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Abstract

Federated learning, a pioneering paradigm, enables collaborative model training
without exposing users’ data to central servers. Most existing federated learn-
ing systems necessitate uniform model structures across all clients, restricting
their practicality. Several methods have emerged to aggregate diverse client mod-
els; however, they either lack the ability of personalization, raise privacy and
security concerns, need prior knowledge, or ignore the capability and function-
ality of personalized models. In this paper, we present an innovative approach,
named pFedClub, which addresses these challenges. pFedClub introduces
personalized federated learning through the substitution of controllable neural
network blocks/layers. Initially, pFedClub dissects heterogeneous client models
into blocks and organizes them into functional groups on the server. Utilizing
the designed CMSR (Controllable Model Searching and Reproduction) algorithm,
pFedClub generates a range of personalized candidate models for each client.
A model-matching technique is then applied to select the optimal personalized
model, serving as a teacher model to guide each client’s training process. We
conducted extensive experiments across three datasets, examining both IID and
non-IID settings. The results demonstrate that pFedClub outperforms baseline
approaches, achieving state-of-the-art performance. Moreover, our model insight
analysis reveals that pFedClub generates personalized models of reasonable size
in a controllable manner, significantly reducing computational costs2.

1 Introduction

Federated learning (FL) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] is a prevalent method to train
machine learning models collaboratively without centralizing clients’ data on a cloud server. However,
many current FL training frameworks demand uniformity in deep neural network structures among
client models, a requirement often too stringent for practical, real-world applications. An alternative
approach involves equipping clients with heterogeneous models, introducing a new challenge: how to
aggregate these diverse models within the federated learning framework effectively.

Recently, various approaches have emerged to address the challenge of aggregating heterogeneous
models, particularly in the context of personalized FL. Some methods leverage additional information,
such as class information [16], logits [17, 18], and label-wise representations [19], as intermediaries
for exchanging information between clients and the server. While seemingly straightforward, this
approach raises significant privacy concerns, especially regarding the potential exposure of sensitive
client data. To mitigate these privacy concerns, techniques such as distillation [20, 21, 22] and model
reassembly [23] have been introduced in heterogeneous FL, wherein only model parameters are
exchanged, akin to traditional FL approaches [1]. Despite demonstrating effectiveness in aggregating
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heterogeneous models, both distillation and model reassembly techniques in FL suffer from a common
drawback – lack of control over personalized model generation.

Distillation-based approaches inherently necessitate the establishment of a unified model as the
global model, informed by prior insights [21]. This global model is then distributed to clients to
guide their training efforts. However, a smaller consensus global model may struggle to extract
heterogeneous knowledge from clients, often resulting in a larger size. This poses challenges for
smaller clients with limited computational resources to run the shared large global model effectively.
Similarly, model reassembly-based approaches also encounter a related issue. While they generate
personalized models for each client, these personalized models may be significantly larger than the
clients’ capacity, posing challenges for implementation.
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Figure 1: Lack of controllability demonstra-
tion using pFedHR [23] on the SVHN dataset
with seven different client models by compar-
ing the original model size (blue bars) to the
generated personalized client model size (en-
tire bars).

To further investigate these limitations, we conducted
an experiment using the state-of-the-art model re-
assembly approach, pFedHR [23], on the SVHN
dataset, where each client operated a distinct model.
(Additional details and further discussions can be
found in Section 4.4.) We evaluated the parameter
size of the original models and the average number
of parameters in the personalized models received
across communication rounds. Subsequently, we il-
lustrated the parameter size differences between these
two types of models in Figure 1. The entire bar rep-
resents the average parameter size of the generated
personalized model, with the original model size de-
picted in blue and the increased size shown in red. Our preliminary findings indicate that the
personalized models produced by pFedHR are notably larger than the original local models.

To address this issue, in this paper, we introduce a novel approach for heterogeneous model aggrega-
tion, named pFedClub, aiming to achieve personalized Federated learning through Controllable
neural network block substitution, as depicted in Figure 2. pFedClub receives heterogeneous
models uploaded from clients on the server. pFedClub first decomposes the heterogeneous client
models into different blocks and subsequently clusters these blocks based on their functionalities
(refer to Section 3.2.1). pFedClub explores a novel neural network block substitution technique to
achieve this objective, as detailed in Section 3.2.2. Specifically, pFedClub aims to substitute the
r-th block Bt

m,r within the m-th client model wt
m with a block selected from the same group as Bt

m,r
during communication round t. This approach ensures both the functionality of personalized models
and their similarity to the original models. To enhance the diversity of the generated models, we
permit arbitrary substitutions from the group for the first block (Step 1). For subsequent blocks, we
introduce an order-constrained block search strategy (Step 2), ensuring the quality of the generated
models. If the order constraint halts the substitution prematurely, the remaining blocks are directly
added to the substituted ones (Step 3). This completion strategy not only reduces the number of
newly added parameters in the stitching blocks but also ensures similar functionality. As pFedClub
may generate multiple personalized candidate models for each client, we employ the similarity-based
model-matching technique to select the personalized model, as discussed in Section 3.2.3. The
selected personalized model is then distributed to the respective client as a teacher model, guiding the
client model training process through knowledge distillation.

It is essential to emphasize that the proposed pFedClub framework is designed to be both general
and flexible, allowing for the incorporation of strict controllable constraints during the personalized
candidate generation process. For instance, constraints such as the model size of the generated
candidates can be easily integrated into the framework. Furthermore, introducing controllability
within pFedClub enables the mitigation of computational and communication costs compared to
current model reassembly-based approaches. By incorporating controllable constraints, pFedClub
offers greater adaptability and efficiency in handling personalized model generation. Experimental
results demonstrate that pFedClub achieves state-of-the-art performance on three benchmark
datasets under both IID and non-IID settings, demonstrating the effectiveness of the proposed
aggregation strategy.
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Figure 2: Overview of the proposed pFedClub. We take four clients with heterogeneous models as
an example. The numbers denote the blocks’ indexes. The number of functional groups is 4. We take
Client 1 as an example to demonstrate how pFedClub works to generate personalized candidate
models. Note that the arbitrary substitution for Block 1 of Client 1 is the second block from Client 4.

2 Related Work

Model Heterogeneity in Federated Learning. Heterogenous model cooperation is a challenging
task in FL. Researchers have explored submodel training techniques [24, 25], focusing on training a
shared large global model by sending masked heterogeneous models to appropriate clients. However,
these approaches often fail to provide personalized models for individual clients. Furthermore,
they are considerably constrained by the limitations in freedom of model selection. In addition,
FedDF [20] and FedKEMF [21] conduct ensemble distillation, but the settings of FedDF are different
from ours and not for model personalization. FedKEMF utilizes mutual knowledge distillation
with the requirement of predefined model structures. Besides, HeteroFL [24] and FlexiFed [25] are
restricted to the requirements of the client model structures. Other related research work needs extra
information to be exchanged between the server and clients, e.g., logits in FCCL [17], class scores in
FedMD [16], and label-wise representation in FedGH [19], which raises the concerns of privacy [26].
The most recent work pFedHR [23] provides a layer-wise model reassembly approach to solve the
challenge of model heterogeneity in federated learning. However, it has several limitations, as we
discuss in Section 1.

Personalized Federated Learning. Instead of maintaining one global model, personalized FL cares
more about each local model’s performance, which is more sufficient and practical. In [27], the
authors add a proximal term to the local optimization loss function to bound the difference between
the local and global model updates. The aggregated global model is treated as the initial shared model
from the meta-learning perspective in [28]. In [29], the authors design a new regularized client loss to
optimize the local model to achieve personalization. However, the discussed personalized federated
learning work assumes that the clients have to share identical model structures.

3 Methodology

3.1 Overview

Let Dn = {(xi,yi)}|Dn|
i=1 denote the training data stored in the n-th local client Ln, where xi

denotes the data, yi is the ground truth, and |Dn| is the number of training data. Each client
employs a deep neural network-based model wn to train on its training data. Note that the client
models {w1, · · · ,wN} do not share identical network structures, where N is the total number
of clients. The overview of the proposed pFedClub is depicted in Figure 2, containing server
update and client update. During each communication round t, the randomly chosen M (M ≪ N )
client models {wt

1, · · · ,wt
M} will be uploaded to the server to generate their personalized models

{w∗t1, · · · ,w∗tM}. These personalized models will be sent to the corresponding clients as teachers
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to guide the update of client models {wt+1
1 , · · · ,wt+1

M } in the next communication round. Next, we
provide the details of the model design.

3.2 Server Update

The model heterogeneity of the uploaded M client models {wt
1, · · · ,wt

M} at the t-th communication
round makes it challenging to generate personalized client teachers {w∗t1, · · · ,w∗tM}. To tackle
this challenge, a new controllable block-wise substitution-based personalized model aggregation
approach is proposed, which not only maintains the functionality of each block in the originally
uploaded client models but also injects new knowledge provided by other models to further achieve
model personalization. To this end, we first divide each client model wt

m into blocks and then group
blocks into different functionality clusters.

3.2.1 Functionality-wise Block Decomposition and Grouping

Block Decomposition. Except for recurrent deep neural networks such as the long-short term memory
network [30], most of the remaining ones, such as the family of convolutional neural networks (CNN),
can be treated as block-stacked neural networks3. Let Rm denote the number of blocks in client
model wt

m. We then decompose wt
m into blocks {Bt

m,1, · · · ,Bt
m,r, · · · ,Bt

m,Rm
}. Note that a block

is either a convolutional net, a fully connected layer, or a building block associated with a shortcut
connection such as residual neural networks [31].

Block Grouping. After decomposing each model, we then apply the K-means algorithm to group
blocks based on their functionality. Specifically, we apply the centered kernel alignment (CKA)
technique [32] to calculate the similarity between two blocks as follows:

sim(Bt
m,i,B

t
n,j) = CKA(xt

m,i,x
t
n,j) + CKA(Bt

m,i(x
t
m,i),B

t
n,j(x

t
n,j)), (1)

where xt
·,i denotes the input of the block Bt

·,i, and Bt
·,i(x

t
·,i) represents the output of the block

Bt
·,i (· = m or n). Let {Gt

1, · · · ,Gt
K} denote the K functionality groups generated by the K-means

algorithm, where each group Gt
k contains multiple blocks from different models with similar functions.

3.2.2 Controllable Block-wise Substitution

Intuitively, if each pair of corresponding blocks of two models has similar functionality, the whole
models should also be similar. Based on this straightforward intuition, we propose to replace each
block Bt

m,r with a function-similar one chosen from the group Gt
k, where Bt

m,r ∈ Gt
k. Let Gk denote

the number of function-similar blocks in each group Gt
k. Arbitrarily replacing each block without any

constraints will produce a vast number of candidate models, which is approximately equal to GRm

k ,
where Rm is the number of blocks in model wt

m. It is time-consuming to update all candidates.

To reduce the size of the candidate model pool, a naive solution is to randomly choose a fixed number
of models from the pool first and then use the model similarity score to select the personalized
teacher model. Although this approach increases the diversity of the candidate model generation, it is
uncontrollable to introduce too much randomness, and the low-quality candidates may reduce the
convergence rate of the federated system training. To solve these issues, we design a Controllable
Model Searching and Reproduction (CMSR) algorithm (as depicted in Algorithm 1), which is a
greedy-based search approach to reproduce a set of personalized candidate models for each wt

m by
considering both diversity and quality. In particular, CMSR consists of three key steps: anchor block
selection, order-constrained block search, and block completion. Next, we describe the details of
each step.

Step 1: Anchor Block Selection (Alg. 1 lines 3-7). Assume that the first block Bt
m,1 in wt

m belongs
to the group Gt

k. CMSR then randomly selects one block in Gt
k as the substitution. The substituted

block will be treated as the anchor/starting block of all the candidate models. As shown in Figure 2,
wt

4,2 is selected as the substitution of wt
1,1. Note that a naive solution to select the anchor block may

use the block with the largest similarity score calculated via Eq. (1) instead of randomly choosing one.
However, such a solution significantly reduces the diversity of the generated candidates, further limits
the extra knowledge borrowed from other models, and finally hurts the personalization of teacher
models. Besides, Bt

m,1 has a chance to be selected with a probability 1
Gk

.

3In this paper, we do not decompose recurrent deep neural networks, which is our future work.
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Algorithm 1: The CMSR Algorithm
input :Client model wt

m and block clusters {Gt1, · · · ,GtK}
output :Candidate set {ctm,1, · · · , ctm,Sm

}

1 Initialize candidate blocks Ctm = {};
2 for r ← 1, · · · , Rm do
3 // Step 1: Anchor Block Section
4 if r = 1 then
5 Randomly select one block Bt

p,q from the group that contains Bt
m,1;

6 Add the substituted block to Ctm[1] = [Bt
p,q];

7 Record the block index q;

8 // Step 2: Order-constrained Block Search
9 if r > 1 then

10 Initialize block index set Itm,r = [];
11 // Assume that Bt

m,r ∈ Gtk
12 for Bt

·,u ∈ Gtk do
13 if u > q then
14 Add the block to Ctm[r];
15 Add the block index to Itm,r;

16 if Itm,r = Ø then
17 break;

18 q ← min(Itm,r);

19 // Candidate Generation
20 Use Ctm to generate candidates that satisfy the order condition;
21 if the number of blocks of the candidate model is smaller than Rm then
22 Run Step 3: Block Completion to complete the remaining blocks;

return :{ctm,1, · · · , ctm,Sm
}

Step 2: Order-constrained Block Search (Alg. 1 lines 8-18). After selecting the anchor block in
Step 1, CMSR then finds the substitutions for the following blocks. The simplest solution is repeating
the previous step Rm − 1 times to generate a candidate model. As we discussed before, it may
generate low-quality candidate models.

To avoid this problem and generate controllable high-quality candidates, we maintain the order of
the selected blocks, even from different client models, as a hard constraint [33]. Mathematically,
let Bt

p,q denote the substitution of the r-th block of Bt
m,r, where p is the model index and q is the

block index. For any substitution of the (r + 1)-th block Bt
·,u should satisfy the constraint q < u. As

shown in Figure 2, the substitutions of wt
1,2 include wt

2,3 and wt
3,3 since the index of the first block’s

substitution wt
4,2 is 2.

Only using the order constraint is sufficient for the proposed pFedClub to generate high-quality
and informative candidates. First, maintaining the order of block functions can guarantee that the
candidate model has functionality similar to the original model. Second, it also avoids pre-defining
the order of operation types, which releases the constraints of personalized teacher model generation
and further increases the diversity of candidates. Third, such an approach is capable of generating
similar-sized personalized models for clients. It is essential for several applications with limited
computational resources, such as smart devices. However, pFedHR cannot control the size of the
generated candidates.

It is worth noting that, aside from the order constraint, pFedClub is highly adaptable and can
easily incorporate other types of constraints. In Section 4.4, we will delve into the integration of the
model size constraint, demonstrating the framework’s versatility and ability to accommodate various
constraints for personalized model generation.

Step 3: Block Completion (Alg. 1 lines 19-22). Step 2 may stop at the certain block r < Rm due to
the block order constraint. To maintain the original functional structure, we will add the remaining
blocks of wt

m, i.e., {Bt
m,r+1, · · · ,Bt

m,Rm
} to the substitutions. In such a way, pFedClub can
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generate a set of candidates denoted as {ctm,1, · · · , ctm,Sm
}, where Sm is the number of generated

candidate models. As shown in Figure 2, pFedClub will stop after substituting the third block
wt

1,3 since all the block indexes in Group 4 for substituting wt
1,4 are not greater than 4, which is the

minimum feasible block index. Thus, pFedClub will complete the generated candidates by directly
using wt

1,4 as the forth block.

3.2.3 Personalized Model Selection

The final stage of pFedClub is to automatically select the “best” candidate teacher model from
{ctm,1, · · · , ctm,Sm

} for the m-th client. However, selecting such a model is non-trivial because ctm,s
is a reassembled, incomplete model via block substitution, and the dimension sizes of different blocks
may not be well-aligned.

Block Stitching. We complete each candidate model ctm,s using the network stitching technique [34].
We use a nonlinear activation function ReLU(·) on top of a linear layer, i.e., ReLU(W⊤X+ b) as
the dimension mapping function.

Since the parameter values of {W,b} in the stitching functions are unknown, it is essential to
learn them with training data. Here, we propose to use a public dataset Dp to fine-tune the stitched
candidate model c′tm,s. Note that we fix all the parameters in ctm,s (denoted as θ∗

m,s) and only update
{W,b} in c′

t
m,s using the following loss if the public data are labeled:

Lm =
1

|Dp|

|Dp|∑
i=1

CE(c′tm,s(xi;W,b,θ∗
m,s),yi), (2)

where |Dp| denotes the number of data in the public dataset, CE(·, ·) means the cross-entropy loss,
c′

t
m,s(xi;W,b,θ∗

m,s) presents the predicted label distribution for the data xi by fixing the parameters
θ∗
m,s, and yi is the ground truth vector.

An unlabeled public dataset can be used to fine-tune the parameters {W,b} using the normalized
temperature-scaled cross-entropy loss [35] for a pair of data as follows:

Li,j
m = − log

exp(cos(c′tm,s(xi), c
′t
m,s(xj))/τ)∑2|Dp|

k=1 1[k ̸=i] exp(cos(c′tm,s(xi), c′
t
m,s(xk))/τ)

, (3)

where cos(·, ·) is the cosine similarity, and τ is the hyperparamter. xj is the augmentation of xi. We
still fix the parameters θ∗

m,s and learn {W,b}.

It is worth noting that block stitching operation will not significantly increase the number of parame-
ters in the candidate model. Besides, some candidate models may be generated using Step 3: block
completion. For those candidates, the number of newly added parameters is much smaller. Moreover,
the limited number of parameters is helpful for the new candidate models to maintain more original
model information. Finally, it makes model computation efficient and speeds up the model training.

Model Selection. Let ĉtm,s denote the fine-tuned candidate model via Eq. (2). We then calculate
the average cosine similarity scores on logits outputted by the original model wt

m and its candidate
model ĉtm,s as follows:

αm,s =
1

|Dp|

|Dp|∑
i=1

cos(βt
m(xi), β̂

t

m,s(xi)), (4)

where βt
m(xi) and β̂

t

m,s(xi) denote the logits of xi outputted by the models wt
m and ĉtm,s, respec-

tively. Note that this is a forward propagation and does not need to train the models. Finally, the
candidate model with the highest similarity scores in the set {αm,1, · · · , αm,Sm

} will be selected as
the final personalized teacher model w∗tm.

3.3 Client Update

When the m-th client is selected again at the j (j > t) communication round, the personalized model
w∗tm generated in the recent communication round will be distributed. Since the teacher model w∗tm
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usually has a different network structure from the client model wj
m, we propose to use knowledge

distillation to update the client model following [36] by optimizing the following loss:

Lj
n =

1

|Dn|

|Dn|∑
i=1

[
CE(wj

m(xi),yi) + λKL(βj
m(xi), β̂

t

m(xi))
]
, (5)

where λ is a hyperparameter and KL(·, ·) is the Kullback–Leibler divergence.

4 Experiments

4.1 Experimental Setups

Datasets. In our experiments, we utilize three commonly used datasets to validate the performance
of the proposed pFedClub, including MNIST4, SVHN5, and CIFAR-106. We randomly divide
the datasets into three parts: 72% for training, 20% for testing, and 8% as the public dataset. We
test two data distribution settings in federated learning, i.e., IID and non-IID, following existing
work [23]. For the IID setting, the training and testing data are randomly distributed to N clients.
For the non-IID setting, each client randomly holds data belonging to two classes.

Baselines. The proposed pFedClub aims to aggregate heterogeneous client models to boost
federated learning performance. Based on the condition of public datasets, we consider the following
approaches as our baselines: (1) without using public datasets: HeteroFL [24] and FlexiFed [25]; (2)
using labeled public data: FedMD [16], FedGH [19], and pFedHR [23]; and (3) using unlabeled public
data: FCCL [17], FedKEMF [21], and pFedHR [23]. We also compare the proposed pFedClub
with the general approaches to learning personalized federated learning models, which share the
same structure for all clients. The homogeneous baselines include: FedAvg [1], FedProx [27],
Per-FedAvg [28], PFedMe [29], PFedBayes [37], and pFedHR [23]. The details of all baselines can
be found in Appendix A.

Client Model Deployment. In our experiments, we employ seven client models with different
network structures, including MobileNetV1 [38], MobileNetV2 [39], MobileNetV3 [40], and four
manually designed CNN models (denoted as CNN1 to CNN4). Each CNN model contains several
convolutional blocks and fully connected blocks. The detailed model structures of the four models
can be found in Appendix B. We set the number of clients N = 50 and the number of active clients
M = 5 in each communication round. We propose three plans to distribute client models to validate
the performance of the proposed pFedClub in different scenarios. First, we use all seven types of
models and randomly send each model to a client (Model Zoo I). Specifically, CNN1 is randomly
assigned to 8 clients, and each of the remaining six models is randomly assigned to 7 clients. Second,
we distribute the three MobileNet family models to clients (Model Zoo II). In particular, we randomly
assign MobileNetV1 to 16 clients, and MobileNetV2 and MobileNetV3 are randomly sent to the
remaining 34 clients evenly. Finally, we use the four CNNs as the client models (Model Zoo III).
Each CNN1, CNN2, and CNN3 model is randomly assigned to 12 clients. The remaining 14 clients
will use CNN4 as the client model.

Implementation Details. We run all the experiments on NVIDIA A100 with CUDA version 12.0
on a Ubuntu 20.04.6 LTS server. All baselines and the proposed pFedClub are implemented in
Pytorch 2.0.1. For the proposed pFedClub and baseline pFedHR, we set the number of clusters
K = 4 following [23], and the local training epoch and the server finetuning epoch are equal to 10
and 3, respectively. The hyperparameter λ in Eq. (5) is 0.2. The hyperparameter τ in Eq. (3) is 0.07.
We use Adam as the optimizer. The learning rate of the local client learning and the server fine-tuning
learning rate equal 0.001. We use average client accuracy with three runs as the evaluation metric.

4.2 Performance Comparison

Heterogenous Model Aggregation. Table 1 lists the experimental results regarding the three-run
accuracy of the proposed pFedClub and baselines. Note that HeteroFL and FlexiFed belong to

4https://yann.lecun.com/exdb/mnist/
5http://ufldl.stanford.edu/housenumbers/
6https://www.cs.toronto.edu/~kriz/cifar.html
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Table 1: Performance (%) comparison with baselines under the heterogeneous settings.

Setting Public Dataset MNIST SVHN CIFAR-10
Data Method IID Non-IID IID Non-IID IID Non-IID

M
od

el
Z

oo
I Labeled

FedMD 91.12± 2.44 90.03± 2.98 76.22± 3.01 75.14± 3.75 66.38± 3.96 63.10± 4.75
FedGH 92.76± 1.93 91.27± 2.21 78.41± 2.65 75.06± 2.87 71.22± 2.79 67.37± 3.06
pFedHR 94.67 ± 1.58 92.88± 1.10 81.59± 1.40 80.88± 1.92 73.21± 3.24 69.88± 3.45
pFedClub 94.02± 1.41 93.20 ± 0.85 84.55 ± 1.17 82.65 ± 1.56 76.45 ± 2.87 73.62 ± 3.01

Unlabeled

FedKEMF 91.47± 1.87 90.60± 1.68 77.56± 2.47 74.23± 2.77 68.77± 2.54 65.09± 3.12
FCCL 91.09± 2.05 90.21± 2.44 79.44± 2.33 75.28± 2.60 66.85± 2.66 64.76± 2.98
pFedHR 92.15± 1.69 91.00± 1.73 80.66± 2.17 78.93± 2.55 72.06± 2.38 68.54± 2.47
pFedClub 93.72 ± 1.90 92.77 ± 1.51 83.94 ± 2.08 81.76 ± 2.32 75.86 ± 1.98 72.87 ± 2.04

M
od

el
Z

oo
II Labeled

FedMD 91.98± 0.76 92.01± 1.05 80.86± 1.26 77.53± 1.53 68.55± 1.89 63.74± 2.25
FedGH 92.13± 1.32 91.14± 1.59 78.15± 1.50 75.47± 1.98 71.29± 1.77 68.60± 2.42
pFedHR 93.51± 1.36 92.77± 1.24 82.33± 1.86 80.96± 1.90 73.60± 2.38 71.14± 2.76
pFedClub 93.62 ± 1.07 93.11 ± 1.47 84.25 ± 2.04 82.47 ± 1.66 76.02 ± 1.53 73.15 ± 1.97

Unlabeled

FedKEMF 92.61± 1.25 91.33± 1.70 79.62± 1.68 77.54± 2.04 69.11± 2.45 66.07± 2.88
FCCL 92.77± 1.77 90.89± 1.90 81.88± 1.79 77.32± 1.68 68.02± 2.06 66.43± 2.96
pFedHR 93.21± 1.45 92.77± 1.69 81.56± 1.50 79.68± 1.79 71.88± 1.75 69.94± 2.24
pFedClub 93.86 ± 1.34 93.41 ± 1.85 83.89 ± 1.22 81.61 ± 1.47 75.52 ± 1.39 72.31 ± 1.98

M
od

el
Z

oo
II

I

✗
HeteroFL 92.48± 1.14 91.25± 1.45 80.57± 1.37 77.60± 1.68 71.08± 1.57 67.87± 1.66
FlexiFed 91.08± 1.52 90.10± 1.66 80.69± 1.39 75.30± 1.62 68.09± 2.79 67.15± 2.88

Labeled

FedMD 92.16± 1.32 91.37± 1.56 80.22± 1.59 76.14± 1.86 67.14± 1.67 63.50± 1.88
FedGH 92.93± 1.52 91.44± 1.08 79.03± 1.44 75.28± 1.75 67.88± 1.75 70.77± 1.93
pFedHR 92.25± 1.93 91.07± 1.64 81.88± 2.36 79.25± 1.71 72.45± 1.81 69.08± 1.95
pFedClub 93.24 ± 1.36 92.66 ± 0.98 82.69 ± 1.61 81.21 ± 1.68 74.88 ± 2.02 71.94 ± 1.82

Unlabeled

FedKEMF 92.78± 0.75 91.60± 1.03 78.88± 1.68 76.16± 1.77 68.04± 2.16 65.80± 2.84
FCCL 92.65± 1.84 91.07± 1.92 80.32± 1.71 76.02± 1.82 67.16± 2.42 66.73± 2.68
pFedHR 93.84 ± 1.25 93.46± 1.50 81.76± 2.12 78.40± 2.50 71.74± 1.68 68.23± 1.79
pFedClub 93.77± 1.16 93.52 ± 1.37 82.50 ± 1.25 81.03 ± 1.49 74.71 ± 1.40 71.68 ± 1.59

the submodel training technique and require that each client model must be a part of the global
model. Thus, they are only tested with Model Zoo 3. These results show that our proposed approach
outperforms all the baselines under most settings, especially the more complicated datasets SVHN
and CIFAR-10. Compared with the most recent work pFedHR, our proposed work pFedClub shows
superior performance over that on SVHN and CIFAR-10 datasets under both the IID and non-IID
settings. For pFedClub, the use of the labeled public data is able to boost the performance compared
with the setting using unlabeled public data, which aligns with the observations in [23]. In addition,
from Model Zoo III to Model Zoo I, the performance of pFedClub on the more complicated
datasets, SVHN and CIFAR-10, improves with the increase of diversity of the model zoos.

Homogeneous Model Aggregation. The clients are assigned the same model structures to verify
the effectiveness of pFedClub under the homogenous setting. We test the performance with CNN2
and MobileNetV2 under the non-IID setting and compare it with the state-of-the-art homogenous
federated learning work. The results are shown in Table 2. Note that pFedHR and pFedClub are
under the setting where the public data is labeled. We observe that the results of all the approaches
on the MNIST dataset are relatively high, even with a simple CNN2 model, as classification on the
MNIST dataset is an easy task. Besides, pFedClub outperforms state-of-the-art baselines on SVHN
and CIFAR-10 datasets using the CNN2 model or MobileNetV2 model. These results demonstrate
that pFedClub is also effective for the homogeneous setting.

4.3 Ablation Study Table 2: Performance (%) comparison with
baselines under the homogeneous setting.

Model Approach MNIST SVHN CIFAR-10

C
N

N
2

FedAvg 90.52 62.49 58.01
FedProx 90.87 63.77 59.65
Per-FedAvg 91.04 63.59 59.81
PFedMe 91.79 64.27 60.14
PFedBayes 92.54 63.19 60.08
pFedHR 92.62 64.59 61.79
pFedClub 92.18 66.97 64.25

M
ob

ile
N

et
V

2

FedAvg 92.07 79.42 62.13
FedProx 92.85 80.33 63.60
Per-FedAvg 92.62 82.45 70.88
PFedMe 93.05 81.79 72.13
PFedBayes 93.71 83.05 72.44
pFedHR 93.15 83.88 73.65
pFedClub 93.68 85.26 74.97

We conduct the ablation study to validate the effec-
tiveness of each designed module in our proposed ap-
proach with Model Zoo III under the non-IID setting.
In particular, we use the following four baselines:
(1) pFedClubmax: in the anchor block selection
stage (Step 1 in Section 3.2.2), we naively select
the most similar block calculated by Eq. (1) for the
first block, instead of randomly selecting one. (2)
pFedClubmin: different from pFedClubmax, we
use the block with the smallest index number as the
substitution. The substituted block is either itself or
other models’ first block. (3) pFedClubnoc: we
conduct the block search without using the order con-
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straint in Step 2; and (4) pFedClubnbc: we do not conduct the block completion process (Step 3 in
Section 3.2.2).

Table 3: Ablation study performance (%)
comparison.

Dataset SVHN CIFAR-10
Method IID Non-IID IID Non-IID
pFedClubmax 78.69 73.50 70.52 66.89
pFedClubmin 77.50 72.09 69.96 66.84
pFedClubnoc 65.26 61.08 62.19 58.14
pFedClubnbc 63.01 59.47 61.38 56.02
pFedClub 82.50 81.03 74.71 71.68

We report the results in Table 3 and provide the fol-
lowing observations: (1) Removal of any one module
will cause the performance drop, thus demonstrating
the individual contribution of each design in our pro-
posed pFedClub. (2) When we use simple strate-
gies (i.e., pFedClubmax and pFedClubmin) in
the anchor block selection, the drop in the perfor-
mance is smaller than studies (i.e., pFedClubnoc

and pFedClubnbc). It indicates that maintaining
the block number and keeping the model completion
matter more than the anchor block selection. Overall,
each designed module has its own contribution, and the systematic combination of all the designed
modules guarantees the effectiveness of our proposed pFedClub.

4.4 Controllability Analysis

Experimental Setups. The major advantage of the proposed pFedClub is enabling the generation
of controllable personalized candidate models. To clearly exhibit the insights, we use Model Zoo I as
the heterogeneous model set, and each type of model is assigned to a corresponding client. Besides,
each client will be mandatorily active during all the communication rounds. We use unlabeled public
data for model training under the non-IID setting. To quantitatively evaluate the controllability of
the personalized models generated by pFedClub, we propose to use the average of the model size
change percentage over T communication rounds as the metric for each client, which is defined as
follows:

ϕ =
1

T

T∑
t=1

|w∗tm| − |wm|
|wm|

, (6)

where |w∗tm| denotes the parameter size of the personalized teacher model at round t, and |wm|
denotes the model parameter size of the original client model.

Model Comparison. Since the proposed pFedClub is a model reassembly-based framework, for a
fair comparison, we choose to use pFedHR as the baseline. Besides, as mentioned in Section 3.2.2
Step 2, the proposed pFedClub is flexible to incorporate other constraints. In this experiment, we
take the model size into consideration and denote the model as pFedClub+. The reason is that for
real-world FL applications, such as training a model with smart devices, their computational capability
is limited. Larger personalized models may make these devices stop working. To facilitate flexible
management of the generated model’s size in pFedClub+, we introduce an additional parameter,
η > −1, which provides flexible controllability to decide the generated model size following the
constraint: |w∗tm| ≤ (1 + η)|wt

m|. In this experiment, we set η = 0.1.

pFedHR

pFedClub

pFedClub+

50               90

(a) Performance (b) Model Size Controllability

ACC

83.21

80.35

82.51

+

Figure 3: Controllability analysis.

Results. Figure 3 illustrates the comparative per-
formance with respect to accuracy and the model
size controllability of pFedHR, pFedClub,
and pFedClub+ on the SVHN dataset under
non-IID conditions. We observe that: (1) Both
pFedClub and pFedClub+ show a superior
performance over pFedHR shown in Figure3(a).
(2) As for the model size control, we can ob-
serve that pFedClub and pFedClub+ both
have better effectiveness over pFedHR in Fig-
ure 3(b). For example, For example, for client
1, the average received model parameter size is around 4.8 times as the original model for pFedHR
and 1.5 times as the original model for pFedClub. For clients 5 - 7 using MobileNets, the average
of the received personalized teacher model parameter size using pFedClub is smaller than that
of the original model size (ϕ < 0). However, ϕ is still a large positive number for pFedHR, which
means the clients still receive the personalized teacher models larger than their original ones. (3)
When comparing pFedClub with pFedClub+, the latter shows a slight decrease in accuracy due
to the rigorous model size constraint. Nonetheless, pFedClub+ further refines the control over
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the size of received personalized teacher models across all clients, ensuring they are not larger than
than the original models (ϕ ≤ 0). This confirms the capability of both pFedClub and pFedClub+

to effectively manage personalized model sizes, an essential feature for applications sensitive to
computational resources. Additional details on model size comparisons between pFedClub and
pFedHR across various communication rounds are provided in Appendix C.

4.5 Computational Cost Comparison

Figure 4: Server running time v.s. com-
munication round.

The proposed model can be treated as a fine-grained model
reassembly technique, which uses controllable block-wise
substitution to generate personalized candidates. In this
experiment, we aim to compare the computational cost
of the server between pFedClub and pFedHR using the
computational time at each round on the SVHN dataset un-
der the non-IID setting with Model Zoo III for 50 clients.
We record the consumed computation time on the server
side for each communication round. The results are shown
in Figure 4. We can observe that the computation time at
the server side of our approach pFedClub is generally
shorter than that of the baseline pFedHR. Also, with the algorithm running with respect to the com-
munication round, our approach becomes more consistent and stable compared with the significant
shift of pFedHR. These results confirm that pFedClub is an efficient approach for heterogeneous
model aggregation compared with pFedHR.

4.6 System Running Time v.s. Accuracy

Accuracy Accuracy

T
im

e 
(s

)

× 1000

40.14%

28.32%

30.47%

46.34%

29.07%

28.54%

40%             50%            60% 40%             50%            60%

× 1000

Figure 5: The consumed running time (in seconds) of
models to achieve the target accuracy.

Except for controllability and computa-
tional costs, system running time is another
key factor to evaluate the utility of the pro-
posed pFedClub. Toward this end, we
conduct an experiment to compare the con-
sumed time to reach a fixed accuracy. The
experimental setting is the same as the one
that we described in Section 4.5. We take
pFedHR as a baseline for comparison again.
The results are shown in Figure 5. We can
observe that the proposed approach pFedClub takes less time to achieve the target accuracy on
the SVHN and CIFAR-10 datasets under the non-IID setting compared with pFedHR. These results
demonstrate the effectiveness of the proposed pFedClub for the heterogeneous model aggregation
in federated learning again.

4.7 Extra Experimental Results

To validate the model scalability of pFedClub, we conduct the experiments by considering different
numbers and different active ratios of clients, and the results are shown in Table 4 in Appendix D.
Besides, in our model design, there is a key parameter K used in Section 3.2.1. We validate the
sensitivity of the selection of K, and the results are listed in Table 5 in Appendix E.

5 Conclusion
This paper introduces pFedClub designed to revolutionize personalized federated learning. By
leveraging a unique network block substitution method, pFedClub effectively creates tailored
and functionally analogous personalized models for individual clients. Moreover, pFedClub is
highly adaptable and can easily incorporate other types of constraints to achieve application-driven
personalized model generation. Our experimental evaluations, conducted on three diverse datasets
under both IID and non-IID settings, unequivocally validate the efficacy of pFedClub in the domain
of heterogeneous model aggregation for federated learning. The results affirm the accuracy, efficiency,
and flexibility of our proposed method, demonstrating its potential for real-world applications.
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Appendix

A. Baselines

In the heterogeneous experiments, we use the following approaches as baselines:
(1) Without using public datasets:

• HeteroFL [24]: Local clients’ models are required to belong to the same model class and
work together to produce one single global inference mode. Specifically, they revise the
batch normalization, conduct a pre-activity scaling, and design a masked loss to solve this
research problem.

• FlexiFed [25]: The common parts of the clients’ models work together, and the different
parts work separately to keep the system updated. They provide a basic-common strategy,
cluster-common strategy, and max-common strategy to conduct the heterogeneous model
aggregation under the setting.

(2) Using labeled public data:

• FedMD [16]: It uses transfer learning and knowledge distillation with the labeled public data
on the server side. Specifically, each client needs to train the local model on both the public
dataset and the private dataset. Then, clients upload the class scores on the public dataset to
the server, and the server calculates the consensus to send it back for a local update.

• FedGH [19]: The clients have their own feature extractors and share the homogeneous global
header. The clients train local models on their local data and upload the representation and
label for each label back to the server for the global header update. Then, the clients replace
their own headers with the global one for inference.

• pFedHR [23]: This approach utilizes the model disassembly techniques to decompose
local models into layers. The server composes the layers back and tunes the models while
stitching the layers using the public datasets.

(3) Using unlabeled public data:

• FCCL [17]: FCCL leverages the unlabeled public data and averages the logits from local
clients. The approach utilizes a consensus logit to guide the local training.

• FedKEMF [21]: This approach aggregates knowledge from local models and distills it into
global knowledge via knowledge distillation. It uses mutual learning to personalize the
models on the server side with the unlabeled public data;

• pFedHR [23]: This approach is also able to use the unlabeled public data to tune the stitching
layers of the candidate models.

The following baselines are used in the homogeneous experiments:

• FedAvg [1]: It is the vanilla version of federated learning, which averages the model
parameters from the local clients;

• FedProx [27]: It adds the proximal term to the local model training based on FedAvg;
• Per-FedAvg [28]: The MAML framework is proposed based on meta learning;
• PFedMe [29]: It uses regularized loss and decouples the personalization problem into a

bi-level optimization;
• PFedBayes [37]: It proposes an algorithm to take consideration of the global distribution

while conducting local model training;
• pFedHR [23]: It generates personalized models by model decomposition and composition

for local clients to guide local model training.

B. CNN Strutures

In our experiments, we have 4 CNN models with different complexity. The details are shown as
follows. In each convolutional NN sequential block, there is 1 convolutional layer, a max pooling
layer, and a ReLU function.
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CNN1: Cov1:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) }
→ Cov2:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } →
FC1:{Linear → ReLU} → Dropout→ FC2:Linear.

CNN2: Cov1:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) }
→ Cov2:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } →
Cov3:{Conv2d (kernel size = 5) → ReLU} → FC1:{Linear → ReLU} → Dropout→ FC2:Linear.

CNN3: Cov1:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2)
} → Cov2:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } →
Cov3:{Conv2d (kernel size = 5) → ReLU} → Cov4:{Conv2d (kernel size = 5) → ReLU → MaxPool2D
(kernel size = 2, stride = 2) } → Cov5:{Conv2d (kernel size = 5) → ReLU} → FC1:{Linear → ReLU
→ Dropout} → FC2:{Linear → ReLU}→ FC3:{Linear → ReLU}→FC4:Linear.

CNN4: Cov1:{Conv2d (kernel size = 5) → BatchNorm2d → ReLU} → Cov2:{Conv2d (kernel size
= 3) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } → Cov3:{Conv2d (kernel size = 3) →
BatchNorm2d → ReLU} → Cov4:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size
= 2, stride = 2) → Dropout } → Cov5:{Conv2d (kernel size = 3) → BatchNorm2d → ReLU } →
Cov6:{Conv2d (kernel size = 3) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } → FC1:{Linear
→ ReLU → Dropout} → FC2:{Linear → ReLU}→ FC3:{Linear → ReLU}→FC4:Linear.

C. Generated Model Size Comparison
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Figure 6: Model size controllability compared
with pFedHR with respect to the communica-
tion round.

In Section 4.4, we have validated that the size of
the generated personalized models by the proposed
pFedClub is much smaller than that produced
by pFedHR. Figure 3 shows the relatively average
change in model size. In this experiment, we aim to
show a detailed comparison of model size changes at
each communication round for each type of hetero-
geneous model.

The results are shown in Figure 6. We can observe
that our approach pFedClub conducts better control
over the generated models compared with pFedHR in
almost every communication round, especially for the
client with the MobileNet models, where the size of
our generalized model parameters is always smaller
than the original one (ϕ < 0).

D. Model Scalability Analysis

Besides, model scalability is important in feder-
ated learning systems. To validate the scalability of
pFedClub, we conduct the following experiments
by considering different numbers and different active
ratios of clients. The results are shown in Table 4.

Given the different settings of the different numbers
of clients and active ratios, we can observe that the
performance changes according to our expectations.
Moreover, given a fixed active ratio, the performance has a slight decrease with the increase in
the client number. One possible reason is each client will have a smaller number of training data
when the client number increases given a certain number of training data. The change in the local
model performance will harm the performance of the whole system in a certain range. Furthermore,
given a fixed number of clients, the increase in the active ratio will slightly boost the performance
because it enables more clients to contribute to the update process with their local training at each
communication round. The experiment results demonstrate the scalability of our proposed approach,
considering the change in the client number and active ratio.
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Table 4: Scalbility of pFedClub with different numbers of clients and different active ratios on the
SVHN dataset.

Data IID non-IID
Client
Number

Active Ratio Active Ratio
10% 20% 30% 10% 20% 30%

30 82.84 84.68 85.02 81.23 82.58 84.47
50 82.50 84.02 84.89 81.03 82.41 83.15
100 79.26 82.55 83.97 77.06 79.43 80.22

Table 5: Hyperparameter study of the number of clusters. The performance (%) of pFedClub with
different values of K on the SVHN and CIFAR-10 datasets.

Public Dataset SVHN CIFAR-10
Dataset Cluster IID Non-IID IID Non-IID

Unlabeled
3 80.45 78.21 72.02 68.04
4 82.50 81.03 74.71 71.68
5 82.66 81.17 75.26 71.89

Labeled
3 80.76 79.88 73.07 68.95
4 82.69 81.21 74.88 71.94
5 82.77 81.35 75.89 72.38

E. Hyperparameter Study

In our design, K is the number of the groups based on the function-wise clustering with K-means. In
this experiment, we aim to study how the hyperparameter K affects the performance. We maintain the
experimental setting in Sections 4.5 and 4.6. The results are shown in Table 5. We can observe that
the performance of pFedClub will slightly increase with the increase of K. In the main experiments,
we follow [23] and set K = 4. When K = 5, the performance can increase slightly. One possible
reason is that a large K is able to produce more specific function-based groups and further identify
the function of the blocks more accurately. We can also observe that the performance is generally
stable with the change of hyperparameter K in a certain range.

F. Limitations and Broader Impacts

This work focuses on the controllable personalized model generation for the heterogeneous federated
learning setting. Although the proposed pFedClub outperforms baselines and is able to generate
size-controllable client models, it still has several limitations. First, the proposed controllable model
searching and reproduction (CMSR) algorithm is a heuristic algorithm that is designed based on
intuitions. Thus, the results may be suboptimal. Second, in the system running time experiments,
we have demonstrated that the proposed pFedClub can reduce the learning time compared with
the state-of-the-art model pFedHR. However, compared with traditional averaging methods, the
running time on the server is still much longer. We plan to design a more efficient algorithm for the
server update. Finally, in the experiments, we only test the image classification task, which limits
the efficacy test on other tasks. We will test more diverse tasks with the proposed pFedClub in the
future.

This research significantly enhances federated learning by enabling efficient aggregation of heteroge-
neous models without compromising data privacy. This approach not only improves user experience
across diverse sectors by providing tailored solutions but also supports sustainable computing prac-
tices of large-scale machine learning operations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper has no theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: We provide the codes and experiment details to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]
Justification: We provide the code in the supplementary file and we use the open datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the details as asked.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run experiment multiple times.We provide the mean and the STD.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details in Implementation Details in Sec 4.1. We report the
running time in Sec 4.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the broader impacts in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper, code package, and dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the details of the designed model and provide the codes in the
supplementary file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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