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ABSTRACT

Label noise is ubiquitous in the era of big data. Deep learning algorithms can
easily fit the noise and thus cannot generalize well without properly modeling
the noise. In this paper, we propose a new perspective on dealing with label
noise called “Class2Simi”. Specifically, we transform the training examples with
noisy class labels into pairs of examples with noisy similarity labels, and propose
a deep learning framework to learn robust classifiers with the noisy similarity
labels. Note that a class label shows the class that an instance belongs to; while a
similarity label indicates whether or not two instances belong to the same class. It
is worthwhile to perform the transformation: We prove that the noise rate for the
noisy similarity labels is lower than that of the noisy class labels, because similarity
labels themselves are robust to noise. For example, given two instances, even if
both of their class labels are incorrect, their similarity label could be correct. Due to
the lower noise rate, Class2Simi achieves remarkably better classification accuracy
than its baselines that directly deals with the noisy class labels.

1 INTRODUCTION

It is expensive to label large-scale data accurately. Therefore, cheap datasets with label noise are
ubiquitous in the era of big data. However, label noise will degenerate the performance of trained
deep models, because deep networks will easily overfit label noise (Zhang et al., 2017; Zhong et al.,
2019; Li et al., 2019; Yi & Wu, 2019; Zhang et al., 2019; 2018; Xia et al., 2019; 2020).

In this paper, we propose a new perspective on handling label noise called “Class2Simi”, i.e.,
transforming training examples with noisy class labels into pairs of examples with noisy similarity
labels. A class label shows the class that an instance belongs to, while a similarity label indicates
whether or not two instances belong to the same class. This transformation is motivated by the
observation that the noise rate becomes lower, e.g., even if two instances have incorrect class labels,
their similarity label could be correct. In the label-noise learning community, a lower noise rate
usually results in higher classification performance (Han et al., 2018b; Patrini et al., 2017).

Specifically, we illustrate the transformation and the robustness of similarity labels in Figure 1.
Assume we have eight noisy examples {(x1, ȳ1), . . . , (x8, ȳ8)} as shown in the upper part of the
middle column. Their labels are of four classes, i.e., {1, 2, 3, 4}. The labels marked in red are
incorrect labels. We transform the 8 examples into 8× 8 example-pairs with noisy similarity labels as
shown in the bottom part of the middle column, where the similarity label 1 means the two instances
have the same class label and 0 means the two instances have different class labels. We present
the latent clean class labels and similarity labels in the left column. In the middle column, we can
see that although the instances x2 and x4 both have incorrect class labels, the similarity label of
the example-pair (x2, x4) is correct. Similarity labels are robust because they further consider the
information on the pairwise relationship. We prove that the noise rate in the noisy similarity labels
is lower than that of the noisy class labels. For example, if we assume that the noisy class labels in
Figure 1 are generated according to the latent clean labels and the transition matrix shown in the
upper part of the right column (the ij-th entry of the matrix denotes the probability that the clean
class label i flips into the noisy class label j), the noise rate for the noisy class labels is 0.5 while the
rate for the corresponding noisy similarity labels is 0.25. Note that the noise rate is the ratio of the
number of incorrect labels to the number of total examples, which can be calculated from the noise
transition matrix combined with the proportion of each class, i.e., 1/6× 3/4 + 1/2× 1/4 = 0.25.
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Figure 1: Illustration of the transformation from class labels to similarity labels. Note that ȳ stands for
the noisy class label and y for the latent clean class label. The labels marked in red are incorrect labels.
If we assume the class label noise is generated according to the noise transition matrix presented in
the upper part of the right column, it can be calculated that the noise rate for the noisy class labels
is 0.5 while the rate for the noisy similarity labels is 0.25. Note that the noise transition matrix for
similarity labels can be calculated by exploiting the class noise transition matrix as in Theorem 1.

It is obvious that Class2Simi suffers information loss because we can not recover the class labels from
similarity labels. However, since the similarity labels are more robust to noise than the class labels,
the advantage of the reduction of noise rate overweighs the disadvantage of the loss of information.
Intuitively, in the learning process, it is the signal in the information that enhances the performance
of the model, while the noise in the information is harmful to the model. Through Class2Simi,
although the total amount of information is reduced, the signal to noise ratio is increased, and so
would be the total amount of signals. Thus, we can benefit from the transformation and achieve
better performances. Theorem 2 and the experimental results will verify the effectiveness of this
transformation.

It remains unsolved how to learn a robust classifier from the data with transformed noisy similarity
labels. To solve this problem, we first estimate the similarity noise transition matrix, a 2 × 2 matrix
whose entries denote the flip rates of similarity labels. Note that the transition matrix bridges the noisy
similarity posterior and the clean similarity posterior. The noisy similarity posterior can be learned
from the data with noisy similarity labels. Then, given the similarity noise transition matrix, we
can infer the clean similarity posterior from the noisy similarity posterior. Since the clean similarity
posterior is approximated by the inner product of the clean class posterior (Hsu et al., 2019), the
clean class posterior (and thus the robust classifier) can thereby be learned. We will empirically show
that Class2Simi with the estimated similarity noise transition matrix will remarkably outperform the
baselines even given with the ground-truth class noise transition matrix.

The contributions of this paper are summarized as follows:

• We propose a new perspective on learning with label noise, which transforms class labels into
similarity labels. Such a transformation reduces the noise level.
• We provide a way to estimate the similarity noise transition matrix by theoretically establishing its

relation to the class noise transition matrix. We show that even if the class noise transition matrix
is inaccurately estimated, the induced similarity noise transition matrix still works well.
• We design a deep learning method to learn robust classifiers from data with noisy similarity labels

and theoretically analyze its generalization ability.
• We empirically demonstrate that the proposed method remarkably surpasses the baselines on many

datasets with both synthetic noise and real-world noise.

The rest of this paper is organized as follows. In Section 2, we formalize the noisy multi-class classi-
fication problem, and in Section 3, we propose the Class2Simi strategy and practical implementation.
Experimental results are discussed in Section 4. We conclude our paper in Section 5.
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2 PROBLEM SETUP AND RELATED WORK

Let (X,Y ) ∈ X × {1, . . . , C} be the random variables for instances and clean labels, where
X represents the instance space and C is the number of classes. However, in many real-world
applications (Zhang et al., 2017; Zhong et al., 2019; Li et al., 2019; Yi & Wu, 2019; Zhang et al.,
2019; Tanno et al., 2019; Zhang et al., 2018), the clean labels cannot be observed. The observed
labels are noisy. Let Ȳ be the random variable for the noisy labels. What we have is a sample
{(x1, ȳ1), . . . , (xn, ȳn)} drawn from the noisy distribution Dρ of the random variables (X, Ȳ ). Our
aim is to learn a robust classifier that could assign clean labels to test data by exploiting the sample
with noisy labels.

Existing methods for learning with noisy labels can be divided into two categories: algorithms that
result in statistically inconsistent or consistent classifiers. Methods in the first category usually employ
heuristics to reduce the side-effect of noisy labels, e.g., selecting reliable examples (Yu et al., 2019;
Han et al., 2018b; Malach & Shalev-Shwartz, 2017), reweighting examples (Ren et al., 2018; Jiang
et al., 2018; Ma et al., 2018; Kremer et al., 2018; Tanaka et al., 2018; Reed et al., 2015), employing
side information (Vahdat, 2017; Li et al., 2017; Berthon et al., 2020), and adding regularization
(Han et al., 2018a; Guo et al., 2018; Veit et al., 2017; Vahdat, 2017; Li et al., 2017). Those methods
empirically work well in many settings. Methods in the second category aim to learn robust classifiers
that could converge to the optimal ones defined by using clean data. They utilize the noise transition
matrix, which denotes the probabilities that the clean labels flip into noisy labels, to build consistent
algorithms (Goldberger & Ben-Reuven, 2017; Patrini et al., 2017; Thekumparampil et al., 2018;
Yu et al., 2018; Liu & Guo, 2020; Zhang & Sabuncu, 2018; Kremer et al., 2018; Liu & Tao, 2016;
Northcutt et al., 2017; Scott, 2015; Natarajan et al., 2013; Yao et al., 2020b). The idea is that given the
noisy class posterior probability and the noise transition matrix, the clean class posterior probability
can be inferred.

Note that the noisy class posterior and the noise transition matrix can be estimated by exploiting
the noisy data, where the noise transition matrix additionally needs anchor points (Liu & Tao, 2016;
Patrini et al., 2017). Some methods assume anchor points have already been given (Yu et al., 2018).
There are also methods showing how to identify anchor points from the noisy training data (Liu &
Tao, 2016; Patrini et al., 2017).

3 CLASS2SIMI MEETS NOISY SUPERVISION

In this section, we propose a new strategy for learning from noisy data. Our core idea is to transform
class labels to similarity labels first, and then handle the noise manifested on similarity labels.

3.1 TRANSFORMATION ON LABELS AND THE TRANSITION MATRIX

As in Figure 1, we combine every 2 instances in pairs, and if the two instances have the same class
label, we assign this pair a similarity label 1, otherwise 0. If the class labels are corrupted, the
generated similarity labels also contain noise. We denote the clean and noisy similarity labels of the
example-pair (xi, xj) by Hij and H̄ij respectively.

The definition of the similarity noise transition matrix is similar to the class one, denoting the
probabilities that clean similarity labels flip into noisy similarity labels, i.e., Ts,mn = P (H̄ij =
n|Hij = m). The dimension of the similarity noise transition matrix is always 2× 2. Since the
similarity labels are generated from class labels, the similarity noise is also determined and, thus can
be calculated, by the class noise transition matrix.

Theorem 1. Assume that the dataset is balanced (each class has the same amount of samples, and c
classes in total), and the noise is class-dependent. Given a class noise transition matrix Tc, such that
Tc,ij = P (Ȳ = j|Y = i). The elements of the corresponding similarity noise transition matrix Ts
can be calculated as

Ts,00 =
c2 − c−

(∑
j(
∑
i Tc,ij)

2 − ||Tc||2Fro

)
c2 − c

, Ts,01 =

∑
j(
∑
i Tc,ij)

2 − ||Tc||2Fro

c2 − c
,

Ts,10 =
c− ||Tc||2Fro

c
, Ts,11 =

||Tc||2Fro

c
.
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Figure 2: An overview of the proposed method. We add a pairwise enumeration layer and similarity
transition matrix to calculate and correct the predicted similarity posterior. By minimizing the
proposed loss Lc2s, a classifier f can be learned for assigning clean labels. The detailed structures
of the Neural Network are provided in Section 4. Note that for the noisy similarity labels, some of
them are correct and some are not. The similarity label for dogs is correct and the similarity label for
cats is incorrect. In practice, the input data is original class-labeled data, and the transformation is
conducted during the training procedure rather than before training.

A detailed proof is provided in Appendix A.

Remark 1. Theorem 1 can easily extend to the setting where the dataset is unbalanced in classes by
multiplying each Tc,ij by a coefficient ni. ni is the number of examples from the i-th class.

Note that the similarity labels are only dependent on class labels. If the class noise is class-dependent,
the similarity noise is also “class-dependent” (class means similar and dissimilar). Under class-
dependent label noise, a binary classification is learnable as long as T00 + T11 > 1 (Menon et al.,
2015), where T is the corresponding binary transition matrix; a multi-class classification is learnable
if the corresponding transition matrix Tc is invertible. For Class2Simi, in the most general sense,
i.e., Tc is invertible, Ts,00 + Ts,11 > 1 holds. Namely, the learnability of the pointwise classification
implies the learnability of the reduced pairwise classification. However, the latter cannot imply the
former. A proof and a counterexample are provided in Appendix F.

Theorem 2. Assume that the dataset is balanced (each class has the same amount of samples),
and the noise is class-dependent. When the number of classes c ≥ 81, the noise rate for the noisy
similarity labels is lower than that of the noisy class labels.

A detailed proof is provided in Appendix B.

When dealing with label noise, a low noise rate has many benefits. The most important one is that the
noise-robust algorithms will consistently achieve higher performance when the noise rate is lower
(Bao et al., 2018; Han et al., 2018b; Xia et al., 2019; Patrini et al., 2017). Another benefit is that,
when the noise rate is low, the complex instance-dependent label noise can be well approximated
by class-dependent label noise (Cheng et al., 2020), which is easier to handle. After the Class2Simi
transformation, the number of dissimilar pairs is (c − 1) times as much as that of similar pairs.
Meanwhile, compared with the original noise rate of class labels, the noise rate of similar pairs (the
ratio of the number of mislabeled similar pairs to the number of total real similar pairs) is higher
and the noise rate of dissimilar pairs is lower, while the overall noise rate of pairwise examples is
lower, which partially reflects that the impact of the label noise is less bad. Moreover, the flip from
dissimilar to similar should be more adversarial and thus more important. In practice, it is common
that one class has more than one clusters, while it is rare that two or more classes are in the same
cluster. If there is a flip from similar to dissimilar and based on it we split a (latent) cluster into two
(latent) clusters, we still have a high chance to label these two clusters correctly later. If there is a flip
from dissimilar to similar and based on it we join two clusters belonging to two classes into a single
cluster, we nearly have zero chance to label this cluster correctly later. As a consequence, the flip
from dissimilar to similar is more adversarial, and thus more important. To sum up, considering the
reduction of the overall noise rate is meaningful.

3.2 LEARNING WITH NOISY SIMILARITY LABELS

In order to learn a multi-class classifier from similarity labeled data, we should establish relation-
ships between class posterior probability and similarity posterior probability. Here we employ the
relationship established in (Hsu et al., 2019), which is derived from a likelihood model. As in Figure

1In multi-class classification problems, the number of classes is usually bigger than 8 , e.g., MNIST (LeCun,
1998), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009).
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(a) Similar example (b) Dissimilar example

Figure 3: Examples of predicted noisy similarity. Assume class number is 10; f(Xi) and f(Xj)
are categorical distribution of Xi and Xj respectively, which are shown above in the form of area
charts. Ŝij is the predicted similarity posterior between two instances, calculated by the inner product
between two categorical distributions.

2, they denote the predicted clean similarity posterior by the inner product between two categorical
distributions: Ŝij = f (Xi)

>
f (Xj). Intuitively, f(X) outputs the predicted categorical distribution

of input data X and f(Xi)
>f(Xj) can measure how similar the two distributions are. For clarity,

we visualize the predicted similarity posterior in Figure 3. If Xi and Xj are predicted belonging to
the same class, i.e., argmaxm∈C fm(Xi) = argmaxn∈C fn(Xj), the predicted similarity posterior
should be relatively high (Ŝij = 0.30 in Figure 3(a)). By contrast, if Xi and Xj are predicted belong-
ing to different classes, the predicted similarity posterior should be relatively low (Ŝij = 0.0654 in
Figure 3(b)). Note that the noisy similarity posterior distribution P (H̄ij |Xi, Xj) and clean similarity
posterior distribution P (Hij |Xi, Xj) satisfy

P (H̄ij |Xi, Xj) = T>s P (Hij |Xi, Xj). (1)

Therefore, we can infer noisy similarity posterior ˆ̄Sij from clean similarity posterior Ŝij with
the similarity noise transition matrix. To measure the error between the predicted noisy similarity
posterior ˆ̄Sij and noisy similarity label H̄ij , we employ a binary cross-entropy loss function (Shannon,
1948). The final optimization function is

Lc2s(H̄ij ,
ˆ̄Sij) = −

∑
i,j

H̄ij log ˆ̄Sij + (1− H̄ij) log(1− ˆ̄Sij). (2)

The pipeline of the proposed Class2Simi is summarized in Figure 2. The softmax function outputs
an estimation for the clean class posterior, i.e., f(X) = P̂ (Y |X), where P̂ (Y |X) denotes the
estimated class posterior. Then a pairwise enumeration layer (Hsu et al., 2018) is added to calculate
the predicted clean similarity posterior Ŝij of every two instances. According to Equation 1, by
pre-multiplying the transpose of the noise similarity transition matrix, we can obtain the predicted
noisy similarity posterior ˆ̄Sij . Therefore, by minimizing Lc2s, we can learn a classifier for predicting
noisy similarity labels. Meanwhile, before the transition matrix layer, the pairwise enumeration layer
will output a prediction for the clean similarity posterior, which guides f(X) to predict clean class
labels.

3.3 IMPLEMENTATION

The proposed algorithm is summarized in Algorithm 1. Since learning only from similarity labels will
lose the mapping between the output nodes and the semantic classes, we load the model trained on
the data with noisy class labels to learn the class information in Stage 2. It is worthwhile to mention
that Class2Simi increases the computation cost slightly. Note that the transformation of labels is
during the training phase rather than before training. Specifically, as in Figure 2, first, we read a
batch of n examples, and generate their corresponding n2 similarity labels. Since n is the batch size,
it is usually small. In addition, we only save the labels, not example-pairs, such that it introduces a
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Algorithm 1 Class2Simi
Input: training data with noisy class labels; validation data with noisy class labels.
Stage 1: Learn T̂s
1: Learn g(X) = P̂ (Ȳ |X) by training data with noisy class labels, and save the model for Stage 2;
2: Estimate T̂c following the optimization method in (Patrini et al., 2017);
3: Transform T̂c to T̂s.
Stage 2: Learn the classifier f(X) = P̂ (Y |X)
4: Load the model saved in Stage 1, and train the whole pipeline showed in Figure 2.
Output: classifier f .

negligible memory overhead. Then the neural network outputs the class posterior probabilities of
n single examples in the batch of data. After that pairwise enumeration layer calculates the inner
products between every two instances, outputting n2 predicted similarity posterior probabilities. Then
the similarity transition matrix corrects the n2 predicted similarity posterior probabilities. Finally,
the loss is accumulated by n2 items. Namely, Class2Simi only does the additional computation on
generating similarity labels and calculating the inner products between every two instances in the
pairwise enumeration layer, which is time-efficient.

3.4 GENERALIZATION ERROR

We formulate the above problem in the traditional risk minimization framework (Mohri et al., 2018).
The expected and empirical risks of employing estimator f can be defined as

R(f) = E(Xi,Xj ,Ȳi,Ȳj ,H̄ij ,Ts)∼Dρ [`(f(Xi), f(Xj), Ts, H̄ij)], (3)

and

Rn(f) =
1

n2

n∑
i=1

n∑
j=1

`(f(Xi), f(Xj), Ts, H̄ij), (4)

where n is training sample size of the noisy data. Assume that the neural network has d layers with
parameter matrices W1, . . . ,Wd, and the activation functions σ1, . . . , σd−1 are Lipschitz continuous,
satisfying σj(0) = 0. We denote by H : X 7→ Wdσd−1(Wd−1σd−2(. . . σ1(W1X))) ∈ R the
standard form of the neural network. H = argmaxi∈{1,...,C} hi. Then the output of the softmax
function is defined as fi(X) = exp (hi(X))/

∑C
j=1 exp (hj(X)), i = 1, . . . , C. We can obtain the

following generalization error bound as follow.
Theorem 3. Assume the parameter matricesW1, . . . ,Wd have Frobenius norm at mostM1, . . . ,Md,
and the activation functions are 1-Lipschitz, positive-homogeneous, and applied element-wise (such
as the ReLU). Assume the transition matrix is given, and the instances X are upper bounded by B,
i.e., ‖X‖ ≤ B for all X , and the loss function ` is upper bounded by M 2. Then, for any δ > 0, with
probability at least 1− δ,

R(f̂)−Rn(f̂) ≤ (Ts,11 − Ts,01)2BC(
√

2d log 2 + 1)Πd
i=1Mi

Ts,11
√
n

+M

√
log 1/δ

2n
. (5)

Notation and a detailed proof are provided in Appendix C.

Theorem 3 implies that if the training error is small and the training sample size is large, the expected
risk R(f̂) of the representations for noisy similarity posterior will be small. If the transition matrix is
well estimated, the clean similarity posterior as well as the classifier for the clean class will also have
a small risk according to Equation 1 and the Class2Simi relations. This theoretically justifies why the
proposed method works well. In the experiment section, we will show that the transition matrices are
well estimated and that the proposed method significantly outperforms the baselines.

In Class2Simi, a multi-class classification is reduced to a pairwise binary classification. For pairwise
examples, if a surrogate loss is classification-calibrated, minimizing it leads to minimizing the zero-
one loss on the pointwise random variables in the limit case. Otherwise, we cannot guarantee the

2The assumption holds because deep neural networks will always regulate the objective to be a finite value
and thus the corresponding loss functions are of finite values.
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Table 1: Means and Standard Deviations of Classification Accuracy over 5 trials on image datasets.

MNIST Sym-Noise 0.1 0.2 0.3 0.4 0.5

Co-teaching 98.40±0.07 98.22±0.10 97.56±0.04 97.30±0.15 96.12±0.53

APL 98.77±0.07 98.62±0.12 98.55±0.11 98.40±0.12 98.05±0.29

S2E 98.13±0.57 98.18±0.21 97.71±0.18 97.41±0.17 96.63±0.29

Forward 98.64±0.18 98.33±0.23 98.20±0.11 97.99±0.20 97.35±0.46

Forward & Class2Simi 98.84±0.09 98.74±0.17 98.56±0.15 98.44±0.07 98.25±0.26
Reweight 98.23±0.27 98.01±0.17 97.72±0.30 97.66±0.45 96.81±0.70

Reweight & Class2Simi 98.51±0.13 98.07±0.29 98.08±0.18 97.82±0.29 97.11±0.20
Revision 98.59±0.12 98.48±0.20 98.15±0.17 97.94±0.16 97.53±0.31

Revision & Class2Simi 98.62±0.17 98.57±0.24 98.19±0.21 97.99±0.19 97.73±0.27

CIFAR10 Sym-Noise 0.1 0.2 0.3 0.4 0.5

Co-teaching 85.16±0.25 83.59±0.17 80.47±0.39 78.42±0.25 74.35±0.84

APL 83.81±0.45 82.2±0.56 80.49±0.82 77.80±1.62 73.25±2.45

S2E 60.01±0.89 58.53±1.49 55.07±4.35 52.07±3.33 50.10±3.61

Forward 87.01±0.41 85.75±0.37 83.72±0.33 81.28±0.34 78.10±0.72

Forward & Class2Simi 87.84±0.12 86.62±0.20 84.89±0.19 83.32±0.72 81.15±0.32
Reweight 86.80±0.36 85.08±0.33 83.03±0.63 80.35±0.41 76.61±0.81

Reweight & Class2Simi 87.23±0.39 85.43±0.65 83.18±0.57 80.67±0.62 77.36±0.60
Revision 87.09±0.36 85.68±0.26 83.88±0.49 81.41±0.47 77.96±0.44

Revision & Class2Simi 87.48±0.43 85.87±0.58 83.92±0.37 81.87±0.44 78.70±0.96

CIFAR100 Sym-Noise 0.1 0.2 0.3 0.4 0.5

Co-teaching 52.39±0.47 49.83±0.42 46.31±0.72 42.05±0.80 35.21±1.01

APL 37.70±1.72 33.35±2.07 28.80±2.58 24.82±2.79 21.27±1.49

S2E 49.30±1.93 46.20±2.10 43.24±2.48 39.63±1.86 34.98±1.87

Forward 52.63±0.48 45.67±0.94 42.25±1.83 37.42±1.45 30.66±1.31

Forward & Class2Simi 55.56±0.55 52.85±0.82 49.44±0.70 45.52±0.52 39.86±0.38
Reweight 51.43±0.22 47.01±0.83 42.62±0.66 36.02±2.40 26.34±0.96

Reweight & Class2Simi 51.74±3.65 49.57±1.60 46.54±3.20 43.65±2.14 34.01±3.49
Revision 51.48±0.22 47.11±0.87 42.75±0.78 36.08±2.52 26.32±0.94

Revision & Class2Simi 53.30±1.81 50.18±0.83 47.51±1.71 44.20±1.70 35.36±2.86

worst-case learnability of learning pointwise labels from pairwise examples, but it cannot imply the
average-case non-learnability either. Theoretically, Bao et al. (2020) proved that when the pairwise
labels are all correct, for the special case c = 2, a good model for predicting similar/dissimilar pairs
must also be a good model for predicting the original classes, under mild assumptions. In practice, it
seems fine to use non-classification-calibrated losses. According to Tewari & Bartlett (2007), the
multi-class margin loss (i.e., one-vs-rest loss) and the pairwise comparison loss (i.e., one-vs-one loss)
are proved to be non-calibrated, but they are still the main multi-class losses in Mohri et al. (2018);
Shalev-Shwartz & Ben-David (2014).

4 EXPERIMENTS

Datasets. We employ three widely used image datasets, i.e., MNIST (LeCun, 1998), CIFAR-10, and
CIFAR-100 (Krizhevsky et al., 2009), one text dataset News20, and one real-world noisy dataset
Clothing1M (Xiao et al., 2015). MNIST has 28× 28 grayscale images of 10 classes including 60,000
training images and 10,000 test images. CIFAR-10 and CIFAR-100 both have 32 × 32 × 3 color
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images including 50,000 training images and 10,000 test images. CIFAR-10 has 10 classes while
CIFAR-100 has 100 classes. News20 is a collection of approximately 20,000 newsgroup documents,
partitioned nearly evenly across 20 different newsgroups. Clothing1M has 1M images with real-world
noisy labels and additional 50k, 14k, 10k images with clean labels for training, validation and test,
and we only use noisy training set in the training phase. Note that the similarity learning method of
Class2Simi is based on Cluster because there is no class information. Intuitively, for a noisy class, if
most instances in it belong to another specific class, we can hardly identify it. For example, assume
that a class with noisy labels ī contains ni instances with ground-truth labels i and nj instances with
ground-truth labels j. If nj is bigger than ni, the model will cluster class i into j. Unfortunately, in
Clothing1M, most instances with label ‘5’ belong to class ‘3’ actually. Therefore, we merge the two
classes, and denote the fixed dataset by Clothing1M* which contains 13 classes. For all the datasets,
we leave out 10% of the training examples as a validation set, which is for model selection.

Noisy class labels generation. For the three clean datasets, we artificially corrupt the class labels
of training and validation sets according to the class noise transition matrix. Specifically, for each
instance with clean label i, we replace its label by j with a probability of Tc,ij . In this paper, we
consider both symmetric and asymmetric noise settings which are defined in Appendix D.

Baselines. As mentioned before, Class2Simi is a strategy rather than a specific algorithm. In this
paper, we employ three T -based methods, i.e., Forward correction (Patrini et al., 2017), Reweight (Liu
& Tao, 2016), and T -revision (Xia et al., 2019), which all utilize a class-dependent transition matrix
to model the noise, to implement our approach to show the effectiveness of Class2Simi. Besides,
we externally conduct experiments on Co-teaching (Han et al., 2018b), which is a representative
algorithm of selecting reliable examples for training; APL (Ma et al., 2020), which applies simple
normalization on loss functions and makes them robust to noisy labels; S2E (Yao et al., 2020a),
which properly controls the sample selection process so that deep networks can benefit from the
memorization effect.

Network structure and Optimizer. For MNIST, we use LeNet (LeCun et al., 1998). For CIFAR-10,
we use ResNet-32 with pre-activation (He et al., 2016b). For CIFAR-100, we use ResNet-56 with
pre-activation (He et al., 2016b). For News20, we use GloVe (Pennington et al., 2014) to obtain
vector representations for text, and employ a 3-layer MLP with the Softsign active function. For
Clothing1M*, we use pre-trained ResNet-50 (He et al., 2016a). We use the same optimization method
as Forward correction to learn the noise transition matrix T̂c. In Stage 2, we use the Adam optimizer
with initial learning rate 0.001. On MNIST, the batch size is 128 and the learning rate decays every
20 epochs by a factor of 0.1 with 60 epochs in total. On CIFAR-10, the batch size is also 128 and the
learning rate decays every 40 epochs by a factor of 0.1 with 120 epochs in total. On CIFAR-100, the
batch size is 1000 and the learning rate drops at epoch 80 and 160 by a factor of 0.1 with 200 epochs
in total. On News20, the batch size is 128 and the learning rate decays every 10 epochs by a factor of
0.1 with 30 epochs in total. On Clothing1M*, the batch size is 32 and the learning rate drops every 5
epochs by a factor of 0.1 with 10 epochs in total.

Results on noisy image datasets. The results in Table 1 and Figure 4 demonstrate that Class2Simi
achieves distinguished classification accuracy and is robust against the estimation errors on transition
matrix.

From Table 1, overall, we can see that after the transformation, better performances are achieved
due to a lower noise rate and the similarity transition matrix being robust to noise. Specifically,
On MNIST, as the noise rate increases from Sym-0.1 to Sym-0.5, Forward & Class2Simi maintains
remarkable accuracy above 98.20% while the accuracy of Forward decreases steadily. On CIFAR100,
there are obvious decreases in the accuracy of all methods and our method achieves the best results
across all noise rate, i.e., at Sym-0.5, Class2Simi gives accuracy uplifts of about 9.0% compared with
those T -based methods. Results under asymmetric noise are provided in Appendix E.3.

In Figure 4, we show that the similarity noise transition matrix is robust against estimation
errors. To verify this, we add some random noise to the ground-truth Tc through multiplying
every element in class Tc by a random variable αij . We control the noise rate on the Tc by
sampling αij in different intervals, i.e., 0.1 noise means that αij is uniformly sampled from
±[1.1, 1.2]. Then we normalize Tc to make its row sums equal to 1. From Figure 4, we can see
that the accuracy of Forward drops dramatically with the increase of the noise on Tc on three
datasets. Meanwhile, there is only a slight fluctuation of Forward & Class2Simi on MNIST

8
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Figure 4: Means and Standard Deviations of Classification Accuracy over 5 trials on MNIST, CIFAR10
and CIFAR100 with perturbational ground-truth T̂c.

and CIFAR10. On CIFAR100, the accuracy of Forward & Class2Simi is affected by the noise
on Tc, but the decline is much lower than Forward. The reason is that Forward & Class2Simi
needs to learn the class information from noisy data which is hard when the number of classes is large.

Table 2: Classification Accuracy on News20.
News20 Sym-0.2 Sym-0.4 Asym-0.3
Forward 48.07±0.26 46.49±0.54 47.30±0.53
F & C2S 48.52±0.47 47.04±0.33 47.70±0.45
Reweight 48.30±0.44 46.34±0.31 47.25±0.91
Rt & C2S 48.55±0.46 47.71±0.58 48.43±0.61
Revision 48.25±0.43 46.32±0.19 47.40±0.76

Rn & C2S 48.63±0.48 47.84±0.64 48.53±0.53

(CE uses class labels and the cross-entropy loss
function.)

Table 3: Classification Accuracy on Clothing1M*.
CE 72.49 S2E 72.30

APL 58.93 Co-teaching 74.70
Forward 73.88 Forward & Class2Simi 75.41
Reweight 74.44 Reweight & Class2Simi 75.76
Revision 74.65 Revision & Class2Simi 75.79

Table 4: Classification Accuracy on clean datasets.
Dataset MNIST CIFAR10 CIFAR100 News20

CE 99.19±0.07 89.09±0.19 56.12±0.93 49.29±0.33
C2S 99.10±0.13 89.18±0.25 56.17±0.37 48.71±0.56

Results on noisy text dataset. Results in
Table 2 show that the proposed strategy
works well on the text dataset under both
symmetric and asymmetric noise settings.

Results on real-world noisy dataset. Re-
sults in Table 3 show that the proposed
strategy significantly improves the classi-
fication accuracy of the T -based methods.
T -based methods with Class2Simi also out-
perform those classic methods.

Ablation study. To investigate how the
similarity loss function influences the clas-
sification accuracy, we conduct experi-
ments with the cross-entropy loss function
and the similarity loss function respectively
on clean datasets over 3 trails where the
Tc is set to an identity matrix. All other
settings are kept the same. As shown in Ta-
ble 4, the similarity loss function does not
improve the classification accuracy, which
means the accuracy increase in our paper
is benefited from the lower noise rate and
the more robust transition matrix.

5 CONCLUSION

This paper proposes a new perspective on dealing with class label noise (called Class2Simi) by
transforming the training sample with noisy class labels into a training sample with noisy similarity
labels. We also propose a deep learning framework to learn classifiers directly with the noisy similarity
labels. The core idea is to transform class information into similarity information, which makes
the noise rate lower. We also prove that not only the similarity labels but also the similarity noise
transition matrix is robust to noise. Experiments are conducted on benchmark datasets, demonstrating
the effectiveness of our method. In future work, investigating different types of noise for diverse
real-life scenarios might prove important.
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APPENDICES

A PROOF OF THEOREM 1

Theorem 1. Assume that the dataset is balanced (each class has the same amount of samples, and c
classes in total), and the noise is class-dependent. Given a class noise transition matrix Tc, such that
Tc,ij = P (Ȳ = j|Y = i). The elements of the corresponding similarity noise transition matrix Ts
can be calculated as

Ts,00 =
c2 − c−

(∑
j(
∑
i Tc,ij)

2 − ||Tc||2Fro

)
c2 − c

, Ts,01 =

∑
j(
∑
i Tc,ij)

2 − ||Tc||2Fro

c2 − c
,

Ts,10 =
c− ||Tc||2Fro

c
, Ts,11 =

||Tc||2Fro

c
.

Proof. Assume each class has n samples. n2Tc,ijTc,i′j′ represents the number of sample-pairs
generated by (Ȳ = j|Y = i) and (Ȳ = j′|Y = i′). For the first element Ts,00, n2

∑
i 6=i′ Tc,ijTc,i′j′

is the number of sample-pairs with clean similarity labels H = 0, while n2
∑
i6=i′,j 6=j′ Tc,ijTc,i′j′ is

the number of example-pairs with clean similarity labels S = 0 and noisy similarity labels H̄ = 0.
Thus the ratio of these two terms is exact the Ts,00 = P (H̄ = 0|H = 0). The remaining three
elements can be represented in the same way. The primal representations are as follows,

Ts,00 =

∑
i6=i′,j 6=j′ Tc,ijTc,i′j′∑
i 6=i′ Tc,ijTc,i′j′

, Ts,01 =

∑
i 6=i′,j=j′ Tc,ijTc,i′j′∑
i 6=i′ Tc,ijTc,i′j′

,

Ts,10 =

∑
i=i′,j 6=j′ Tc,ijTc,i′j′∑
i=i′ Tc,ijTc,i′j′

, Ts,11 =

∑
i=i′,j=j′ Tc,ijTc,i′j′∑
i=i′ Tc,ijTc,i′j′

.

Further, note that∑
i=i′

Tc,i,jTc,i′,j′ =
∑
i,j,j′

Tc,i,jTc,i,j′ =
∑
i

(
∑
j

Tc,i,j)(
∑
j′

Tc,i,j′) = c,

∑
i 6=i′

Tc,i,jTc,i′,j′ =
∑

i 6=i′,j,j′
Tc,i,jTc,i′,j′ =

∑
i 6=i′

(
∑
j

Tc,i,j)(
∑
j′

Tc,i,j′) = (c− 1)c,

∑
i=i′,j=j′

Tc,ijTc,i′j′ = ||Tc||2Fro,∑
i 6=i′,j=j′

Tc,ijTc,i′j′ =
∑
j

(
∑
i

Tc,ij)
2 − ||Tc||2Fro.

Substituting above four equations to the primal representations, we have the Theorem 1 proved.

B PROOF OF THEOREM 2

Theorem 2. Assume that the dataset is balanced (each class has the same amount of samples), and
the noise is class-dependent. When the number of classes c ≥ 8, the noise rate for the noisy similarity
labels is lower than that of the noisy class labels.

Proof. Assume each class has n samples. As we state in the proof of Theorem 1, the num-
ber of example-pairs with clean similarity labels H = 0 and noisy similarity labels H̄ = 0 is
n2
∑
i 6=i′,j 6=j′ Tc,ijTc,i′j′ . We denote it by N00. Similarly, we have,

N00 = n2
∑

i6=i′,j 6=j′
Tc,ijTc,i′j′ , N01 = n2

∑
i 6=i′,j=j′

Tc,ijTc,i′j′ ,

N10 = n2
∑

i=i′,j 6=j′
Tc,ijTc,i′j′ , N11 = n2

∑
i=i′,j=j′

Tc,ijTc,i′j′ .
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The noise rate is the ratio of the number of noisy examples to the number of total examples. Assume
that the number of classes is c. We have

Snoise =
N01 +N10

N00 +N01 +N10 +N11
=
N01 +N10

c2n2
,

Cnoise =
n
∑
i6=j Tc,ij

cn
.

Let Snoise minus Cnoise, we have

Snoise − Cnoise =
n2
∑
i 6=i′,j=j′ Tc,ijTc,i′j′ + n2

∑
i=i′,j 6=j′ Tc,ijTc,i′j′

c2n2
−
n
∑
i6=j Tc,ij

cn

=

∑
i6=i′,j=j′ Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′ Tc,ijTc,i′j′ − c

∑
i 6=j Tc,ij

c2
.

Let A =
∑
i 6=i′,j=j′ Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′ Tc,ijTc,i′j′ − c

∑
i 6=j Tc,ij , we have

A =
∑

i6=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′

Tc,ijTc,i′j′ − c
∑
i 6=j

Tc,ij

=
∑

i6=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′

Tc,ijTc,i′j′ − c(
∑
i,j

Tc,ij −
∑
i=j

Tc,ij)

=
∑

i6=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′

Tc,ijTc,i′j′ − c2 + c
∑
i=j

Tc,ij .

The second equation holds because the row sum of Tc is 1.

For the first term
∑
i 6=i′,j=j′ Tc,ijTc,i′j′ , notice that:∑

i6=i′,j=j′
Tc,ijTc,i′j′ =

∑
j

∑
i

Tc,ij(
∑
i′ 6=i

Tc,i′j)

=
∑
j

∑
i

Tc,ij(
∑
i′ 6=i

Tc,i′j + Tc,ij − Tc,ij)

=
∑
j

∑
i

Tc,ij(
∑
i′

Tc,i′j − Tc,ij)

=
∑
j

∑
i

Tc,ij(Sj − Tc,ij) (Sj is the column sum of the j − th column)

=
∑
j

∑
i

Tc,ijSj − T 2
c,ij

=
∑
j

Sj
∑
i

Tc,ij −
∑
j

∑
i

T 2
c,ij

=
∑
j

S2
j −

∑
j

∑
i

T 2
c,ij . (6)

Due to the symmetry of i and j, for the second term
∑
i=i′,j 6=j′ Tc,ijTc,i′j′ , we have∑

i=i′,j 6=j′
Tc,ijTc,i′j′ =

∑
j

∑
i

Tc,ij(Ri − Tc,ij) (Ri is the row sum of the i− th row, and Ri = 1)

=
∑
j

∑
i

Tc,ij − T 2
c,ij

= c−
∑
j

∑
i

T 2
c,ij . (7)

Therefore, substituting Equation (6) and (7) into A, we have

A =
∑
j

S2
j −

∑
j

∑
i

T 2
c,ij + c−

∑
j

∑
i

T 2
c,ij − c2 + c

∑
i=j

Tc,ij .
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To prove Snoise − Cnoise ≤ 0 is equivalent to prove A ≤ 0.

Let M = c2 − c, N =
∑
j S

2
j − 2

∑
j

∑
i T

2
ij + c

∑
i=j Tij (we drop the subscript c in Tc,ij), and

A = N −M . Now we utilize the Adjustment method (Su & Xiong, 2015) to scale N . For every
iteration, we denote the original N by No, and the adjusted N by Na.

Since c ≥ 8, there can not exist three columns with column sum bigger than c/2− 1. Otherwise, the
sum of the three columns will be bigger than c, which is impossible because the sum of the whole
matrix is c.

Therefore, first, we assume that the j, k − th columns have column sum bigger than c/2− 1. Then,
for the row i, we add the elements l, which are not in j, k − th columns, to the diagonal element. We
have

Na −No = (Si + Til)
2 + (Sl + Til)

2 + cTil − 2(Tii + Til)
2 − S2

i − S2
l + 2(T 2

ii + T 2
il)

= Til(2Til + 2Si − 2Sl + c− 4Tii)

≥ Til(2Til − 2Sl + c− 2Tii) (∵ Si ≥ Tii)
> Til(2Til − c+ 2 + c− 2Tii) (∵ Sl < c/2− 1)
≥ 0. (∵ Tii ≤ 1)

We do such adjustment to every rows, thenNa is getting bigger and the adjusted matrix will only have
values on diagonal elements and the j, k − th columns. Since the diagonal elements are dominant in
the row, Sj + Sk < 2c/3 + 2/3 (because for i 6= j, k, Tij + Tik < 2/3).

Assume that the column sum of k − th column is no bigger than that of the j − th column, and thus
Sk < c/3 + 1/3. Then, for a row i, we add the Tik to Tii. We have

Na −No = (Si + Tik)2 + (Sk + Tik)2 + cTik − 2(Tii + Tik)2 − S2
i − S2

k + 2(T 2
ii + T 2

ik)

= Tik(2Tik + 2Si − 2Sk + c− 4Tii)

≥ Tik(2Tik − 2Sk + c− 2Tii) (∵ Si ≥ Tii)
> Tik(2Tik + c/3− 2/3− 2Tii) (∵ Sk < c/3 + 1/3)
≥ 0. (∵ c ≥ 8, and Tii ≤ 1)

We do such adjustment to every rows, then Na is getting bigger and the adjusted matrix will only
have values on diagonal elements and the j − th column, which is called final matrix.

Note that if there is only one column with a column sum bigger than c/2− 1, we can adjust the rest
c− 1 columns as above and then obtain the final matrix as well. If there is no column with a column
sum bigger than c/2− 1, we can adjust all the elements as above and then obtain a unit matrix. For
the unit matrix, A = N −M < Na −M = 0, the Theorem 2 is proved.

Now we process the final matrix. For simplification, we assume j = 0 in the final matrix. We denote
the Tij by bi and Tii by ai, for i = {1, . . . , c− 1}. We have

Na =
∑
i

a2
i + (1 +

∑
i

bi)
2 + c(

∑
i

ai + 1)− 2(
∑
i

a2
i +

∑
i

b2i + 1)

= (1 +
∑
i

bi)
2 + c

∑
i

ai + c−
∑
i

a2
i − 2

∑
i

b2i − 2

= 1 + (
∑
i

bi)
2 + 2

∑
i

bi + c
∑
i

ai + c−
∑
i

a2
i − 2

∑
i

b2i − 2

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2i + c
∑
i

ai −
∑
i

a2
i + c− 1

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2i + c
∑
i

(1− bi)−
∑
i

(1− bi)2 + c− 1

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2i + c2 − c− c
∑
i

bi −
∑
i

(1− 2bi + b2i ) + c− 1

= (
∑
i

bi)
2 + 4

∑
i

bi − 3
∑
i

b2i − c
∑
i

bi + c2 − c.
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Now we prove A = N −M ≤ Na −M ≤ 0. Note that

Na −M = (
∑
i

bi)
2 + 4

∑
i

bi − 3
∑
i

b2i − c
∑
i

bi

= (
∑
i

bi)
2 + 3

∑
i

bi − 3
∑
i

b2i − (c− 1)
∑
i

bi

= (
∑
i

bi)
2 + 3

∑
i

bi − 3
∑
i

b2i − (
∑
i

(1− bi) +
∑
i

bi)
∑
i

bi

= 3
∑
i

bi − 3
∑
i

b2i −
∑
i

(1− bi)
∑
i

bi

= 3
∑
i

bi(1− bi)−
∑
i

(1− bi)
∑
i

bi.

According to the rearrangement inequality(Hardy et al., 1952), we have∑
i

(1− bi)
∑
i

bi ≥ (c− 1)
∑
i

bi(1− bi).

Note that c ≥ 8, thus 3
∑
i bi(1−bi)−

∑
i(1−bi)

∑
i bi ≤ 0, andA ≤ 0. Therefore Snoise−Cnoise ≤

0, and the equation holds if and only if the noise rate is 0 or every instances have the same noisy class
label (i.e., there is one column in the Tc, of which every elements are 1, and the rest elements of the
Tc are 0). Above two extreme situations are not considered in this paper. Namely, the noise rate of
the noisy similarity labels is lower than that of the noisy class labels. Theorem 2 is proved.

C PROOF OF THEOREM 3

Theorem 3. Assume the parameter matricesW1, . . . ,Wd have Frobenius norm at mostM1, . . . ,Md,
and the activation functions are 1-Lipschitz, positive-homogeneous, and applied element-wise (such
as the ReLU). Assume the transition matrix is given, and the instances X are upper bounded by B,
i.e., ‖X‖ ≤ B for all X , and the loss function ` is upper bounded by M 3. Then, for any δ > 0, with
probability at least 1− δ,

R(f̂)−Rn(f̂) ≤ (Ts,11 − Ts,01)2BC(
√

2d log 2 + 1)Πd
i=1Mi

Ts,11
√
n

+M

√
log 1/δ

2n
. (8)

Proof. We have defined

R(f) = E(Xi,Xj ,Ȳi,Ȳj ,H̄ij ,Ts)∼Dρ [`(f(Xi), f(Xj), Ts, H̄ij)], (9)

and

Rn(f) =
1

n2

n∑
i=1

n∑
j=1

`(f(Xi), f(Xj), Ts, H̄ij), (10)

where n is training sample size of the noisy data.

First, we bound the generalization error with Rademacher complexity (Bartlett & Mendelson, 2002).

Theorem 4 (Bartlett & Mendelson (2002)). Let the loss function be upper bounded by M . Then, for
any δ > 0, with the probability 1− δ, we have

sup
f∈F
|R(f)−Rn(f)| ≤ 2Rn(` ◦ F) +M

√
log 1/δ

2n
, (11)

3The assumption holds because deep neural networks will always regulate the objective to be a finite value
and thus the corresponding loss functions are of finite values.
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where Rn(` ◦ F) is the Rademacher complexity defined by

Rn(` ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]
, (12)

and {σ1, · · · , σn} are Rademacher variables uniformly distributed from {−1, 1}.

Before further upper bound the Rademacher complexity Rn(` ◦ F), we discuss the special loss
function and its Lipschitz continuity w.r.t hk(Xi), k = {1, . . . , C}.

Lemma 1. Given similarity transition matrix Ts, loss function `(f(Xi), f(Xj), Ts, H̄ij) is µ-
Lipschitz with respect to hk(Xi), k = {1, . . . , C}, and µ = (Ts,11 − Ts,01)/Ts,11∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij)

∂hk(Xi)

∣∣∣∣ < Ts,11 − Ts,01

Ts,11
. (13)

Detailed proof of Lemma 1 can be found in Section C.1.

Lemma 1 shows that the loss function is µ-Lipschitz with respect to hk(Xi), k = {1, . . . , C}.
Based on Lemma 1, we can further upper bound the Rademacher complexity Rn(` ◦ F) by the
following lemma.

Lemma 2. Given similarity transition matrix Ts and assume that loss function
`(f(Xi), f(Xj), Ts, H̄ij) is µ-Lipschitz with respect to hk(Xi), k = {1, . . . , C}, we have

Rn(` ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

≤ µCE

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
, (14)

where H is the function class induced by the deep neural network.

Detailed proof of Lemma 2 can be found in Section C.2.

The right-hand side of the above inequality, indicating the hypothesis complexity of deep neural
networks and bounding the Rademacher complexity, can be bounded by the following theorem.

Theorem 5. (Golowich et al., 2018) Assume the Frobenius norm of the weight matrices W1, . . . ,Wd

are at most M1, . . . ,Md. Let the activation functions be 1-Lipschitz, positive-homogeneous, and
applied element-wise (such as the ReLU). Let X is upper bounded by B, i.e., for any X , ‖X‖ ≤ B.
Then,

E

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
≤ B(

√
2d log 2 + 1)Πd

i=1Mi√
n

. (15)

Combining Lemma 1,2, and Theorem 4, 5, Theorem 3 is proved.

C.1 PROOF OF LEMMA 1

Recall that

`(f(Xi), f(Xj), Ts, H̄ij = 1) = − log( ˆ̄Sij)

= − log(Ŝij × Ts,11 + (1− Ŝij)× Ts,01)

= − log(f(Xi)
>f(Xj)× Ts,11 + (1− f(Xi)

>f(Xj))× Ts,01),
(16)
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where

f(Xi) = [f1(Xi), . . . , fc(Xi)]
>

=

[(
exp(h1(X))∑c
k=1 exp(hk(X))

)
, . . . ,

(
exp(hc(X))∑c
k=1 exp(hk(X))

)]>
. (17)

Take the derivative of `(f(Xi), f(Xj), Ts, H̄ij = 1) w.r.t. hk(Xi), we have

∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂hk(Xi)
=
∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂ ˆ̄Sij

[ ∂f(Xi)

∂hk(Xi)

]> ∂ ˆ̄Sij
∂f(Xi)

, (18)

where

∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂ ˆ̄Sij
= − 1

f(Xi)>f(Xj)× Ts,11 + (1− f(Xi)>f(Xj))× Ts,01
,

∂ ˆ̄Sij
∂f(Xi)

= f(Xj)× Ts,11 − f(Xj)× Ts,01,

∂f(Xi)

∂hk(Xi)
= f ′(Xi) = [f ′1(Xi), . . . , f

′
c(Xi)]

>.

Note that the derivative of the softmax function has some properties, i.e., if m 6= k, f ′m(Xi) =
−fm(Xi)fk(Xi) and if m = k, f ′k(Xi) = (1− fk(Xi))fk(Xi).

We denote by V ectorm the m − th element in V ector for those complex vectors. Because 0 <
fm(Xi) < 1,∀m ∈ {1, . . . , c}, we have

f ′m(Xi) ≤ |f ′m(Xi)| < fm(Xi), ∀m ∈ {1, . . . , c}; (19)

f ′(Xi)
>f(Xj) < f(Xi)

>f(Xj). (20)

Therefore,∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂hk(Xi)

∣∣∣∣ =

∣∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂ ˆ̄Sij

[ ∂f(Xi)

∂hk(Xi)

]> ∂ ˆ̄Sij
∂f(Xi)

∣∣∣∣∣
=

∣∣∣∣ f ′(Xi)
>f(Xj)× Ts,11 − f ′(Xi)

>f(Xj)× Ts,01

f(Xi)>f(Xj)× Ts,11 + (1− f(Xi)>f(Xj))× Ts,01

∣∣∣∣
<

∣∣∣∣ f(Xi)
>f(Xj)× Ts,11 − f(Xi)

>f(Xj)× Ts,01

f(Xi)>f(Xj)× Ts,11 + (1− f(Xi)>f(Xj))× Ts,01

∣∣∣∣
<

∣∣∣∣Ts,11 − Ts,01

Ts,11

∣∣∣∣
=
Ts,11 − Ts,01

Ts,11
. (21)

The second inequality holds because of Ts,11 > Ts,01 (Detailed proof can be found in Section C.1.1)
and Equation (20). The third inequality holds because of f(Xi)

>f(Xj) < 1.

Similarly, we can prove ∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij = 0)

∂hk(Xi)

∣∣∣∣ < Ts,11 − Ts,01

Ts,11
. (22)

Combining Equation (21) and Equation (22), we obtain∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij)

∂hk(Xi)

∣∣∣∣ < Ts,11 − Ts,01

Ts,11
. (23)
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C.1.1 PROOF OF Ts,11 > Ts,01

As we mentioned in Section B, we have,

N00 = n2
∑

i 6=i′,j 6=j′
Tc,ijTc,i′j′ , N01 = n2

∑
i 6=i′,j=j′

Tc,ijTc,i′j′ ,

N10 = n2
∑

i=i′,j 6=j′
Tc,ijTc,i′j′ , N11 = n2

∑
i=i′,j=j′

Tc,ijTc,i′j′ ,

Ts,01 =
N01

N00 +N01
, Ts,11 =

N11

N10 +N11
,

Ts,11 − Ts,01 =
N11N00 +N11N01 −N01N10 −N01N11

(N00 +N01)(N10 +N11)
.

Let us review the definition of similarity labels: if two instances belong to the same class, they will
have similarity label S = 1, otherwise S = 0. That is to say, for a k-class dataset, only 1

k of similarity
data has similarity labels S = 1, and the rest 1 − 1

k has similarity labels S = 0. We denote the
number of data with similarity labels S = 1 by N1, otherwise N0. Therefore, for the balanced dataset
with n samples of each class, N1 = cn2, and N0 = c(c− 1)n2. Let A = Ts,11 − Ts,01, we have

A = N11N00 −N01N10

= N11N00 − (N0 −N00)(N1 −N11)

= N11N00 −N0N1 −N11N00 +N11N0 +N1N00

= N11N0 −N01N1

= c(c− 1)n2N11 − cn2N01

> 0.

The last equation holds because of (c− 1)N11 −N01 > 0 according to the rearrangement inequality
(Hardy et al., 1952).

C.2 PROOF OF LEMMA 2

E

[
sup
f∈F

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

= E

[
sup
g

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

= E

[
sup

argmax{h1,...,hC}

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

= E

[
sup

max{h1,...,hC}

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

≤ E

[
C∑
k=1

sup
hk∈H

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

=

C∑
k=1

E

[
sup
hk∈H

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

≤ µCE

[
sup
hk∈H

1

n

n∑
i=1

σihk(Xi)

]

= µCE

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
,

where the first three equations hold because given Ts, f and max{h1, . . . , hC} give the same
constraint on hj(Xi), j = {1, . . . , C}; the sixth inequality holds because of the Talagrand Contraction
Lemma (Ledoux & Talagrand, 2013).
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D DEFINITION OF NOISE SETTINGS

Symmetric noise setting is defined as follows, where C is the number of classes.

Sym-ρ: T =


1− ρ ρ

C−1 . . . ρ
C−1

ρ
C−1

ρ
C−1 1− ρ ρ

C−1 . . . ρ
C−1

...
. . .

...
ρ

C−1 . . . ρ
C−1 1− ρ ρ

C−1
ρ

C−1
ρ

C−1 . . . ρ
C−1 1− ρ

 . (24)

The 0.3 asymmetric noise setting is set as follow,

1 def asym_transition_matrix_generate(noise_rate=0.3, num_classes=10,
seed=1):

2 np.random.seed(seed)
3 t = np.random.rand(num_classes, num_classes)
4 i = np.eye(num_classes)
5 t = t + 1.2 * num_classes * i
6 for a in range(num_classes):
7 t[a] = t[a] / t[a].sum()
8

9 return t
10

Listing 1: Asymmetric noise (transition matrix) generation.

E EXPERIMENTS

E.1 GIVEN GROUND-TRUTH CLASS Tc

Figure 5: Means and Standard Deviations (Percentage) of Classification Accuracy over 5 trials on
MNIST, CIFAR10 and CIFAR100 with symmetric noise. Forward and Class2Simi are trained with
estimated T. Forward TrueT is trained with ground-truth class Tc and Class2Simi TrueT is trained
with similarity Ts calculated from ground-truth class Tc.

From Figure 5, overall, we can see that Class2Simi (Class2Simi TrueT) achieves the best perfor-
mance whenever class Tc is given or estimated. In most cases, Class2Simi with estimated Tc even
outperforms baselines with the ground-truth class noise transition matrix, due to lower noise rate
and the similarity transition matrix being robust to noise. Specifically, On MNIST, as the noise
rate increases from Sym-0.1 to Sym-0.5, Class2Simi TrueT maintains remarkable accuracy above
99.20% while the accuracy of Class2Simi and Forward TrueT decrease steadily. However, there is
a significant decrease in the accuracy of Forward. On CIFAR10, the patterns of varying tendencies
of four curves are similar to that of MNIST except that the decreases are more dramatic and even
Class2Simi TrueT drops slightly at Sym-0.5. On CIFAR100, there is an obvious decrease in the
accuracy of all methods and our method achieves the best results across all noise rate, i.e., at Sym-0.5,
Class2Simi gives an accuracy uplift of about 8.0% compared with Forward.
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Figure 6: Means and Standard Deviations (Percentage) of Classification Accuracy over 5 trials on
MNIST, CIFAR10 and CIFAR100 trained with different sampling rate of training data. The noise rate
on training data is set to Sym-0.5.

E.2 TRAINING WITH DIFFERENT SAMPLING RATE ON TRAINING DATA

In Figure 6, we show that the Class2Simi performs well even with fewer data. The noise in training
data is set to Sym-0.5. We randomly sample from original training data with a sampling rate from
0.5 to 1.0 and train the model on the sampled data. Test datasets remain the same. At each sampling
rate, Class2Simi performs better than the baseline. With only 50%, 80% and 80% data on MNIST,
CIFAR10 and CIFAR100, our method can achieve the same accuracy as Forward.

E.3 RESULTS ON ASYMMETRIC NOISE SETTING

Table 5: Means and Standard Deviations (Percentage) of Classification Accuracy over 5 trials on
MNIST, CIFAR10 and CIFAR100 with asymmetric noise of which the noise rate is about 0.3.

0.3 Asymmetric Noise MNIST CIFAR10 CIFAR100

Co-teaching 97.99±0.16 83.08±0.22 47.07±0.84

APL 98.69±0.14 80.99±0.79 28.28±1.69

S2E 97.98±0.06 57.02±1.46 43.67±1.48

Forward 98.30±0.33 84.03±0.47 42.77±1.52

Forward & Class2Simi 98.44±0.14 85.05±0.72 49.96±0.88
Reweight 97.70±0.12 84.10±0.32 43.07±1.01

Reweight & Class2Simi 97.76±0.38 84.63±0.19 48.47±0.85
Revision 98.21±0.11 84.85±0.35 43.14±0.98

Revision & Class2Simi 98.24±0.15 85.11±0.27 48.69±0.83

In Table 5, we demonstrate the effectiveness of our method under the asymmetric noise setting.

F LEARNABILTY CONNECTION BETWEEN PAIRWISE CLASSIFICATION AND
POINTWISE CLASSIFICATION

F.1 Pointwise IMPLIES pairwise

For an invertible Tc, denote by vj the j-th column of Tc and 1 the all-one vector. Then,∑
j

(
∑
i

Tc,ij)
2 =

∑
j

〈vj ,1〉2 ≤
∑
j

||vj ||2||1||2 = c||Tc||2Fro,
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where we use the Cauchy–Schwarz inequality (Steele, 2004) in the second step. Further, we have

Ts,11 + Ts,00 =
||Tc||2Fro

c
+
c2 − c−

(∑
j(
∑
i Tc,ij)

2 − ||Tc||2Fro

)
c2 − c

=
(c− 1)||Tc||2Fro + c2 − c−

(∑
j(
∑
i Tc,ij)

2 − ||Tc||2Fro

)
c2 − c

=
(c− 1)||Tc||2Fro + c2 − c−

(∑
j〈vj ,1〉2 − ||Tc||2Fro

)
c2 − c

≥
(c− 1)||Tc||2Fro + c2 − c−

(
c||Tc||2Fro − ||Tc||2Fro

)
c2 − c

= 1.

Thus the learnability of the pointwise classification implies the learnability of the reduced pairwise
classification.

F.2 Pairwise DOES NOT IMPLY pointwise

Assuming the number of classes is 10 and the dataset is balanced, a singular Tc of the pair noise
pattern and the transformed Ts are shown as follows,

Tc =


0.5 0.5 . . . 0 0
0 0.5 0.5 . . . 0
...

. . .
...

0 . . . 0 0.5 0.5
0.5 0 . . . 0 0.5

 , Ts =

[
0.95 0.05
0.50 0.50

]
.

In this case, the reduced pairwise classification is learnable while the original pointwise classification
is not learnable.

Thus the learnability of the reduced pairwise classification does not imply the learnability of the
pointwise classification.
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