmarked against their re-
spective base architectures and state-of-the-art context-aware forecasters like TimeXer and TiDE.
Detailed descriptions of these models and the inference procedures are provided in Appendix D.
Additionally, a comparative analysis of our models with the zero-shot performance of two time-
series foundational models, namely Chronos and TimesFM, is included in the Appendix E.2.

Our experiments show that incorporating contextual information into pre-trained, context-agnostic
forecasters substantially improves baseline models’ performance in forecasting time series data
across various domains. Specifically, our experiments explore the following key questions:
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Figure 6: Context-aware forecasts show significant qualitative improvements over context-agnostic fore-
casts. The fine-tuned ContextFormer models produce forecasts that more accurately align with the ground truth
distribution, offering better performance compared to the context-agnostic models.

Does incorporating contextual metadata improve forecasting accuracy?
The context-aware models consistently outperform their respective base architectures on both fore-
casting metrics across all datasets and forecasting horizons, as shown in Table 2, thereby validating
our initial hypothesis. The consistent improvement across datasets highlights the ability of our ap-
proach to effectively utilize contextual information from diverse multimodal sources. The most
significant gain is seen for electric load forecasting, where incorporating the metadata leads to an
average improvement of 42.1% in MSE and 28.1% in MAE across models and forecasting horizons.

Is this improvement in forecasting independent of the underlying base architecture?
We used two of the most advanced transformer-based forecasting architectures for our analysis:
PatchTST and iTransformer. Despite significant differences in their implementations, the addition
of ContextFormer consistently improved the forecasting accuracy for both models across all ex-
periments. This suggests that our technique has the potential to improve the performance of any
transformer-based forecaster, regardless of its internal architecture. Incorporating ContextFormer
modules improved MSE by an average of 13.9% for PatchTST and 15.5% for iTransformer.

TRAINING TYPE CONTEXT MAE MSE
BASE MODEL AGNOSTIC 0.139 0.291
FULL TRAINING AWARE 0.154 0.370
FINE-TUNING (OURS) AWARE 0.128 0.265

Table 3: Plug-and-play fine-tuning outperforms full-
training. The results for retail forecasting with T = 96
using the PatchTST base model show that a context-aware
model trained from scratch performs worse than the context-
agnostic model. In contrast, the ContextFormer model, fine-
tuned in a plug-and-play manner, outperforms both.

Is the plug-and-play fine-tuning more
effective than training an entire model
from scratch?
One of our initial hypotheses was that a
fine-tuned model should perform at least
as well as the base model (at least on the
training set), whereas no such assurance
could be made for a context-aware model
trained from scratch. The first part of our
claim is supported by the results in Ta-
ble 2, while the second part is evidenced
by the values in Table 3. Here, the fully
trained context-aware model performs significantly worse than the context-agnostic model for re-
tail. This may be caused by either unstable training or base architecture’s intrinsic limitations in
simultaneously learning the time series features along with the contextual correlations. In contrast,
our ContextFormer mechanism is not constrained by these limitations. A more comprehensive result
comparing the training methods across multiple datasets is provided in Appendix E.3.

Can context-aware forecasting effectively capture both complex and simple metadata?
While the air quality, store sales, and Bitcoin datasets are rich in multimodal, continuous, time-
varying metadata, the traffic and electricity datasets contain only one-dimensional, discrete meta-
data in the form of sensor IDs and user IDs, respectively (in addition to temporal information). Our
method improves performance on both datasets, demonstrating its ability to capture complex, high-
dimensional metadata while leveraging temporal information and basic contextual features to boost
performance. The average improvement in MSE using the complex metadata for air quality fore-
casting was 11.1%, while the inclusion of temporal features and sensor IDs enhanced the average
MSE for traffic forecasting by 15.2%.

9
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Can the ContextFormer-enhanced models outperform SOTA context-aware forecasters ?
Over the recent years, numerous context-aware models have been developed that incorporate co-
variates as inputs while claiming superior performance compared to the transformer-based context-
agnostic architectures used in our study (Wang et al., 2024b; Das et al., 2024). This claim is sup-
ported by our results in Table 2, where both TiDE and TimeXer outperform the context-agnostic
models in 75% of these experiments based on the MSE metric. On the other hand, this result gets
flipped when we compare these models with the new ContextFormer-enhanced architectures; In 9
out of 12 experiments, our best-performing ContextFormer-enhanced model surpasses the perfor-
mance of both the context-aware baselines, further highlighting the effectiveness of this technique
in building new context-aware models from pre-trained forecasters. Additionally, note that the per-
formance of our ContextFormer-enhanced models is limited by the constraints of base architectures;
thus, with the availability of more accurate forecasters in the future, this technique could outperform
any existing models that natively support covariates.

MODEL METHOD MAE ($) RMSE ($)

PATCHTST
CONTEXT-AGNOSTIC 627.41 913.57
CONTEXT-AWARE (OURS) 551.81 810.15

ITRANSFORMER
CONTEXT-AGNOSTIC 514.89 769.11
CONTEXT-AWARE (OURS) 467.19 703.05

Table 4: Forecasting Bitcoin prices with textual
news articles. An average of 11.5% improvement
in MAE over baseline is observed on using news
articles for bitcoin price forecasting.

What types of metadata modalities can be
utilized by a context-aware forecaster?
In our experiments, we incorporated diverse
metadata types, including variables such as
temperature, oil prices, geographic location,
and web search trends. To further assess Con-
textFormer’s ability to handle multimodal
metadata, we conducted experiments fore-
casting Bitcoin prices using financial news ar-
ticles as metadata. Since no existing dataset
provided this particular combination of data, we curated a novel dataset comprising hourly Bit-
coin prices from 2022 to 2024, alongside daily financial news articles scraped from the web. To
incorporate the textual metadata into the forecasting model, the articles were represented as 1536-
dimensional embeddings generated using the OpenAI Embeddings model (details in Appendix C).
The forecasting task involved predicting Bitcoin prices one day ahead based on the previous four
days of data and corresponding daily news (L = 96, T = 24). Results shown in Table 4 demonstrate
that incorporating news articles as contextual information significantly improved forecasting metrics
across both architectures, highlighting the model’s effectiveness in managing complex multimodal
metadata. Unlike the results for the other experiments, which are presented on a normalized scale
for cross-dataset comparison, Table 4 displays the results in their original scale to emphasize the
real-world economic impact of the improved forecast.

Limitations. One of the key limitations of our approach is the lack of a principled method to find
which metadata or contextual feature is important for forecasting. Identifying the key metadata
features in advance can help limit the diversity of metadata provided as input to the model, thereby
simplifying the learning process during the fine-tuning stage.

7 CONCLUSION

In this paper, we introduced ContextFormer, a novel technique for integrating contextual informa-
tion into existing forecasting models. Through comprehensive evaluations on diverse real-world
datasets, we demonstrated ContextFormer’s ability to effectively handle complex, multimodal meta-
data while consistently outperforming baseline models and even forecasting foundation models. In
addition, we proposed a resource-efficient plug-and-play fine-tuning framework that offers signifi-
cant improvements to forecasting accuracy over training context-aware models from scratch.

In future work, we aim to test our approach on other contextual modalities such as images, videos,
etc. An interesting future work is to analyze the effects of forecasting metadata first; thereby, we
propose a two-step forecasting pipeline where we first forecast metadata. We hypothesize that the
forecasted metadata can be used to obtain better forecasts. Our key intuition is that metadata is more
human-interpretable, and therefore forecasting metadata could be an easier task to solve.

Reproducibility. The implementation and hyperparameter details have been provided to help re-
produce the results reported in the paper. The source code will be released post publication.
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Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin,
Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. Lag-llama: Towards foundation mod-
els for probabilistic time series forecasting, 2024. URL https://arxiv.org/abs/2310.
08278.

David Salinas, Valentin Flunkert, and Jan Gasthaus. Deepar: Probabilistic forecasting with autore-
gressive recurrent networks, 2019. URL https://arxiv.org/abs/1704.04110.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term mem-
ory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, March 2020. ISSN
0167-2789. doi: 10.1016/j.physd.2019.132306. URL http://dx.doi.org/10.1016/j.
physd.2019.132306.

R.H. Shumway and D.S. Stoffer. Time Series Analysis and Its Applications: With R Examples.
Springer Texts in Statistics. Springer International Publishing, 2017. ISBN 9783319524528. URL
https://books.google.co.in/books?id=sfFdDwAAQBAJ.

Sean Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72, 09 2017.
doi: 10.1080/00031305.2017.1380080.

Hanshuang Tong, Jun Li, Ning Wu, Ming Gong, Dongmei Zhang, and Qi Zhang. Ploutos: Towards
interpretable stock movement prediction with financial large language model, 2024.

12

https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://arxiv.org/abs/2106.04554
https://arxiv.org/abs/2310.06625
https://arxiv.org/abs/2310.06625
https://arxiv.org/abs/2403.02682
https://arxiv.org/abs/2403.02682
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://www.sciencedirect.com/science/article/pii/S0169207022000413
https://www.sciencedirect.com/science/article/pii/S0169207022000413
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://arxiv.org/abs/2310.08278
https://arxiv.org/abs/2310.08278
https://arxiv.org/abs/1704.04110
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1016/j.physd.2019.132306
https://books.google.co.in/books?id=sfFdDwAAQBAJ


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Artur Trindade. Electricity Load Diagrams. UCI Machine Learning Repository, 2015. DOI:
https://doi.org/10.24432/C58C86.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, and Jianxin Liao.
Rethinking the power of timestamps for robust time series forecasting: A global-local fusion
perspective, 2024a.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables, 2024b. URL https://arxiv.org/abs/2402.19072.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposi-
tion transformers with auto-correlation for long-term series forecasting. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 22419–22430. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf.

Haixu Wu, Teng Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. ArXiv, abs/2210.02186, 2022. URL
https://api.semanticscholar.org/CorpusID:252715491.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Fre-
quency enhanced decomposed transformer for long-term series forecasting, 2022. URL https:
//arxiv.org/abs/2201.12740.

13

https://arxiv.org/abs/2402.19072
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://api.semanticscholar.org/CorpusID:252715491
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix
A MSE LOSS AND MUTUAL INFORMATION

Following the approach in Jing et al. (2022), we can demonstrate that minimizing the
MSE loss between Xfuture and X̂future is equivalent to maximizing the mutual information
I
(
Xfuture; X̂future

)
, assuming a Gaussian noise model between the two variables. Specifically,

minimizing the MSE is shown to be equivalent to maximizing the log-likelihood, which, in turn,
maximizes the mutual information.

Suppose that the relationship between Xfuture and X̂future is modeled as

X̂future = Xfuture + Z,

where Z is Gaussian noise with zero mean and variance σ2, i.e., Z ∼ N (0, σ2). The log-likelihood
of obtaining Xfuture given X̂future can be derived from the probability density function of the Gaus-
sian distribution. The log-likelihood function is given by

log p(Xfuture | X̂future) = −1

2
log(2πσ2)− ∥Xfuture − X̂future∥22

2σ2
.

Since 1
2 log(2πσ

2) is a constant with respect to Xfuture, the log-likelihood is maximized when the
term ∥Xfuture − X̂future∥22 is minimized, which is the same as minimizing the MSE. Therefore,
minimizing the MSE is equivalent to maximizing the log-likelihood.

Having shown the equivalence of MSE and the log-likelihood, now the mutual information
I(Xfuture; X̂future) between Xfuture and X̂future can be expressed as

I(Xfuture; X̂future) = H(Xfuture)−H(Xfuture | X̂future)

where H(Xfuture) is the entropy of Xfuture and H(Xfuture | X̂future) is the conditional entropy
of Xfuture given X̂future. For Gaussian noise, H(Xfuture | X̂future) is related to the conditional
variance of Xfuture given X̂future,

H(Xfuture | X̂future) = −E
[
log p(Xfuture | X̂future)

]
.

Maximizing the likelihood of the observed data X̂future given the model (in this case, Xfuture)
reduces the uncertainty H(Xfuture | X̂future), effectively increasing the mutual information. Now,
we know that minimizing the MSE maximizes the log-likelihood. This corresponds to making the
estimate X̂future as close as possible to the true value Xfuture, which reduces the variance of the
noise Z (or the uncertainty in X̂future).

Since mutual information I(Xfuture; X̂future) is a measure of the reduction in uncertainty about
Xfuture given X̂future, minimizing the conditional variance (or equivalently, maximizing the log-
likelihood) increases I(Xfuture; X̂future). Thus, minimizing MSE maximizes the log-likelihood,
which in turn maximizes the mutual information I(Xfuture; X̂future),

min Epdata
∥Xfuture − X̂future∥2 ⇐⇒ max I

(
Xfuture; X̂future

)
.

B TIMESFM WITH COVARIATES

TimesFM (Das et al., 2024), developed by Google Research, is one of the latest foundational models
for time series forecasting. It boasts superior zero-shot performance compared to other foundational
models across most of the commonly used benchmark datasets. A key feature of TimesFM is its
ability to incorporate static and dynamic covariates during inference, making it a context-aware
forecaster by our definition. As a multipurpose model, it is not trained on any dataset-specific co-
variates but at the time of dataset-specific inference, it treats them as exogenous regression variables
and fits linear models onto them.
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DATASET T
CONTEXT-AGNOSTIC CONTEXT-AWARE

MAE MSE MAE MSE

AIR QUALITY
48 0.571 0.807 0.611 0.847

96 0.638 0.986 0.659 1.01

ELECTRICITY
48 0.073 0.156 0.084 0.249

96 0.057 0.129 0.065 0.188

TRAFFIC
48 0.702 2.172 0.795 2.516

96 0.679 2.143 0.758 2.428

RETAIL
48 0.108 0.185 0.114 0.215

96 0.133 0.236 0.131 0.274

BITCOIN
48 0.667 0.822 0.724 0.921

96 0.952 1.509 0.973 1.572

Table 5: TimesFM’s inability to leverage his-
torical metadata through in-context regression.
Without access to future covariate values, the
context-aware TimesFM model does not demon-
strate any performance improvement across the
datasets used in our main experiment using its
simplistic linear regression approach.

One limitation of such a simplistic batched in-
context regression model is that it may be inca-
pable of extracting complex correlations among
the covariates and the time series. Moreover,
the TimesFM implementation requires the pres-
ence of future values of dynamic covariates
through the forecasting horizon; this kind of
information is often unavailable in real-world
scenarios. To address this, the TimesFM de-
velopers have proposed two stop-gap solutions:
either shifting and repeating past dynamic co-
variates as delayed proxies for the future or
“bootstrapping”, where TimesFM is first used
to forecast these past covariates into the fu-
ture and then called again using these forecasts
as future covariates. We employ the earlier
method to evaluate the model’s ability to per-
form using only historical covariates (or con-
textual information, in our terms). The results,
given in table 5, highlight the model’s inabil-
ity to improve its performance via its current
context-aware implementation in the absence of future covariates, as for all of our datasets (except
one), the context-agnostic TimesFM outperforms the context-aware one on both the metrics.

C DATASET DESCRIPTION

We will now describe the datasets used for training, validation and evaluation of our proposed model.

C.1 SYNTHETIC DATA

We generated a dataset comprising 10000 time-series sequences, each containing 192 samples, based
on ARMA(2,2) processes with randomly initialized coefficients, sampled from a uniform distribu-
tion, for the first preliminary experiment. The stability of each ARMA process was ensured by
verifying that all the roots of the corresponding characteristic equations were within the unit cir-
cle. To cause some perturbation, Gaussian noise with 0.1 variance was added to all the sequences.
The metadata for the dataset, consisting of the four ARMA coefficients, was continuous and time-
invariant. These coefficients differed significantly from the ARMA coefficients obtained from the
noisy data for most of the sequences. The dataset was split in a 7:1:2 ratio among the train, valida-
tion, and test splits.

C.2 BEIJING AQ (AIR QUALITY)

The dataset obtained from Chen (2019) contains hourly air pollutant concentration data and cor-
responding meteorological data from 12 locations in Beijing. The task is to forecast a 6-channel
multivariate time series using historical data and weather forecast metadata. Missing values in the
dataset are handled by imputing continuous metadata and time series values with their mean, while
missing categorical metadata (such as wind direction) are assigned an “unknown” label. The data,
spanning from 2013 to 2017, is split into training, validation, and test sets in a 7:1:2 ratio. For each
set, we first apply a sliding window of length 144 with a stride of 24, resulting in 9828 training,
1332 validation, and 2796 test time series samples. Then, we use a sliding window of length 192
with a stride of 24, yielding 9012 training, 1188 validation, and 2556 test time series.

C.3 STORE SALES (RETAIL)

The dataset, sourced from a popular Kaggle competition (Kaggle, 2022), contains daily sales data
from 2013 to 2017 for 34 product families sold across 55 Favorita stores in Ecuador. The dataset
includes features such as store number, product family, promotional status, and sales figures. Ad-
ditionally, supplementary information like store metadata and oil prices is provided, offering time-
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varying metadata that can be leveraged for forecasting. For the forecasting tasks, we consider the
complete time series for each product in each store, which is univariate time series. Initially, we ap-
ply a sliding window of length 144 with a stride of 24, resulting in 53460 training, 17820 validation,
and 24948 test time series samples. Next, we use a sliding window of length 192 with a stride of 24,
yielding 49896 training, 14256 validation, and 21384 test time series samples.

C.4 PEMS-SF (TRAFFIC)

The dataset, sourced from Wu et al. (2021), contains 15 months of daily data from the California
Department of Transportation PEMS website. It captures the occupancy rate (ranging from 0 to 1)
of various freeway car lanes in the San Francisco Bay area. The data spans from 2008 to 2009, with
measurements sampled every hour . The forecasting task involves predicting the electricity demand
pattern for a single sensor (selected from a total of 861 sensors), framed as a univariate time series
forecasting problem. The data is split temporally into training, validation, and test sets in a 7:1:2
ratio. We then apply sliding windows of lengths 144 and 192, each with a stride of 24. The number
of samples for all the sets is given in Table 7.

DATASET TIME-SERIES CONTINUOUS CATEGORICAL

DATA METADATA METADATA

AIR
QUALITY

CO, NO2 , SO2 , O3 ,
PM2.5, AND PM10 CON-
CENTRATION

TEMPERATURE, HUMIDITY,
WIND SPEED, PRESSURE,
DEW POINT

LOCATION, WIND DI-
RECTION

RETAIL PRODUCT SALES VOLUME PROMOTIONAL OFFERS,
OIL PRICES

STORE ID, LOCATION,
ITEM CATEGORY

TRAFFIC TRAFFIC VOLUME NONE SENSOR ID
ELECTRICITY
LOAD

ELECTRICITY
CONSUMPTION

NONE USER ID

ETT OIL TEMPERATURE 6 POWER LOAD FEATURES NONE

BITCOIN BITCOIN PRICES 17 FACTORS NONE

Table 6: Dataset Summary. For our main experiments, we selected real-world datasets that encom-
pass prevalent forecasting tasks across diverse domains, including environmental science, energy,
finance, retail, and transportation.

C.5 ECL (ELECTRICITY )

The dataset taken from Trindade (2015) consists of power consumption data for 370 users in Portugal
over a period of 4 years from 2011 to 2015. It is a commonly used dataset for time series forecasting
(Wu et al., 2021; Liu et al., 2024; Ansari et al., 2024). The forecasting task with respect to this
dataset is to predict the electricity demand pattern for a single user, which is framed as a univariate
time series forecasting problem. In the absence of any innate metadata features, we consider the 370
user IDs to be the only metadata. The data is sampled every 15 minutes, resulting in a time series
with 96 daily timesteps. We process the data to remove days with significant 0 values. The data has
been split, and sliding windows with stride 24 are used to get approximately a 7:1:2 ratio for the
number of samples in the training, validation, and test sets, with the exact numbers given in table 7.

C.6 ELECTRICITY TRANSFORMER TEMPERATURE (ETT)

The dataset originally introduced by Zhou et al. (2021) comprises oil temperature and power load
factors for electricity transformers from two distinct counties in China, spanning two years. Like
the ECL dataset, it is widely utilized for time series forecasting tasks (Wu et al., 2021; Liu et al.,
2024). Among the various variants of the ETT dataset, we selected ETTm2 for our experiments. The
forecasting task for this dataset involves predicting the oil temperature of an electricity transformer,
framed as a univariate time series forecasting problem. Six power load factors serve as covariates.
The data is sampled at 15-minute intervals, resulting in a time series with 96 daily timesteps. Using
a sliding window approach with a stride of 24, the dataset is split into training, validation, and test
sets in approximately a 7:1:2 ratio.
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C.7 MONASH (BITCOIN)

The dataset, sourced from the Monash Time Series Forecasting Repository (Godahewa et al., 2021),
contains daily Bitcoin closing prices from 2010 to 2021, along with 18 potential influencing factors.
These include metrics like hash rate, block size, mining difficulty, and social indicators such as
the number of tweets and Google searches related to the keyword “Bitcoin.” During preprocessing,
we excluded the number of tweets due to its limited availability, leaving us with 17-dimensional
continuous time-varying metadata for the univariate forecasting task. The dataset is divided into
training, validation, and test sets in a 7:1:2 ratio. We apply sliding windows of lengths 144 and 192
with a stride of 24 to the data.

C.8 ADDITIONAL EXPERIMENT (BITCOIN-NEWS)

In the absence of a dataset containing both Bitcoin prices and corresponding news articles, we con-
structed a new dataset comprising hourly Bitcoin closing prices and daily financial news articles.
The articles from January 1st, 2022, to February 17th, 2024, were sourced using the Alpaca His-
torical News API (Alpaca, 2024), with each metadata instance consisting of all news articles and
headlines tagged with BTCUSD for a given day. These textual instances were directly processed
using the OpenAI Embeddings model ‘text-embedding-1-small’ (OpenAI, 2022), producing 1536-
dimensional embeddings for each day’s news. To ensure causality, the hourly Bitcoin closing prices
for a given day were aligned with the previous day’s news embeddings. These embeddings serve as
time-varying metadata, remaining constant within a day but varying daily. This univariate forecast-
ing experiment was conducted with a fixed lookback length of L = 96 and a horizon of T = 24,
allowing us to forecast daily Bitcoin trends based on the previous four days’ history and news arti-
cles. As before, the data was split temporally into training, validation, and test sets in a 7:1:2 ratio,
with a sliding window of length 120 and a stride of 24 applied to create the datasets.

DATASET CHANNELS SIZE (T = 48) SIZE (T = 96) FREQUENCY BATCH SIZE

SYNTHETIC 1 - (7000,1000,2000) N.A. 128
AIR QUALITY 6 (9828,1332,2796) (9012,1188,2556) HOURLY 32
RETAIL 1 (53460,17820,24948) (49896,14256,21384) DAILY 128
ELECTRICITY 1 (50265,9102,13627) (50262,8750,13626) 15 MINUTE 128
TRAFFIC 1 (435666, 58548, 121401) (433944, 56826, 119679) HOURLY 384
ETT 1 (2025,283,573) (2027,285,575) 15 MINUTE 64
BITCOIN 1 (104,10,26) (102,8,24) DAILY 1
BITCOIN-NEWS 1 - (524,71,148) HOURLY 4

Table 7: Dataset Description. This table summarizes the main features of the datasets used in our
experiments, such as dimensionality, sample size, frequency, and training batch size. The dataset
sample size are given in the format of (training size, validation size, test size).

D IMPLEMENTATION DETAILS

D.1 CONTEXT-AWARE AUTOREGRESSION

To provide theoretical justification for the ideas in Subsection 4.2, we generated a dataset consisting
of 500-length sequences formed by linear combinations of an autoregressive process with five latent
variables, followed by added perturbations. For this scenario, we choose the latent variables as the
contextual information. The resulting dataset, denoted as D, is structured as {(Xn,Cn,Y n)}Nn=1,
For our experiments, we set N = 1000.

We initially start by modeling these sequences through vanilla AR(10) models of the form Y =
Xβ + ϵ, where X is a 490 × 10 matrix and Y is a 490-length vector. The corresponding paired
metadata for such a sequence can be represented as C, which is a 490× 5 matrix.

Next, we incorporate contextual metadata into the existing AR models by fitting them as exogenous
regressors for the residuals. To demonstrate the impact of increasing context on forecasting accuracy,
we gradually increase the dimensionality of the regression model from q = 1 to 5. The results for
this context-aware autoregressive forecaster are visualized in Fig. 4.
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D.2 CONTEXT-AWARE TRANSFORMERS

D.2.1 BASE ARCHITECTURES

The core architecture for both the ContextFormer-enhanced forecasters contains an input history em-
bedding layer, six hidden layer blocks, and a final projection layer. Each of the hidden layer blocks
consists of two parallel cross-attention layers and a self-attention layer. Each attention layer oper-
ates in a 256-dimensional representational space while employing an 8-head attention mechanism.

DESIGN PARAMETER VALUE

EMBEDDING DIMENSION 256

SELF-ATTENTION LAYERS 6

ATTENTION HEADS 8

ACTIVATION GELU

PATCH LENGTH 16

STRIDE 8

LEARNING RATE 3× 10−5

DROPOUT 0.1

Table 8: Design parameters for our
experiments. The hyperparameters for
embedding dimensions, attention heads,
and activation functions are consistent
across all the transformers in the base
model and ContextFormer additions.
The number of self-attention layers is
the same for both the base models. The
learning rate and dropout remain fixed
throughout all the forecasters across the
experiments. The parameters for patch
length and stride are specific to the
PatchTST input layer.

PatchTST (Nie et al., 2023) is a popular transformer-
based architecture for time series forecasting. In contrast
to the traditional models that treat each time step as an
individual token, PatchTST divides the data into patches,
similar to what Vision Transformers (Dosovitskiy et al.,
2021) do for images. Each patch in this setup repre-
sents a sequence of time steps, which enables the model
to focus on long-term temporal patterns. By applying
self-attention to these patches, PatchTST captures long-
range dependencies more efficiently, reducing the com-
putational cost associated with traditional transformers.
This patch-based approach enables the model to handle
longer sequences and large-scale forecasting tasks more
effectively. PatchTST outperforms standard transform-
ers on various benchmarks and can handle both univari-
ate and multivariate time series data, making it a versatile
choice for various forecasting tasks.

iTransformer (Liu et al., 2024) extends the patching con-
cept introduced in PatchTST by applying the model to
inverted dimensions of the time series. Rather than em-
bedding time steps, iTransformer treats each variable or
feature of the time series as separate tokens. This shifts
the focus from temporal dependencies to relationships
between features across time. Despite this inversion,
iTransformer retains core Transformer components, in-
cluding multi-head attention and positional feed-forward
networks, but applies them in a way that fundamentally alters how dependencies are modeled. Al-
though the original iTransformer architecture can handle timestamps, we intentionally excluded
them for the context-agnostic variant of the model. The rest of the implementation for both the base
models is the same as what is given in the official TimesNet (Wu et al., 2022) Github repository.

D.2.2 CONTEXTFORMER ADDITIONS

DESIGN PARAMETER VALUE

FEED-FORWARD DIMENSION 256

EMBEDDING DIMENSION 256

SELF-ATTENTION LAYERS 2

ATTENTION HEADS 8

ACTIVATION GELU

Table 9: Hyperparameters for the em-
bedding modules. Both metadata and
temporal embedding blocks share the
same design parameters.

Metadata Embedding. The metadata embedding mod-
ule consists of two fully connected (FC) networks fol-
lowed by a transformer encoder. Discrete metadata is
one-hot encoded and processed through one FC network,
while continuous metadata is passed through a separate
FC network. The input size of each network corresponds
to the number of discrete or continuous features in the
dataset, with the output dimensions consistently set to 256
for all experiments. If both metadata types are present,
then their outputs are concatenated and processed through
a linear layer to reduce the dimensionality from 512 to
256; otherwise, the single output is used. The resulting
output is then added to the positional encodings and passed through a transformer encoder, gener-
ating the metadata embedding. This implementation of metadata embedding follows the approach
described in Narasimhan et al. (2024) for constructing metadata encoders in conditional time series
generation.
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Temporal Embedding. The temporal embedding block shares a similar architecture with the meta-
data embedding but is specifically designed for continuous temporal data. Timestamp information,
such as the year, month, day, and hour, is decomposed based on the dataset’s granularity and treated
as continuous contextual features. In essence, the temporal embedding functions like a metadata
embedding module, where the temporal data is embedded as continuous metadata. Unlike the meta-
data encoder, the temporal encoder exclusively handles continuous features and focuses entirely on
capturing the temporal characteristics of the input.

D.2.3 OTHER DETAILS

Training Parameters. The learning rate was set to 3 × 10−5 for all experiments, and a dropout
rate of 0.1 was applied throughout the training process. Each of the ContextFormer models was
trained for 100 epochs: the first 50 epochs focused on training the base models using historical data,
while the remaining 50 epochs were dedicated to the ContextFormer fine-tuning. In the experiments
described in Appendix E.3, the fully-trained context-aware models were trained on the time series
data and paired metadata until convergence. The model with the lowest validation loss was saved
and used for inference. All the experiments, including the benchmarks, were run on three random
seeds to ensure the robust results, the Table 2 reports average values of the evaluation metrics over
the random seeds.

Model Size. The context-aware models comprised an average of approximately 13 million parame-
ters. Of these, an average of 3.5 million parameters were associated with the original model, while
the remaining approximately 9.5 million parameters were introduced by the ContextFormer addi-
tions. The total number of parameters varied slightly depending on the specific base architecture,
the dimensions of the time series, and the corresponding metadata.

Software and Hardware. All experiments were conducted using Python 3.9.12 and PyTorch 2.0.0
(Paszke et al., 2019), running on Nvidia RTX A5000 GPUs.

D.3 BENCHMARK FORECASTERS

TiDE (Das et al., 2023), introduced by Google Research in 2023, is a straightforward MLP-based
encoder-decoder architecture designed for long-term time series forecasting. It effectively handles
non-linear dependencies and dynamic covariates, presenting itself as a parameter-efficient model.
Unlike transformer-based solutions, TiDE avoids self-attention, recurrent, or convolutional mech-
anisms, achieving linear computational scaling with respect to context and horizon lengths. The
model encodes the historical time-series data along with covariates using dense MLPs and decodes
the series alongside future covariates, also leveraging dense MLPs. To align with our problem for-
mulation outlined in Section 3, we adapted TiDE by masking future covariates during both training
and inference. The embedding dimension was set to 16, as given in the TimeXer GitHub repository.

TimeXer (Wang et al., 2024b), introduced in 2024, is an innovative transformer-based architecture
designed for time series forecasting that incorporates exogenous variables through a cross-attention
mechanism. It utilizes patch-level representations for endogenous variables and variate-level repre-
sentations for exogenous variables, linked via an endogenous global token. This architecture aims to
jointly capture intra-endogenous temporal dependencies and exogenous-to-endogenous correlations.
To ensure a fair comparison with our models, we maintained the design parameters as specified in
Table 8. Since neither of the benchmark forecasters includes a separate processing pipeline for
discrete and continuous metadata, we concatenated these metadata types and passed them jointly
through the models for all benchmarking experiments. Training parameters were kept consistent
with those outlined in Appendix D.2.3, while the remaining parameters were adopted directly from
the official TimeXer GitHub repository.

E ABLATION STUDY

E.1 MAIN RESULTS WITH STANDARD DEVIATION

For robust experimental results, each experiment is repeated three times with different random seeds.
Due to space constraints, the main text presents the results without standard deviations. The com-
plete results, including standard deviations, are provided in Table 10.
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MODEL PATCHTST ITRANSFORMER

METHOD CONTEXT-AGNOSTIC CONTEXT-AWARE CONTEXT-AGNOSTIC CONTEXT-AWARE

DATASET T MAE MSE MAE MSE MAE MSE MAE MSE

AIR QUALITY
48 0.573± 0.005 0.770± 0.013 0.524± 0.002 0.674± 0.011 0.577± 0.005 0.771± 0.006 0.540± 0.002 0.696± 0.002

96 0.622± 0.006 0.901± 0.014 0.572± 0.004 0.802± 0.009 0.631± 0.004 0.919± 0.007 0.591± 0.006 0.813± 0.013

ELECTRICITY
48 0.038± 0.001 0.058± 0.003 0.024± 0.001 0.029± 0.001 0.042± 0.002 0.067± 0.008 0.028± 0.001 0.035± 0.001

96 0.031± 0.005 0.040± 0.009 0.024± 0.001 0.027± 0.002 0.038± 0.001 0.055± 0.002 0.024± 0.001 0.028± 0.001

TRAFFIC
48 1.101± 0.066 3.527± 0.179 0.865± 0.009 2.922± 0.047 1.022± 0.019 3.265± 0.096 0.848± 0.016 2.868± 0.024

96 1.084± 0.042 3.415± 0.173 0.845± 0.014 2.767± 0.049 1.025± 0.031 3.165± 0.034 0.830± 0.002 2.766± 0.020

RETAIL
48 0.123± 0.002 0.238± 0.005 0.115± 0.001 0.228± 0.001 0.129± 0.002 0.257± 0.004 0.124± 0.001 0.257± 0.005

96 0.139± 0.002 0.291± 0.010 0.128± 0.001 0.265± 0.004 0.145± 0.002 0.309± 0.006 0.143± 0.001 0.310± 0.012

BITCOIN
48 0.854± 0.045 1.231± 0.120 0.821± 0.038 1.192± 0.101 0.832± 0.020 1.177± 0.053 0.810± 0.021 1.153± 0.078

96 0.971± 0.004 1.561± 0.029 0.948± 0.003 1.537± 0.009 0.992± 0.010 1.650± 0.029 0.951± 0.005 1.547± 0.022

Table 10: Results with Standard Deviation. We compare the PatchTST and iTransformer with
and without the ContextFormer additions on forecasting time series with a fixed lookback length
L = 96 and forecast horizon T ∈ {48, 96}. The mean and standard deviation are calculated for
each experiment with three different seeds.

E.2 CONTEXTFORMER VS. FOUNDATIONAL MODELS

To compare the performance of our methods with massive foundational models, we have marked
them against Chronos (Ansari et al., 2024) and TimesFM Das et al. (2024). Chronos, introduced
by Amazon Sciences in 2024, is a collection of pre-trained foundational time series models that
leverage LLM architectures. For our experiments, we specifically use the zero-shot forecasting
results from the ‘chronos-t5-base’ variant with 200 million parameters. Note that Chronos can
handle only single-channel data; thus, for the evaluation of the multivariate datasets, all the channels
were processed separately. The details for TimesFM are given in Appendix B.

TYPE CONTEXTFORMER FOUNDATIONAL MODELS

MODEL PATCHTST ITRANSFORMER CHRONOS TIMESFM
DATASET T MAE MSE MAE MSE MAE MSE MAE MSE

AIR QUALITY
48 0.524 0.674 0.540 0.696 0.600 0.873 0.571 0.807
96 0.572 0.802 0.591 0.813 0.664 0.989 0.638 0.986

ELECTRICITY
48 0.029 0.036 0.028 0.035 0.069 0.104 0.073 0.156
96 0.024 0.027 0.024 0.028 0.058 0.078 0.057 0.129

TRAFFIC
48 0.865 2.922 0.848 2.868 0.838 4.845 0.702 2.172
96 0.845 2.767 0.830 2.766 0.842 5.142 0.679 2.143

RETAIL
48 0.115 0.228 0.124 0.257 0.106 0.198 0.108 0.185
96 0.128 0.265 0.143 0.310 0.122 0.245 0.133 0.236

BITCOIN
48 0.821 1.192 0.810 1.153 0.677 0.885 0.667 0.822
96 0.948 1.537 0.951 1.547 0.898 1.501 0.952 1.509

Table 11: ContextFormer Vs. Foundational Models. We compare our ContextFormer-enhanced
models with the zero-shot performance of Chronos and TimesFM for time series forecasting with a
fixed lookback length L = 96 and forecast horizon T ∈ {48, 96}. For all the datasets, our models
offer comparable or better performance with respect to the massive foundational models.

E.3 FULL-TRAINING VS. FINE-TUNING OF CONTEXT-AWARE MODELS

To empirically support the use of fine-tuning over training from scratch, we present the
results for numerous datasets using both approaches. These results in Table 12 show
that even when training the context-aware architecture from scratch, its performance of-
ten falls short of our fine-tuned models for most of the datasets. This discrepancy could
be attributed to the factors discussed in Sec. 5.2 or other potential causes.
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MODEL PATCHTST ITRANSFORMER

TRAINING FULL FINE-TUNE FULL FINE-TUNE

DATASET T MAE MSE MAE MSE MAE MSE MAE MSE

AIR QUALITY
48 0.507 0.611 0.524 0.674 0.530 0.646 0.540 0.696
96 0.550 0.717 0.572 0.802 0.562 0.734 0.591 0.813

ELECTRICITY
48 0.030 0.038 0.029 0.036 0.029 0.035 0.028 0.035
96 0.022 0.025 0.024 0.027 0.025 0.029 0.024 0.028

TRAFFIC
48 0.994 3.128 0.865 2.922 0.917 2.903 0.848 2.868
96 0.955 3.006 0.845 2.767 0.896 2.859 0.830 2.766

RETAIL
48 0.116 0.230 0.115 0.228 0.121 0.252 0.124 0.257
96 0.154 0.370 0.128 0.265 0.151 0.326 0.143 0.310

BITCOIN
48 0.849 1.226 0.821 1.192 1.038 1.796 0.810 1.153
96 0.983 1.656 0.948 1.537 0.962 1.604 0.951 1.547

Table 12: Full Training Vs. Fine-tuning. We compare the two training methods for the context-
aware PatchTST and iTransformer for time series forecasting with a fixed lookback length L = 96
and forecast horizon T ∈ {48, 96}. For most of the datasets, our plug-and-play fine-tuning method
outperforms its fully-trained counterpart.

Figure 7: Fine-tuning achieves better validation
loss on the Bitcoin dataset. Training and valida-
tion loss curves for full training and fine-tuning
on the Bitcoin dataset with a forecast horizon
T = 96, for ContextFormer-enhanced PatchTST.

We further validated our choice of fine-
tuning the ContextFormer-enhanced mod-
els instead of training them from scratch
through the training curves. Figure 7 il-
lustrates the training and validation losses
for both full training and fine-tuning ap-
proaches in the Bitcoin Dataset. For the
ContextFormer fine-tuning, the base ar-
chitecture is pre-trained for 50 epochs,
after which it is frozen, and the Con-
textFormer additions are trained for the
next 50 epochs. The full training occurs
for 100 epochs. From Figure 7, it is evi-
dent that the validation loss for full training
begins to diverge significantly earlier than
for fine-tuning. This divergence occurs
well before the 50th epoch. Furthermore,
the ContextFormer-enhanced PatchTST
model achieves a lower best validation loss
through the proposed fine-tuning strategy
as compared to full training from scratch.

E.4 EFFECT OF TEMPORAL INFORMATION VS FULL CONTEXT

Throughout this text, we have used the term contextual information to encompass all static or time-
varying, continuous, or discrete data associated with the time series in question. This includes easily
accessible temporal information such as timestamps (e.g., month or day), which can significantly
impact forecasting accuracy, especially for datasets with long-range periodicity. While frameworks
like GLAFF (Wang et al., 2024a) demonstrate the potential to enhance existing forecasters using
learned timestamp encodings, our approach primarily focuses on integrating paired metadata with
temporal information for improved forecasting accuracy. Our architecture uses separate embeddings
and cross-attention layers for temporal and non-temporal data. In Table 13, we present results com-
paring the effects of using only temporal information (commonly available in time series) versus
utilizing the full contextual information, which includes both timestamps and associated metadata.
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MODEL PATCHTST ITRANSFORMER

CONTEXT TEMPORAL FULL TEMPORAL FULL

DATASET T MAE MSE MAE MSE MAE MSE MAE MSE

AIR QUALITY
48 0.537 0.702 0.524 0.674 0.559 0.730 0.540 0.696
96 0.587 0.829 0.572 0.802 0.607 0.858 0.591 0.813

ELECTRICITY
48 0.033 0.044 0.029 0.036 0.031 0.040 0.028 0.035
96 0.029 0.034 0.024 0.027 0.027 0.032 0.024 0.028

TRAFFIC
48 0.912 2.933 0.865 2.922 0.882 2.856 0.848 2.868
96 0.901 2.819 0.845 2.767 0.882 2.799 0.830 2.766

RETAIL
48 0.119 0.232 0.115 0.228 0.127 0.260 0.124 0.257
96 0.133 0.276 0.128 0.265 0.144 0.307 0.143 0.310

BITCOIN
48 0.833 1.204 0.821 1.192 0.831 1.244 0.810 1.153
96 0.949 1.538 0.948 1.537 0.952 1.538 0.951 1.547

Table 13: Temporal Information Vs. Full Context. We compare the performance of the context-
aware PatchTST and iTransformer models for time series forecasting, using both temporal infor-
mation alone and the full context, which includes timestamps and metadata, with a fixed lookback
length of L = 96 and prediction lengths of T ∈ {48, 96}. Incorporating the full contextual informa-
tion, including metadata, leads to significant performance improvements over using only temporal
data across most datasets.

F ADDITIONAL QUALITATIVE PLOTS

In this section, we highlight the top three examples of both improvement and degradation in fore-
cast quality after incorporating ContextFormer across various base architectures and datasets. This
provides an unbiased comparison between context-aware and context-agnostic forecasts. Note that
all plots in this section correspond to a forecasting horizon of 96 steps.

PatchTST iTransformer

Maximum Degradation Maximum Improvement Maximum ImprovementMaximum Degradation

Context-agnostic Forecast Ground Truth Context-aware Forecast (ours) 

Figure 8: Qualitative Plots for Air Quality Dataset. The plots showcase the top three examples with the
highest degradation and the improvement in MSE for the ContextFormer forecasts compared to the baseline.
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PatchTST iTransformer

Maximum Degradation Maximum Improvement Maximum ImprovementMaximum Degradation

Context-agnostic Forecast Ground Truth Context-aware Forecast (ours) 

Figure 9: Qualitative Plots for Electricity Dataset. The plots showcase the top three examples with the
highest degradation and the improvement in MSE for the ContextFormer forecasts compared to the baseline.

PatchTST iTransformer

Maximum Degradation Maximum Improvement Maximum ImprovementMaximum Degradation

Context-agnostic Forecast Ground Truth Context-aware Forecast (ours) 

Figure 10: Qualitative Plots for Traffic Dataset. The plots showcase the top three examples with the highest
degradation and the improvement in MSE for the ContextFormer forecasts compared to the baseline.

PatchTST iTransformer

Maximum Degradation Maximum Improvement Maximum ImprovementMaximum Degradation

Context-agnostic Forecast Ground Truth Context-aware Forecast (ours) 

Figure 11: Qualitative Plots for Retail Dataset. The plots showcase the top three examples with the highest
degradation and the improvement in MSE for the ContextFormer forecasts compared to the baseline.
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PatchTST iTransformer

Maximum Degradation Maximum Improvement Maximum ImprovementMaximum Degradation

Context-agnostic Forecast Ground Truth Context-aware Forecast (ours) 

Figure 12: Qualitative Plots for Bitcoin Dataset. The plots showcase the top three examples with the highest
degradation and the improvement in MSE for the ContextFormer forecasts compared to the baseline.

24


	Introduction
	Related Works
	Problem Formulation
	Theoretical Motivation
	 A Perspective From Information Theory 
	Adding Context to an Autoregressive Forecaster

	Methodology
	Model Structure
	Training

	Experiments
	Conclusion
	Appendix
	MSE Loss and Mutual Information
	TimesFM with Covariates
	Dataset Description
	Synthetic Data
	Beijing AQ (Air Quality)
	Store Sales (Retail)
	PEMS-SF (Traffic)
	ECL (Electricity )
	Electricity Transformer Temperature (ETT)
	Monash (Bitcoin) 
	Additional Experiment (Bitcoin-News) 

	Implementation Details
	Context-aware Autoregression
	Context-aware Transformers
	Base Architectures
	ContextFormer Additions
	Other Details

	Benchmark Forecasters

	 Ablation Study
	Main Results with Standard Deviation
	ContextFormer Vs. Foundational Models
	Full-training Vs. Fine-tuning of Context-aware Models
	Effect of Temporal Information vs Full Context

	Additional Qualitative Plots

