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Abstract

This paper addresses the problem of stochastic optimization in a streaming setting, where
the objective function must be minimized using only time-dependent and biased estimates of
its gradients. The study presents a non-asymptotic analysis of various Stochastic Gradient
(SG) based methods, including the well-known SG descent, mini-batch SG, and time-varying
mini-batch SG methods, as well as their iterated averages (Polyak-Ruppert averaging). The
analysis establishes novel heuristics that link dependence, biases, and convexity levels, which
allow for the acceleration of convergence of SG-based methods. Specifically, the heuristics
demonstrate how SG-based methods can overcome long- and short-range dependencies and
biases. In particular, the use of time-varying mini-batches counteracts dependency structures
and biases while ensuring convexity, and combining this with Polyak-Ruppert averaging
further accelerates convergence. These heuristics are particularly useful for learning problems
with highly dependent data, noisy variables, and lacking convexity. Our results are validated
through experiments using simulated and real-life data.

1 Introduction

In recent decades, intelligent systems, such as machine learning and artificial intelligence, have become
mainstream in many parts of society, e.g., through online, deep, reinforcement, and supervised learning
(Goodfellow et al., 2016; Sutton & Barto, 2018; Hastie et al., 2009; Hazan et al., 2016; Shalev-Shwartz et al.,
2012). These systems predominantly follow traditional learning schemes, also known as batch or offline
learning, where the model is trained on an entire dataset before making predictions on new data. However,
such methods have significant drawbacks, such as expensive re-training costs, as the model needs to be
retrained from scratch when new data arrives, leading to poor scalability in large and real-world applications.

At the same time, these intelligent systems generate vast amounts of data, much of which arrives as a
continuous stream of samples, known as streaming data Examples of streaming data include network traffic
(tweets, search engines, advertisements), self-driving cars, financial investments, weather data, and sensor data
(Kushner & Yin, 2003; Abu-Mostafa et al., 2012). Streaming data presents unique challenges as the algorithm
must adapt to the data observed so far to predict new samples accurately. Such streaming algorithms can never
be seen as complete but must be updated continuously as newer samples arrive. Methods that re-calculate
the model from scratch on the arrival of new samples are impractical due to their high computational cost.
Therefore we need procedures that effectively update as more samples arrive. This computational efficiency
should not be at the expense of accuracy; the model’s accuracy should be close to that achieved if we built a
model from scratch using all the samples (Bottou & Cun, 2003).

A hallmark of learning from streaming data (or large-scale learning) is the uncertainty from limited (or
no) access to accurate information about incoming data. We assume that the optimization’s objectives are
stochastic, leading to Stochastic Optimization (SO) (Nemirovskij & Yudin, 1983). Solving the SO problem
in a streaming framework means we approach the objective using the gradually arriving samples drawn
according to an unknown time-dependent process. Next, the computational complexity of an algorithm is
a limited element when handling streaming data. Stochastic algorithms, such as the Stochastic Gradient
(SG) method (Robbins & Monro, 1951), have proven effective in overcoming the drawbacks of traditional
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(batch/offline) learning methods, as they use the samples one by one without knowing their total number.
These SG methods are scalable and robust in many areas ranging from smooth and strongly convex problems
to complex non-convex ones (Bach & Moulines, 2013; Moulines & Bach, 2011). They solve many large-scale
machine learning tasks for real-world applications where data are large in size (and dimension) and arrive at
a high velocity. Such first-order methods have been intensively studied in theory and practice in recent years
(Bottou et al., 2018).

The classical analyses of SO problems typically require unbiased gradients drawn independently and identically
distributed (i.i.d.) from some underlying (and unknown) data generation process (Cesa-Bianchi et al., 2004).
But in practice, the inference often involves data-generating processes that produce highly dependent data
examples, which are known to heavily bias the problem and slow down convergence. Such time-dependent
streaming data can, for example, be meteorological or financial time series. Nevertheless, SG-based methods
can converge even if they only have access to biased gradients (Bertsekas, 2016; d’Aspremont, 2008; Devolder
et al., 2011; Schmidt et al., 2011). However, many of these studies have been conducted with specific
applications in mind. Yet, some researchers have examined the convergence of SG-based methods under these
difficult settings, e.g., see Agarwal & Duchi (2012); Karimi et al. (2019); Ma et al. (2022); Ajalloeian & Stich
(2020); Chen & Luss (2018); Schmidt et al. (2011).

While the above works utilized concepts of data dependence to characterize different SG-based methods for
dependent data, there is still a lack of theoretical understanding of how different levels of data dependence
affect these algorithms. In particular, the learning scheme of SG-based methods critically affects the bias and
variance of the learning process. In fact, under i.i.d. data and convexity, SG-based methods achieve only
scaled improvements in their convergence by using constant mini-batch vs. single batch (Godichon-Baggioni
et al., 2021). However, these learning schemes may lead to substantially different convergence behaviors over
highly dependent data, as the gradients are no longer unbiased estimates. Therefore, it is vital to understand
the interplay between data dependence and SG-based methods.

Contributions. This paper goes beyond standard assumptions by allowing for dependent and biased gradient
estimates in stochastic optimization problems in a streaming framework. The study provides non-asymptotic
convergence rates of time-varying mini-batch SG-based methods, which can be applied to a wide range of
applications with dependence and biased inputs. The results establish a connection between the dependency
and convexity levels to the model parameters, enabling us to achieve and improve convergence.

The study shows that SG-based methods can overcome long- and short-range dependence by using time-
varying mini-batches, which counteract the dependency structures. Additionally, the results demonstrate
that biased SG-based methods converge and can achieve the same accuracy as unbiased SG-based methods if
the bias is not too large.

Furthermore, the study presents an explicit heuristic that can be used in practice to increase the stability of
SG-based methods and improve convergence. Specifically, the findings show that increasing mini-batches is
essential to break dependence and ensure convexity, while the use of Polyak-Ruppert averaging can accelerate
convergence (Polyak & Juditsky, 1992; Ruppert, 1988). These contributions are particularly valuable for
learning problems with highly dependent data, noisy variables, and lacking convexity.

Organization. Section 2 provides an overview of the streaming framework on which our non-asymptotic
analysis is based. We introduce key concepts, definitions, and assumptions, including those related to
dependency structures for gradient estimates. In particular, section 2.3 outlines our assumptions regarding
α-mixing conditions for verifying dependency structures.

In section 3, we present our convergence results for SG-based algorithms, both with and without averaging.
The proofs of our results are provided in appendix A. We discuss each result in detail, drawing connections
to previous work in the field. Our convergence analysis depends on the assumptions outlined in section 2 and
some additional conditions for the averaged case (section 3.3).

In section 4, we provide experimental results that validate our findings on synthetic and real-life time-dependent
streaming data. Finally, we conclude our paper in section 5 with some closing remarks.
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2 Problem formulation

In statistics and machine learning, one often wants to describe the behavior of a real system of interest, usually
in the form of a parameterized mathematical model (Hastie et al., 2009; Bottou et al., 2018). Therefore, we
set up a mathematical function representing how well the model describes the system of interest with the
model parameters as arguments: we consider the Stochastic Optimization (SO) problem

min
θ∈Rd
{L(θ) = E[lt(θ)]}, (1)

where lt : Rd → R are some differentiable random functions (possibly non-convex), e.g, see Nesterov et al.
(2018); Nemirovskij & Yudin (1983). Throughout this paper, we refer to L as the objective function.

An example of such a SO problem (1) can be given as follows (Kushner & Yin, 2003): there is an unknown
one-to-one mapping L : Rd → R embedded into the system by nature, which we are interested in. Thus, in
order to approximate L (and recover θ from it), we use the stochastic gradient estimates (∇θlt), where lt
is e.g., the loss between the predicted hθ(Xt) and true Yt outputs, respectively; here we assume that the
prediction function hθ has a fixed form and is parameterized by a vector θ ∈ Rd over which the optimization
is to be performed, e.g., see Teo et al. (2007) for examples of scalar and vectorial loss functions and their
derivatives. Hence, the aim is to find θ such that the prediction function hθ minimizes the objective L.

2.1 Stochastic streaming gradient methods

We solve the SO problem (1) in a streaming framework, where a time-varying mini-batch lt = (lt,1, . . . , lt,nt
)

of nt ∈ N random functions arrives at any given time t ∈ N. To solve the SO problem (1), we use the
Stochastic Streaming Gradient (SSG) method proposed by Godichon-Baggioni et al. (2021), given as

(SSG) θt =θt−1 −
γt

nt

nt∑
i=1
∇θlt,i (θt−1) , (2)

where γt is the learning rate satisfying the conditions
∑∞

i=1 γi =∞ and
∑∞

i=1 γ
2
i <∞ (Robbins & Monro,

1951). Note that if ∀t, nt = 1, SSG becomes the well-known SG descent, which has attracted a lot of attention
(Bousquet & Elisseeff, 2002; Hardt et al., 2016; Shalev-Shwartz et al., 2011; Zhang, 2004; Xiao, 2009). In
many models, there may be constraints on the parameter space, which would require a projection of the
parameters; therefore, we also introduce the Projected SSG (PSSG) estimate, defined by

(PSSG) θt =PΘ

(
θt−1 −

γt

nt

nt∑
i=1
∇θlt,i (θt−1)

)
, (3)

where PΘ denotes the Euclidean projection onto a closed convex set Θ in Rd, i.e., PΘ(θ) = arg minθ′∈Θ∥θ−θ′∥2.
If one examined the trajectory of the stochastic gradients (∇θlt,i), one would be surprised; they contain
high noise levels and lack robustness which can lead to slow convergence or prevent convergence altogether.
Therefore, it intuitively makes sense to use sets of stochastic gradient estimates in each iteration as it reduces
the variance and makes it easier to adjust the learning rate (γt), which improves the quality of each iteration.

In this streaming framework, we are also interested in acceleration approaches to the existing algorithms in (2)
and (3). An essential extension is the Polyak-Ruppert procedure (Polyak & Juditsky, 1992; Ruppert, 1988),
which guarantees optimal statistical efficiency without jeopardizing the computational cost: the Averaged
SSG (ASSG) is given by

(ASSG)/(APSSG) θ̄t = 1
Nt

t−1∑
i=0

ni+1θi, (4)

where Nt =
∑t

i=1 ni is the accumulated sum of observations; in order to compare our streaming methods
fairly, we should always compare in terms of the number of observations used, namely using Nt. Likewise, let
APSSG denote the (Polyak-Ruppert) averaged estimate of PSSG in (3). These averaging methods sequentially
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aggregate past estimates, which leads to smoother curves (i.e., variance reduction in the estimation trajectories),
and accelerates the convergence (Polyak & Juditsky, 1992). Practically, as we handle data sequentially,
we will make use of the rewritten formula, θ̄t = (Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1 with θ̄0 = 0. Pseudo-code
of these streaming estimates (2) to (4) are presented in algorithm 1. In addition, (4) can be modified
to a weighted average version, giving greater weight to the latest estimates and thereby improving the
convergence while limiting the effect of poor initializations; examples of such algorithms can be found in
Boyer & Godichon-Baggioni (2022); Mokkadem & Pelletier (2011).

Algorithm 1: Stochastic streaming gradient estimates (SSG/PSSG/ASSG/APSSG)
Inputs : θ0 ∈ Θ ⊆ Rd, project: True or False, average: True or False
Outputs : θt, θ̄t (resulting estimates)
Initialization: θ̄0 ∈ Rd

for each t ≥ 1, a time-varying mini-batch of nt data arrives, do
θt ← θt−1 − γt

nt

∑nt

i=1∇θlt,i (θt−1) /* update */
if project then

θt ← PΘ(θt) /* project */
if average then

θ̄t ← (Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1 /* average */

Due to the massive popularity of SG-based methods, it is obvious to ask how we can make SG-based algorithms
even more efficient, robust, and user-friendly for several different optimization problem. This question has
led to very many variants, e.g., see Boyd & Vandenberghe (2004); Nesterov et al. (2018); Byrd et al. (2016)
for more details on second-order methods (such as Newton’s method), or other extensions. The choice of
learning rate (γt) has a significant impact on the convergence of SG methods; if it is too small, it will slow
down the convergence, while too high a learning rate may prevent convergence as the loss function will
fluctuate around the minimum. Thus, an adaptive learning rate would be much more effortless to adjust
and more user-friendly, as it requires less fine-tuning. In addition, it would be preferable to have a learning
rate per-dimension, which thereby adjust learning individually as convergence evolves.1 Bottou et al. (2018)
gives an overview of various SG-based methods for (convex and non-convex) optimization, including how to
parallelize and distribute the SG updates.

2.2 Quasi-strong convex objectives

The analysis of SO algorithms requires assumptions on the objective function L: the SO problem (1) is
specified over a convex domain Θ, which in this paper we always take to be a closed subset of Rd, d ≥ 1,
and an objective function L : Θ→ R which is convex with respect to its argument θ ∈ Θ. This is a closely
related branch of optimization tools for (online) convex optimization (Boyd & Vandenberghe, 2004; Nesterov
et al., 2018; Hazan et al., 2016; Shalev-Shwartz et al., 2012). Following Moulines & Bach (2011); Gower et al.
(2019); Nguyen et al. (2019), we assume that L has a unique global minimizer θ∗ ∈ Θ such that ∇θL(θ∗) = 0,
and it is µ-quasi-strongly convex (Karimi et al., 2016; Necoara et al., 2019), i.e, there exists µ > 0 such that
∀θ ∈ Θ,

L(θ∗) ≥ L(θ) + ⟨∇θL(θ), θ∗ − θ⟩+ µ

2 ∥θ
∗ − θ∥2. (5)

The µ-quasi-strongly convexity assumption is a non-strongly convex relaxation of the SO problem, which is
more conservative than µ-strongly convexity. Teo et al. (2007) provides a comprehensive record of various
objectives L used in machine learning applications. Milder degrees of convexity have been studied by, e.g.,
Karimi et al. (2016), which studied SG-based methods under the Polyak-Łojasiewicz condition (Polyak, 1963;
Lojasiewicz, 1963), or Gadat & Panloup (2023), which studied the Ruppert-Polyak averaging estimate under
some Kurdyka-Łojasiewicz-type condition (Kurdyka, 1998; Lojasiewicz, 1963). Relaxations of convexity is

1Some of the most common adaptive learning algorithms for SG optimization is Momentum (Qian, 1999), Nesterov accelerated
gradient (Nesterov, 1983), Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RMSprop (Tieleman et al., 2012), and Adam
(Kingma & Ba, 2014).
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crucial in practice to ensure robustness and adaptiveness of the algorithms, e.g., for non-strongly convex SO,
see Bach & Moulines (2013); Nemirovski et al. (2009); Necoara et al. (2019).

2.3 Assumptions; dependence, bias, expected smoothness, and gradient noise

We go beyond the classical assumptions that require unbiased (uniformly bounded) gradient estimates by
allowing the gradients to be dependent and biased estimates (Godichon-Baggioni et al., 2021). Our aim is
to non-asymptotically bound the SSG estimates (2) to (4) explicitly using the SO problem parameters. To
shorten notation, we let ∇θlt(θ) = n−1

t

∑nt

i=1∇θlt,i(θ). Next, let the natural filtration of the SO problem
Ft = σ(li : i ≤ t) with lt = (lt,1, . . . , lt,nt), and assume the following about the stochastic gradients (∇θlt):
Assumption 1-p (Dννt-dependence and Bννt-bias). Let θ0 be F0-measurable. For each t ≥ 1, the random
function ∇θlt(θ) is square-integrable, Ft-measurable, and for a positive integer p, there exists some positive
sequence (νt)t≥1 and constants Dν , Bν ≥ 0 such that

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ νp
t (Dp

νE[∥θ − θ∗∥p] +Bp
ν), (6)

for all Ft−1-measurable θ ∈ Θ.
Assumption 2-p (κt-expected smoothness). For a positive integer p, there exists some positive sequence
(κt)t≥1 such that ∀θ ∈ Θ, E[∥∇θlt(θ)−∇θlt(θ∗)∥p] ≤ κp

tE[∥θ − θ∗∥p].
Assumption 3-p (σt-gradient noise). For a positive integer p, there exists some positive sequence (σt)t≥1
such that E[∥∇θlt(θ∗)∥p] ≤ σp

t .

Discussion of assumptions. Assumptions 1-p to 3-p are milder assumptions than the standard assumptions
for stochastic approximations, e.g., see Benveniste et al. (2012); Kushner & Yin (2003); Moulines & Bach
(2011); Godichon-Baggioni et al. (2021). They include classic examples such as stochastic approximation but
also more complex models such as learning from time-dependent data, which we will demonstrate later in
section 4.

Assumption 1-p is on the form of mixing conditions for weakly dependence sequences, implying that dependence
dilutes with the rate of νt. It is possible to verify Assumption 1-p by moment inequalities for partial sums of
strongly mixing sequences (Rio, 2017); we will refer to this as short-range dependence. Note that for any
positive integer p, Assumption 1-p can be upper bounded by

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ E[∥∇θlt(θ)−∇θL(θ)∥p] = n−p
t E[∥St∥p], (7)

using Jensen’s inequality, where St =
∑nt

i=1(∇θlt,i(θ)−∇θL(θ)) is a d-dimensional vector. Let (∇θlt,i) be
a strictly stationary sequence and assume that there exists some r > p such that supx>0(xrQ(x))1/r <∞,
where Q(x) denotes the quantile function of ∥∇θlt,i∥. Suppose that (∇θlt,i) is strongly α-mixing in the sense
of Rosenblatt (1956), with strong mixing coefficients (αt)t≥1 satisfying αt = O(t−pr/(2r−2p)). Then by Rio
(2017, Corollary 6.1), we have that E[∥St∥p] = O(np/2

t ), meaning, (7) is at most O(n−p/2
t ); this includes

several linear, non-linear, and Markovian time series, e.g., see Bradley (2005); Doukhan (2012) for more
examples, other mixing coefficients of weak dependence and the relations between them. In relation to the
form of Assumption 1-p, this means that Bν ̸= 0 in this case. However, having Bν = 0 is possible in unbiased
examples, which we will see later in section 4.

Regarding Assumptions 2-p and 3-p, the classical convergence analysis of SG methods is conducted under
uniformly bounded gradients (∇θlt). However, this assumption is too restrictive as it only may hold for some
losses (Bottou et al., 2018; Nguyen et al., 2018). Instead, we follow the same ideas as in Moulines & Bach
(2011); Gower et al. (2019), to make an assumption about the expected smoothness of (∇θlt) (Assumption 2-p)
and an assumption about the expected finitude of (∇θlt(θ∗)) (Assumption 3-p). Note that Assumptions 2-p
and 3-p can be verified using α-mixing conditions by analogues arguments as for Assumption 1-p such that
κp

t and σp
t is O(n−p/2

t ).

3 Convergence analysis

In this section, we consider the SSG estimates in (2) to (4) with streaming batches (nt) arriving in non-
decreasing streams. We aim to non-asymptotically bound δt = E[∥θt − θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2], such
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that they only depend on the parameters of the problem (Sections 3.2 and 3.3). But before we do this, we
will in section 3.1 specify the function forms of the learning rate (γt), the uncertain terms (νt), (κt), (σt),
and the streaming batch (nt).

3.1 Learning rates and function forms

Throughout this paper, we consider learning rates on the form γt = Cγn
β
t t

−α with Cγ > 0, β ∈ [0, 1], and α
chosen accordingly to the expected streaming batches nt. This learning rate gives us the opportunity to add
more weight to larger streaming batches through the hyperparameter β. Obviously, (νt), (κt), and (σt) may
be considered as uncertain terms depending on the streaming batches (nt). Thus, let νt = n−ν

t , κt = Cκn
−κ
t ,

and σt = Cσn
−σ
t with ν ∈ (0,∞), κ, σ ∈ [0, 1/2], and Cκ, Cσ > 0. Having, σ, κ ∈ [0, 1/2] follows directly

from Godichon-Baggioni et al. (2021), since σ = κ = 1/2 corresponds to the i.i.d. case2, whereas σ, κ < 1/2
allows noisier outputs. Similarly, vt = 0 corresponds to the classical i.i.d. setting (Godichon-Baggioni et al.,
2021). Having νt = n−ν

t means Assumption 1-p, allow so-called long-range dependence when ν ∈ (0, 1/2)
(also known as long memory or long-range persistence) and short-range dependence when ν ∈ [1/2,∞). Thus,
the i.i.d. case is when ν →∞.

Next, for the sake of simplicity, we consider (time-varying) streaming batches (nt) on the form Cρt
ρ

with Cρ ∈ N and ρ ∈ [0, 1) such that nt ∈ N; this form includes classical (online) SG descent methods
when {Cρ = 1, ρ = 0} and (online) mini-batch procedures of both constant and time-varying size when
{Cρ ∈ N, ρ = 0} and {Cρ ∈ N, ρ ∈ [0, 1)}, respectively, as well as the Polyak-Ruppert average of (online)
time-varying mini-batches. We will refer to Cρ as the streaming batch size and ρ as the streaming rate.

3.2 Stochastic streaming gradients

Theorem 1 (SSG/PSSG). Let δt = E[∥θt − θ∗∥2], where (θt) either follows the recursion in (2) or (3).
Suppose Assumptions 1-p to 3-p hold for p = 2. If µν = µ − 1{ρ=0}2DνC

−ν
ρ > 0, then there exist explicit

constants Cδ, C
′
δ, C

′′
δ > 0 such that for α− ρβ ∈ (1/2, 1), we have

δt ≤ O

exp

−µCγN
1+ρβ−α

1+ρ

t

CδC
1−β−α

1+ρ
ρ

+ C ′
δB

2
ν

µµνC
2ν

1+ρ
ρ N

2ρν
1+ρ

t

+ C ′′
δ C

2
σCγ

µνC
2σ−β−α

1+ρ
ρ N

ρ(2σ−β)+α
1+ρ

t

. (8)

An explicit version of this bound is given in appendix A.

Sketch of proof. Under Assumptions 1-p to 3-p with p = 2, it can be shown that (δt) satisfies the recursive
relation,

δt ≤ [1− (µ− 2Dννt)γt + 2κ2
tγ

2
t ]δt−1 + µ−1B2

νν
2
t γt + 2σ2

t γ
2
t , (9)

for (γt), (νt), (κt), (σt), and (nt) on any form. This recursive relation (9) can be explicitly upper bounded
in a non-asymptotic way using classical techniques from stochastic approximations (Benveniste et al., 2012;
Kushner & Yin, 2003). As mentioned in Zinkevich (2003), bounding the projected estimate in (3) follows
directly from that E[∥PΘ(θ) − θ∗∥2] ≤ E[∥θ − θ∗∥2], as Θ is a closed convex set. Note that the projected
estimate (3) could also be proved through a bounded gradient assumption that replaces Assumptions 2-p
and 3-p, e.g., see Moulines & Bach (2011); Godichon-Baggioni et al. (2021).

Related work. Theorem 1 replicates the results of the unbiased i.i.d. case considered in Godichon-Baggioni
et al. (2021), i.e., with Bν = 0 and σ = 1/2. Furthermore, our findings also reproduce the results of Moulines
& Bach (2011), where they considered the unbiased i.i.d. case (under slightly different assumptions) using
the SG descent, i.e., when Cρ = 1 and ρ = 0.

Bound on function values. If the objective L has C∇-Lipschitz continuous gradients, then (8) implies
a bound on the function values of L, namely, E[L(θt)− L(θ∗)] ≤ C∇δt/2 by Cauchy–Schwarz’s inequality.
Indeed, when we consider the average estimate (4) in section 3.3, we assume that the objectives L has
C∇-Lipschitz continuous gradients (Assumption 4).

2You can’t beat the system.
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Ensuring convexity through non-decreasing streaming batches. The positivity of the dependence
penalised convexity constant µν = µ− 1{ρ=0}2DνC

−ν
ρ is essential in all terms of (8). If the streaming rate

ρ = 0, then µν solely depends on the convexity constant µ, streaming batch size Cρ, and the dependency
quantities imposed by Assumption 1-p, e.g., if the dependence Dν is so large that µν is no longer positive,
then we should take streaming batch size Cρ large enough such that µν becomes positive again; this is
illustrated in sections 4.1.2 and 4.1.3 for ARCH models (Werge & Wintenberger, 2022). Another way to
ensure convexity is to take increasing streaming batches, i.e., streaming rate ρ > 0, which is more robust
since we do not have to find Cρ such that µν remains positive. However, combining both more ideal, as we
ensure convexity while a large Cρ reduces variance.

Variance reduction from larger streaming batches. Not surprisingly, larger streaming batches Cρ

have a variance-reducing effect, e.g., see the illustrations in section 4. Nevertheless, (8) explicitly shows
the variance-reducing effect in each term, which can help us better understand how to optimally tune the
hyperparameters.

Decay of the initial conditions. The initial conditions in the first term of (8) will be forgotten sub-
exponentially fast; an explicit version of this term can be found in appendix A. The last term of (8) can
be seen as the noise term, which depends on the gradient noise (Assumption 3-p). For α − ρβ ∈ (1/2, 1),
the noise term is O(N−(ρ(2σ−β)+α)/(1+ρ)

t ), e.g., if α = 2/3, β = 1/3, and σ = 1/2, we have O(N−2/3
t ) for any

streaming rate ρ ∈ [0, 1); this is illustrated in Godichon-Baggioni et al. (2021). In unbiased cases (Bν = 0),
the noise term would also be the asymptotic term. In addition, the noise/asymptotic term is positively
affected by large streaming batches Cρ when α+ β < 2σ, e.g., see section 4.

Behavior for bias Bν > 0. The second term of (8) is a pure bias term determined by bias Bν , level of
dependence ν, and (dependence penalised) convexity constant µν . It is noteworthy that the bias term is
independent of the learning rate but depends on the streaming batch Cρ and streaming rate ρ. The dependence
term is O(N−2ρν/(1+ρ)

t ), which requires ρ positive since ν ∈ (0,∞), e.g., to obtain O(N−1/2
t ), we would need

ρ = 1 and ν = 1/2. It is surprising that Theorem 1 allows both long- and short-range dependence. Indeed,
long-range dependence leads to slow convergence (slower than O(N−1/2

t )) but a positive streaming rate ρ will
break long-range dependence. To conclude, increasing streaming batches ensure convexity and breaks long- and
short-term dependence, by which we can obtain δt = O(max{1{Bν >0}N

−2ρν/(1+ρ)
t , N

−(ρ(2σ−β)+α)/(1+ρ)
t }).

3.3 Averaged stochastic streaming gradients

In what follows, we consider the averaging estimate θ̄n given in (4) with (θt) following the SSG estimate in
(2) or the PSSG estimate in (3). Some additional smoothness assumptions on L is needed for the averaging
estimate:

Assumption 4 (C∇- and C ′
∇-smoothness). The objective function L have C∇-Lipschitz continuous gradients

around θ∗, i.e., there exists a constant C∇ > 0 such that ∀θ ∈ Θ,

∥∇θL(θ)−∇θL(θ∗)∥ ≤ C∇∥θ − θ∗∥. (10)

Next, the Hessian of L is C ′
∇-Lipschitz-continuous around θ∗, that is, there exists a constant C ′

∇ ≥ 0 such
that ∀θ ∈ Θ,

∥∇2
θL(θ)−∇2

θL(θ∗)∥ ≤ C ′
∇∥θ − θ∗∥. (11)

As discussed in Bottou et al. (2018), Assumption 4 ensures that ∇θL does not vary arbitrarily, making the
gradient ∇θL a useful indicator on how to decrease L. For deterministic optimization, convergence rates
for smooth optimization are better than for non-smooth optimization, but for SO, smoothness only leads to
improvements in constants (Nesterov et al., 2018).

Next, in continuation of Assumption 3-p with σt = Cσn
−σ
t for σ ∈ [0, 1/2], we make the following assumption

about covariance of (∇θlt(θ∗)), which we interpret as the sequence of score vectors with respect to the
parameter vector θ∗:

7
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Assumption 5 (Covariance of the scores). There exists a non-negative self-adjoint operator Σ such that
∀t ≥ 1, n2σ

t E[∇θlt(θ∗)∇θlt(θ∗)⊤] ⪯ Σ + Σt, where Σt is a positive symmetric matrix with Tr(Σt) = C ′
σn

−2σ′

t ,
C ′

σ ≥ 0, and σ′ ∈ (0, 1/2].

Remark that in the independent or some unbiased cases, such as in section 4.1.1, Assumption 5 is verified
with σ = 1/2 and C ′

σ = 0 (Godichon-Baggioni et al., 2021). The short-range dependence cases is when
σ = 1/2 (and C ′

σ > 0), as in section 4.1.1, whereas, the long-range dependence case is for σ < 1/2 (and
C ′

σ > 0). Assumption 5 allows us to obtain leading term Λ/Nt with Λ = Tr(∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1). Also,
Assumption 5 makes it possible to acquire the Cramer-Rao lower bound in the (unbiased) i.i.d. case, i.e., a
non-asymptotic bound of the averaged estimate (θ̄t) of the form E[∥θ̄t − θ∗∥2] ≤ O(ΛN−1

t ) +O(N−b
t ) with

b > 1.

To consider the averaged estimate θ̄n (4) of the projected estimate PSSG from (3), called APSSG, an
additional assumption is necessary to avoid to calculate the sixth-order moment; we make the unnecessary
assumption that (∇θlt) is uniformly bounded but the derivation of the six-order moment can be found in
Godichon-Baggioni (2016).
Assumption 6 (GΘ-bounded gradients). Let DΘ = infθ∈∂Θ∥θ − θ∗∥ > 0 with ∂Θ denoting the boundary of
Θ. Moreover, there exists GΘ > 0 such that ∀t ≥ 1, supθ∈Θ∥∇θlt(θ)∥2 ≤ G2

Θ a.s.
Theorem 2 (ASSG/PASSG). Let δ̄t = E[∥θ̄t − θ∗∥2] with θ̄n given by (4), where (θt) either follows the
recursion in (2) or (3). Suppose Assumptions 1-p to 5 hold for p = 4. In addition, Assumption 6 must hold if
(θt) follows the recursion in (3). If µν = µ− 1{ρ=0}2DνC

−ν
ρ > 0, then for α− ρβ ∈ (1/2, 1), we have

δ̄
1
2
t ≤

Λ 1
2

N
1
2

t

1{σ=1/2} + 2 1
2 Λ 1

2C
1−2σ

2(1+ρ)
ρ

N
1+2ρσ
2(1+ρ)

t

1{σ<1/2} + 2 1
2C

′ 1
2

σ C
1−2(σ+σ′)

2(1+ρ)
ρ

µN
1+2ρ(σ+σ′)

2(1+ρ)
t

(12)

+Õ
(

max
{
N

− 2+ρ(2σ+β)−α
2(1+ρ)

t , N
− ρ(2σ−β)+α

1+ρ

t

})
+ 1{Bν ̸=0}Ψt, (13)

with
Ψt = Õ

(
max

{
N

− ρ(σ+ν)
2(1+ρ)

t , N
− 1+ρ(β+ν)−α

1+ρ

t , N
− 1+2ρν

2(1+ρ)
t , N

− δ/2+ρν
2(1+ρ)

t , N
− 2ρν

1+ρ

t

})
,

where δ = 1{Bν =0}(ρ(2σ − β) + α) + 1{Bν ̸=0} min{ρ(2σ − β) + α, 2ρν}. An explicit version of this bound is
given in appendix A.

Related work. Note that the bound in Theorem 2 is on the root mean square error, but our discussions
are about δ̄t (without the root). Similarly to the unbiased i.i.d. case (Godichon-Baggioni et al., 2021), the
leading term of δ̄t in (12) and (13) is Λ/Nt, which obtain the (asymptotically optimal) Cramer-Rao lower
bound (Murata & Amari, 1999). Each term of (12) is a direct consequence of Assumption 5 and they are
all independent of the choice of learning rate (γt). Moreover, as discussed in Gadat & Panloup (2023), the
bound of δ̄t can be seen as a bias-variance decomposition between the leading terms (12) and the remaining
terms in (13).

Ensuring convexity through non-decreasing streaming batches. As for Theorem 1, the positivity of
µν is essential for all terms in (13) even if it does not appear directly. In case of lack of convexity µ or high
levels of dependence constant Dν , we can only ensure convergence by increasing Cρ, i.e., ensuring positivity
of µν ; this is illustrated in sections 4.1.2 and 4.1.3 for ARCH models.

Accelerated decay. By averaging it is possible (in some specific cases) to achieve the leading term Λ/Nt,
which is known to obtain the asymptotically optimal Cramer-Rao bound in the i.i.d. case (Godichon-Baggioni
et al., 2021). Thus, we could obtain the optimal and incorrigible rate of δ̄t = O(N−1

t ). This is always achieved
in the unbiased case (i.e., Bν = 0) with σ = 1/2, even under short-range dependence. More specifically,
(12) and (13) simplifies significantly in the case of σ = 1/2: the last two terms of (12) become negligible
as σ′ > 0. The first term of (13) decay at the rate O(N−(2+ρ(2σ+β)−α)/(1+ρ)

t ) or O(N−2(ρ(2σ−β)+α)/(1+ρ)
t ),

which suggests choosing α, β such that α+ ρ(2σ/3− β) = 2/3, e.g., α = 2/3, β = 1/3 and σ = 1/2 yields a
decay of O(N−4/3

t ) for any ρ. Thus, the first term of (13) robustly achieve O(N−4/3
t ) for any streaming rate

8
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ρ by setting α = 2/3 and β = 1/3 if σ = 1/2. Likewise, the last term of (13) is O(N−ρ(1/2+ν)/(1+ρ)
t ) for any

ρ when α = 2/3 and β = 1/3. To summarize, Theorem 2 with σ = 1/2 simplifies into the bound,

δ̄
1
2
t ≤

Λ 1
2

N
1
2

t

+ Õ
(
N

− 2
3

t

)
+ 1{Bν ̸=0}Õ

(
N

− ρ(1/2+ν)
2(1+ρ)

t

)
, (14)

using α = 2/3 and β = 1/3.

Variance reduction from larger streaming batches. Taking β > 0 would damage the variance reduction
effect from having Cρ large (e.g., see discussion after Theorem 1). Thus, there is a trade-off between
accelerating the convergence by taking β > 0 or taking β = 0 to favor from variance reduction. In practice,
an immediate choice would be to take β = 0, but if the data contains a low amount of noise or the model is
robust, it can be advantageous to raise β to improve convergence (Godichon-Baggioni et al., 2021).

Behavior for Bν. The influence of Bν is exclusively contained in Ψt, with the exception of the second
term of (13) via the decay rate δ. Also, increasing ρ will always diminish the bad influence of this bias term.
Surprisingly, Ψt → 0 as t→∞ for any ν, but long-range dependence is excluded if we wish to obtain the
desired rate of δ̄t = O(N−1). However, it does not seem to have any major influence in our experiments in
section 4.

4 Experiments

4.1 Synthetic data

A way to illustrate our findings is by use of classical methods that aim to model and predict an underlying
sequence of real-valued time-series (Xs); here s is short notation for indexing the sequence of observations,
(XNt

, XNt−1, . . . , XNt−nt
≡ XNt−1 , XNt−1−1, . . . ) with Nt =

∑t
i=1 nt. The AutoRegressive (AR), Moving-

Average (MA), and AutoRegressive Moving-Average (ARMA) models are the most well-known models
for time-series (Brockwell & Davis, 2009; Box et al., 2015; Hamilton, 2020). The standard time-series
analysis often relies on independence and constant noise, but it can be relaxed by, e.g., the AutoRegressive
Conditional Heteroskedasticity (ARCH) model (Engle, 1982). Online learning algorithms of (both stationary
and non-stationary) dependent time-series have been studied in Agarwal & Duchi (2012); Anava et al. (2013);
Wintenberger (2021).

4.1.1 AR model

A process (Xs) is called a (zero-mean) AR(1) process, if there exists real-valued parameter θ such that
Xs = θXs−1 + ϵs, where (ϵs) is weak white noise with zero mean and variance σ2

ϵ . To illustrate the versatility
of our results, we construct some (heavy-tailed) noise processes with long-range dependence: the noisiness is
integrated using a Student’s t-distribution with degrees of freedom above four, denoted by (zs). The long-range
dependence is incorporated by multiplying (zs) with the fractional Gaussian noise Gs(H) = Bs+1(H)−Bs(H),
where (Bs(H)) is a fractional Brownian motion with Hurst index H ∈ (0, 1). (Gs(H)) can also be seen as a
(zero-mean) Gaussian process with stationary and self-similar increments (Nualart, 2006).

Well-specified case. Consider the well-specified case, in which, we estimate an AR(1) model from the
underlying stationary AR(1) process Xs = θ∗Xs−1 + ϵs with |θ∗| < 1. The squared loss function lt(θ) =
n−1

t

∑nt

i=1(XNt−1+i−θXNt−1+i−1)2 with gradient ∇θlt(θ) = −2n−1
t

∑nt

i=1 XNt−1+i−1(XNt−1+i−θXNt−1+i−1).
Thus, the objective function is L(θ) = (σ2

ϵ (θ∗−θ)2)/(1−(θ∗)2)+σ2
ϵ , as E[Xs] = 0 and E[X2

s ] = σ2
ϵ /(1−(θ∗)2),

yielding ∇θL(θ) = 2σ2
ϵ (θ − θ∗)/(1− (θ∗)2). Assumption 1-p can for p = 2, we written as

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥2] = 4(θ − θ∗)2(1− (θ∗)2nt)2σ2
ϵ

(1− (θ∗)2)4n2
t

(
σ2

ϵ + 1
1− (θ∗)2

)
,

meaning that Assumption 1-p is verified if (Xs) has bounded moments; this is fulfilled by the natural constraint
that |θ∗| < 1.3 Thus, we can deduce that Dν > 0, Bν = 0, and νt is O(n−1

t ). The remaining assumptions can
3The verification is available in a longer version in appendix B.

9



Under review as submission to TMLR

be verified in the same way, in particular, Assumptions 2-p and 3-p is satisfied with κt and σt is O(n−1/2
t ),

Assumption 4 with C∇ = 2σ2
ϵ /(1 − (θ∗)2) and C ′

∇ = 0, and Assumption 5 with Σ = 4σ4
ϵ /(1 − (θ∗)2) and

Σt = 0. Furthermore, for an AR(1) process Xs constructed using the noise process ϵs =
√
Gs(H)zs with Hurst

index H ≥ 1/2, one can verify that ν4
t , κ

4
t , σ

4
t is O(nH−1

t ) in Assumptions 1-p to 3-p using the self-similarty
property (Nourdin, 2012).

Misspecified case. Next, assume that the underlying data generating process follows the MA(1)-process,
Xs = ϵs + ϕ∗ϵs−1, with ϕ∗ ∈ R. The misspecification error of fitting an AR(1) model to a MA(1) process
can be found by minimizing L(θ) = E[(Xs − θXs−1)2] = σ2

ϵ (1 + (ϕ∗ − θ)2 + θ2(ϕ∗)2), where ∇θL(θ) =
2(θ − ϕ∗)σ2

ϵ + 2θ(ϕ∗)2σ2
ϵ . Thus, as θ∗ = arg minθ L(θ) ≡ arg minθ(ϕ∗ − θ)2 + θ2(ϕ∗)2 is a strictly convex

function in θ, we have ∇θL(θ) = 0⇔ 2(θ − ϕ∗) + 2θ(ϕ∗)2 = 0⇔ 2θ(1 + (ϕ∗)2) = 2ϕ∗ ⇔ θ = ϕ∗/(1 + (ϕ∗)2).
This means for any ϕ∗ ∈ R then θ ∈ (−1/2, 1/2). With this in mind, we can conduct our study of fitting
an AR(1) model to the MA(1) process with ϕ∗ drawn randomly from R (figure 1b). Furthermore, this
reparametrization trick can be used to verify Assumption 1-p in the following way:

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥2] =4(θ − θ∗)2

n2
t

fϕ∗(ϵNt−1),

where fϕ∗(ϵNt−1) is finite function depending on the moments of (ϵNt−1) and ϕ∗.4 Hence, we have Dν > 0
and Bν = 0 with νt being O(n−1

t ). Similarly, it can be verified that κt and σt are O(n−1/2
t ) by use of the

reparametrization trick (Assumptions 2-p and 3-p).

4.1.2 ARCH model

A key element of time series analysis is modeling heteroscedasticity of the conditional variance, e.g., volatility
clustering in financial time-series; ARCH models are some of the most well-known models that incorporate
this feature. A process (ϵs) is called an ARCH(1) process with parameters α0 and α1 if it satisfies{

ϵs = σszs,

σ2
s = α0 + α1ϵ

2
s−1,

(15)

where α0 > 0 and α1 ≥ 0 ensures the non-negativity of the conditional variance process (σ2
s), and the

innovations (zs) is white noise. We employ the quasi-maximum likelihood procedure for the statistical
inference as outlined in Werge & Wintenberger (2022); the quasi likelihood losses is given by ls(θ) =
2−1(ϵ2s/σ2

s(θ) + log(σ2
s(θ)) with first-order derivative

∇θls(θ) = ∇θσ
2
s(θ)

(
σ2

s(θ)− ϵ2s
2σ4

s(θ)

)
,

where ∇θσ
2
s(θ) = (1, ϵ2s−1)T . Verification of Assumptions 1-p to 3-p can be done using mixing conditions;

Francq & Zakoian (2019, Theorem 3.5) showed that stationary ARCH processes are geometrically β-mixing,
which implies α-mixing as well. Observe that the loss function (ls) itself is not strongly convex but only
the objective function L may be strongly convex; convexity conditions of ARCH processes was investigated
in Wintenberger (2021). This makes the parameters challenging to estimate in empirical applications as
the optimization algorithms can quickly fail or converge to irregular solutions. There are different ways to
overcome lack of convexity: first, projecting the estimates such that the (conditional) variance process (σ2

s)
stays away from zero (and close to the unconditional variance). Second, in the specific example of ARCH
model, one could also recover convexity by implementing variance targeting techniques; an example using
Generalized ARCH (GARCH) models can be found in Werge & Wintenberger (2022). To simplify our analysis
we consider stationary ARCH(1) processes, where we fix α0 at 1 and initialize it at 1/2.

4The verification is available in a longer version in appendix B.
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4.1.3 AR-ARCH model

We complete our experiments by considering an AR models with ARCH noise: the process (Xs) is called an
AR(1)-ARCH(1) process with parameters θ, α0 and α1 if it satisfies


Xs = θXs−1 + ϵs,

ϵs = σszs,

σ2
s = α0 + α1ϵ

2
s−1.

(16)

where the innovations (zs) is weak white noise. The statistical inference of this model is done using the squared
loss for the AR-part and the QMLE for the ARCH part, e.g., see sections 4.1.1 and 4.1.2. Assumptions 1-p
to 3-p can be verified by Doukhan (1994, Proposition 6), which showed that ARMA-ARCH processes are
β-mixing.

4.1.4 Discussion

Our experiment measures the performance by the mean quadratic error E[∥θNt
− θ∗∥2] over one thousand

replications with θ0 and θ∗ drawn randomly according to the models’ specifications. We have omitted to
project our estimates as this would hide the errors we want to explore, namely the errors from the dependence
and the lack of convexity. It should be noted that averaging over several replications gives a reduction in
variability, that mainly benefits the SSG. The experiments will demonstrate how the choice of Cρ and ρ
affects the dependence Dν , bias Bν , and the (dependence) penalised convexity constant µν . To compare
different data streams through the selection of Cρ and ρ, we fix the parameters Cγ = 1, α = 2/3, and β = 0.

The experiments described in sections 4.1.1 to 4.1.3 can be found in figure 1; here {Cρ = 1, ρ = 0} corresponds
to the classical SG descent and its (Polyak-Ruppert) average estimate, {Cρ = 64, ρ = 0} is a mini-batch
SSG/ASSG, and {Cρ = 64, ρ = 1/2} is an increasing SSG/ASSG with initial batch size of Cρ = 64.

First consider the AR (well- and misspecified) cases in figures 1a and 1b; these figures shows the results for
long-range dependent white noise processes with Hurst index H = 3/4. Each pair of data streams converges,
but it is clear that the traditional SG method experiences a large amount of noise initially, particularly
affecting the average estimate period but not its decay rate.5 But despite this, we still achieve better
convergence for the ASSG method. Both methods show a noticeable reduction in variance when Cρ increases,
which is particularly beneficial in the beginning. Nevertheless, too large streaming batch sizes Cρ may hinder
the convergence as this leads to too few iterations. Furthermore, figures 1a and 1b indicates an improved
decay of the SSG methods when the streaming rate ρ is increased. Conversely, improvements to the ASSG
method do not occur as we do not exploit the potential of using more observations through parameter β
parameter, which could accelerate convergence, e.g., see section 4.2. It is surprising that we do not see any
effect from the long-range dependent white noise processes, but this seems to be an artifact effect in the proof
as we need fourth-order moments (i.e., Assumptions 1-p to 3-p with p = 4). Therefore, we conjecture that
only second-order moment properties are responsible for the behavior of our simulations and that σ = 1/2
even for long-range dependent white noise processes, as proved in section 4.1.1.

In figures 1c and 1d, we have the experiments for the stationary ARCH(1) models, with and without an
AR-part, respectively, as outlined in sections 4.1.2 and 4.1.3. These figures illustrate the lack of convexity when
using small streaming batch sizes Cρ, e.g., the traditional SG descent and its average estimate, {Cρ = 1, ρ = 0}
diverges. Remark that the lack of convexity is expressed through the lack positively of µν , which only larger
streaming batch sizes Cρ can counteract. Moreover, the traditional SG descent {Cρ = 1, ρ = 0} is omitted in
figure 1d due to lack of convexity. Figure 1d shows that large (Cρ = 64) and non-decreasing (ρ ≥ 0) streaming
batches can converge under difficult settings.

5A modification of our average estimate to a weighted average version could improve convergence as it could limit the effect
of poor initializations Mokkadem & Pelletier (2011); Boyer & Godichon-Baggioni (2022).
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Figure 1: Simulation of various data streams nt = Cρt
ρ. See section 4.1 for details.

(a) AR(1): well-specified case. See section 4.1.1 for
details.

(b) AR(1): misspecified case. See section 4.1.1 for
details.

(c) ARCH(1). See section 4.1.2 for details. (d) AR(1)-ARCH(1). See section 4.1.3 for details.

4.2 Historical hourly weather data

To illustrate our methodology on real-life time-dependent streaming data, we consider some historical hourly
weather data.6 The dataset contains around five years (roughly 45000 data points) of high temporal resolution
hourly measurements over various weather attributes, such as temperature, humidity, and air pressure. These
measurements are available for thirty-six cities, i.e., the dimension d = 36. In our study, we consider the
hourly temperature measurements, which we filter for monthly and annual seasonality by subtracting the
monthly and annual averages.

4.2.1 Geometric median

When the data are noisy, robust estimators such as the geometric median are preferred; Haldane (1948)
introduced the geometric median as a generalization of the real median. The efficiency of the geometric median

6The historical hourly weather dataset can be found on https://www.kaggle.com/datasets/selfishgene/
historical-hourly-weather-data.
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makes it suitable for handling high-dimensional streaming data (Cardot et al., 2013; Godichon-Baggioni,
2016). We estimate the geometric median of Xs ∈ Rd by minimizing the objective L(θ) = E[∥Xs− θ∥−∥Xs∥]
using the stochastic gradient estimates ∇θlt(θ) = −n−1

t

∑nt

i=1(XNt−1+i−θ)/∥XNt−1+i−θ∥; properties such as
existence, uniqueness, and robustness (breakdown point) can be found in Kemperman (1987); Gervini (2008).
We omit to project our estimates as this would hide the errors we want to explore. Instead of projecting the
estimates, one could adapt the proof of Gadat & Panloup (2023) to a streaming setting. Otherwise, if Xs is
bounded, one can adapt Cardot et al. (2012) to the streaming setting showing that the streaming estimates
are bounded.

4.2.2 Discussion

To measure the performance, we use the mean quadratic error of the parameter estimates over one-hundred
replications, given by E[∥θNt

− θ∗∥2]; here we compare our estimates to the geometric median estimate
calculated by the Weiszfeld’s algorithm (Weiszfeld & Plastria, 2009). Suppose (Xs) is standard Gaussian
centered at (θi)1≤i≤d with θi taken randomly in the range [−d, d]. Moreover, following the reasoning of
Cardot et al. (2013), we set Cγ =

√
d, and let α = 2/3.

Figure 2 shows the results of the geometric median estimated in the same way as described in section 4.2.1.
Although the geometric median is a robust metric, we still see a considerable amount of fluctuations in
figure 2, which comes from the time-dependency and the noise in the weather measurements. Figure 2a
shows that it is essential to use a mini-batch Cρ of a certain size to stabilize the optimization, i.e., ensure
convexity through larger streaming batches Cρ. But to achieve reasonable convergence, we need to have
increasing streaming batches, i.e., positive streaming rates ρ > 0; this is illustrated in figures 2b and 2c.
These figures shows an increase in decay of the SSG when the streaming rate ρ increase. However, the lack of
convergence improvements in figure 2c comes from β = 0, which means we do not exploit the potential of
using more observations to accelerate convergence, e.g., see Godichon-Baggioni et al. (2021) for a discussion
in the unbiased i.i.d. case. As discussed after Theorem 2, one example of this could be achieved by setting
α = 2/3 and β = 1/3. As shown in figure 2d, we can achieve this acceleration by simply taking β = 1/3. In
addition, β = 1/3 provides optimal convergence robust to any streaming rate ρ. Choosing a proper β > 0 is
particularly important when Cρ is large, as robustness is an integral part of the geometric median method.
Most surprising is that we can achieve excellent convergence with a final error of only 10−5 by combining
increasing streaming batches with averaging, e.g., see figure 2d with Cρ = 64, ρ > 0 and β = 1/3. Following
the discussion in section 4.1.4, together with these real-life experiments, we suspect that the sequence of
scores (∇θlt(θ∗)) is a martingale difference sequence that generalizes beyond our examples. In particular, our
findings indicate that σ = 1/2 even under long-range dependence. Thus, the complexity of Theorem 2 seems
to be an artifact of the proof, which relies on Assumptions 1-p to 3-p with p = 4.

5 Conclusions

This study examined the robustness and convergence guarantees of SG-based methods under different settings,
covering a broad range of applications with dependence and biased gradients. The non-asymptotic convergence
rates of SG-based algorithms were explored, and theoretical results were used to develop heuristics that link
the level of dependency and convexity to the model parameters. These heuristics provided new insights into
determining optimal learning rates, which can increase the stability of SG-based methods.

The findings demonstrate that SG-based methods can break short- and long-term dependence by using
non-decreasing batch sizes, which counteracts the dependency structures. Specifically, mini-batch is essential
to break dependence and ensure convexity, and convergence can be accelerated by simultaneously averaging.
The experimentation results validate these conclusions, suggesting large non-decreasing mini-batches for
highly dependent data sources.

Furthermore, in large-scale learning problems with dependence, noisy variables, and lack of convexity, we
now know how to accelerate convergence while reducing variance through the learning rate and the treatment
pattern of the data. Overall, this study offers valuable insights into the use of SG-based methods in complex
learning problems and provides practical guidelines for optimizing convergence rates.
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Figure 2: Geometric median for various data streams nt = Cρt
ρ. See section 4.2 for details.

(a) Varying Cρ, ρ = 0, β = 0 (b) Varying ρ, Cρ = 1, β = 0

(c) Varying ρ, Cρ = 64, β = 0 (d) Varying ρ, Cρ = 64, β = 1/3

Future perspectives. There are several ways to expand our work about stochastic streaming algorithms:
(a) we can extend our analysis to include streaming batches of any size (and not as a function of streaming
batch size Cρ and streaming rates ρ), e.g., Godichon-Baggioni et al. (2021) discuss random streaming batches
with negative and positive drift. (b) an extension to non-strongly convex objectives could be advantageous as
it will provide more insight into how we should choose our learning rates (Bach & Moulines, 2013; Nemirovski
et al., 2009; Necoara et al., 2019; Gadat & Panloup, 2023). (c) learning rates should be made adaptive so they
are robust to poor initialization and require less tuning; an adaptive learning rate is essential for practitioners
as it builds a form of universality across applications, e.g., see Duchi et al. (2011); Kingma & Ba (2014).
(d) non-parametric analysis could improve our theoretical results for large values of d. (e) we have focused
on results in quadratic mean but another way to strengthen our non-asymptotic guarantees could be high
probability bounds (Durmus et al., 2021; 2022); for any δ ∈ (0, 1), we could obtain bounds on the sequence
{∥θt − θ∗∥ : t ∈ N} that holds with probability at least 1− δ.

14



Under review as submission to TMLR

References
Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data, volume 4. AMLBook

New York, 2012.

Alekh Agarwal and John C Duchi. The generalization ability of online algorithms for dependent data. IEEE
Transactions on Information Theory, 59(1):573–587, 2012.

Ahmad Ajalloeian and Sebastian U Stich. On the convergence of sgd with biased gradients. arXiv preprint
arXiv:2008.00051, 2020.

Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction. In
Conference on learning theory, pp. 172–184. PMLR, 2013.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate o (1/n). Advances in neural information processing systems, 26, 2013.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic approximations,
volume 22. Springer Science & Business Media, 2012.

Dimitri Bertsekas. Nonlinear Programming, volume 3. Athena Scientific, 2016.

Léon Bottou and Yann Le Cun. Large scale online learning. Advances in neural information processing
systems, 16, 2003.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning Research,
2:499–526, 2002.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Claire Boyer and Antoine Godichon-Baggioni. On the asymptotic rate of convergence of stochastic newton
algorithms and their weighted averaged versions. Computational Optimization and Applications, pp. 1–52,
2022.

Richard C Bradley. Basic properties of strong mixing conditions. a survey and some open questions. Probability
surveys, 2:107–144, 2005.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer Science & Business
Media, 2009.

Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton method
for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

Hervé Cardot, Peggy Cénac, and Jean-Marie Monnez. A fast and recursive algorithm for clustering large
datasets with k-medians. Computational Statistics & Data Analysis, 56(6):1434–1449, 2012.

Hervé Cardot, Peggy Cénac, and Pierre-André Zitt. Efficient and fast estimation of the geometric median in
hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19(1):18–43, 2013.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent gradient estimators. arXiv
preprint arXiv:1807.11880, 2018.

15



Under review as submission to TMLR

Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization,
19(3):1171–1183, 2008.

Olivier Devolder et al. Stochastic first order methods in smooth convex optimization. Technical report,
CORE, 2011.

Paul Doukhan. Mixing. In Mixing, pp. 15–23. Springer, 1994.

Paul Doukhan. Mixing: properties and examples, volume 85. Springer Science & Business Media, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, and Hoi-To Wai. Tight high
probability bounds for linear stochastic approximation with fixed stepsize. Advances in Neural Information
Processing Systems, 34:30063–30074, 2021.

Alain Durmus, Eric Moulines, Alexey Naumov, and Sergey Samsonov. Finite-time high-probability bounds
for polyak-ruppert averaged iterates of linear stochastic approximation. arXiv preprint arXiv:2207.04475,
2022.

Robert F Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica: Journal of the econometric society, pp. 987–1007, 1982.

Christian Francq and Jean-Michel Zakoian. GARCH models: structure, statistical inference and financial
applications. John Wiley & Sons, 2019.

Sébastien Gadat and Fabien Panloup. Optimal non-asymptotic analysis of the ruppert–polyak averaging
stochastic algorithm. Stochastic Processes and their Applications, 156:312–348, 2023.

Daniel Gervini. Robust functional estimation using the median and spherical principal components. Biometrika,
95(3):587–600, 2008.

Antoine Godichon-Baggioni. Estimating the geometric median in hilbert spaces with stochastic gradient
algorithms: Lp and almost sure rates of convergence. Journal of Multivariate Analysis, 146:209–222, 2016.

Antoine Godichon-Baggioni and Bruno Portier. An averaged projected robbins-monro algorithm for estimating
the parameters of a truncated spherical distribution. Electronic Journal of Statistics, 11(1):1890–1927,
2017.

Antoine Godichon-Baggioni, Nicklas Werge, and Olivier Wintenberger. Non-asymptotic analysis of stochastic
approximation algorithms for streaming data. arXiv preprint arXiv:2109.07117, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter Richtárik. Sgd:
General analysis and improved rates. In International Conference on Machine Learning, pp. 5200–5209.
PMLR, 2019.

JBS Haldane. Note on the median of a multivariate distribution. Biometrika, 35(3-4):414–417, 1948.

James Douglas Hamilton. Time series analysis. Princeton university press, 2020.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

Trevor Hastie, Robert Tibshirani, and Jerome H Friedman. The elements of statistical learning: data mining,
inference, and prediction, volume 2. Springer, 2009.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2
(3-4):157–325, 2016.

16



Under review as submission to TMLR

Belhal Karimi, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. Non-asymptotic analysis of biased
stochastic approximation scheme. In Conference on Learning Theory, pp. 1944–1974. PMLR, 2019.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 795–811. Springer, 2016.

JHB Kemperman. The median of a finite measure on a banach space. Statistical data analysis based on the
L1-norm and related methods (Neuchâtel, 1987), pp. 217–230, 1987.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. In Annales de l’institut
Fourier, volume 48, pp. 769–783, 1998.

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Applications. Springer-
Verlag, 2003.

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations aux
dérivées partielles, 117(87-89):2, 1963.

Shaocong Ma, Ziyi Chen, Yi Zhou, Kaiyi Ji, and Yingbin Liang. Data sampling affects the complexity of
online sgd over dependent data. In Uncertainty in Artificial Intelligence, pp. 1296–1305. PMLR, 2022.

Abdelkader Mokkadem and Mariane Pelletier. A generalization of the averaging procedure: The use of
two-time-scale algorithms. SIAM Journal on Control and Optimization, 49(4):1523–1543, 2011.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algorithms for machine
learning. Advances in neural information processing systems, 24, 2011.

Noboru Murata and Shun-ichi Amari. Statistical analysis of learning dynamics. Signal Processing, 74(1):
3–28, 1999. ISSN 0165-1684.

Ion Necoara, Yu Nesterov, and Francois Glineur. Linear convergence of first order methods for non-strongly
convex optimization. Mathematical Programming, 175(1):69–107, 2019.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method efficiency in
optimization. Wiley-Interscience, 1983.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o
(1/kˆ 2). In Doklady an ussr, volume 269, pp. 543–547, 1983.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin Takác. Sgd
and hogwild! convergence without the bounded gradients assumption. In International Conference on
Machine Learning, pp. 3750–3758. PMLR, 2018.

Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin Takáč, and Marten van
Dijk. New convergence aspects of stochastic gradient algorithms. Journal of Machine Learning Research,
20(176):1–49, 2019. URL http://jmlr.org/papers/v20/18-759.html.

Ivan Nourdin. Selected aspects of fractional Brownian motion, volume 4. Springer, 2012.

David Nualart. The Malliavin calculus and related topics, volume 1995. Springer, 2006.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM journal
on control and optimization, 30(4):838–855, 1992.

17

http://jmlr.org/papers/v20/18-759.html


Under review as submission to TMLR

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki
i Matematicheskoi Fiziki, 3(4):643–653, 1963.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151,
1999.

Emmanuel Rio. Asymptotic theory of weakly dependent random processes, volume 80. Springer, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Murray Rosenblatt. A central limit theorem and a strong mixing condition. Proceedings of the National
Academy of Sciences of the United States of America, 42(1):43, 1956.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical report,
Cornell University Operations Research and Industrial Engineering, 1988.

Mark Schmidt, Nicolas Roux, and Francis Bach. Convergence rates of inexact proximal-gradient methods for
convex optimization. Advances in neural information processing systems, 24, 2011.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends® in
Machine Learning, 4(2):107–194, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Choon Hui Teo, Alex Smola, SVN Vishwanathan, and Quoc Viet Le. A scalable modular convex solver
for regularized risk minimization. In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 727–736, 2007.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Endre Weiszfeld and Frank Plastria. On the point for which the sum of the distances to n given points is
minimum. Annals of Operations Research, 167(1):7–41, 2009.

Nicklas Werge and Olivier Wintenberger. Adavol: An adaptive recursive volatility prediction method.
Econometrics and Statistics, 23:19–35, 2022. ISSN 2452-3062.

Olivier Wintenberger. Stochastic online convex optimization; application to probabilistic time series forecasting.
arXiv preprint arXiv:2102.00729, 2021.

Lin Xiao. Dual averaging method for regularized stochastic learning and online optimization. Advances in
Neural Information Processing Systems, 22, 2009.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In
Proceedings of the twenty-first international conference on Machine learning, pp. 116, 2004.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the 20th international conference on machine learning (icml-03), pp. 928–936, 2003.

18



Under review as submission to TMLR

A Proofs

We start by deriving recursive relations to the desired quantities δt = E[∥θt − θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2].
These, are derived for any (γt), (νt), (κt), (σt), and (nt). Finally, we insert the specific functions forms
of these, which yield the results seen in Theorems 1 and 2. Before doing the proofs, we recall a repeating
argument used to non-asymptotically bound δt and δ̄t:

Proposition 1 (Godichon-Baggioni et al. (2021)). Suppose (ωt), (αt), (ηt), and (βt) to be some non-negative
sequences satisfying the recursive relation,

ωt ≤ [1− 2λαt + ηtαt]ωt−1 + βtαt, (17)

with ω0 ≥ 0 and λ > 0. Let Cω ≥ 1 be such that λαt ≤ 1 for all t ≥ tω with tω = inf{t ≥ 1 : Cωηt ≤ λ}.
Then, for (αt) and (ηt) decreasing, we have the upper bound on (ωt) given by

ωt ≤ τt + 1
λ

max
t/2≤i≤t

βi, (18)

with

τt = exp

−λ t∑
i=t/2

αi

exp
(
Cω

t∑
i=1

ηiαi

)(
ω0 + 1

λ
max
1≤i≤t

βi

)
+

t/2−1∑
i=1

βiαi

 .
Proposition 1 shows a simple way to bound (ωt) in (17); the bound in (18) consists of a sub-exponential term
τt and a noise term λ−1 maxt/2≤i≤t βi. Thus, our attention is on reducing the noise term without damaging
the natural decay of the sub-exponential term where τt → 0 exponentially fast as t→∞.

Later in the proofs, we will insert some specific functions, resulting in different generalized harmonic numbers,
which can be bounded with the integral test for convergence. Moreover, to present our results in terms of
Nt =

∑t
i=1 ni, we will use that (Nt/2Cρ)1/(1+ρ) ≤ t ≤ (2Nt/Cρ)1/(1+ρ). To ease notation, we will make use

of the functions ψx(t), ψy
x(t) : R+ \ {0} → R, given as

ψx(t) =


t1−x/(1− x) if x < 1,
1 + log(t) if x = 1,
x/(x− 1) if x > 1,

and ψy
x(t) =


t(1−x)/(1+y)/(1− x) if x < 1,
1 + log(t1/(1+y)) if x = 1,
x/(x− 1) if x > 1,

(19)

with y ∈ R+ such that ψy
x(t) = ψx(t1/(1+y)). Thus,

∑t
i=1 i

−x ≤ ψx(t) for any x ≥ 0. Furthermore, we have
that ψy

x(t)/t = O(t−(x+y)/(1+y)) if x < 1, ψy
x(t)/t = O(log(t)t−1) if x = 1, and ψy

x(t)/t = O(t−1) if x > 1.
Hence, for any x0, x1, x2, y ≥ 0, ψy

x0
(t)/t = Õ(t−(x0+y)/(1+y)) and ψy

x1
(t)ψy

x2
(t)/t = Õ(t−(x1+x2+y−1)/(1+y)),

where Õ(·) suppress logarithmic factors.

In the following lemma, we derive an explicit recursive relation of δt to non-asymptotically bound the t-th
estimate of (2) for any (γt), (νt), (κt), (σt), and (nt) using classical techniques from stochastic approximations
(Benveniste et al., 2012; Kushner & Yin, 2003). As mentioned in Zinkevich (2003), bounding the projected
estimate in (3) follows directly from that E[∥PΘ(θ)− θ∗∥2] ≤ E[∥θ− θ∗∥2], ∀θ ∈ Rd, ∀θ∗ ∈ Θ, as Θ is a convex
body.

Lemma 1. Let δt = E[∥θt−θ∗∥2], where (θt) either follows the recursion in (2) or (3). Suppose Assumptions 1-
p to 3-p hold for p = 2. Let 1{νt=C} and 1{νt¬C} indicate whether (νt) is constant or not. If µν =
µ− 1{νt=C}2Dννt > 0, then for any learning rate (γt), we have

δt ≤ πt + 2B2
ν

µµν
max

t/2≤i≤t
ν2

i + 4
µν

max
t/2≤i≤t

σ2
i γi,
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with

πt = exp

−µν

2

t∑
i=t/2

γi

[exp
(
1{νt¬C}2CδDν

t∑
i=1

νiγi

)
exp

(
2Cδ

t∑
i=1

κ2
i γ

2
i

)
(
δ0 + 2B2

ν

µµν
max
1≤i≤t

ν2
i + 4

µν
max
1≤i≤t

σ2
i γi

)
+ B2

ν

µ

t/2−1∑
i=1

ν2
i γi + 2

t/2−1∑
i=1

σ2
i γ

2
i

 .
Proof of Lemma 1. By taking the quadratic norm on (2), expanding the norm, and taking the expectation,
we can derive the equation,

δt = δt−1 + γ2
t E[∥∇θlt(θt−1)∥2]− 2γtE[⟨∇θlt(θt−1), θt−1 − θ∗⟩], (20)

with δ0 ≥ 0. To bound the second term in (20), we use Assumptions 2-p and 3-p for p = 2, to obtain that

E[∥∇θlt(θt−1)∥2] ≤ 2E[∥∇θlt(θt−1)−∇θlt(θ∗)∥2] + 2E[∥∇θlt(θ∗)∥2] ≤ 2κ2
t δt−1 + 2σ2

t , (21)

as ∥x + y∥p ≤ 2p−1(∥x∥p + ∥y∥p). As noted in Bottou et al. (2018); Nesterov et al. (2018), (5) implies
that ⟨∇θL(θ), θ − θ∗⟩ ≥ µ∥θ − θ∗∥2 for all θ ∈ Θ. Next, since L is µ−strongly convex (5) and θt−1 is
Ft−1-measurable (Assumption 1-p), we can bound the third term on the right-hand side of (20) as follows:

E[⟨∇θlt(θt−1), θt−1 − θ∗⟩] ≥µδt−1 −Dννtδt−1 −Bννtδ
1
2
t−1, (22)

since

E[⟨E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1), θt−1 − θ∗⟩] ≥ −E[∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥∥θt−1 − θ∗∥]

≥ −
√

E[∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥2]
√
E[∥θt−1 − θ∗∥2]

≥ −
√
ν2

t (D2
νδt−1 +B2

ν)
√
δt−1 ≥ −Dννtδt−1 −Bννt

√
δt−1,

by Jensen’s, Cauchy–Schwarz, and Hölder’s inequality, and Assumption 1-p with p = 2. Hence, applying the
inequalities (21) and (22) to (20), yields

δt ≤ [1− 2µγt + 2Dννtγt + 2κ2
tγ

2
t ]δt−1 + 2Bννtγtδ

1
2
t−1 + 2σ2

t γ
2
t

≤ [1− (µ− 2Dννt)γt + 2κ2
tγ

2
t ]δt−1 + B2

ν

µ
ν2

t γt + 2σ2
t γ

2
t ,

using Young’s inequality7; 2Bννtγtδ
1
2
t−1 ≤ µγtδt−1 +B2

νν
2
t γt/µ. Next, we introduce the indicator function for

whether (νt) is constant (= C) or not (¬C), such that

δt ≤ [1− (µν − 1{νt¬C}2Dννt)γt + 2κ2
tγ

2
t ]δt−1 + B2

ν

µ
ν2

t γt + 2σ2
t γ

2
t , (23)

with µν = µ− 1{νt=C}2Dννt > 0. Let Cδ be the constant fulfilling the conditions of Proposition 1 such that
Cδ is chosen larger than 1 verifying Cδ(1{νt¬C}2Dννt + 2κ2

tγt) ≤ µν/2 such that it’s imply µνγt/2 ≤ 1, which
is possible as the sequence (νt) is non-increasing, and (κt) and (γt) is decreasing. At last, bounding (23) by
Proposition 1 concludes the proof.

Proof of Theorem 1. Inserting the functions γt = Cγn
β
t t

−α, νt = n−ν
t , κt = Cκn

−κ
t , σt = Cσn

−σ
t , and

nt = Cρt
ρ into the bound of Lemma 1 yields

δt ≤πt + 21+2ρνB2
ν

µµνC2ν
ρ t2ρν

+
22+ρ(2σ−β)+αC2

σCγC
β
ρ

µνC2σ
ρ tρ(2σ−β)+α

(24)

≤πt + 2(2+6ρν)/(1+ρ)B2
ν

µµνC
2ν/(1+ρ)
ρ N

2ρν/(1+ρ)
t

+ 2(7+6ρσ)/(1+ρ)C2
σCγ

µνC
(2σ−β−α)/(1+ρ)
ρ N

(ρ(2σ−β)+α)/(1+ρ)
t

, (25)

7If a, b, c > 0, p, q > 1 such that 1/p + 1/q = 1, then ab ≤ apcp/p + bq/qcq .
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with µν = µ− 1{ρ=0}2DνC
−ν
ρ > 0, and

πt ≤ exp
(
−
µνCγC

β
ρ t

1+ρβ−α

22

)[
exp

(
1{ρ ̸=0}2CδDνCγC

β
ρ ψα−ρ(β−ν)(t)

Cν
ρ

)
exp

(
4(α− ρ(β − κ))CδC

2
κC

2
γC

2β
ρ

(2α− 2ρ(β − κ)− 1)C2κ
ρ

)
(
δ0 + 2B2

ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

)
+
B2

νCγC
β
ρ ψα−ρ(β−2ν)(t/2)
µC2ν

ρ

+
4(α− ρ(β − σ))C2

σC
2
γC

2β
ρ

(2α− 2ρ(β − σ)− 1)C2σ
ρ

]

≤ exp
(
− µCγN

(1+ρβ−α)/(1+ρ)
t

2(3+ρ(2+β)−α)/(1+ρ)C
(1−β−α)/(1+ρ)
ρ

)[
exp

(
1{ρ̸=0}2CδDνCγC

β
ρ ψ

ρ
α−ρ(β−ν)(2Nt/Cρ)

Cν
ρ

)

exp
(

4(α− ρ(β − κ))CδC
2
κC

2
γC

2β
ρ

(2α− 2ρ(β − κ)− 1)C2κ
ρ

)(
δ0 + 2B2

ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

)

+
B2

νCγC
β
ρ ψ

ρ
α−ρ(β−2ν)(Nt/Cρ)
µC2ν

ρ

+
4(α− ρ(β − σ))C2

σC
2
γC

2β
ρ

(2α− 2ρ(β − σ)− 1)C2σ
ρ

]
, (26)

with help of an integral test for convergence8, the functions ψx(t) and ψy
x(t) from (19), and by use of

(Nt/2Cρ)1/(1+ρ) ≤ t ≤ (2Nt/Cρ)1/(1+ρ).

Next, we need to study fourth-order rate ∆t = E[∥θt − θ∗∥4] of the recursive estimates (2) and (3). As in
Lemma 1, we begin the following sections by conducting a general study for any (γt), (νt), (κt), (σt), and
(nt), when applying the Polyak-Ruppert averaging estimate (θ̄t) from (4).
Lemma 2. Let ∆t = E[∥θt − θ∗∥4], where (θt) either follows the recursion in (2) or (3). Suppose As-
sumptions 1-p to 3-p hold for p = 4. Let 1{νt=C} and 1{νt¬C} indicate whether (νt) is constant or not. If
µ′

ν = µ− 1{νt=C}2D4
νν

4
t /µ

3 > 0, then for any learning rate (γt), we have

∆t ≤Πt + 4B4
ν

µ3µ′
ν

max
t/2≤i≤t

ν4
i + 1024

µµ′
ν

max
t/2≤i≤t

σ4
i γ

2
i + 96

µ′
ν

max
t/2≤i≤t

σ4
i γ

3
i ,

with Πt given as

exp

−µ′
ν

4

t∑
i=t/2

γi

[exp
(
1{νt¬C}C∆D

4
ν

µ3

t∑
i=1

ν4
i γi

)
exp

(
256C∆

µ

t∑
i=1

κ4
i γ

3
i

)
exp

(
24C∆

t∑
i=1

κ4
i γ

4
i

)
(

∆0 + 4B4
ν

µ3µ′
ν

max
1≤i≤t

ν4
i + 1024

µµ′
ν

max
1≤i≤t

σ4
i γ

2
i + 96

µ′
ν

max
1≤i≤t

σ4
i γ

3
i

)
+ B4

ν

µ3

t/2−1∑
i=1

ν4
i γi + 256

µ

t/2−1∑
i=1

σ4
i γ

3
i + 24

t/2−1∑
i=1

σ4
i γ

4
i

 .
Proof of Lemma 2. The derivation of the recursive step sequence for the fourth-order moment ∆t of (2)
follows the same methodology as for the second-order moment in Lemma 1. In the same way we deduced (20),
we can take the quadratic norm on (2), expand the norm, take the square on both sides, and the conditional
expectation on both sides of the equality;

∆t =∆t−1 + γ4
t E[∥∇θlt(θt−1)∥4] + 4γ2

t E[⟨∇θlt(θt−1), θt−1 − θ∗⟩2] + 2γ2
t E[∥θt−1 − θ∗∥2∥∇θlt(θt−1)∥2]

− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩]− 4γ3
t E[∥∇θlt(θt−1)∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩]

≤∆t−1 + γ4
t E[∥∇θlt(θt−1)∥4] + 6γ2

t E[∥θt−1 − θ∗∥2∥∇θlt(θt−1)∥2]
− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩] + 4γ3

t E[∥θt−1 − θ∗∥∥∇θlt(θt−1)∥3],

by use of Cauchy-Schwarz inequality. Next, Young’s inequality yields 4γ3
t ∥θt−1 − θ∗∥∥∇θlt(θt−1)∥3 ≤

2γ4
t ∥∇θlt(θt−1)∥4 + 2γ2

t ∥θt−1− θ∗∥2∥∇θlt(θt−1)∥2 and 8γ2
t ∥θt−1− θ∗∥2∥∇θlt(θt−1)∥2 ≤ (µγt/2)∥θt−1− θ∗∥4 +

32µ−1γ3
t ∥∇θlt(θt−1)∥4, which helps us to obtain the simplified expression,

∆t ≤[1 + µγt/2]∆t−1 + 3γ4
t E[∥∇θlt(θt−1)∥4] + 32µ−1γ3

t E[∥∇θlt(θt−1)∥4]− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩].
8Note that

∑t

i=1 i2ρ(β−κ)−2α ≤ (2α − 2ρ(β − κ))/(2α − 2ρ(β − κ) − 1) and
∑t

i=1 i2ρ(β−σ)−2α ≤ (2α − 2ρ(β − σ))/(2α −
2ρ(β − σ) − 1) as ν > 0, σ, κ ∈ [0, 1/2], ρ ∈ [0, 1), β ∈ [0, 1], and α − ρβ ∈ (1/2, 1).
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To bound the fourth-order term E[∥∇θlt(θt−1)∥4], we make use of the Lipschitz continuity of ∇θlt (As-
sumption 2-p), Assumption 3-p, and that θt−1 is Ft−1-measurable (Assumption 1-p), to show that
E[∥∇θlt(θt−1)∥4] ≤ 8κ4

t ∆t−1 + 8σ4
t as ∥x+ y∥p ≤ 2p−1(∥x∥p + ∥y∥p) for any p ∈ N. Thus,

∆t ≤[1 + µγt/2 + 256µ−1κ4
tγ

3
t + 24κ4

tγ
4
t ]∆t−1 + 256µ−1σ4

t γ
3
t + 24σ4

t γ
4
t

− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩]. (27)

Next, using the same arguments as in the proof of Lemma 1, Young’s inequality, and Assumption 1-p with
p = 4, we have

4γtE[∥θt−1 − θ∗∥2⟨E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1), θt−1 − θ∗⟩]
≥ −4γtE[∥θt−1 − θ∗∥3∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥]
≥ −3µγt∆t−1 − µ−3γtE[∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥4]
≥ −3µγt∆t−1 − µ−3γtD

4
νν

4
t ∆t−1 − µ−3γtB

4
νν

4
t ,

such that the last term of (27) can be bounded as follows,

4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩] = 4γtE[∥θt−1 − θ∗∥2⟨E[∇θlt(θt−1)|Ft−1], θt−1 − θ∗⟩]
= 4γtE[∥θt−1 − θ∗∥2⟨∇θL(θt−1), θt−1 − θ∗⟩] + 4γtE[∥θt−1 − θ∗∥2⟨E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1), θt−1 − θ∗⟩]
≥ µγt∆t−1 − µ−3γtD

4
νν

4
t ∆t−1 − µ−3γtB

4
νν

4
t .

Indeed, inserting this into (27) together with using the indicator function that determines whether (νt) is
constant (= C) or not (¬C), gives us

∆t ≤
[
1−

(
µν

2 −
1{νt¬C}D

4
νν

4
t

µ3

)
γt + 256κ4

tγ
3
t

µ
+ 24κ4

tγ
4
t

]
∆t−1 + B4

νν
4
t γt

µ3 + 256σ4
t γ

3
t

µ
+ 24σ4

t γ
4
t , (28)

with µ′
ν = µ − 1{νt=C}2D4

νν
4
t /µ

3 > 0. Note that µν from Lemma 1 is lower bounded by µ′
ν , and strictly

lower bounded for (νt) constant, i.e., µν > µ′
ν > 0. Let C∆ ≥ 1 fulfill the conditions of Proposition 1; the

C∆ constant is chosen such that C∆(1{νt¬C}D
4
νν

4
t /µ

3 + 256κ4
tγ

2
t /µ+ 24κ4

tγ
3
t ) ≤ µ′

ν/2 implying µ′
νγt/2 ≤ 1,

which is possible as the sequence (νt) is non-increasing, and (κt) and (γt) decrease. Hence, by applying
Proposition 1 on (28), we obtain the desired bound for ∆t.

Corollary 1. Let ∆t = E[∥θt − θ∗∥4], where (θt) either follows the recursion in (2) or (3). Suppose
Assumptions 1-p to 3-p hold for p = 4. If µ′

ν = µ− 1{ρ=0}2D4
ν/µ

3C4ν
ρ > 0, then for α − ρβ ∈ (1/2, 1), we

have

∆t ≤ Πt + 22+4ρνB4
ν

µ3µ′
νC

4ν
ρ t4ρν

+
22ρ(2σ−β)+2α(210µ−1 + 27CγC

β
ρ )C4

σC
2
γC

2β
ρ

µ′
νC

4σ
ρ t2ρ(2σ−β)+2α

, (29)

with Πt given in (30) such that Πt = O(exp(−N (1+ρβ−α)/(1+ρ)
t )).

Proof of Corollary 1. Inserting the functions γt = Cγn
β
t t

−α, νt = n−ν
t , κt = Cκn

−κ
t , σt = Cσn

−σ
t , and

nt = Cρt
ρ into the bound of Lemma 2 and using γ3

t ≤ CγC
β
ρ γ

2
t as α − ρβ ∈ (1/2, 1), yields (29) with

22



Under review as submission to TMLR

µ′
ν = µ− 1{ρ=0}2D4

ν/µ
3C4ν

ρ > 0, where Πt can be bounded as follows:

Πt ≤ exp

−µ′
νCγC

β
ρ

4

t∑
i=t/2

iρβ−α

[exp
(
1{ρ̸=0}C∆D

4
νCγC

β
ρ

µ3C4ν
ρ

t∑
i=1

iρ(β−4ν)−α

)

exp
(

28C∆C
4
κC

3
γC

3β
ρ

µC4κ
ρ

t∑
i=1

iρ(3β−4κ)−3α

)
exp

(
24C∆C

4
κC

4
γC

4β
ρ

C4κ
ρ

t∑
i=1

i4ρ(β−κ)−4α

)
(

∆0 + 4B4
ν

µ3µ′
νC

4ν
ρ

+
1024C4

σC
2
γC

2β
ρ

µµ′
νC

4σ
ρ

+
96C4

σC
3
γC

3β
ρ

µ′
νC

4σ
ρ

)
+
B4

νCγC
β
ρ

µ3C4ν
ρ

t/2−1∑
i=1

iρ(β−4ν)−α

+
256C4

σC
3
γC

3β
ρ

µC4σ
ρ

t/2−1∑
i=1

iρ(3β−4σ)−3α +
24C4

σC
4
γC

4β
ρ

C4σ
ρ

t/2−1∑
i=1

i4ρ(β−σ)−4α


≤ exp

(
−
µ′

νCγC
β
ρ t

1+ρβ−α

23

)[
exp

(
1{ρ ̸=0}C∆D

4
νCγC

β
ρ ψ

0
α−ρ(β−4ν)(t)

µ3C4ν
ρ

)
exp

(
210C∆C

4
κC

3
γC

3β
ρ

µC4κ
ρ

)

exp
(

26C∆C
4
κC

4
γC

4β
ρ

C4κ
ρ

)(
∆0 + 22B4

ν

µ3µ′
νC

4ν
ρ

+
210C4

σC
2
γC

2β
ρ

µµ′
νC

4σ
ρ

+
27C4

σC
3
γC

3β
ρ

µ′
νC

4σ
ρ

)

+
B4

νCγC
β
ρ ψ

0
α−ρ(β−4ν)(t/2)
µ3C4ν

ρ

+
210C4

σC
3
γC

3β
ρ

µC4σ
ρ

+
26C4

σC
4
γC

4β
ρ

C4σ
ρ

]
, (30)

with help of the integral test for convergence;
∑t

i=1 i
ρ(3β−4x)−3α ≤ 3 < 22 and

∑t
i=1 i

4ρ(β−x)−4α ≤ 2 for any
x ≥ 0 as α− ρβ ∈ (1/2, 1).

Lemma 3. Let δ̄t = E[∥θ̄t − θ∗∥2] with θ̄n given by (4), where (θt) either follows the recursion in (2) or
(3). Suppose Assumptions 1-p to 3-p and 5 hold for p = 4. In addition, Assumption 6 must hold true if (θt)
follows the recursion in (3), which is indicated by 1{DΘ<∞}. Then, for any learning rate (γt), we have

δ̄
1/2
t ≤Λ1/2

Nt

(
t∑

i=1
n

2(1−σ)
i

)1/2

+ C
′1/2
σ

µNt

(
t∑

i=1
n

2(1−σ−σ′)
i

)1/2

+ 21/2B
1/2
ν

µNt

 t∑
j=2

(
njνj

j−1∑
i=1

niσi

)1/2

+ 1
µNt

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni

γi

∣∣∣∣+ nt

µγtNt
δ

1/2
t + n1

µNt

(
1
γ1

+ 21/2(C∇ + κ1)
)
δ

1/2
0

+ 21/2

µNt

(
t−1∑
i=1

n2
i+1(C2

∇ + κ2
i+1)δi

)1/2

+ C ′′
∇

µNt

t−1∑
i=0

ni+1∆1/2
i ,

+ 23/4

µNt

t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)nj+1νj+1

j−1∑
i=0

(C∇ + κi+1)ni+1δ
1/2
i

)1/2

,

with Λ = Tr(∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1) and C ′′
∇ = C ′

∇/2 + 1{DΘ<∞}2GΘ/D
2
Θ.

Proof of Lemma 3. The proof is divided into two parts; in the first part, (θt) follows (2), and the second part
considers (3). Assume that (θt) is derived from the recursion in (2). Following Polyak & Juditsky (1992), we
observe that

∇2
θL(θ∗)(θt−1 − θ∗) =−∇θlt(θ∗) +∇θlt(θt−1)− [∇θlt(θt−1)−∇θlt(θ∗)−∇θL(θt−1)]

− [∇θL(θt−1)−∇2
θL(θ∗)(θt−1 − θ∗)],
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where ∇2
θL(θ∗) is invertible with lowest eigenvalue greater than µ, i.e., ∇2

θL(θ∗) ≥ µId. Thus, summing the
parts, taking the quadratic norm and expectation, and using Minkowski’s inequality, gives us the inequality,

(
E
[∥∥θ̄t − θ∗∥∥2]) 1

2 ≤

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥
2 1

2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥
2 1

2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni [∇θli (θi−1)−∇θli (θ∗)−∇θL (θi−1)]

∥∥∥∥∥
2 1

2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni

[
∇θL (θi−1)−∇2

θL (θ∗) (θi−1 − θ∗)
]∥∥∥∥∥

2 1
2

. (31)

First term of (31): As (∇θlt(θ∗)) is a square-integrable sequences on Rd (Assumption 1-p), we have

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥
2 = 1

N2
t

t∑
i=1

n2
iE
[∥∥∥∇2

θL (θ∗)−1∇θli (θ∗)
∥∥∥2
]

+ 2
N2

t

∑
1≤i<j≤t

ninjE
[〈
∇2

θL (θ∗)−1∇θli (θ∗) ,∇2
θL (θ∗)−1∇θlj (θ∗)

〉]
,

where the first term can be bounded by Assumption 5, namely

1
N2

t

t∑
i=1

n2
iE
[∥∥∥∇2

θL (θ∗)−1∇θli (θ∗)
∥∥∥2
]
≤ Λ
N2

t

t∑
i=1

n
2(1−σ)
i + C ′

σ

µ2N2
t

t∑
i=1

n
2(1−σ−σ′)
i ,

where Λ denotes Tr[∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1]. For the next term, we use
2
N2

t

∑
1≤i<j≤t

ninjE
[〈
∇2

θL (θ∗)−1∇θli (θ∗) ,∇2
θL (θ∗)−1∇θlj (θ∗)

〉]
≤ 2
µ2N2

t

∑
1≤i<j≤t

ninjE [⟨∇θli (θ∗) ,∇θlj (θ∗)−∇θL(θ∗)⟩]

≤ 2
µ2N2

t

∑
1≤i<j≤t

ninjE [∥∇θli (θ∗)∥ ∥[E[∇θlj(θ∗)|Fj−1]−∇θL(θ∗)]∥]

≤ 2
µ2N2

t

∑
1≤i<j≤t

ninj

√
E
[
∥∇θli (θ∗)∥2

]√
E
[
∥[E[∇θlj(θ∗)|Fj−1]−∇θL(θ∗)]∥2

]

≤ 2Bν

µ2N2
t

∑
1≤i<j≤t

ninjσiνj = 2Bν

µ2N2
t

t∑
j=2

(
njνj

j−1∑
i=1

niσi

)
,

by Cauchy-Schwarz and Hölder’s inequality, and Assumptions 1-p and 3-p. Thus,E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥
2 1

2

≤ Λ 1
2

Nt

(
t∑

i=1
n

2(1−σ)
i

) 1
2

+ C
′1/2
σ

µN
1/2
t

(
t∑

i=1
n

2(1−σ−σ′)
i

) 1
2

+ 21/2B
1/2
ν

µNt

 t∑
j=2

(
njνj

j−1∑
i=1

niσi

) 1
2

. (32)
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Second term of (31): Next, using that 1
Nt

∑t
i=1 ni∇θli(θi−1) = 1

Nt

∑t
i=1

ni

γi
(θi−1 − θi) = 1

Nt

∑t−1
i=1(θi −

θ∗)(ni+1
γi+1

− ni

γi
) − 1

Nt
(θt − θ∗)nt

γt
+ 1

Nt
(θ0 − θ∗)n1

γ1
leads to an upper bound on normed quantity

∥∇2
θL(θ∗)−1 1

Nt

∑t
i=1 ni∇θli(θi−1)∥ given by

1
µNt

t−1∑
i=1
∥θi − θ∗∥

∣∣∣∣ni+1

γi+1
− ni

γi

∣∣∣∣+ 1
µNt

∥θt − θ∗∥ nt

γt
+ 1
µNt

∥θ0 − θ∗∥ n1

γ1
.

Hence, with the notation of δt = E[∥θt − θ∗∥2], the second term of (31), namely
(E[∥∇2

θL(θ∗)−1 1
Nt

∑t
i=1 ni∇θli(θi−1)∥2])1/2, can be bounded by

1
µNt

t−1∑
i=1

δ
1
2
i

∣∣∣∣ni+1

γi+1
− ni

γi

∣∣∣∣+ nt

µγtNt
δ

1
2
t + n1

µγ1Nt
δ

1
2
0 . (33)

Third term of (31): Here, we use that E[∥∇2
θL(θ∗)−1 1

Nt

∑t
i=1 ni[∇θli(θi−1)−∇θli(θ∗)−∇θL(θi−1)]∥2] can

be derived as

1
µ2N2

t

[
t∑

i=1
n2

iE[∥∇θli(θi−1)−∇θli(θ∗)−∇θL(θi−1)∥2]

+ 2
t∑

i<j

ninjE[⟨∇θli(θi−1)−∇θli(θ∗)−∇θL(θi−1),∇θlj(θj−1)−∇θlj(θ∗)−∇θL(θj−1)⟩]

 .
Here, we use Cauchy-Schwarz inequality, Assumption 2-p and (10) to show that

t∑
i=1

n2
iE[∥∇θli(θi−1)−∇θli(θ∗)−∇θL(θi−1)∥2] ≤ 2

t∑
i=1

n2
iκ

2
i δi−1 + 2C2

∇

t∑
i=1

n2
i δi−1,

and for the other term, we note that

E[⟨∇θli(θi−1)−∇θli(θ∗)−∇θL(θi−1),∇θlj(θj−1)−∇θlj(θ∗)−∇θL(θj−1)⟩]

≤
√
E[∥∇θli(θi−1)−∇θli(θ∗)− [∇θL(θi−1)−∇θL(θ∗)]∥2]√
E[∥E[∇θlj(θj−1)|Fj−1]−∇θL(θj−1)− [E[∇θlj(θ∗)|Fj−1]−∇θL(θ∗)]∥2]

≤
√

2E[∥∇θli(θi−1)−∇θli(θ∗)∥2] + 2E[∥∇θL(θi−1)−∇θL(θ∗)∥2]√
2E[∥E[∇θlj(θj−1)|Fj−1]−∇θL(θj−1)∥2] + 2E[∥E[∇θlj(θ∗)|Fj−1]−∇θL(θ∗)∥2]

≤
√

2κ2
i δi−1 + 2C2

∇δi−1

√
2D2

νν
2
j δj−1 + 4B2

νν
2
j

≤21/2(κiδ
1/2
i−1 + C∇δ

1/2
i−1)(Dννjδ

1/2
j−1 + 21/2Bννj),

using Fi−1 ⊂ Fj−1 since i < j, Cauchy–Schwarz and Hölder’s inequality, ∥a+ b∥p ≤ 2p−1(∥a∥p + ∥b∥p) with
p ∈ N, Assumptions 1-p and 2-p, and (10). Thus, the third term of (31) can be upper bounded by

21/2

µNt

(
t∑

i=1
n2

iκ
2
i δi−1

)1/2

+ 21/2C∇

µNt

(
t∑

i=1
n2

i δi−1

)1/2

+23/4

µNt

 t∑
j=2

(
(Dνδ

1/2
j−1 + 21/2Bν)njνj

j−1∑
i=1

(C∇ + κi)niδ
1/2
i−1

)1/2

. (34)

Fourth term of (31): Here, we use that (11) imply ∀θ, ∥∇θL(θ)−∇2
θL(θ∗)(θ−θ∗)∥ ≤ C ′

∇∥θ−θ∗∥2/2 (Nesterov
et al., 2018), which gives the upper bound C′

∇
2µNt

∑t
i=1 ni∆1/2

i−1 using the notion ∆t = E[∥θt− θ∗∥4]. Combining
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the terms (32) to (34) into (31), together with shifting the indices and collecting the δ0 terms, gives use the
desired bound for when (θt) follows (2).

Now, assume that (θt) is derived from the recursion in (3). As above, we follow the steps of Polyak &
Juditsky (1992), in which, we can rewrite (3) to 1

γt
(θt−1 − θt) = ∇θlt(θt−1)− 1

γt
Ωt, where Ωt = PΘ(θt−1 −

γt∇θlt(θt−1))− (θt−1− γt∇θlt(θt−1)). Thus, summing the parts, taking the norm and expectation, and using
the Minkowski’s inequality, yields the same terms as in (31), but with an additional term regarding Ωt,
namely E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni

γi
Ωi

∥∥∥∥∥
2 1

2

≤ 1
µNt

t∑
i=1

ni

γi

√
E
[
∥Ωi∥2

1{θi−1−γi∇θli(θi−1)/∈Θ}

]
, (35)

using (Godichon-Baggioni, 2016, Lemma 4.3). Next, we note that

∥Ωt∥2 = ∥PΘ (θt−1 − γt∇θlt (θt−1))− θt−1 + γt∇θlt (θt−1)∥2

≤2 ∥PΘ (θt−1 − γt∇θlt (θt−1))− θt−1∥2 + 2γ2
t ∥∇θlt (θt−1)∥2

=2 ∥PΘ (θt−1 − γt∇θlt (θt−1))− PΘ (θt−1)∥2 + 2γ2
t ∥∇θlt (θt−1)∥2

≤2 ∥θt−1 − γt∇θlt (θt−1)− θt−1∥2 + 2γ2
t ∥∇θlt (θt−1)∥2 ≤ 4γ2

tG
2
Θ,

as PΘ is Lipschitz and ∥∇θlt(θ)∥2 ≤ G2
Θ for any θ ∈ Θ. This means that the inner expectation of (35),

E[∥Ωt∥2
1{θt−1−γt∇θlt(θt−1)/∈Θ}] = 4γ2

tG
2
ΘP[θt−1 − γt∇θlt(θt−1) /∈ Θ]. Moreover, as in (Godichon-Baggioni &

Portier, 2017, Theorem 4.2) with use of Lemma 2, we know that P[θt−1− γt∇θlt(θt−1) /∈ Θ] ≤ ∆t/D
4
Θ, where

DΘ = infθ∈∂Θ∥θ − θ∗∥ with ∂Θ denoting the frontier of Θ. Thus, (35) can then be bounded by

1
µNt

t∑
i=1

ni

γi

√
E
[
∥Ωi∥2

1{θi−1−γi∇θli(θi−1)/∈Θ}

]
≤ 2GΘ

µD2
ΘNt

t∑
i=1

ni+1∆1/2
i ,

since the sequence (nt) is either constant or increasing, meaning ∀t, nt/nt+1 ≤ 1. At last, let C ′′
∇ =

C ′
∇/2 + 1{DΘ<∞}2GΘ/D

2
Θ indicate whether (θt) follows (3) or not.

Proof of Theorem 2. The result follows by simplifying and bounding each term of Lemma 3, with use of
Theorem 1 and Lemma 2. Thus, by inserting γt = Cγn

β
t t

−α, νt = n−ν
t , κt = Cκn

−κ
t , σt = Cσn

−σ
t , and

nt = Cρt
ρ into the bound of Lemma 3, we obtain

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} +
Λ1/2C1−σ

ρ

Nt

(
t∑

i=1
i2ρ(1−σ)

)1/2

1{σ ̸=1/2}

+
C

′1/2
σ C1−σ−σ′

ρ

µNt

(
t∑

i=1
i2ρ(1−σ−σ′)

)1/2

+ (ρ(1− β) + α)Cρ

µCγC
β
ρNt

t−1∑
i=1

iρ(1−β)+α−1δ
1/2
i

+ 21/2B
1/2
ν C

1/2
σ Cρ

µC
(σ+ν)/2
ρ Nt

 t∑
j=2

(
jρ(1−ν)

j−1∑
i=1

iρ(1−σ)

)1/2

+ Cρt
ρ(1−β)+α

µCγC
β
ρNt

δ
1/2
t

+ Cρ

µNt

(
1

CγC
β
ρ

+ 21/2
(
Cκ

Cκ
ρ

+ C∇

))
δ

1/2
0 + 21/2+ρ(1−κ)CκCρ

µCκ
ρNt

(
t−1∑
i=1

i2ρ(1−κ)δi

)1/2

+ 21/2+ρC∇Cρ

µNt

(
t−1∑
i=1

i2ρδi

)1/2

+ 2ρC ′′
∇Cρ

µNt

t−1∑
i=0

iρ∆1/2
i

+ 23/4+ρ(2−ν)/2Cρ

µC
ν/2
ρ Nt

t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)jρ(1−ν)

j−1∑
i=1

(
C∇ + 2ρκCκ

Cκ
ρ i

ρκ

)
iρδ

1/2
i

)1/2

,
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using ni+1/ni ≤ 2ρ and that |ni+1/γi+1−ni/γi| ≤ (ρ(1−β)+α)C1−β
ρ /Cγi

1−ρ(1−β)−α as ρ(1−β)+α ≤ 1−ρ
with ρ ∈ [0, 1). Next, as σ ∈ [0, 1/2] and σ′ ∈ (0, 1/2], we have

∑t
i=1 i

2ρ(1−σ−σ′) ≤ t1+2ρ(1−σ−σ′)/(1 + 2ρ(1−
σ − σ′)), where t ≤ (2Nt/Cρ)1/(1+ρ). Similarly, as ν ∈ (0,∞), we have that

t−1∑
j=2

(
jρ(1−ν)

j−1∑
i=1

iρ(1−σ)

)
≤

t−1∑
j=1

jρ(1−ν)
t−1∑
i=1

iρ(1−σ) ≤ ψρ(ν−1)(t)ψρ(σ−1)(t)

≤ψρ
ρ(ν−1)(2Nt/Cρ)ψρ

ρ(σ−1)(2Nt/Cρ),

using the ψ-function defined in (19). Hence,
√
ψρ

ρ(σ−1)(2Nt/Cρ)ψρ
ρ(ν−1)(2Nt/Cρ)/Nt is Õ(N−ρ(σ+ν)/2(1+ρ)

t ).
Let Dκ

∇ denote C∇ + 2ρκCκ/C
κ
ρ with κ ∈ [0, 1/2], such that

21/2+ρ(1−κ)CκCρ

µCκ
ρNt

(
t−1∑
i=1

i2ρ(1−κ)δi

)1/2

+ 21/2+ρC∇Cρ

µNt

(
t−1∑
i=1

i2ρδi

)1/2

≤ 21/2+ρDκ
∇Cρ

µNt

(
t−1∑
i=1

i2ρδi

)1/2

,

and, likewise,
t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)jρ(1−ν)

j−1∑
i=1

(
C∇ + 2ρκCκ

Cκ
ρ i

ρκ

)
iρδ

1/2
i

)
≤ Dκ

∇

t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)jρ(1−ν)

j−1∑
i=1

iρδ
1/2
i

)
.

From (24) we know that δt ≤ Dδ/t
δ with

Dδ = sup
t∈N

πtt
δ + 21+2ρνB2

ν

µµνC2ν
ρ

+
22+ρ(2σ−β)+αC2

σCγC
β
ρ

µνC2σ
ρ

,

and δ = 1{Bν =0}(ρ(2σ − β) + α) + 1{Bν ̸=0} min{ρ(2σ − β) + α, 2ρν}, yielding

t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)jρ(1−ν)

j−1∑
i=1

iρδ
1/2
i

)
≤ D1/2

δ

t−1∑
j=1

(
(DνD

1/2
δ j−δ/2 + 21/2Bν)jρ(1−ν)ψδ/2−ρ(t)

)
≤ DνDδψδ/2−ρ(t)ψδ/2+ρ(ν−1)(t) + 21/2BνD

1/2
δ ψδ/2−ρ(t)ψρ(ν−1)(t)

≤ DνDδψ
ρ
δ/2−ρ(2Nt/Cρ)ψρ

δ/2+ρ(ν−1)(2Nt/Cρ) + 21/2BνD
1/2
δ ψρ

δ/2−ρ(2Nt/Cρ)ψρ
ρ(ν−1)(2Nt/Cρ),

if δ/2 − ρ ≥ 0. Hence,
√
ψρ

δ/2−ρ(2Nt/Cρ)ψρ
δ/2+ρ(ν−1)(2Nt/Cρ)/Nt is Õ(N−(δ+ρν)/2(1+ρ)

t ), and√
ψρ

δ/2−ρ(2Nt/Cρ)ψρ
ρ(ν−1)(2Nt/Cρ)/Nt is Õ(N−(δ/2+ρν)/2(1+ρ)

t ). Next, we define π̄t =
∑t

i=1 i
2πi ≥

∑t
i=1 πi

such that πt ≤ t−1∑t
i=1 πi ≤ t−1π̄t ≤ t−1π̄∞ since πt is decreasing. Similarly, let Π̄t =

∑t
i=1 i

ρΠi. Both π̄t

and Π̄t convergences to some finite constant depending on the model’s parameters. With use of these notions,
we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} + 21/2Λ1/2C
(1−2σ)/2(1+ρ)
ρ

N
(1+2ρσ)/2(1+ρ)
t

1{σ ̸=1/2} + 21/2C
′1/2
σ C

(1−2(σ+σ′))/2(1+ρ)
ρ

µN
(1+2ρ(σ+σ′))/2(1+ρ)
t

+ 22+(7+2ρ(1+σ))/2(1+ρ)CσC
(2−2σ−β−α)/2(1+ρ)
ρ

µµ
1/2
ν C

1/2
γ N

(2+ρ(β+2σ)−α)/2(1+ρ)
t

+ ΓCρ

µNt
+ 2(2+ρ)/(1+ρ)C

(2+β−α)/(1+ρ)
ρ π̄∞

µCγN
(2+ρβ−α)/(1+ρ)
t

+ 2(1+ρ(1+2σ−β)+α)/(1+ρ)(25µ−1/2 + 24C
1/2
γ C

β/2
ρ )C ′′

∇C
2
σCγ

µ
√
µ′

νC
(1−2ρσ−α)/(1+ρ)
ρ N

(ρ(2σ−β)+α)/(1+ρ)
t

+ 1{Bν ̸=0}Ψt

+ 2(5/2+ρ(5−2σ))/2(1+ρ)Dκ
∇CσC

1/2
γ C

(1+β−2σ+α)/2(1+ρ)
ρ

µµ
1/2
ν N

(1+ρ(2σ−β)+α)/(2(1+ρ))
t

+
23/4+ρ(2−ν)/2√Dκ

∇D
1/2
ν D

1/2
δ Cρ

√
ψρ

δ/2−ρ(2Nt/Cρ)ψρ
δ/2+ρ(ν−1)(2Nt/Cρ)

µC
ν/2
ρ Nt

,
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as α−ρβ ∈ (1/2, 1), where µ′
ν = µ−1{ρ=0}2D4

ν/µ
3C4ν

ρ , Dκ
∇ = C∇+2κCκ/C

κ
ρ , C ′′

∇ = C ′
∇+1{DΘ<∞}2GΘ/D

2
Θ,

Γ = 2π̄∞/CγC
β
ρ + (1/CγC

β
ρ + 21/2Dκ

∇)δ1/2
0 + 21/2+ρDκ

∇π̄
1/2
∞ + 2ρC ′′

∇Π̄∞, Dκ
∇ = C∇ + 2κCκ/C

κ
ρ , δ =

1{Bν =0}(ρ(2σ − β) + α) + 1{Bν ̸=0} min{ρ(2σ − β) + α, 2ρν}, and Ψt given as

21/2B
1/2
ν C

1/2
σ Cρ

√
ψρ

ρ(σ−1)(2Nt/Cρ)ψρ
ρ(ν−1)(2Nt/Cρ)

µC
(σ+ν)/2
ρ Nt

+ 23(1+ρν)BνC
(1−β−ν−α)/(1+ρ)
ρ

µ3/2µ
1/2
ν CγN

(1+ρ(β+ν)−α)/(1+ρ)
t

+
21+ρ(2−ν)/2B

1/2
ν

√
Dκ

∇D
1/4
δ Cρ

√
ψρ

δ/2−ρ(2Nt/Cρ)ψρ
ρ(ν−1)(2Nt/Cρ)

µC
ν/2
ρ Nt

+
22(1+ρν)B2

νC
′′
∇Cρψ

ρ
ρ(2ν−1)(2Nt/Cρ)

µ5/2
√
µ′

νC
2ν
ρ Nt

+
23/2+ρ(1+ν)BνD

κ
∇Cρ

√
ψρ

2ρ(ν−1)(2Nt/Cρ)

µ3/2µ
1/2
ν Cν

ρNt

+
23/2+ρνBνCρψ

ρ
1+ρ(β+ν−1)−α(2Nt/Cρ)

µ3/2µ
1/2
ν CγC

β+ν
ρ Nt

,

Furthermore, using the Õ-notation one can show that

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} + 21/2Λ1/2C
(1−2σ)/2(1+ρ)
ρ

N
(1+2ρσ)/2(1+ρ)
t

1{σ ̸=1/2} + 21/2C
′1/2
σ C

(1−2(σ+σ′))/2(1+ρ)
ρ

µN
(1+2ρ(σ+σ′))/2(1+ρ)
t

+ 26CσC
(2−2σ−β−α)/2(1+ρ)
ρ

µµ
1/2
ν C

1/2
γ N

(2+ρ(β+2σ)−α)/2(1+ρ)
t

+ 27(µ−1/2 + C
1/2
γ C

β/2
ρ )C ′′

∇C
2
σCγ

µ
√
µ′

νC
(1−2ρσ−α)/(1+ρ)
ρ N

(ρ(2σ−β)+α)/(1+ρ)
t

+ 22Dκ
∇CσC

1/2
γ C

(1+β−2σ+α)/2(1+ρ)
ρ

µµ
1/2
ν N

(1+ρ(2σ−β)+α)/(2(1+ρ))
t

+ ΓCρ

µNt
+ 22C

(2+β−α)/(1+ρ)
ρ π̄∞

µCγN
(2+ρβ−α)/(1+ρ)
t

+ Õ(N−(δ+ρν)/2(1+ρ)
t ) + 1{Bν ̸=0}Ψt, (36)

where Ψt = Õ(N−ρ(σ+ν)/2(1+ρ)
t ) + Õ(N−(1+ρ(β+ν)−α)/(1+ρ)

t ) + Õ(N−(1+2ρν)/2(1+ρ)
t ) + Õ(N−(δ/2+ρν)/2(1+ρ)

t ) +
Õ(N−2ρν/(1+ρ)

t ), implying that ν > 1/2 to obtain the desired rate δ̄t = O(N−1) if Bν = 0.

B Verifications of Assumptions 1-p to 3-p for the AR model

Well-specified case. Consider the well-specified case, in which, we estimate an AR(1) model from the
underlying stationary AR(1) process Xs = θ∗Xs−1 + ϵs with |θ∗| < 1. The squared loss function lt(θ) =
n−1

t

∑nt

i=1(XNt−1+i−θXNt−1+i−1)2 with gradient ∇θlt(θ) = −2n−1
t

∑nt

i=1 XNt−1+i−1(XNt−1+i−θXNt−1+i−1).
Thus, the objective function is

L(θ) = E

[
1
nt

nt∑
i=1

(XNt−1+i − θXNt−1+i−1)2

]
= σ2

ϵ (θ∗ − θ)2

1− (θ∗)2 + σ2
ϵ ,

using E[Xs] = 0 and E[X2
s ] = σ2

ϵ /(1 − (θ∗)2), yielding ∇θL(θ) = 2σ2
ϵ (θ − θ∗)/(1 − (θ∗)2). Next, to verify

Assumption 1-p for p = 2, we first note that

E[∇θlt(θ)|Ft−1] = 2θ
nt

nt∑
i=1

E
[
X2

Nt−1+i−1

∣∣∣Ft−1

]
− 2
nt

nt∑
i=1

E
[
XNt−1+i−1XNt−1+i

∣∣Ft−1
]

= 2(θ − θ∗)
nt

nt∑
i=1

E
[
X2

Nt−1+i−1

∣∣∣Ft−1

]
− 2
nt

nt∑
i=1

E
[
XNt−1+i−1ϵNt−1+i

∣∣Ft−1
]
, (37)

28



Under review as submission to TMLR

as XNt−1+i = θ∗XNt−1+i−1 + ϵNt−1+i. For the first term of (37), we use that E[Xs+i|Fs] = (θ∗)iXs and
Var[Xs+i|Fs] = σ2

ϵ (1− (θ∗)2i)/(1− (θ∗)2), yielding

nt∑
i=1

E[X2
Nt−1+i−1|Ft−1] = X2

Nt−1

nt∑
i=1

(θ∗)2(i−1) − σ2
ϵ

(1− (θ∗)2)

nt∑
i=1

(θ∗)2(i−1) + σ2
ϵnt

1− (θ∗)2

=
(1− (θ∗)2nt)X2

Nt−1

(1− (θ∗)2) − (1− (θ∗)2nt)σ2
ϵ

(1− (θ∗)2)2 + σ2
ϵnt

1− (θ∗)2 .

Next, the second term of (37) is zero by utilising that (ϵs) is a Martingale difference sequence, i.e., E[ϵs+i|Fs] =
0 and E[ϵs+iϵs+j |Fs] = 0 for i ̸= j. Thus,

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥2] = 4(θ − θ∗)2(1− (θ∗)2nt)2σ2
ϵ

(1− (θ∗)2)4n2
t

(
σ2

ϵ + 1
1− (θ∗)2

)
,

meaning that Assumption 1-p is verified for p = 2 if (Xs) has bounded moments; this is fulfilled by the
natural constraint that |θ∗| < 1. Thus, we can deduce that Dν > 0, Bν = 0, and νt is O(n−1

t ). The
remaining assumptions can be verified in the same way, in particular, Assumptions 2-p and 3-p is satisfied
with κt and σt is O(n−1/2

t ), Assumption 4 with C∇ = 2σ2
ϵ /(1− (θ∗)2) and C ′

∇ = 0, and Assumption 5 with
Σ = 4σ4

ϵ /(1− (θ∗)2) and Σt = 0. Furthermore, for an AR(1) process Xs constructed using the noise process
ϵs =

√
Gs(H)zs with Hurst index H ≥ 1/2, one can verify that ν4

t , κ
4
t , σ

4
t is O(nH−1

t ) in Assumptions 1-p
to 3-p using the self-similarty property (Nourdin, 2012).

Misspecified case. Next, assume that the underlying data generating process follows the MA(1)-process,
Xs = ϵs + ϕ∗ϵs−1, with ϕ∗ ∈ R. The misspecification error of fitting an AR(1) model to a MA(1) process can
be found by minimizing

L(θ) =E[(Xs − θXs−1)2] = E[(ϵs + ϕ∗ϵs−1 − θ(ϵs−1 + ϕ∗ϵs−2))2]
=E[(ϵs + (ϕ∗ − θ)ϵs−1 − θϕ∗ϵs−2)2] = σ2

ϵ (1 + (ϕ∗ − θ)2 + θ2(ϕ∗)2),

where ∇θL(θ) = 2(θ − ϕ∗)σ2
ϵ + 2θ(ϕ∗)2σ2

ϵ . Thus, as θ∗ = arg minθ L(θ) ≡ arg minθ(ϕ∗ − θ)2 + θ2(ϕ∗)2 is a
strictly convex function in θ, we have ∇θL(θ) = 0 ⇔ 2(θ − ϕ∗) + 2θ(ϕ∗)2 = 0 ⇔ 2θ(1 + (ϕ∗)2) = 2ϕ∗ ⇔
θ = ϕ∗/(1 + (ϕ∗)2). This means for any ϕ∗ ∈ R then θ ∈ (−1/2, 1/2). With this in mind, we can conduct
our study of fitting an AR(1) model to the MA(1) process with ϕ∗ drawn randomly from R (figure 1b).
Furthermore, this reparametrization trick can be used to verify Assumption 1-p: first, we can reparameterize
∇θL(θ) = 2σ2

ϵ (θ − θ∗)(1 + (ϕ∗)2) using θ∗ = ϕ∗/(1 + (ϕ∗)2). Next, for E[∇θlt(θ)|Ft−1] one have that

E[∇θlt(θ)|Ft−1] = 2θ
nt

nt∑
i=1

E[X2
Nt−1+i−1|Ft−1]− 2

nt

nt∑
i=1

E[XNt−1+i−1XNt−1+i|Ft−1],

where
nt∑

i=1
E[X2

Nt−1+i−1|Ft−1] =X2
Nt−1

+ E[X2
Nt−1+1|Ft−1] + · · ·+ E[X2

Nt−1+nt−1|Ft−1]

=X2
Nt−1

+ σ2
ϵ + (ϕ∗)2ϵ2Nt−1

+ · · ·+ σ2
ϵ + (ϕ∗)2σ2

ϵ

=X2
Nt−1

+ (ϕ∗)2ϵ2Nt−1
+ σ2

ϵ (nt − 1) + (ϕ∗)2σ2
ϵ (nt − 2)

=X2
Nt−1

+ (ϕ∗)2(ϵ2Nt−1
− σ2

ϵ ) + (1 + (ϕ∗)2)σ2
ϵ (nt − 1),

and
nt∑

i=1
E[XNt−1+i−1XNt−1+i|Ft−1] =ϕ∗XNt−1ϵNt−1 + ϕ∗σ2

ϵ (nt − 1)

=θ∗(1 + (ϕ∗)2)XNt−1ϵNt−1 + θ∗(1 + (ϕ∗)2)σ2
ϵ (nt − 1),
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using the same white noise properties as for the well-specified case above. This yields,

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥2] =4(θ − θ∗)2

n2
t

fϕ∗(ϵNt−1),

where fϕ∗(ϵNt−1) is finite function depending on the moments of (ϵNt−1) and ϕ∗. Hence, we have Dν > 0
and Bν = 0 with νt being O(n−1

t ). Similarly, it can be verified that κt and σt are O(n−1/2
t ) by use of the

reparametrization trick (Assumptions 2-p and 3-p).
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