
Under review as a conference paper at ICLR 2023

IN SEARCH OF SMOOTH MINIMA FOR PURIFYING
BACKDOOR IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of a deep neural network (DNN) heavily relies on the details of the
training scheme; e.g., training data, architectures, hyper-parameters, etc. Recent
backdoor attacks suggest that an adversary can take advantage of such training
details and compromise the integrity of a DNN. Our studies show that a back-
door model is usually optimized to a bad local minima, i.e., sharper minima as
compared to a benign model. Intuitively, a backdoor model can be purified by
re-optimizing the model to a smoother minima through fine-tuning with a few
clean validation data. However, fine-tuning all DNN parameters often requires
huge computational cost and often results in sub-par clean test performance. To
address this concern, we propose a novel backdoor purification technique—Natural
Gradient Fine-tuning (NGF)—which focuses on removing backdoor by fine-tuning
only one layer. Specifically, NGF utilizes a loss surface geometry-aware optimizer
that can successfully overcome the challenge of reaching a smooth minima under a
one-layer optimization scenario. To enhance the generalization performance of our
proposed method, we introduce a clean data distribution-aware regularizer based
on the knowledge of loss surface curvature matrix, i.e., Fisher Information Matrix.
Extensive experiments show that the proposed method achieves state-of-the-art
performance on a wide range of backdoor defense benchmarks: four different
datasets—CIFAR10, GTSRB, Tiny-ImageNet, and ImageNet; 13 recent backdoor
attacks, e.g., Blend, Dynamic, WaNet, ISSBA, etc.

1 INTRODUCTION

Training a deep neural network (DNN) with a fraction of poisoned or malicious data is often security-
critical since the model can successfully learn both clean and adversarial tasks equally well. This
is prominent in scenarios where one outsources the DNN training to a vendor. In such scenarios,
an adversary can mount backdoor attacks (Gu et al., 2019; Chen et al., 2017) through poisoning a
portion of training samples so that the model will misclassify any sample with a particular trigger or
pattern to an adversary-set label. Whenever a DNN is trained in such a manner, it becomes crucial to
remove the effect of backdoor before deploying it for a real-world application.

Different defense techniques (Liu et al., 2018; Wang et al., 2019; Wu & Wang, 2021; Li et al., 2021a;
Zheng et al., 2022) have been proposed for purifying backdoor. Techniques such as fine-pruning (Liu
et al., 2018) and adversarial neural pruning (Wu & Wang, 2021) require a long training time due to
iterative searching criteria. Furthermore, the purification performance deteriorates significantly as the
attacks get stronger. In this work, we explore the backdoor insertion and removal phenomena from
the DNN optimization point of view. Unlike a benign model, a backdoor model is forced to learn two
different data distributions: clean data distribution and poisoned/trigger data distribution. Having to
learn both distributions, backdoor model optimization usually leads to a bad local minima or sharper
minima w.r.t. clean distribution. We claim that backdoor can be removed by re-optimizing the model
to a smoother minima. One easy re-optimization scheme could be simple DNN weights fine-tuning
with a few clean validation samples. However, fine-tuning all DNN parameters often requires huge
computational cost and may result in sub-par clean test performance after purification. Therefore, we
intend to fine-tune only one layer to effectively remove the backdoor.

Fine-tuning only one layer creates a shallow network scenario where SGD-based optimization
becomes a bit challenging. Choromanska et al. (2015) claims that the probability of finding bad
local minima or poor quality solution increases as the network size decreases. Even though there are

1

Under review as a conference paper at ICLR 2023

good-quality solutions, it usually requires exponentially long time to find those minima (Choromanska
et al., 2015). As a remedy to this, we opt to use a curvature aware optimizer, Natural Gradient Decent
(NGD), that has higher probability of escaping the bad local minima as well as faster convergence
rate, specifically in the shallow network scenario (Amari, 1998; Martens & Grosse, 2015). To this
end, we propose a novel backdoor purification technique—Natural Gradient Fine-tuning (NGF)—
which focuses on removing backdoor through fine-tuning only one layer. However, straightforward
application of NGF with simple cross-entropy (CE) loss may result in poor clean test performance.
To boost this performance, we use a clean distribution-aware regularizer that prioritizes the update of
parameters sensitive to clean data distribution. Our proposed method achieves SOTA performance in
a wide range of benchmarks, e.g., four different datasets including ImageNet, 13 recent backdoor
attacks etc. Our contributions can be summarized as follows:

• We analyze the loss surface characteristics of a DNN during backdoor insertion and purifica-
tion processes. Our analysis shows that the optimization of a backdoor model leads to a bad
local minima or sharper minima compared to a benign model. We argue that backdoor can
be purified by re-optimizing the model to a smoother minima and simple fine-tuning can be
a viable way for that. To the best of our knowledge, this is the first work that studies the
correlation between loss-surface smoothness and backdoor purification.

• We conduct additional studies on backdoor purification process while fine-tuning different
parts of a DNN. We observe that SGD-based one-layer fine-tuning fails to escape bad local
minima and a loss surface geometry-aware optimizer can be an easy fix to this.

• We propose a novel backdoor purification technique based on Natural Gradient Fine-tuning
(NGF). In addition, we employ a clean distribution-aware regularizer to boost the clean test
performance of our proposed method. NGF outperforms recent SOTA methods in a wide
range of benchmarks.

2 RELATED WORK

Backdoor Attacks: Backdoor triggers can exist in the form of dynamic patterns (Li et al., 2020), a sin-
gle pixel (Tran et al., 2018), sinusoidal strips (Barni et al., 2019), human imperceptible noise (Zhong
et al., 2020), natural reflection (Liu et al., 2020), adversarial patterns (Zhang et al., 2021), blending
backgrounds (Chen et al., 2017), etc. Based on target labels, existing backdoor attacks can generally
be classified as poison-label or clean-label backdoor attacks. In poison-label backdoor attack, the
target label of the poisoned sample is different from its ground-truth label, e.g., BadNets (Gu et al.,
2019), Blended attack (Chen et al., 2017), SIG attack (Barni et al., 2019), WaNet (Nguyen & Tran,
2021), Trojan attack (Liu et al., 2017), and BPPA (Wang et al., 2022). Contrary to the poison-label
attack, clean-label backdoor attack doesn’t change the label of the poisoned sample (Turner et al.,
2018; Huang et al., 2022; Zhao et al., 2020b). Recently, Saha et al. (2022) studied backdoor attacks
on self-supervised learning.

Backdoor Defenses: Existing backdoor defense methods can be categorized into backdoor detection
or purifying techniques. Detection based defenses include trigger synthesis approach (Wang et al.,
2019; Qiao et al., 2019; Guo et al., 2020; Shen et al., 2021; Dong et al., 2021; Guo et al., 2021; Xiang
et al., 2022; Tao et al., 2022), or malicious samples filtering based techniques (Tran et al., 2018; Gao
et al., 2019; Chen et al., 2019). However, these methods only detect the existence of backdoor without
removing it. Backdoor purification defenses can be further classified as training time defenses and
inference time defenses. Training time defenses include model reconstruction approach (Zhao et al.,
2020a; Li et al., 2021b), poison suppression approach (Hong et al., 2020; Du et al., 2019; Borgnia
et al., 2021), and pre-processing approaches (Li et al., 2021a; Doan et al., 2020). Although training
time defenses are often successful, they suffer from huge computational burden and less practical
considering attacks during DNN outsourcing. Inference time defenses are mostly based on pruning
approaches such as (Koh & Liang, 2017; Ma & Liu, 2019; Tran et al., 2018; Diakonikolas et al.,
2019; Steinhardt et al., 2017). Pruning-based approaches are typically based on model vulnerabilities
to backdoor attacks. For example, MCR (Zhao et al., 2020a) and CLP (Zheng et al., 2022) analyzed
node connectivity and channel Lipschitz constant to detect backdoor vulnerable neurons. ANP (Wu
& Wang, 2021) prune neurons through backdoor sensitivity analysis using adversarial search on
the parameter space. Instead, we propose a simple one-layer fine-tuning based defense that is both
fast and highly effective. To remove backdoor, our proposed method revisits the DNN fine-tuning
paradigm from a novel point of view.

2

Under review as a conference paper at ICLR 2023

3 BACKGROUND

Attack Model. We consider an adversary with the capabilities of carrying a backdoor attack on a
DNN model, fθ : Rd → Rc, by training it on a poisoned data set Dtrain = {Xtrain, Ytrain}. Here, θ is
the parameters of the model, d is the input data dimension and c is the total number of classes. The
data poisoning happens through specific set of triggers that can only be accessed by the attacker. The
adversary goal is to train the model in a way such that any triggered samples x̂ = x+ δ ∈ Rd will be
wrongly misclassified to a target label, ȳ. Here, x is a clean test sample and δ ∈ Rd represents the
trigger pattern with the properties of ||δ|| ≤ ϵ; where ϵ is the trigger magnitude determined by its
shape, size and color. We define the poison rate as the ratio of poison and clean data in Dtrain. An
attack is considered successful if the model behaves as: fθ(x) = y and fθ(x̂) = ȳ, where y is the
true label for x. We use attack success rate (ASR) for quantifying such success.

Defense Goal. We consider a defender with a task to purify the backdoor model fθ using a small
clean validation set (usually 1 ∼ 10% of the training data). The goal is to repair the model in a way
such that it becomes immune to attack, i.e., fθp(x̂) = y. Here, fθp is the final purified model.

Natural Gradient Descent (NGD). Let us consider a model p(y|x, θ) with parameters θ ∈ RN to be
fitted with input data {(xi, yi)}|Dtrain|

i=1 from an empirical data distribution Px,y, where xi ∈ Xtrain is
an input sample and yi ∈ Ytrain is its label. We try to optimize the model by solving:

θ∗ ∈ argmin
θ

L(θ), (1)

where L(θ) = L(y, fθ(x)) = E(xi,yi)∼Px,y
[−log p(y|x, θ)] is the expected full-batch cross-entropy

(CE) loss. SGD optimizes for θ∗ iteratively following the direction of the steepest descent (estimated
by column vector,∇θL) and update the model parameters by: θ(t+1) ← θ(t) −α(t) · ∇(t)

θ L, where α
is the learning rate. Since SGD uses the Identity matrix as the pre-conditioner, it is uninformed of the
geometry of loss surface.

In NGD, however, the Fisher Information Matrix (FIM) is used as a pre-conditioner, which can be
defined as (Martens & Grosse, 2015),

F (θ) = E(x,y)∼Px,y
[∇θ log p(y|x, θ) · (∇θ log p(y|x, θ))T] ∈ RN×N . (2)

As FIM is a loss surface curvature matrix, a careful integration of it in the update rule of θ will make
the optimizer loss surface geometry aware. Such integration leads us to the update equation of NGD,
θ(t+1) ← θ(t) − α(t) · F (θ(t))−1∇(t)

θ L. Here, the natural gradient is defined as F (θ(t))−1∇(t)
θ L.

From the perspective of information geometry, natural gradient defines the direction in parameter
space which gives largest change in objective per unit of change in model (p(y|x, θ)). Per unit
of change in model is measured by KL-divergence (Amari, 1998; Park et al., 2000). Note that
KL-divergence is well connected with FIM as it can be used as a local quadrature approximation of
KL-divergence of model change. Eqn. 2 suggests that one requires the knowledge of the original
parameter (θ) space to estimate it. Therefore, FIM can be thought of as a mechanism to translate
between the geometry of the model (p(y|x, θ)) and the current parameters (θ) of the model. The way
natural gradient defined the direction in parameter space is contrastive to the stochastic gradient.
Stochastic gradient defines the direction in parameter space for largest change in objective per unit
of change in parameter (θ) measured by Eucludian distance. That is, the gradient direction is solely
calculated based on the changes of parameters, without any knowledge of model geometry.

4 SMOOTHNESS ANALYSIS OF BACKDOOR MODELS

In this section, we analyze the loss surface geometry of benign, backdoor, and purified models.
To study the loss curvature properties of different models, we aim to analyze the Hessian of loss,
H = ∇2

θL, where we compute L using the clean training set. The Hessian matrix H is symmetric and
one can take the spectral decomposition H = QΛQT , where Λ = diag(λ1, λ2, . . . , λN) contains the
eigenvalues and Q = [q1q2 . . . qN] are the eigenvectors of H . As a measure for smoothness, we take
the maximum eigenvalue, λmax(= λ1), and the trace of the Hessian, Tr(H) =

∑i=N
i=1 diag(H)i. Low

values for these two proxies indicate the presence of highly smooth loss surface (Jastrzebski et al.,
2020). The Eigen Spectral density plots in Fig. 1a- 1b tell us about the optimization of benign and
backdoor models. To create these models, we use the CIFAR10 dataset and train a PreActResNet18
architecture for 200 epochs. To insert the backdoor, we use TrojanNet (Liu et al., 2017) and a poison

3

Under review as a conference paper at ICLR 2023

101 100 0 100 101

Eigenvalue
10 8

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

) max : 20.1
Tr(H) : 129.7

ACC : 95.3
ASR : 0.0

(a) Benign Model

102 101 1000 100 101 102

Eigenvalue
10 8

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

) max : 616.3
Tr(H) : 7097.7

ACC : 89.6
ASR : 100.0

(b) Backdoor Model

102 101 1000 100 101 102

Eigenvalue
10 8

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

max : 613.0
Tr(H) : 8258.5

ACC : 87.4
ASR : 96.2

(c) Purified Model (SGD)

100 0 100

Eigenvalue
10 8

10 6

10 4

10 2

100

102

De
ns

ity
 (L

og
 S

ca
le

) max : 2.7
Tr(H) : 17.3

ACC : 84.2
ASR : 2.7

(d) Purified Model (NGF)

Figure 1: Eigen Spectral Density plots of Loss Hessian for (a) benign, (b) backdoor (TrojanNet (Liu et al.,
2017)), and (c & d) purified models. In each plot, the maximum eigenvalue (λmax), trace of Hessian (Tr(H)),
clean test accuracy (ACC), and attack success rate (ASR) are also reported. Here, low λmax and Tr(H) hints at
the presence of smoother loss surface which often results in low ASR and high ACC. (a & b). Compared to a
benign model, a backdoor model tends to reach a sharper minima as shown by the larger range of eigenvalues
(x-axis). During purification, SGD optimizer (c) rarely escapes sharp or bad local minima (similar λmax and
Tr(H) as the backdoor model) while our proposed method, NGF, (d) converges to a smooth minima. We use
CIFAR10 dataset with a PreActResNet18 (He et al., 2016) architecture for all evaluations.

Table 1: Backdoor removal performance while fine-tuning (FT) different parts of a DNN. Fine-tuning only the
last layer creates a shallow network scenario. In such scenario, there is a high probability that SGD does not
escape bad local minima. Whereas, NGF consistently optimizes to a smooth minima (indicated by low λmax for
6 different attacks) which results in backdoor removal, i.e., low ASR and high ACC. We consider CIFAR10
dataset and PreActResNet18 architecture for all evaluations. A clean validation set is used for all purification.

FT Badnets Blend Trojan Dynamic CLB SIG
Methods λmax ASR ACC λmax ASR ACC λmax ASR ACC λmax ASR ACC λmax ASR ACC λmax ASR ACC

Initial 573.8 100 92.96 715.5 100 94.11 616.3 100 89.57 564.2 100 92.52 717.6 100 92.78 514.1 100 88.64
Full-Net. 4.42 4.87 85.92 4.65 4.77 87.61 3.41 3.78 82.18 2.34 4.73 88.61 4.68 1.83 87.41 8.98 1.04 81.92

CNN-Bbone. 4.71 5.03 85.64 5.14 4.92 87.24 4.19 3.95 81.86 2.46 5.11 87.54 5.19 2.08 86.67 9.74 1.61 81.55
Cls. (SGD) 556.1 98.27 90.17 541.7 97.29 93.48 613.0 96.25 87.36 446.5 93.58 91.36 361.9 89.21 91.73 563.2 96.70 86.92
Cls. (NGF) 2.79 1.86 88.32 2.43 0.38 91.17 2.74 2.64 84.21 1.19 1.17 90.97 3.13 1.04 88.37 1.48 0.12 84.16

rate of 10%. From the comparison of λmax and Tr(H), we can conjecture that optimization of a
benign model produces smoother loss surface. We observe similar phenomena for different datasets
and architectures; details are in Appendix F. The main difference between a benign and a backdoor
model is that the latter needs to learn two different data distributions: clean and poison. Based on our
observations, we state following conjectures:

Conjecture 1. Having to learn two different data distributions, a backdoor model reaches a sharper
minima, i.e., large λmax and Tr(H), as compared to the benign model.

We support this conjecture with empirical evidence presented in Table 1. Looking at the λmax in
the ’Initial’ row for all 6 attacks (details are in Appendix D), it can be observed that all of these
backdoor models optimizes to a sharp minima. As these models are optimized on both distributions,
they also have high attack success rates (ASR) as well as high clean test accuracy (ACC). Note that,
the measure of smoothness is done w.r.t. clean data distribution. The use of clean distribution in our
smoothness analysis is driven from the practical consideration as our particular interest lies with the
performance w.r.t. clean distribution; more details are in Appendix C.1. Since high ASR and ACC
indicate that the model had learned both distributions, it supports Conjecture 1.

Conjecture 2. Through proper fine-tuning with clean validation data, a backdoor model can be
re-optimized to a smoother minima w.r.t. clean data distribution. Optimization to a smoother minima
leads to backdoor purification, i.e., low ASR and high ACC.

By proper fine-tuning, we imply that the fine-tuning will lead to an optimal solution w.r.t. the data
distribution we fine-tune the model with. To support Conjecture 2, we show the removal performances
of fine-tuning based purification methods in Table 1. To remove backdoor using a clean validation
set (∼1% of train-set), we fine-tune different parts of the DNN for 100 epochs with a learning rate
of 0.01. As shown in Table 1, after proper fine-tuning (Full-Net, CNN-Bbone), the backdoor model
re-optimizes to a smoother minima that leads to successful backdoor removal.

One-Layer Fine-tuning: We observe that one can remove the backdoor by fine-tuning either the full
network or only the CNN backbone (using SGD). However, these methods can be computationally
costly and less practical. Furthermore, such fine-tuning often leads to high drop in ACC. As an
alternative, one could fine-tune only the last or classification (Cls.) layer. However, even with a
small validation set, a one-layer network becomes a shallow network to optimize. According to the

4

Under review as a conference paper at ICLR 2023

spin-glass analogy in Choromanska et al. (2015), as the network size decreases the probability for
the SGD optimizer to find sharp local minima or poor quality minima increases accordingly. In
case of shallow network, the quality of minima is decided by their distances from the global minima.
Choromanska et al. (2015) also observes that the process of finding a path from bad local minima to
a good quality solution or global minima takes exponentially long time. Therefore, it is not always
feasible to use the SGD optimizer for shallow network. Table 1 (row–Cls. (SGD)) corroborates this
hypothesis as SGD optimizer fails to escape the sharp minima resulting in similar ASRs as the initial
backdoor model. Instead of using SGD, one can use natural gradient descent (NGD) that has higher
probability of escaping the bad local minima as well as faster convergence rate, specifically in the
shallow network scenario (Amari, 1998; Martens & Grosse, 2015). Therefore, to effectively purify a
backdoor model, we propose a novel Fisher Information matrix based backdoor purification objective
function and optimize it using the NGD optimizer.

4.1 NATURAL GRADIENT FINE-TUNING (NGF)

Let us decompose the model parameters θ as,

θ = {W0,1,W1,2,W2,3, · · · ,WL−1,L}

here, Wi,i+1 is the parameters between layer i and layer i+1, commonly termed as (i+1)th layer’s
parameters. WL−1,L is the Lth layer’s (Cls. layer) parameters and we are particularly interested
in fine-tuning only this layer. Now, consider a validation set, Dval = {Xval, Yval} that contains only
clean samples. We denote θL(= WL−1,L) as the Lth layer’s parameters. To purify the backdoor
model, we formulate the following loss

Lp(y, fθ(x)) ≈ L(y, fθ(x)) +
η

2

∑
i

diag(F (θ̄L))i · (θL,i − θ̄L,i)
2, (3)

which is a combination of the CE loss on the validation set and a regularizer. Here, θ̄L (fixed) is Lth

layer parameters of the initial backdoor model, i.e., θ(0)L = θ̄L .

In a backdoor model, some neurons/parameters are more vulnerable than others. The vulnerable
parameters are believed to be the ones that are sensitive to poison/trigger data distribution (Wu &
Wang, 2021). In general, CE loss does not discriminate whether a parameter is more sensitive to
clean or poison distribution. Such lack of discrimination may allow drastic/unwanted changes to the
parameters responsible for learned clean distribution. This usually leads to sub-par clean test accuracy
after purification and it requires additional measures to fix this issue. Motivated by Kirkpatrick et al.
(2017), we introduce a clean distribution aware regularization term as a product of two terms: i) an
error term that accounts for the deviation of θL from θ̄L; ii) a vector, diag(F (θ̄L)), consisting of the
diagonal elements of FIM (F (θ̄L)). As the first term controls the changes of parameters w.r.t. θ̄L, it
helps the model to remember the already learned distribution. However, learned data distribution
consists of clean and poison distribution both. To explicitly force the model to remember the clean
distribution, we compute F (θ̄L) using a clean validation set; with similar distribution as the learned
clean data. Note that, diag(F (θ̄L))i represents the square of the derivative of log-likelihood of clean
distribution w.r.t. θ̄L,i, [∇θ̄L,i

log p(y|x, θ)]2 (ref. eqn. (6)). In other words, diag(F (θ̄L))i is the
measure of importance of θ̄L,i towards remembering the learned clean distribution. If diag(F (θ̄L))i
has a higher importance, we allow minimal changes to θ̄L,i over the purification process. This
careful design of such regularizer improves the clean test performance significantly. We use η as a
regularization constant.

The overall optimization problem using the loss-function defined in (3) for purifying the backdoor
model fθ is as follows:

Objective function: θp := argmin
θL

Lp(y, fθ(x)); x ∈ Xval, y ∈ Yval (4)

Update Policy: θ
(t+1)
L ← θ

(t)
L − αF (θ

(t)
L)−1∇θLLp (5)

where, F (θL) :=
1

n

n∑
j=1

(
∇θL log p(yj |xj , θ) · (∇θL log (yj |xj , θ))

T
)
. (6)

Here, F ∈ R|θL|×|θL| is the FIM, and n is the validation set size. Notice that, as we only consider
fine-tuning of Lth-layer, the computation of F and F−1 (|θL| × |θL| matrices) becomes tractable.

5

Under review as a conference paper at ICLR 2023

Table 2: Comparison of different defense methods for four benchmark datasets. Backdoor removal performance,
i.e., drop in ASR, against a wide range of attacking strategies show the effectiveness of NGF. For CIFAR10
and GTSRB, the poison rate is 10%. For Tiny-ImageNet and ImageNet, we employ ResNet34 and ResNet50
architectures, respectively. We use a poison rate of 5% for these 2 datasets and report performance on successful
attacks (ASR close to 100%) only. Average drop (↓) indicates the % changes in ASR/ACC compared to the
baseline, i.e., ASR/ACC of No Defense. Higher ASR drop and lower ACC drop is desired for a good defense.

Dataset Method No Defense Vanilla FT ANP I-BAU AWM NGF (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

CIFAR-10

Benign 0 95.21 0 92.28 0 93.98 0 93.56 0 93.80 0 94.10
Badnets 100 92.96 4.87 85.92 2.84 85.96 9.72 87.85 4.34 86.17 1.86 88.32
Blend 100 94.11 4.77 87.61 3.81 89.10 11.53 90.84 2.13 88.93 0.38 91.17

Troj-one 100 89.57 3.78 82.18 5.47 85.20 7.91 87.24 5.41 86.45 2.64 84.21
Troj-all 100 88.33 3.91 81.95 5.53 84.89 9.82 85.94 4.42 84.60 2.79 86.10

SIG 100 88.64 1.04 81.92 0.37 83.60 4.12 83.57 0.90 83.38 0.12 84.16
Dyn-one 100 92.52 4.73 88.61 1.78 86.26 10.48 89.16 3.35 88.41 1.17 90.97
Dyn-all 100 92.61 4.28 88.32 2.19 84.51 10.30 89.74 2.46 87.72 1.61 90.19

CLB 100 92.78 1.83 87.41 1.41 85.07 5.78 86.70 1.89 84.18 1.04 88.37
CBA 93.20 90.17 27.80 83.79 45.11 85.63 36.12 85.05 38.81 85.58 24.60 85.97
FBA 100 90.78 7.95 82.90 66.70 87.42 10.66 87.35 22.31 87.06 6.21 86.96

WaNet 98.64 92.29 5.81 86.70 3.18 89.24 10.72 85.94 2.96 89.45 2.38 89.65
ISSBA 99.80 92.80 6.76 85.42 3.82 89.20 12.48 90.03 4.57 89.59 4.24 90.18
BPPA 99.70 93.82 9.94 90.23 10.46 90.57 9.94 90.68 10.60 90.88 7.14 91.84

Avg. Drop - - 92.61 ↓ 6.03 ↓ 87.59 ↓ 4.98 ↓ 87.82 ↓ 3.95 ↓ 91.32 ↓ 4.53 ↓ 95.01 ↓ 3.33 ↓

GTSRB

Benign 0 97.87 0 93.08 0 95.42 0 96.18 0 95.32 0 95.76
Badnets 100 97.38 1.36 88.16 0.35 93.17 2.72 94.55 2.84 93.58 0.24 94.11
Blend 100 95.92 5.08 89.32 4.41 93.02 4.13 94.30 4.96 92.75 2.91 93.31

Troj-one 99.50 96.27 2.07 90.45 1.81 92.74 3.04 93.17 2.27 93.56 1.21 94.18
Troj-all 99.71 96.08 2.48 89.73 2.16 92.51 2.79 93.28 1.94 92.84 1.58 93.87

SIG 97.13 96.93 1.93 91.41 6.17 91.82 2.64 93.10 5.32 92.68 3.24 93.48
Dyn-one 100 97.27 2.27 91.26 2.08 93.15 5.82 95.54 1.89 93.52 1.51 94.27
Dyn-all 100 97.05 2.84 91.42 2.49 92.89 4.87 93.98 2.74 93.17 1.26 94.14
BPPA 99.18 98.12 5.14 94.48 7.19 93.79 8.63 94.50 5.43 94.22 4.45 95.27

Avg. Drop - - 96.54 ↓ 6.10 ↓ 96.10↓ 3.99 ↓ 95.11 ↓ 2.83 ↓ 96.02 ↓ 3.59 ↓ 97.39 ↓ 2.79 ↓

Tiny-ImageNet

Benign 0 62.56 0 58.20 0 59.29 0 59.34 0 59.08 0 59.67
Badnets 100 59.80 3.84 53.58 61.23 55.41 13.29 54.56 31.44 54.81 2.34 55.84
Trojan 100 59.16 6.77 52.62 79.56 54.76 11.94 55.10 38.23 54.28 3.38 54.87
Blend 100 60.11 2.18 51.22 81.58 54.70 17.42 54.19 41.37 53.78 1.58 54.98
SIG 98.48 60.01 5.02 52.18 28.67 54.71 9.31 55.72 27.68 54.11 2.81 54.63
CLB 97.71 60.33 5.61 51.68 16.24 55.18 10.68 54.93 36.52 55.02 4.06 55.40

Avg. Drop - - 94.55 ↓ 7.63 ↓ 45.38↓ 4.93 ↓ 86.71 ↓ 4.98 ↓ 64.19 ↓ 5.48 ↓ 96.40 ↓ 4.74 ↓

ImageNet

Benign 0 77.06 0 73.52 0 68.85 0 74.21 0 71.63 0 74.51
Badnets 99.24 74.53 5.91 69.37 43.31 66.28 21.87 69.46 21.18 69.44 4.61 70.46
Trojan 99.21 74.02 4.63 69.15 38.81 66.14 25.74 69.35 28.85 68.62 4.02 69.97
Blend 100 74.42 4.43 70.20 57.79 65.51 27.45 68.61 34.15 68.91 3.83 70.52
SIG 94.66 74.69 3.23 69.82 16.28 66.08 15.37 70.02 16.47 69.74 2.94 71.36
CLB 95.06 74.14 3.71 69.19 18.37 66.41 21.64 69.70 23.50 69.32 3.05 70.25

Avg. Drop - - 93.25 ↓ 4.81↓ 62.72↓ 8.28 ↓ 75.22 ↓ 4.93 ↓ 72.80 ↓ 5.15 ↓ 93.94 ↓ 3.85 ↓

After solving the above optimization problem, we will get modified parameters, WL−1,L. Finally,
we get the purified model, fθp with θp as

θp = {W0,1,W1,2,W2,3, · · · ,WL−1,L}

Fig. 1c-1d show that NGF indeed does reach the smooth minima as opposed to SGD based fine-tuning.
We provide additional results in Table 1 for both NGF and SGD. Notice that the purified model seems
to have a smoother loss surface than the benign model (2.7 vs. 20.1 for λmax). This, however, does
not translate to better ACC than the benign model. The ACC of the purified model is always bounded
by the ACC of the backdoor model. To the best of our knowledge, our study on the correlation
between loss-surface smoothness and backdoor purification is novel. NGF is also the first method to
employ a second-order optimizer for purifying backdoor. More details are in Appendix C

5 EXPERIMENTAL RESULTS

5.1 EVALUATION SETTINGS

Datasets: To begin with, we evaluate our proposed method through conducting a wide range of
experiments on two widely used datasets for backdoor attack study: CIFAR10 (Krizhevsky et al.,
2009) with 10 classes, GTSRB (Stallkamp et al., 2011) with 43 classes. As a test of scalability, we
also consider Tiny-ImageNet (Le & Yang, 2015) with 100,000 images distributed among 200 classes
and ImageNet (Deng et al., 2009) with 1.28M images distributed among 1000 classes.

Attacks Configurations: We consider 13 state-of-the-art backdoor attacks: 1) Badnets (Gu et al.,
2019), 2) Blend attack (Chen et al., 2017), 3 & 4) TrojanNet (Troj-one & Troj-all) (Liu et al., 2017),
5) Sinusoidal signal attack (SIG) (Barni et al., 2019), 6 & 7) Input-Aware Attack (Dyn-one and
Dyn-all) (Nguyen & Tran, 2020), 8) Clean-label attack (CLB) (Turner et al., 2018), 9) Composite

6

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100 120
Number of Epochs

0

200

400

600

800

M
ax

. E
ig

ne
va

lu
e,

m

ax

Backdoor Insertion
Benign
Badnets
TrojanNet
CLB
SIG

(a) λmax vs. Epochs

0 20 40 60 80 100 120
Number of Epochs

40
50
60
70
80
90

100

AC
C/

AS
R

Backdoor Insertion

Badnets (ASR)
TrojanNet (ASR)
CLB (ASR)
SIG (ASR)
Benign(ACC)
Badnets (ACC)
TrojanNet (ACC)
CLB (ACC)
SIG (ACC)

(b) ACC/ASR vs. Epochs

0 10 20 30 40 50 60
Number of Epochs

0

1000

2000

3000

4000

5000

M
ax

. E
ig

ne
va

lu
e,

m

ax

Backdoor Purification
Badnets
TrojanNet
CLB
SIG

(c) λmax vs. Epochs

0 10 20 30 40 50 60
Number of Epochs

0

20

40

60

80

AC
C/

AS
R

Backdoor Purification

Badnets (ASR)
TrojanNet (ASR)
CLB (ASR)
SIG (ASR)
Badnets (ACC)
TrojanNet (ACC)
CLB (ACC)
SIG (ACC)

(d) ACC/ASR vs. Epochs

Figure 2: Loss Surface characteristics of a DNN during backdoor insertion and purification processes. a & b)
As the joint optimization on clean and poison distribution progresses, i.e., high ACC & ASR, the loss surface
becomes less and less smoother, i.e., high λmax). c & d) One can purify backdoor by gradually making the loss
surface smoother. We use CIFAR10 dataset with four different attacks.

backdoor (CBA) (Lin et al., 2020), 10) Deep feature space attack (FBA) (Cheng et al., 2021),
11) Warping-based backdoor attack (WaNet) (Nguyen & Tran, 2021), 12) Invisible triggers based
backdoor attack (ISSBA) (Li et al., 2021c), and 13) Quantization and contrastive learning based
attack (BPPA) (Wang et al., 2022). To ensure fair comparison, we follow the similar trigger patterns
and settings as in their original papers. In Troj-one and Dyn-one attacks, all of the triggered images
have same target label. On the other hand, target labels are uniformly distributed over all classes for
Troj-all and Dyn-all attacks. For creating these attacks on CIFAR10 and GTSRB, we use a poison
rate of 10% and train a PreActResNet18 (He et al., 2016) and a WideResNet-16-1 (Zagoruyko &
Komodakis, 2016) architectures, respectively, for 250 epochs with an initial learning rate of 0.01.
More details on hyper-parameters and overall training settings can be found in Appendix D.

Defenses Configurations: We compare our approach with 4 existing backdoor mitigation methods:
1) Vanilla Fine-Tuning (FT); where we fine-tune all DNN parameters, 2) Adversarial Neural Pruning
(ANP) (Wu & Wang, 2021) with 1% clean validation data, 3) Implicit Backdoor Adversarial Unlearn-
ing (I-BAU) (Zeng et al., 2021) 4) Adversarial Weight Masking (AWM) (Chai & Chen, 2022). We
also compare NGF with another recent defense technique described in (Zheng et al., 2022). However,
we present this comparison in the Appendix E due to several performance issues.1 To apply NGF on
CIFAR10, we fine-tune the last layer of the DNN for Ep epochs with 1% clean validation data. Here,
Ep is the number of purification epochs and we choose a value of 100 for this. For optimization, we
choose a learning rate of 0.01 with a decay rate of 0.1/40 epochs and consider regularization constant
η to be 0.1. Additional experimental details for NGF and other defense methods are in Appendix D.3.
For GTSRB, we increase the validation size to 3% as there are less samples available per class. Rest
of the training settings are same as CIFAR10. For NGF on Tiny-ImageNet, we consider a validation
size of 5% as a size less than this seems to hurt clean test performance (after purification). We
fine-tune the model for 15 epochs with an initial learning rate of 0.01 with a decay rate of 0.3/epoch.
Finally, we validate the effectiveness of NGF on ImageNet. For removing the backdoor, we use 3%
validation data and fine-tune for 2 epochs. A learning rate of 0.001 has been employed with a decay
rate of 0.005 per epoch. We define the effectiveness of a defense method in terms of average drop
in ASR and ACC over all attacks. A highly effective method should have a high drop in ASR with a
low drop in ACC. We define ASR as the percentage of poison test samples that are classified to the
adversary-set target label.

5.2 PERFORMANCE EVALUATION OF NGF
In Table 2, we present the performance of different defenses for four different datasets.

CIFAR10: We consider five label poisoning attacks: Badnets, Blend, TrojanNet, Dynamic, and
BPPA. For TorjanNet, we consider two different variations based on label-mapping criteria: Troj-one
and Troj-all. Regardless the complexity of the label-mapping type, our proposed method outperforms
all other methods both in terms of ASR and ACC. We also create two variations for Dynamic attack:
Dyn-one and Dyn-all. Dynamic attack optimizes for input-aware triggers that are capable of fooling
the model; making it more challenging than the static trigger based attacks (Badnets, Blend and
Trojan). However, NGF outperforms other methods by a satisfactory margin. We also consider attacks
that does not change the label during trigger insertion, i.e., clean label attack. Two such attacks are
CLB and SIG. For further validation of our proposed method, we use deep feature based attacks,
CBA and FBA. Both of these attacks manipulates deep features for backdoor insertion. Compared

1Based on our re-run, we notice significantly larger drop in ACC as compared to other defenses.

7

Under review as a conference paper at ICLR 2023

to other defenses, NGF shows better effectiveness against these diverse set of attacks achieving an
average drop of 95.01% in ASR while sacrificing an ACC of 3.33% for that. Table 2 also shows the
performance of baseline methods such as I-BAU and AWM. AWM performs similarly as ANP and
often struggles to remove the backdoor.

GTSRB: In case of GTSRB, almost all defenses perform similarly for Badnets and Trojan. This,
however, does not hold for blend as we achieve an 2.17% ASR improvement over the next best
method. The performance is consistent for other attacks as well. Overall, we record an average
97.39% ASR drop with only an 2.79% drop in ACC. In some cases, ACC for I-BAU are slightly
better as it uses a much larger validation size (5%) for purification than other defense techniques.

ImageNet: For scalability test of NGF, we consider two large and widely used datasets, Tiny-
ImageNet and ImageNet. In consistence with other datasets, NGF obtains SOTA performance in these
diverse datasets too. The effectiveness of ANP reduces significantly for this dataset. In case of large
models and datasets, the task of identifying and pruning vulnerable neurons gets more complicated
and may result in wrong neurons pruning.

5.3 ABLATION STUDIES

Smoothness Analysis of Different Attacks: We show the relationship between loss surface smooth-
ness and backdoor insertion process in Fig. 2a-2b. During backdoor insertion, the model is optimized
for 2 different data distributions: clean and poison. Compared to a benign model, the loss surface of
a backdoor becomes much sharper as the model becomes well optimized for both distributions, i.e.,
model has both high ASR and high ACC. At the beginning of training, both backdoor and benign
models are far from being well optimized. The difference between these models are prominent
once the model reaches closer to the final optimization point. As shown in Fig. 2b, the training
becomes reasonably stable after 100 epochs with ASR and ACC near saturation level. Comparing
λmax of benign and all backdoor models after 100 epochs, we notice a sharp contrast in Fig. 2a.
This validates our previous claim on loss surface smoothness of benign and backdoor models.

Table 3: Performance comparison of NGF to other SGD-based optimizers. A more
suitable sharpness-aware SGD-based optimizer is also considered here. However,
NGF is far more effective in purifying backdoor (lower ASR) due to its consistent
convergence to smooth minima. We use CIFAR10 dataset for these evaluations.

Defense No Defense AdaGrad RMSProp Adam SAM NGF (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

Badnets 100 92.96 96.54 91.16 98.33 91.73 97.68 91.45 91.08 90.12 1.86 88.32
Blend 100 94.11 97.43 91.67 95.41 92.21 94.79 92.15 89.25 91.11 0.38 91.17
Trojan 100 89.57 95.52 88.51 94.87 88.02 96.74 87.98 92.15 88.33 2.64 84.21

Dynamic 100 92.52 97.37 91.45 93.50 91.12 96.90 91.40 92.24 90.79 1.17 90.97
SIG 100 88.64 86.20 87.98 86.31 87.74 85.66 87.75 81.68 88.04 0.31 83.14
CLB 100 92.78 96.81 90.86 95.53 90.96 95.87 91.02 91.04 90.97 1.04 88.37

During purification pe-
riod as shown in 2c-2d,
the model is being op-
timized to a smoother
minima. As a result,
ASR becomes close to
0 while retaining good
clean test performance.
Note that, we calculate
loss Hessian and λmax

using all DNN parame-
ters. This indicates that changing the parameters of only one layer impacts the loss landscape of
whole network. Even though the CNN-backbone parameters are frozen, NGF changes the last layer
in a way such that whole backdoor network behaves differently, i.e., like a benign model.

Evaluation of Different Optimizers: We compare the performance of NGF
with different variants of first-order optimizer: (i) AdaGrad (Duchi et al.,
2011), (ii) RMSProp (Hinton et al.), (iii) Adam (Kingma & Ba, 2014), and

Table 4: Avg. runtime comparison for different
datasets. Here, #Parameters is the total number
of parameters in the last layer. An NVIDIA
RTX 3090 GPU is used for all experiments.

Dataset # Parameters Method Runtime (Sec.)

CIFAR10 5120 FT 78.1
NGF 38.3

GTSRB 22016 FT 96.2
NGF 47.4

Tiny-ImageNet 409.6K FT 637.6
NGF 374.2

ImageNet 2.048M FT 2771.6
NGF 1681.4

(iv) Sharpness-Aware Minimization (SAM) (Foret et al.,
2020) is a recently proposed SGD-based optimizer that
explicitly penalizes the abrupt changes of loss surface by
bounding the search space within a small region. This
forces the changes of model parameters in a way such
that the optimization achieve smoother loss surface. Ta-
ble 3 shows that NGF outperforms all of these variants
of first-order optimizer by a huge margin. At the same
time, proposed method achieves comparable clean test
performance. Although SAM usually performs better
than vanilla SGD in terms of smooth DNN optimization,
SAM’s performance in shallow network scenario (our
case) is almost similar to vanilla SGD. Two potential
reasons behind this poor performance are (i) using a predefined local area to search for maximum

8

Under review as a conference paper at ICLR 2023

Table 5: Performance of SGD-Long and NGF while fine-tuning only the last layer of DNN. For SGD-Long, we
consider a long purification period with Ep = 2500. NGF performance with and without the regularization term
underlines the importance of the proposed regularizer. The results shown here are for CIFAR10 dataset.

Methods Badnets Blend Trojan Dynamic CLB SIG CBA Runtime
ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC (Secs.)

Initial 100 92.96 100 94.11 100 89.57 100 92.52 100 92.78 100 88.64 93.20 90.17 –
SGD-Long 82.34 90.68 7.13 92.46 86.18 87.29 57.13 90.51 13.84 88.11 0.26 85.74 84.41 86.87 907.5

NGF w/o Reg. 1.91 87.65 0.31 90.54 3.04 83.31 1.28 90.24 0.92 87.13 0.16 84.46 25.58 84.81 37.8
NGF 1.86 88.32 0.38 91.17 2.64 84.21 1.17 90.97 1.04 88.37 0.12 84.16 24.60 85.97 38.3

Table 6: Evaluation of NGF on backdoor attacks with high poison rates, upto 50%. We consider CIFAR10
dataset and two closely performing defenses for this comparison.

Attack BadNets Blend Trojan

Poison Rate 25% 35% 50% 25% 35% 50% 25% 35% 50%

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 88.26 100 87.43 100 85.11 100 86.21 100 85.32 100 83.28 100 87.88 100 86.81 100 85.97
ANP 7.81 82.22 16.35 80.72 29.80 78.27 29.96 82.84 47.02 78.34 86.29 69.15 11.96 76.28 63.99 72.10 89.83 70.02
FT 5.21 78.11 8.39 74.06 11.52 69.81 1.41 68.73 4.56 63.87 7.97 55.70 3.98 76.99 4.71 72.05 5.59 70.98

NGF (Ours) 2.12 85.50 2.47 84.88 4.53 82.32 0.83 80.62 1.64 79.62 2.21 76.37 3.02 83.10 3.65 81.66 4.66 80.30

loss, and (ii) using ‘Euclidean distance’ metric instead of geometric distance metric. In contrast,
NGD with curvature geometry aware Fisher Information Matrix can successfully avoid such bad
minima and optimizes to a global minima.

Runtime Analysis: In Table 4, we show the average runtime for different defenses. Similar to
purification performance, purification time is also an important indicator to measure the success of a
defense technique. In Section 5.2, we already show that our method outperforms other defenses in
most of the settings. As for the run time, our method completes the purification (for CIFAR10) in
just 38.3 seconds; which is almost half as compared to FT. The time-advantage of our method also
holds for large datasets and models, e.g., ImageNet and ResNet50. Runtime comparison with other
defenses is in the Appendix H.

Effect of Proposed Regularizer: In this section, we analyze the effect of regularizer and long
training with SGD. The effect of our clean distribution-aware regularizer can be observed in Table 5.
NGF with the proposed regularizer achieves an 1% clean test performance improvement over vanilla
NGF. For long training with SGD (SGD-Long), we fine-tune the last layer for 2500 epochs. Table 5
shows the evaluations of SGD-Long on 7 different attacks. Even though the ASR performance
improves significantly for CLB and SIG attacks, SGD-based FT still severely underperforms for
other attacks. Moreover, the computational time increases significantly over NGF. Thus, our choice
of NGD-based FT as a fast and effective backdoor purification technique is well justified.

Strong Backdoor Attacks: By increasing the poison rates, we create stronger version of different
attacks against which most defense techniques fail quite often. We use 3 different poison rates,
{25%, 35%, 50%}. We show in Table 6 that NGF is capable of defending very well even with a
poison rate of 50%, achieving a significant ASR improvement over FT. Furthermore, there is a
sharp difference in classification accuracy between NGF and other defenses. For 25% Blend attack,
however, ANP offers a slightly better performance than our method. However, ANP performs poorly
in terms of removing backdoor as it obtains an ASR of 29.96% as compared to 0.83% for NGF.

6 CONCLUSION

We propose a novel backdoor purification technique based on natural gradient descent fine-tuning. The
proposed method is motivated by our analysis of loss surface smoothness and its strong correlation
with the backdoor insertion and purification processes. As a backdoor model has to learn an additional
data distribution, it tends to be optimized to bad local minima or sharper minima compared to a
benign model. We argue that backdoor can be removed by re-optimizing the model to a smoother
minima. We further argue that fine-tuning a single layer is enough to remove the backdoor. Therefore,
in order to achieve a smooth minima in a single-layer fine-tuning scenario, we propose using an
FIM-based DNN objective function and minimize it using a curvature-aware NGD optimizer. Our
proposed method achieves SOTA performance in a wide range of benchmarks. Since we fine-tune
only one layer the training time overhead reduces significantly, making our method one of the fastest
among SOTA defenses. In the future, we aim to extend our smoothness analysis to 3D point-cloud
attacks as well as attacks on contrastive learning.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set
corruption without label poisoning. In 2019 IEEE International Conference on Image Processing
(ICIP), pp. 101–105. IEEE, 2019.

Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geiping, Micah Goldblum,
Tom Goldstein, and Arjun Gupta. Strong data augmentation sanitizes poisoning and backdoor
attacks without an accuracy tradeoff. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3855–3859. IEEE, 2021.

Shuwen Chai and Jinghui Chen. One-shot neural backdoor erasing via adversarial weight masking.
arXiv preprint arXiv:2207.04497, 2022.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural networks. In IJCAI, volume 2, pp. 8, 2019.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Deep feature space trojan attack of
neural networks by controlled detoxification. In AAAI, volume 35, pp. 1148–1156, 2021.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Artificial intelligence and statistics, pp. 192–204. PMLR,
2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. IEEE, 2009.

Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair Stewart.
Sever: A robust meta-algorithm for stochastic optimization. In International Conference on
Machine Learning, pp. 1596–1606. PMLR, 2019.

Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. Februus: Input purification defense
against trojan attacks on deep neural network systems. In Annual Computer Security Applications
Conference, pp. 897–912, 2020.

Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao Xiao, Hang Su, and Jun Zhu. Black-box
detection of backdoor attacks with limited information and data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 16482–16491, 2021.

Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection and backdoor attack detection via
differential privacy. arXiv preprint arXiv:1911.07116, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th Annual
Computer Security Applications Conference, pp. 113–125, 2019.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

10

https://openreview.net/forum?id=6Tm1mposlrM

Under review as a conference paper at ICLR 2023

Junfeng Guo, Ang Li, and Cong Liu. Aeva: Black-box backdoor detection using adversarial extreme
value analysis. arXiv preprint arXiv:2110.14880, 2021.

Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and Dawn Song. Towards inspecting and
eliminating trojan backdoors in deep neural networks. In 2020 IEEE International Conference on
Data Mining (ICDM), pp. 162–171. IEEE, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Rmsprop: Divide the gradient by a running
average of its recent magnitude. coursera: Neural networks for machine learning.

Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and Nicolas Papernot.
On the effectiveness of mitigating data poisoning attacks with gradient shaping. arXiv preprint
arXiv:2002.11497, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process. arXiv preprint arXiv:2202.03423, 2022.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
networks. arXiv preprint arXiv:2002.09572, 2020.

Zhiwei Jia and Hao Su. Information-theoretic local minima characterization and regularization. In
International Conference on Machine Learning, pp. 4773–4783. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. Advances in Neural Information Processing Systems, 34,
2021a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention distil-
lation: Erasing backdoor triggers from deep neural networks. arXiv preprint arXiv:2101.05930,
2021b.

Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey.
arXiv preprint arXiv:2007.08745, 2020.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 16463–16472, 2021c.

Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for deep neural
network by mixing existing benign features. In CCS, pp. 113–131, 2020.

11

Under review as a conference paper at ICLR 2023

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 2022.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In International Symposium on Research in Attacks, Intrusions,
and Defenses, pp. 273–294. Springer, 2018.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. 2017.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor attack
on deep neural networks. In European Conference on Computer Vision, pp. 182–199. Springer,
2020.

Shiqing Ma and Yingqi Liu. Nic: Detecting adversarial samples with neural network invariant
checking. In Proceedings of the 26th network and distributed system security symposium (NDSS
2019), 2019.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. arXiv preprint
arXiv:2102.10369, 2021.

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454–3464, 2020.

Hyeyoung Park, S-I Amari, and Kenji Fukumizu. Adaptive natural gradient learning algorithms for
various stochastic models. Neural Networks, 13(7):755–764, 2000.

Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative distribution
modeling. Advances in neural information processing systems, 32, 2019.

Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. Backdoor
attacks on self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13337–13346, 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiqing Ma,
and Xiangyu Zhang. Backdoor scanning for deep neural networks through k-arm optimization. In
International Conference on Machine Learning, pp. 9525–9536. PMLR, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In The 2011 international joint
conference on neural networks, pp. 1453–1460. IEEE, 2011.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
Advances in neural information processing systems, 30, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. 2014. arXiv
preprint arXiv:1409.4842, 10, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

12

Under review as a conference paper at ICLR 2023

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and
Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13368–13378, 2022.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances in
neural information processing systems, 31, 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor attacks. 2018.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 707–723. IEEE, 2019.

Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
deep neural networks via image quantization and contrastive adversarial learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15074–15084,
2022.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. In
NeurIPS, 2021.

Zhen Xiang, David J Miller, and George Kesidis. Post-training detection of backdoor attacks for
two-class and multi-attack scenarios. arXiv preprint arXiv:2201.08474, 2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Yi Zeng, Si Chen, Won Park, Z Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
backdoors via implicit hypergradient. arXiv preprint arXiv:2110.03735, 2021.

Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang. Advdoor:
adversarial backdoor attack of deep learning system. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 127–138, 2021.

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging mode
connectivity in loss landscapes and adversarial robustness. arXiv preprint arXiv:2005.00060,
2020a.

Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. Clean-
label backdoor attacks on video recognition models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14443–14452, 2020b.

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
lipschitzness. arXiv preprint arXiv:2208.03111, 2022.

Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David Miller. Backdoor
embedding in convolutional neural network models via invisible perturbation. In Proceedings of
the Tenth ACM Conference on Data and Application Security and Privacy, pp. 97–108, 2020.

13

Under review as a conference paper at ICLR 2023

A APPENDIX

Section B describes our proposed algorithm. Section C discusses the intuitions behind the uses
of clean data distribution for smoothness analysis, more explanation on why backdoor behavior
and weight loss-landscape are related and smoothness helps to mitigate the effect of backdoor,
how FIM helps to smooth the loss-landscape, and why SAM (Foret et al., 2021) does not work in
proposed problem setup. Section D contains the experimental details of different attacks and defenses.
Section E contain comparison with another recent defense technique. We present smoothness analysis
with different datasets and architectures in Section F. Section G shows the Label Correction Rates for
different defense techniques. Section H and I contain additional runtime analysis. Section K contains
more ablation studies purification with last layer re-initialization. Section L and M discuss more
attacks, all2all and combined attacks. Our code is available at anonymous GitHub link 2.

B NATURAL GRADIENT FINE-TUNING

In our proposed method, we aim to remove backdoor by fine-tuning only the last layer. The manner
in which we perform that fine-tuning is described in Algorithm 1. After purification, the model
should behave like a benign/clean model producing same prediction irrespective of the presence of
trigger. Note that Kirkpatrick et al. (2017) proposed a similar regularizer, known as elastic weight
consolidation (EWC) used in continual learning. EWC helps a model to learn a new task while
keeping the knowledge of previously learned tasks. Our clean data distribution aware regularization,
instead, only helps to preserve the knowledge of previously learned task corresponding to clean data
distribution (not task corresponding to poison samples) through computing F̄ using clean validation
set. Thus, the design of our regularizer is backdoor specific and needs careful attention as it is crucial
for clean test performance.

Algorithm 1: Natural Gradient Fine-tuning
Input: Backdoor Model (fθ(.)), 1% Clean Validation Set Dval, Number of Purification EpochsN
X ,Y ← Dval

F̄ ← 1
|Dval|

∑
x∈X ,y∈Y

[
∇θ̄L

ylog fθ(x) ·
(
∇θ̄L

ylog fθ(x)
)T]

// θ̄L is the last layer’s

parameter of initial backdoor model.
for i = 1 toN do

Calculate loss, L = LCE(Y, fθi(X)) + η
2

∑
j(diag(F̄))j · (θiL,j − θ̄L,j)

2

F ← 1
|Dval|

∑
x∈X ,y∈Y

[
∇θi

L
ylog fθi(x) ·

(
∇θi

L
ylog fθi(x)

)T
]

// θiL is the last

layer’s parameter at ith iterations

θi+1
L ← θiL − α · F−1∇θi

L
(L) // α is the learning rate

θi+1 ← {W0,1,W1,2, · · · ,WL−2,L−1, θ
i+1
L } // Wi,i+1’s are frozen parameters

θp ← {W0,1,W1,2, · · · ,WL−2,L−1, θ
N
L } // θp is the purified model’s parameter

Output: Purified Model, fθp

C MORE EXPLANATIONS ON SMOOTHNESS AND BACKDOOR

C.1 WHY SMOOTHNESS ANALYSIS W.R.T CLEAN DISTRIBUTION?

In general, a backdoor model is usually well optimized w.r.t clean and poison data distribution.
Therefore, it is designed to perform well on both distributions. If we look at the smoothness analysis
of backdoor models w.r.t. original poisoned training data (both data distributions), the loss surface
will be smoother. However, looking from only clean distribution point of view the loss surface is
sharper as we have described in the paper. Backdoor purification implies that the model will only be
sensitive to clean data distribution and completely ignore any type of backdoor manipulations. Since
the model’s behavior w.r.t. clean distribution is of our particular interest, we perform the smoothness

2https://github.com/kr-anonymous/ngf-animus

14

https://github.com/kr-anonymous/ngf-animus

Under review as a conference paper at ICLR 2023

analysis w.r.t. clean distribution in all cases. If we put it another way, making the loss surface smooth
w.r.t. clean distribution ensures that the model will automatically forget the poison distribution, i.e.,
backdoor purification. Another minor reason is that, we are able to distinguish the behavior of benign
and backdoor models because we consider clean distribution. This is the only common distribution
between these models, and one has to perform smoothness analysis w.r.t. a common distribution to
distinguish them.

C.2 WHY SMOOTHNESS IS THE KEY TO REMOVING THE BACKDOOR?

One key observation from the smoothness study is that: there exists a key difference between weight-
loss surface smoothness (estimated by loss hessian) of a backdoor and a benign model w.r.t. clean
distribution—the weight-loss surface of a backdoor model is less smooth compared to a benign model.
To further elaborate, let us consider feeding a clean sample to a backdoor model. By definition,
it will predict the correct ground truth label. Now, consider feeding a sample with a backdoor
trigger on it. The model will predict the adversary-set target label implying significant changes
in prediction distribution. This significant change can be explained by the surface smoothness. In
order to accommodate this significant change in prediction, the model must adjust itself accordingly.
Such adjustment leads to non-smoothness in the weight-loss surface. A non-smooth surface causes
significant changes in loss gradient for specific inputs. In our case, these specific inputs are backdoor-
triggered samples. As the magnitude of a trigger is usually very small compared to the total input
magnitude, the model has to experience quite a significant change in its weight space to cause large
loss changes. We characterize this change in terms of smoothness. As for backdoor removal, we
claim that making the non-smooth weight loss surface smoother removes the backdoor behavior.
Based on the above discussion, a smoother surface should not cause a large change in loss or model
predictions corresponding to backdoor related perturbations or triggers. In summary, for a model
to show certain backdoor behavior, there are some specific changes that take place in the weight
space. In this work, we try to explain these changes in terms of weight-loss surface smoothness. Our
intuition is well supported by our comprehensive empirical evaluations.

C.3 WHY USE FISHER INFORMATION MATRIX FOR ACHIEVING SMOOTHNESS?

In Fisher Information Matrix (FIM) based optimization, the natural gradient is defined as F−1∇L
(ref. Eq. 5). From the perspective of information geometry, natural gradient defines the direction in
parameter space which gives largest change in objective per unit of change in model (p(y|x, θ)). Per
unit of change in model is measured by KL-divergence. Note that KL-divergence is well connected
with FIM as it can be used as a local quadrature approximation of KL-divergence of model change.
Eqn. 2 suggests that one requires the knowledge of the original parameter (θ) space to estimate it.
Therefore, FIM can be thought of as a mechanism to translate between the geometry of the model
(p(y|x, θ)) and the current parameters (θ) of the model. The way natural gradient defined the direction
in parameter space is contrastive to the stochastic gradient. Stochastic gradient defines the direction
in parameter space for largest change in objective per unit of change in parameter (θ) measured
by Eucludian distance. That is, the gradient direction is solely calculated based on the changes of
parameters, without any knowledge of model geometry.

As FIM-based optimization minimizes the changes in model, the model itself cannot significantly
change at each iteration. So, the overall optimization process goes through comparatively smoother
transition and finally reaches smoother minima in comparison with SGD-based optimization3.

C.4 WHY DOES SAM UNDERPERFORMS?

One-layer optimization becomes a shallow network optimization problem for which there can exist
many bad local minima. For such an optimization problem, typically first-order optimizers perform
poorly mainly for the unawareness of loss surface curvature geometry. In the case of SAM, it uses
SGD as the optimizer. Informally, the working principle of SAM is: at each iteration, SAM tries to
minimize the maximum loss within a certain area in the loss weight space. Note that the formulation
of finding the maximum loss in a certain area is based on ‘Euclidean distance’ metric which does not
capture the curvature information of the plane. Although SAM performs better than vanilla SGD

3We refer the readers to (Jia & Su, 2020) for more discussion on FIM-based smoothness analysis.

15

Under review as a conference paper at ICLR 2023

in deep network4 in terms of smoother optimization point, SAM’s performance in shallow network
(our case) is almost similar to vanilla SGD. Two potential reasons behind this poor performance
are (i) using a predefined local area to search for maximum loss, and (ii) using ‘Euclidean distance’
metric instead of geometric distance metric. In contrast, NGD with curvature geometry aware Fisher
Information Matrix can successfully avoid such bad minima and optimizes to a global minima.

D EXPERIMENTAL DETAILS

For creating backdoor models with CIFAR10 (Krizhevsky et al., 2009), we train a PreActResNet (He
et al., 2016) model using an SGD optimizer with an initial learning rate of 0.01, learning rate decay
of 0.1/100 epochs for 250 epochs. We also use a weight decay of 5e−4 with momentum of 0.9. We
use a longer backdoor training to ensure a satisfactory attack success rate. We use a batch size of 128.
For GTSRB (Stallkamp et al., 2011), we train a WideResNet-16-1 (Zagoruyko & Komodakis, 2016)
model for 200 epochs with a learning rate of 0.01 and momentum of 0.9. We also regularize the
weights with a weight-decay of 5e−4 We rescale each training image to 32× 32 before feeding them
to the model. The training batch size is 128 and an SGD optimizer is used for all training. We further
created backdoor models trained on the Tiny-ImageNet and ImageNet datasets. For Tiny-ImageNet,
we train the model for 150 epochs with a learning rate of 0.005, a decay rate of 0.1/60 epochs, and a
weight decay of 1e-4. For ImageNet, we train the model for 200 epochs with a learning rate of 0.02
with a decay rate of 0.1/75 epochs. We also employ 0.9 and 1e-4 for momentum and weight decay,
respectively. The details of these four datasets are presented in Table 7.

D.1 DETAILS OF ATTACKS

We use 11 different attacks for CIFAR10. Each of them differs from each other in terms of either
label mapping type or trigger properties. For label poisoning attack, we use a fixed poison rate of
10%. However, we need to increase this rate to 80% for CLB and SIG. For Blend and SIG attacks,
we use a image-trigger mixup ratio of 0.2. WaNet adopts a universal wrapping augmentation as the
backdoor trigger. Note that WaNet can be considered as an non-additive attack since it works like
a augmentation technique with direct information insertion or addition like Badnets or TrojanNet.
ISSBA adds specific trigger to each input that is of low magnitude and imperceptible. Both of these
methods are capable of evading some existing defenses. For BPPA attack, we follow the PyTorch
implementation5. For Feature attack, we create backdoor model based on this implementation 6.
Apart from clean-label attacks, we use a poison rate of 10% for creating backdoor attacks. The details
of these attacks are presented in Table 8. In addition to theses attacks, we also consider ’All2All’
attacks (Troj-all, Dyn-all) where we have more than one target label. To implement this attack, we
change the given label i to the target label i+ 1. For class 9, the target label is 0.

Table 7: Detailed information of the datasets and DNN architectures used in our experiments.

Dataset Classes Image Size Training Samples Test Samples Architecture

CIFAR-10 10 32 x 32 50,000 10,000 PreActResNet18
GTSRB 43 32 x 32 39,252 12,630 WideResNet-16-1

Tiny-ImageNet 200 64 x 64 100,000 10,000 ResNet34
ImageNet 1000 224 x 224 1.28M 100,000 ResNet50

D.2 NGF AND OTHER OPTIMIZER IMPLEMENTATION DETAILS

To implement our proposed algorithm, we freeze the CNN backbone of the model and only fine-tune
the linear or classification layer parameters. We perform the fine-tuning for 100 epochs with a
learning rate of 0.01, weight decay of 1e−4, momentum of 0.9, and a batch size of 128. For studies

4Deep network consists of degenerate local minima and manifold of connect global minima (Liu et al., 2022)
implying that, in deep network, there is no such bad local minima, unlike to shallow network, that could affect
the performance of SAM.

5https://github.com/RU-System-Software-and-Security/BppAttack
6https://github.com/Megum1/DFST

16

https://github.com/RU-System-Software-and-Security/BppAttack
https://github.com/Megum1/DFST

Under review as a conference paper at ICLR 2023

Table 8: Details of different backdoor attacks we have defended against.

Attacks Trigger Label Description Poison Target
Type Mapping Rate Label

Badnets (Gu et al., 2019) Checker Board Label Triggers are placed at bottom 10% 0
3× 3 Poison left corner of images

CLB (Turner et al., 2018) Checker Board Clean use PGD-based 80% 0
3× 3 Label adversarial perturbations

SIG (Barni et al., 2019) Sinusoidal Clean Use Mixup for adding the sinusoidal 80% 0Signal Label trigger to whole image

Dynamic (Nguyen & Tran, 2020) Optimization Label Generate image dependent triggers 10% 0Poison

Trojan (Liu et al., 2017) Watermarks Label Watermarks are static for all 10% 0Poison poisoned samples

Blend (Chen et al., 2017) Random Label Each pixel of the trigger is sampled 10% 0Pixels Poison from uniform distribution of [0,255]

CBA (Lin et al., 2020) Mixer Label Mixing existing benign features of 10% 0Constructor Poison two/more classes

FBA (Cheng et al., 2021) Style Label Use a controlled detoxification 10% 0Generator Poison to manipulate deep features

BPPA (Wang et al., 2022) Quantization Label Image quantization & contrastive 10% 0Trigger Poison adversarial learning based

Table 9: Comparison of NGF with another state-of-the-art defense CLP (Zheng et al., 2022). Even
though CLP achieves satisfactory removal performance for some attacks, the clean test accuracy
drops significantly for some attacks (Blend, TrojanNet, CLB). We consider CIFAR10 dataset for this
comparison.

Methods Badnets Blend Troj-one SIG CLB Dyn-One Dyn-All BPPA
ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.96 100 94.11 100 89.57 100 88.64 100 92.78 100 92.52 100 92.61 99.70 93.82
CLP 2.58 90.90 0.81 81.17 1.81 56.08 1.46 53.03 13.61 90.38 13.84 90.84 14.78 89.72 11.39 90.21
NGF 1.86 88.32 0.38 91.17 2.64 84.21 0.12 84.16 1.04 88.37 1.17 90.97 1.61 90.19 7.14 91.84

with different optimizers (Adam, RMSProp, etc.), we use similar training settings as NGF. For
sharpness-aware minimization, we restrict the search region for the SGD optimizer. We follow
Pytorch implementation described here7. We use a batch size of 128 and a learning rate of 0.01 for
SAM.

D.3 DETAILS OF OTHER DEFENSES

For experimental results with ANP (Wu & Wang, 2021), we follow the source code implementation 8.
After creating each of the above mentioned attacks, we apply adversarial neural pruning on the
backdoor model for 500 epochs with a learning rate of 0.02. We use the default settings for all attacks.
For vanilla FT, we perform simple DNN fine-tuning with a learning rate of 0.01 for 125 epochs. We
higher number of epochs for FT due to its poor clean test performance. The clean validation size is 1%
for both of these methods. For I-BAU (Zeng et al., 2021), we follow their PyTorch Implementation 9

and purify the model for 10 epochs. We use 5% validation data for I-BAU. For AWM (Chai &
Chen, 2022), we train the model for 100 epochs and use Adam optimizer with a learning rate of
0.01 and a wight decay of 0.001. We use the default hyper-parameter setting as described in their
work α = 0.9, β = 0.1, γ = 108, η = 1000. Above settings is for CIFAR10 and GTSRB only. For
Tiny-ImageNet, we keep most of the training settings similar except reducing the number of epochs
significantly. We also increase the validation size to 5% for vanilla FT, ANP, and AWM. For I-BAU,
we use a higher valiadtion size of 10%. For purification, we apply ANP and AWM for 30 epochs,
I-BAU for 5 epochs and Vanilla FT for 25 epochs. For ImageNet, we use a 3% validation size for
all defenses (except for I-BAU, we use 5% validation data) and use different number of purification

7https://github.com/davda54/sam
8https://github.com/csdongxian/ANP_backdoor
9https://github.com/YiZeng623/I-BAU

17

https://github.com/davda54/sam
https://github.com/csdongxian/ANP_backdoor
https://github.com/YiZeng623/I-BAU

Under review as a conference paper at ICLR 2023

Table 10: Correction rate (%) for different defense techniques. We define the correction rate (CR) as the
percentage of poisonous samples correctly classified to their original classes. The higher the CR, the better is
that method. We use CIFAR10 dataset for these evaluations.

Method Badnets Trojan CLB SIG

No Defense 0 0 0 0
Vanilla FT 85.74 80.52 84.72 43.35

ANP 85.56 80.69 82.04 45.64
NGF (Ours) 86.42 80.85 85.63 45.18

Table 11: Average run time for different defense methods. We consider CIFAR10 dataset and all attacks to
calculate the average runtime. We do not show the runtime of CLP as it severely underperforms compared to
other defenses. An NVIDIA RTX 3090 GPU was used for all computations.

Method Vanilla FT ANP I-BAU AWM NGF (Ours) NGF w/o Regularizer (Ours)

Runtime (sec) 78.1 201.5 52.7 90.2 38.3 37.8

epochs for different methods. We apply I-BAU for 2 epochs. On the other hand, we train the model
for 3 epochs for ANP, AWM and vanilla FT.

E COMPARISON WITH ADDITIONAL DEFENSE

In Table 9, we show the comparison of NGF with a recently proposed defense technique based on
channel Lipschitzness Pruning (CLP) (Zheng et al., 2022) that works without any data. We follow the
Github link10. Based on the trigger-activated change on channel activation, CLP prunes channel. One
disadvantage of pruning based method is that in case of challenging scenarios, e.g.,, strong attacks,
large datasets and models etc., it prunes neurons abruptly. This creates high possibility of pruning
neurons sensible to clean data distribution. In turn, the clean test accuracy may decrease significantly
in some scenario. As shown in Table 9, clean accuracies (ACCs) for Blend, Trojan and CLB attacks
are much lower compared to NGF. Even though CLP performs reasonably well at removing backdoor,
NGF still outperforms in that area.

F MORE ON SMOOTHNESS ANALYSIS

For smoothness analysis, we follow the PyHessian implementation11 and modify it according to our
needs. We use a single batch with size 200 to calculate the loss Hessian for all attacks with CIFAR10
and GTSRB datasets. We conduct further smoothness analysis for ImageNet dataset and different
architectures. In Fig. 5, we show the Eigen density plots for different 5 different attacks. We used 2
A40 GPUs with 96GB system memory. However, it was not enough to calculate the loss hessian if
we consider all 1000 classes of ImageNet. Due to GPU memory constraint, we consider ImageNet
subset with 12 classes. We train a ResNet34 architecture with 5 different attacks. To calculate the
loss hessian, we use a batch size of 50. Density plots before and after purification further confirms
our proposed hypothesis. To test our hypothesis for larger architectures, we consider 5 different
architectures for CIFAR10, i.e., VGG19 (Simonyan & Zisserman, 2014), MobileNetV2 (Sandler et al.,
2018), DenseNet121 (Huang et al., 2017), GoogleNet (Szegedy et al., 2014), Inception-V3 (Szegedy
et al., 2016). Each of the architectures is deeper compared to the ResNet18 architecture we consider
for CIFAR10. Due to their large size, showing the effectiveness of NGF in case of these architecture
will strengthen our claim—one layer NGF based fine-tuning is enough for backdoor purification. In
Fig. 6, we show the performance of NGF when backdoor models are created using these architectures.
Our proposed one layer fine-tuning successfully removes the backdoor in all of these scenarios.

10https://github.com/rkteddy/channel-Lipschitzness-based-pruning
11https://github.com/amirgholami/PyHessian

18

https://github.com/rkteddy/channel-Lipschitzness-based-pruning
https://github.com/amirgholami/PyHessian

Under review as a conference paper at ICLR 2023

Table 12: Performance of NGF while fine-tuning all layers of DNN. The results shown here are for CIFAR10
dataset.

Methods Badnets Blend Trojan Dynamic CLB SIG CBA Runtime
ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC (Secs.)

Initial 100 92.96 100 94.11 100 89.57 100 92.52 100 92.78 100 88.64 93.20 90.17 –
Vanilla-FT (All Layers) 4.87 85.92 4.77 87.61 3.78 82.18 4.73 88.61 1.83 87.41 1.04 81.92 27.80 83.79 78.1

NGF (Last layer) 1.86 88.32 0.38 91.17 2.64 84.21 1.17 90.97 1.04 88.37 0.12 84.16 24.60 85.97 38.3
NGF (All layers) 1.47 88.65 0.42 92.28 2.05 84.61 1.06 90.42 0.60 88.74 0.18 85.12 19.86 86.30 173.2

Table 13: Purification performance after randomly re-initializing the last layer. Even after re-initialization,
the purification task is similar as before, i.e., proper fine-tuning. Without proper fine-tuning, the backdoor
behavior will be still present after purification. In contrast to SGD, NGF is highly successful even after such
re-initialization. CIFAR10 dataset is considered here.

BadNets Trojan Blend CLB SIG
ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.96 100 89.57 100 94.11 100 92.78 100 88.64
SGD 93.51 89.35 89.63 87.55 71.22 92.21 88.01 90.01 76.83 86.12
NGF 3.34 89.65 18.78 84.21 0.33 86.39 4.45 82.50 1.25 83.95

G LABEL CORRECTION RATE OF DIFFERENT DEFENSES

In standard removal measurement, it is sufficient for backdoored images to be classified as a non-
target class. As we calculate ASR after removal, our evaluation follows standard measurement. We
define the correction rate (CR) as the percentage of poisonous samples correctly classified to their
original classes. We define the method with the highest value of CR as the best performing or SOTA
method. We use the CIFAR10 dataset and 4 different attacks for demonstration. It can be observed
from Table 10 that our method obtains SOTA correction performance for most of these attacks.

H RUNTIME ANALYSIS OF OTHER DEFENSES

In Table 11, we show the average runtime of other defenses. It can be observed that ANP is almost
6x slower than NGF. Other defenses, NAD and MCR are also much slower than NGF. NAD uses
transfer learning based distillation using a teacher-student framework. However, the complexity
of this method results in computational overhead. Instead, NGF revisits much simpler fine-tuning
approach from one-layer optimization point of view. Our simple and effective method leads to one of
the fastest purification. We take the average of all run times against 11 attacks on CIFAR10. Note
that, for each epoch in NGF, we have to feed-forward all validation data. However, we only update
the parameters of last layer through back-propagation. The reason behind this is that we use different
data augmentations while fine-tuning. This does not allow us to save the CNN features one time and
re-use it for upcoming all epochs.

I FINE-TUNING ALL LAYERS

We have considered fine-tuning all layers fusing NGF and SGD. Note that vanilla FT does fine-tune
all layers. We report the performance of NGF for all layers in Table 12. While fine-tuning all layers
seems to improve the performance, it takes almost 6× more computational time than NGF on last
layer. We perform NGF with the regularizer here.

Table 14: Purification performance for various validation data size. NGF performs well even with very few
validation data, e.g., 50 data points. All results are for CIFAR10 and Badnets attack.

Validation size 50 100 250 350 500

Method ASR CA ASR CA ASR CA ASR CA ASR CA

No Defense 100 92.96 100 92.96 100 92.96 100 92.96 100 92.96
ANP 13.66 83.99 8.35 84.47 5.72 84.70 3.78 85.26 2.84 85.96
AWM 8.51 83.63 7.38 83.71 5.16 84.52 5.14 85.80 4.34 86.17

NGF (Ours) 6.91 86.82 4.74 86.90 4.61 87.08 2.45 87.74 1.86 88.32

19

Under review as a conference paper at ICLR 2023

Table 15: Illustration of purification performance for All2All attack using CIFAR10 dataset, where uniformly
distribute the target labels to all available classes. NGF shows better robustness and achieves higher clean
accuracies for 3 attacks: Badnets, Blend, BPPA with 10% poison-rate.

Method BadNets-All Blend-All BPPA-All
ASR ACC ASR ACC ASR ACC

No Defense 100 88.34 100 88.67 99.60 92.51
FT 2.78 83.19 2.83 80.13 10.97 89.76

NAD 4.58 81.34 6.76 81.13 20.19 87.77
ANP 3.13 82.19 4.56 82.88 9.87 89.91

NGF (Ours) 1.93 84.29 1.44 83.79 6.10 90.56

Table 16: Performance of NGF against combined backdoor attack. We poison some portion of the training data
using 3 different attacks; Badnets, Blend, and Trojan. Each of these attacks have an equal share in the poison
data. All results are for CIFAR10 datasets containing different number of poisonous samples.

Poison Rate 10% 25% 35% 50%

Method ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 88.26 100 87.51 100 86.77 100 85.82
MCR 27.83 78.10 31.09 77.42 36.21 75.63 40.08 72.91
ANP 4.75 83.50 5.42 81.73 6.51 79.93 9.76 78.06

NGF (Ours) 1.17 83.61 2.15 81.62 3.31 80.01 4.15 79.35

J EFFECT OF CLEAN VALIDATION DATA SIZE

We also present how the total number of clean validation data can impact the purification performance.
In Table 14, we see the change in performance while gradually reducing the validation size from 1%
to 0.1%. We consider Badnets attack on CIFAR10 dataset for this evaluation. Even with only 50
(0.1%) data points, NGF can successfully remove the backdoor by bringing down the attack success
rate (ASR) to 6.91%. We also consider adversarial weight masking for this comparison. For both
ANP and AWM, reducing the validation size has severe impact on the test accuracy (ACC).

K PURIFICATION USING LAST LAYER RE-INITIALIZATION

We also conduct studies on the behavioral difference of SGD and NGD while we re-initialize the
last layer. Even though we re-initialize the last layer, one still has to properly fine-tune the backdoor
model to remove the backdoor. However, we see throughout our evaluations that SGD-based one-
layer fine-tuning is not a proper fine-tuning method and unable to remove backdoor. In case of
re-initialization, the shallow network optimization problem still stands as wells as the issue of bad
local minima. Therefore, SGD shows similar behavior in this scenario too. Table 13 shows the
performance of SGD and NGF in case one decides to re-initialize the layer than fine-tunes. As usual,
NGF is able to reach smooth minima due to its ability to properly fine-tune the model.

L MORE ALL2ALL ATTACKS

Most of the defenses evaluate their methods on only All2One attack where we consider only one
target label. However, there can be multiple target classes in a practical attack scenario. We consider
one such case: All2All attack where target classes are uniformly distributed among all available
classes. In Table 15, we show the performance under such settings for 3 different attacks with a
poison rate of 10%. It shows that All2All attack is more challenging to defend against as compared
to All2One attack. However, the performance of NGF seems to be consistently better than other
defenses for both of these attack variations. For reference, we achieve an ASR improvement of 3.12%
over ANP while maintaining a lead in classification accuracy too.

M COMBINING DIFFERENT BACKDOOR ATTACKS

We also perform experiments with combined backdoor attacks. To create such attacks, we poison
some portion of the training data using 3 different attacks; Badnets, Blend, and Trojan. Each of these

20

Under review as a conference paper at ICLR 2023

60 40 20 0 20 40 60 80
comp-1

80

60

40

20

0

20

40

60

80

co
m

p-
2

CIFAR10 Train data T-SNE projection
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
11.0

Clean data
cluster from
target class

Posion Data Cluster

(a) Cluster Structures Without Discriminator (Be-
fore Purification)

60 40 20 0 20 40 60
comp-1

80

60

40

20

0

20

40

60

co
m

p-
2

CIFAR10 Train data T-SNE projection

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
11.0

(b) Cluster Structures Without Discriminator (After
Purification)

80 60 40 20 0 20 40 60 80
comp-1

60

40

20

0

20

40

60

80

co
m

p-
2

CIFAR10 Train data T-SNE projection
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
11.0

Clean data
cluster from
target class

Posion Data Cluster

(c) Cluster Structures With Discriminator (Before
Purification)

80 60 40 20 0 20 40 60 80
comp-1

80

60

40

20

0

20

40

60

80

co
m

p-
2

CIFAR10 Train data T-SNE projection
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
11.0

(d) Cluster Structures With Discriminator (After
Purification).

Figure 3: t-SNE visualization of class features for CIFAR10 dataset with Badnets attack. For visualization
purpose only, we assign label "0" to clean data cluster from target class and label "11" to poison data cluster.
However, both of these clusters have same training label "0" during training. With discriminator 3c, the
clusters are relatively closer and harder to discriminate as compared to without discriminator 3a. However,
after fine-tuning using clean data, NGF can remove the backdoor effect. Even though the clusters are very
close, the classifier can still discriminate the clusters as shown by the 3b&3d. After purification, poison data are
distributed among their original ground truth classes instead of the target class. To estimate these clusters after
purification (3b&3d), we take the output of classifier before softmax (embedding dim=10) and apply tSNE with
2 components.

attacks have an equal share in the poison data. As shown in Table 16, we use 4 different poison rates:
10% ∼ 50%. NGF outperforms other baseline methods (MCR and ANP) by a satisfactory margin.

N DECISION HEATMAPS: HOW NGF REMOVES BACKDOOR?

While inserting the backdoor behavior, the model, especially the linear classification layer, memorizes
the poison data distribution. By memorization, we mean it memorizes the simpler trigger pattern.
Whenever the model sees that pattern in the input, it prioritizes the trigger-specific feature instead of
image-specific (clean part) feature and predicts the adversary-set target label. When we re-train or
fine-tune the classifier with clean validation data, the classifier forgets the poison distribution as fine-
tuning reinforces the dominance of clean features in model prediction. After fine-tuning, the model
looks for image-specific features for prediction as it has almost no memory of the trigger-specific
features. We illustrate the decision heat-maps for clean, backdoor and purified model in Figure 4. We
show the decision heatmaps for clean an poison data. As clean model is only trained on clean data, it
is not sensitive to the trigger. Our defense objective says that, a purified model should behave like a
benign model, i.e., the decision making process (for clean and poison data) should resemble a clean

21

Under review as a conference paper at ICLR 2023

model. As we can see for the poison data, NGF successfully removes the effect of the trigger. The
purified model ignores the trigger while making decisions.

Figure 4: Decision heat-maps for clean, backdoor and purified models. Regions with more reddish color is
more responsible towards a decision making. For each category, we show the heatmaps for clean and poison
data. Trigger is at bottom left corner of each poison data. Unlike backdoor model, clean model is insensitive to
triggers in the poison sample. Wheres backdoor model causes the model to make wrong decision based on the
trigger pattern. The purified model behaves like a clean model and does not look at the trigger while making a
decision. All heat-maps are generated for CIFAR10 dataset attacked with BadNets. We choose this attack for
better understanding of the context.

22

Under review as a conference paper at ICLR 2023

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 2712.9
Tr(H) : 17015.6

ACC : 85.8
ASR : 100.0

(a) Badnets Attack

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 963.2
Tr(H) : 7711.9

ACC : 81.3
ASR : 3.8

(b) Badnets Purification

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 3531.7
Tr(H) : 12155.2

ACC : 85.0
ASR : 99.5

(c) Clean-Label (CLB) Attack

102 101 100 0 100 101 102

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 458.1
Tr(H) : 1193.5

ACC : 81.1
ASR : 2.3

(d) Clean-Label (CLB) Purification

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 2649.8
Tr(H) : 19228.8

ACC : 85.5
ASR : 99.1

(e) SIG Attack

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 796.7
Tr(H) : 2816.2

ACC : 80.7
ASR : 2.7

(f) SIG Purification

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 3196.1
Tr(H) : 23445.2

ACC : 85.1
ASR : 100.0

(g) Blend Attack

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 768.1
Tr(H) : 1347.4

ACC : 81.9
ASR : 3.5

(h) Blend Purification
Figure 5: Smoothness analysis for ImageNet Subset (first 12 classes). A ResNet34 architecture is trained on the
subset. For GPU memory constraint, we consider only first 12 classes while calculating the loss Hessian. Eigen
Density plots of backdoor models (before and after purification) are shown here.

23

Under review as a conference paper at ICLR 2023

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 759.3
Tr(H) : 5424.6

ACC : 90.8
ASR : 100.0

(a) Backdoor Attack (VGG19)

101 100 0 100 101

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 20.1
Tr(H) : 28.9

ACC : 85.1
ASR : 1.2

(b) Backdoor Purification (VGG19)

103 102 101 1000 100 101 102 103

Eigenvlaue
10 8

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

) max : 707.6
Tr(H) : 6906.3

ACC : 86.0
ASR : 1.6

(c) Backdoor Attack (MobileNetV2)

101 100 0 100 101

Eigenvlaue
10 8

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

max : 10.2
Tr(H) : 28.8

ACC : 86.0
ASR : 1.6

(d) Backdoor Purification (MobileNetV2)

102 101 100 0 100 101 102

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 204.8
Tr(H) : 1479.4

ACC : 92.8
ASR : 100.0

(e) Backdoor Attack (GoogleNet)

100 0 100

Eigenvlaue

10 8

10 6

10 4

10 2

100

102

D
en

si
ty

 (L
og

 S
ca

le
)

max : 1.5
Tr(H) : 12.4

ACC : 91.8
ASR : 0.1

(f) Backdoor Purification (GoogleNet)

102 101 100 0 100 101 102

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 195.6
Tr(H) : 1598.3

ACC : 90.9
ASR : 100.0

(g) Backdoor Attack (InceptionV3)

100 0 100

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 4.5
Tr(H) : 38.8

ACC : 87.9
ASR : 1.7

(h) Backdoor Purification (InceptionV3)

103 102 101 100 0 100 101 102 103

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 1169.4
Tr(H) : 12836.6

ACC : 92.2
ASR : 100.0

(i) Backdoor Attack (DenseNet121)

101 100 0 100 101

Eigenvlaue

10 8

10 6

10 4

10 2

100

D
en

si
ty

 (L
og

 S
ca

le
)

max : 35.8
Tr(H) : 37.0

ACC : 86.7
ASR : 1.9

(j) Backdoor Purification (DenseNet121)

Figure 6: Smoothness Analysis for different architectures. For all architectures, we consider badnets attack on
CIFAR10.

24

	Introduction
	Related Work
	Background
	Smoothness Analysis of Backdoor Models
	Natural Gradient Fine-tuning (NGF)

	Experimental Results
	Evaluation Settings
	Performance Evaluation of NGF
	Ablation Studies

	Conclusion
	Appendix
	Natural Gradient Fine-tuning
	More explanations on Smoothness and Backdoor
	Why Smoothness Analysis w.r.t Clean Distribution?
	Why smoothness is the key to removing the backdoor?
	Why Use Fisher Information Matrix for Achieving Smoothness?
	Why Does SAM Underperforms?

	Experimental Details
	Details of Attacks
	NGF and Other Optimizer Implementation Details
	Details of Other Defenses

	Comparison with Additional Defense
	More on Smoothness Analysis
	Label Correction Rate of Different Defenses
	Runtime Analysis of Other Defenses
	Fine-tuning All Layers
	Effect of Clean Validation Data Size
	Purification Using Last Layer Re-Initialization
	More All2All Attacks
	Combining Different Backdoor Attacks
	Decision Heatmaps: How NGF removes Backdoor?

