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Abstract

We demonstrate a substantial gap between the
privacy guarantees of the Adaptive Batch Linear
Queries (ABLQ) mechanism under different types
of batch sampling: (i) Shuffling, and (ii) Poisson
subsampling; the typical analysis of Differentially
Private Stochastic Gradient Descent (DP-SGD)
follows by interpreting it as a post-processing of
ABLQ. While shuffling-based DP-SGD is more
commonly used in practical implementations, it
has not been amenable to easy privacy analysis,
either analytically or even numerically. On the
other hand, Poisson subsampling-based DP-SGD
is challenging to scalably implement, but has a
well-understood privacy analysis, with multiple
open-source numerically tight privacy accoun-
tants available. This has led to a common practice
of using shuffling-based DP-SGD in practice, but
using the privacy analysis for the corresponding
Poisson subsampling version. Our result shows
that there can be a substantial gap between the pri-
vacy analysis when using the two types of batch
sampling, and thus advises caution in reporting
privacy parameters for DP-SGD.

1. Introduction
Using noisy gradients in first-order methods such as stochas-
tic gradient descent (SGD) has become a prominent ap-
proach for adding differential privacy (DP) to the training
of differentiable models such as neural networks. This ap-
proach, introduced by Abadi et al. (2016), has come to
be known as Differentially Private Stochastic Gradient De-
scent, and we use the term DP-SGD to refer to any such
first-order method. DP-SGD is currently the canonical algo-
rithm for training deep neural networks with privacy guar-
antees, and there currently exist multiple open source im-
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Figure 1. Privacy parameter ε for different noise parameters σ, for
fixed δ = 10−6 and number of steps T = 10, 000. εD : for
deterministic batching, εP : upper bounds when using Poisson
subsampling (computed using different accountants), and εS : a
lower bound when using shuffling. We observe that shuffling does
not provide much amplification for small values of σ, incurring
significantly higher privacy cost compared to Poisson subsampling.

plementations, such as in Tensorflow Privacy (a), Pytorch
Opacus (Yousefpour et al., 2021), and JAX Privacy (Balle
et al., 2022). The algorithm has been applied widely in var-
ious machine learning domains, such as training of image
classification (Tramer & Boneh, 2021; Papernot et al., 2021;
Klause et al., 2022; De et al., 2022; Bu et al., 2022), gen-
erative models with GAN (Torkzadehmahani et al., 2019;
Chen et al., 2020), diffusion models (Dockhorn et al., 2022),
language models (Li et al., 2022; Yu et al., 2022; Anil et al.,
2022; He et al., 2023), medical imaging (Ziller et al., 2021),
as well as private spatial querying (Zeighami et al., 2022), ad
modeling (Denison et al., 2023), and recommendation (Fang
et al., 2022).

DP-SGD operates by processing the training data in mini-
batches, and at each step, performs a first-order gradient
update, using a noisy estimate of the average gradient for
each mini-batch. In particular, the gradient g for each record
is first clipped to have a pre-determined bounded ℓ2-norm,
by setting [g]C := g · min{1, C/∥g∥2}, and then adding
Gaussian noise of standard deviation σC to all coordinates
of the sum of gradients in the mini-batch.1 The privacy

1While some distributed training setup uses the sum gradient
directly, it is common to rescale the sum gradient by the batch size
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Algorithm 1 ABLQB: Adaptive Batch Linear Queries
Parameters: Batch sampler B using (expected) batch size
b and number of batches T , noise parameter σ, and an
(adaptive) query method A : (Rd)∗ ×X → Bd.

Input: Dataset x = (x1, . . . , xn).
Output: Query estimates g1, . . . , gT ∈ Rd

(S1, . . . , ST )← Bb,T (n)
for t = 1, . . . , T do
ψt(·) := A(g1, . . . , gt−1; ·)
gt ←

∑
i∈St

ψt(xi) + et for et ∼ N (0, σ2Id)

return (g1, . . . , gT )

Algorithm 2 Db,T : Deterministic Batch Sampler
Parameters: Batch size b, number of batches T .
Input: Number of datapoints n = b · T .
Output: Seq. of disjoint batches S1, . . . , ST ⊆ [n].

for t = 0, . . . , T − 1 do
St+1 ← {tb+ 1, . . . , tb+ b}

return S1, . . . , ST

guaranteed by the mechanism depends on the following: the
choice of σ, the size of dataset, the size of mini-batches, the
number of steps of gradient update performed, and finally
the process used to generate the batches. Almost all deep
learning systems generate fixed-sized batches of data by
going over the dataset sequentially. When feasible, a global
shuffling of all the examples in the dataset is performed
for each training epoch by making a single pass over the
dataset. On the other hand, the process analyzed by Abadi
et al. (2016) constructs each batch by including each record
with a certain probability, chosen i.i.d. However, this leads
to variable-sized mini-batches, which is technically chal-
lenging to handle in practice. As a result, there is generally
a mismatch between the actual training pipeline and the
privacy accounting in many applications of DP-SGD, with
the implicit assumption that this subtle difference is negli-
gible and excusable. However, in this paper, we show that
this is not true—in a typical setting, as shown in Figure 1,
the privacy loss from the correct accounting is significantly
larger than expected.

Adaptive Batch Linear Queries and Batch Samplers.
Formally, the privacy analysis of DP-SGD, especially in the
case of non-convex differentiable models, is performed by
viewing it as a post-processing of a mechanism performing
adaptive batch linear queries (ABLQB) as defined in Al-
gorithm 1 (we use subscript B to emphasize the role of the

to obtain the average gradient before applying the optimization
step. Since this scaling factor can be assimilated in the learning
rate, we focus on the sum gradient for simplicity in this paper. Note
that, in case of DP-SGD using Poisson subsampling, the scaling
is done by the expected batch size, and not the realized batch size.

Algorithm 3 Sb,T : Shuffle Batch Sampler
Parameters: Batch size b, number of batches T .
Input: Number of datapoints n = b · T .
Output: Seq. of disjoint batches S1, . . . , ST ⊆ [n].

Sample a random permutation π over [n].
for t = 0, . . . , T − 1 do
St+1 ← {π(tb+ 1), . . . , π(tb+ b)}

return S1, . . . , ST

Algorithm 4 Pb,T : Poisson Batch Sampler
Parameters: Expected batch size b, number of batches T .
Input: Number of datapoints n.
Output: Seq. of batches S1, . . . , ST ⊆ [n].

for t = 1, . . . , T do
St ← ∅
for i = 1, . . . , n do

St ←

{
St ∪ {i} with probability b/n
St with probability 1− b/n

return S1, . . . , ST

batch sampler), where the linear query ψt(xi) corresponds
to the clipped gradient corresponding to record xi. For any
x, we require that ψt(x) ∈ Bd := {w ∈ Rd : ∥w∥2 ≤ 1}.
Note that without loss of generality, we can treat the norm
bound C to be 1 by defining ψt(x) := [g]C/C for the corre-
sponding gradient g, and rescaling gt by C to get back the
noisy gradient for DP-SGD.

As mentioned above, a canonical way to generate the mini-
batches is to go through the dataset in a fixed determinis-
tic order, and divide the data into mini-batches of a fixed
size (Algorithm 2, denoted as D). Another commonly used
option is to first randomly permute the entire dataset before
dividing it into mini-batches of a fixed size (Algorithm 3, de-
noted as S); this option provides amplification by shuffling,
namely, that the privacy guarantees are better compared
to fixed deterministic ordering. However, obtaining such
amplification bounds is non-trivial, and while some bounds
have been recently established for such privacy amplifica-
tion (Erlingsson et al., 2019; Feldman et al., 2021; 2023),
they tend to be loose in our setting and only kick in when
the basic mechanism is already sufficiently private.

Instead, the approach followed by (Abadi et al., 2016), and
henceforth used commonly in reporting privacy parameters
for DP-SGD, is to assume that each batch is sampled i.i.d.
by including each record with a certain probability, referred
to as Poisson subsampling (Algorithm 4, denoted as P). The
advantage of this approach is that the privacy analysis of
such sampling is easier to carry out since the ABLQP mech-
anism can be viewed as a composition of T independent
sub-mechanisms. This enables privacy accounting methods
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such as Rényi DP (Mironov, 2017) as well as numerically
tight accounting methods using privacy loss distributions
(elaborated on later in Section 3).

This has been the case, even when the algorithm being
implemented in fact uses some form of shuffling-based batch
sampler. To quote Abadi et al. (2016) (with our emphasis),

“In practice, for efficiency, the construction of
batches and lots is done by randomly permut-
ing the examples and then partitioning them into
groups of the appropriate sizes. For ease of analy-
sis, however, we assume that each lot is formed by
independently picking each example with proba-
bility q = L/N , where N is the size of the input
dataset.”

Most implementations of DP-SGD mentioned earlier also
use some form of shuffling, with a rare exception of PyTorch
Opacus (Yousefpour et al., 2021) that has the option of Pois-
son subsampling to be consistent with the privacy analysis.
But this approach does not scale to large datasets as random
access for datasets that do not fit in memory is generally
inefficient. Moreover, variable batch sizes are inconvenient
to handle in deep learning systems2. Tensorflow Privacy
(b) provides the compute dp sgd privacy statement

method for computing the privacy parameters and reminds
users about the implicit assumption of Poisson subsampling.
Ponomareva et al. (2023) note in their survey that “It is
common, though inaccurate, to train without Poisson sub-
sampling, but to report the stronger DP bounds as if amplifi-
cation was used.”

As DP-SGD is being deployed in more applications with
such discrepancy, it has become crucial to understand ex-
actly how the privacy guarantee depends on the precise
choice of the batch sampler, especially when one cares
about specific (ε, δ) privacy parameters (and not asymptotic
bounds). This leads us to our main motivating question:

How do the privacy guarantees of ABLQB com-
pare when using different batch samplers B?

1.1. Our Contributions

We study the privacy guarantees of ABLQB for different
choices of batch samplers B. While we defer the formal
definition of (ε, δ)-DP to Section 2, let δB(ε) denote the
privacy loss curve of ABLQB for any B ∈ {D,P,S}, for
a fixed choice of σ and T . Namely, for all ε > 0, let δB(ε)

2For example, when the input shape changes, jax.jit will
trigger recompilation, and tf.function will retrace the graph.
Google TPUs require all operations to have fixed (input and output)
shapes. Moreover, in various form of data parallelism, the batch
size needs to be divisible by the number of accelerators.

be the smallest δ ≥ 0 such that ABLQB satisfies (ε, δ)-DP
for any underlying adaptive query method A. Let εB(δ) be
defined analogously.

D vs S. We observe that ABLQS always satisfies stronger
privacy guarantees than ABLQD, i.e., δS(ε) ≤ δD(ε) for
all ε ≥ 0.

D vs P . We show that the privacy guarantee of ABLQD
and ABLQP are incomparable. Namely, for all values of
T (number of steps) and σ (noise parameter), it holds (i)
for small enough ε > 0 that δP(ε) < δD(ε), but perhaps
more interestingly, (ii) for sufficiently large ε it holds that
δP(ε)≫ δD(ε). We also demonstrate this separation in a
specific numerical setting of parameters.

S vs P . By combining the above it follows that for suffi-
ciently large ε, it holds that δS(ε) < δP(ε). If δS(ε) <
δP(ε) were to hold for all ε > 0, then reporting privacy
parameters for ABLQP would provide correct, even if pes-
simistic, privacy guarantees for ABLQS . However, we
demonstrate multiple concrete settings of parameters, for
which δP(ε)≪ δS(ε), or alternately, εP(δ)≪ εS(δ).

For example, in Figure 1, we fix δ = 10−6 and the number
of steps T = 10, 000,3 and compare the value of εB(δ) for
various values of σ. For σ = 0.5, we find εP(δ) < 1.96
(PLD) and εP(δ) < 3.43 (RDP), but εS(δ) > 10.994 and
εD(δ) ≈ 10.997. For σ = 1.3, we find εP(δ) < 0.031
(PLD), whereas, εS(δ) > 0.26.

This suggests that reporting privacy guarantees using the
Poisson batch sampler can significantly underestimate the
privacy loss when the implementation in fact uses the shuf-
fle batch sampler.

Our main takeaway is that batch sampling plays a crucial in
determining the privacy guarantees of ABLQB, and hence
caution must be exercised in reporting privacy parameters
for mechanisms such as DP-SGD.

1.2. Technical Overview

Our techniques relies on the notion of dominating pairs as
defined by Zhu et al. (2022) (see Definition 2.3), which if
tightly dominating captures the privacy loss curve δB(ε).

D vs S. We observe that applying a mechanism on a ran-
dom permutation of the input dataset does not degrade its
privacy guarantees. While standard, we include a proof for
completeness.

D vs P . In order to show that δP(ε) < δD(ε) for small
enough ε > 0, we first show that δP(0) < δD(0) by show-
ing that the total variation distance between the tightly dom-
inating pair for ABLQD is larger than that in the case of

3Recall that since we are analyzing a “single epoch”, the sub-
sampling probability of Poisson subsampling is b/n = 1/T .
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ABLQP . And thus, by the continuity of hockey stick diver-
gence in ε, we obtain the same for small enough ε.

In order to show that δP(ε) > δD(ε) for large enough
ε > 0, we demonstrate an explicit set E (a halfspace),
which realizes a lower bound on the hockey stick divergence
between the tightly dominating pair of ABLQP , and show
that this decays slower than the hockey stick divergence
between the tightly dominating pair for ABLQD.

We demonstrate the separation in a specific numerical
setting of parameters using the dp accounting library
(Google’s DP Library., 2020) to provide lower bounds on
the hockey stick divergence between the tightly dominating
pair for ABLQP .

S vs P . One challenge in understanding the privacy guar-
antee of ABLQS is the lack of a clear dominating pair for
the mechanism. Nevertheless, we consider a specific in-
stance of the query method A, and a specific adjacent pair
x ∼ x′. The key insight we use in constructing this A and
x,x′ is that in the case of ABLQS , since the batches are of
a fixed size, the responses to queries on batches containing
only the non-differing records in x and x′ can leak informa-
tion about the location of the differing record in the shuffled
order. This limitation is not faced by ABLQP , since each
record is independently sampled in each batch. We show
a lower bound on the hockey stick divergence between the
output distribution of the mechanism on these adjacent in-
puts, by constructing an explicit set E, thereby obtaining a
lower bound on δS(ε).

In order to show that this can be significantly larger
than the privacy guarantee of ABLQP , we again use the
dp accounting library, this time to provide upper bounds
on the hockey stick divergence between the dominating pair
of ABLQP .

We provide the IPython notebook4 that was used for all the
numerical demonstrations; the notebook can be executed
using a free CPU runtime on Google Colab.

Related work. The phenomenon of non-differing records
leaking information about whether the differing record is
in a batch or not can also exist in sampling-based batch
samplers, such as, sampling independent batches of fixed-
size, as studied in a concurrent work by Lebeda et al. (2024).
However, we focus on the shuffle-based batch sampler, as
these are most common in practical implementations.

2. Differential Privacy
We consider mechanisms that map input datasets to distribu-
tions over an output space, namelyM : X ∗ → ∆O. That
is, on input dataset x = (x1, . . . , xn) where each record

4
https://colab.research.google.com/drive/

1zI2H8YEXbQyD6gZVVskFwcOiM5YMvqRe?usp=sharing

xi ∈ X ,M(x) is a probability distribution over the output
space O; we abuse notation to also useM(x) to denote the
underlying random variable. Two datasets x and x′ are said
to be adjacent, denoted x ∼ x′, if, loosely speaking, they
“differ in one record”. This can be formalized in multiple
ways, which we elaborate on in Section 2.2, but for any no-
tion of adjacency, Differential Privacy (DP) can be defined
as follows.

Definition 2.1 (DP). For ε, δ ≥ 0, a mechanismM satisfies
(ε, δ)-DP if for all “adjacent” datasets x ∼ x′, and for any
(measurable) event E it holds that

Pr[M(x) ∈ E] ≤ eε Pr[M(x′) ∈ E] + δ.

For any mechanismM, let δM : R≥0 → [0, 1] be its pri-
vacy loss curve, namely δM(ε) is the smallest δ for which
M satisfies (ε, δ)-DP; εM : [0, 1] → R≥0 can be defined
analogously.

2.1. Adaptive Batch Linear Queries Mechanism

We primarily study the adaptive batch linear queries mech-
anism ABLQB using a batch sampler B and an adaptive
query method A, as defined in Algorithm 1. The batch sam-
pler B can be instantiated with any algorithm that produces a
(randomized) sequence S1, . . . , ST ⊆ [n] of batches, where
n is the number of examples. ABLQB produces a sequence
(g1, . . . , gT ) of responses where each gi ∈ Rd. The re-
sponse gt is produced recursively using the adaptive query
method A that given g1, . . . , gt−1, constructs a new query
ψt : X → Bd (for Bd := {v ∈ Rd : ∥v∥2 ≤ 1}), and
we estimate the sum of ψt(x) over the batch St with added
zero-mean Gaussian noise of scale σ to all coordinates. As
explained in Section 1, DP-SGD falls under this abstrac-
tion by considering an adaptive query method that is spec-
ified by a differentiable loss function f : Rd × X → R,
and starts with an initial w0 ∈ Rd, and defines the query
A(g1, . . . , gt−1;x) as the clipped gradient [∇wfwt−1(x)]1
where wt is the tth model iterate recursively obtained by
performing gradient descent, e.g., wt ← wt−1 − ηtgt (or
any other first-order optimization step).

We consider the Deterministic D (Algorithm 2), Poisson P
(Algorithm 4) and Shuffle S (Algorithm 3) batch samplers.
As used in Section 1, we will continue to use δB(ε) as a
shorthand for denoting the privacy loss curve of ABLQB
for any B ∈ {D,P,S}. Namely, for all ε > 0, let δB(ε)
be the smallest δ ≥ 0 such that ABLQB satisfies (ε, δ)-DP
for all choices of the underlying adaptive query method A.
And εB(δ) is defined analogously.

2.2. Adjacency Notions

As alluded to earlier, the notion of adjacency is crucial to
Definition 2.1. Commonly used adjacency notions are:

4

https://colab.research.google.com/drive/1zI2H8YEXbQyD6gZVVskFwcOiM5YMvqRe?usp=sharing
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Add-Remove adjacency. Datasets x,x′ ∈ X ∗ are said
to be add-remove adjacent if there exists an i such that
x′ = x−i or vice-versa (where x−i represents the dataset
obtained by removing the ith record in x).

Substitution adjacency. Datasets x,x′ ∈ X ∗ are said to
be substitution adjacent if there exists an i such that x′

−i =
x−i and x′i ̸= xi.

The privacy analysis of DP-SGD is typically done for the
Poisson batch sampler P (Abadi et al., 2016; Mironov,
2017), with respect to the add-remove adjacency. How-
ever, it is impossible to analyze the privacy of ABLQD
or ABLQS with respect to the add-remove adjacency be-
cause the batch samplersD and S require that the number of
records n equals b ·T . On the other hand, using the substitu-
tion adjacency for D and S leads to an unfair comparison to
ABLQP whose analysis is with respect to the add-remove
adjacency. Thus, to make a fair comparison, we consider the
following adjacency (proposed by Kairouz et al. (2021)).

Zero-out adjacency. We augment the input space to be
X⊥ := X ∪ {⊥} and extend any adaptive query method A
as A(g1, . . . , gt;⊥) = 0 for all g1, . . . , gt ∈ Rd. Datasets
x,x′ ∈ Xn

⊥ are said to be zero-out adjacent if there exists
i such that x−i = x′

−i, and exactly one of {xi, x′i} is in
X and the other is ⊥. Whenever we need to specifically
emphasize that xi ∈ X and x′i = ⊥, we will denote it as
x →z x′. In this notation, x ∼ x′ if either x →z x′ or
x′ →z x.

The privacy analysis of ABLQP with respect to zero-out
adjacency is the same as that with respect to the add-remove
adjacency; it is essentially replacing a record by a “ghost”
record that makes the query method always return 0. In the
rest of this paper, we only consider this zero-out adjacency.

We note that our separations where εP(δ) ≪ εS(ε), such
as in Figure 1, also hold under the substitution adjacency,
by using “group privacy”, namely if a mechanism satisfies
(ε, δ)-DP with respect to zero-out adjacency, then it satisfies
(2ε, δ · (1 + eε))-DP (see, e.g., (Vadhan, 2017)).

2.3. Hockey Stick Divergence

We interchangeably use the same notation (e.g., letters such
as P ) to denote both a probability distribution and its cor-
responding density function. For µ ∈ RD and positive
semi-definite Σ ∈ RD×D, we use N (µ,Σ) to denote the
Gaussian distribution with mean µ and covariance Σ. For
probability densities P and Q, we use αP + βQ to denote
the weighted sum of the corresponding densities. P ⊗Q de-
notes the product distribution sampled as (u, v) for u ∼ P ,
v ∼ Q, and, P⊗T denotes the T -fold product distribution
P ⊗ · · · ⊗ P .

Definition 2.2. For all ε ∈ R, the eε-hockey stick diver-
gence between P and Q is Deε(P∥Q) := supE{P (E) −

eεQ(E)}.

It is immediate to see thatM satisfies (ε, δ)-DP iff for all
adjacent x ∼ x′, it holds that Deε(M(x)∥M(x′)) ≤ δ.

Definition 2.3 (Dominating Pair (Zhu et al., 2022)).
The pair (P,Q) dominates the pair (A,B) if
Deε(P∥Q) ≥ Deε(A∥B) holds for all ε ∈ R. We
say that (P,Q) dominates a mechanism M if (P,Q)
dominates (M(x),M(x′)) for all adjacent x→z x′.

If (P,Q) dominates M, then for all ε ≥ 0, δM(ε) ≤
max{Deε(P∥Q), Deε(Q∥P )}. We say that (P,Q) tightly
dominates a mechanism M if (P,Q) dominates M
and there exist adjacent datasets x →z x′ such that
Deε(P∥Q) = Deε(M(x)∥M(x′)) holds for all ε ∈ R
(note that this includes ε < 0); in this case, δM(ε) =
max{Deε(P∥Q), Deε(Q∥P )}. Thus, tightly dominating
pairs completely characterize the privacy loss of a mech-
anism (although they are not guaranteed to exist for all
mechanisms).5 Dominating pairs behave nicely under mech-
anism compositions. Namely, if (P1, Q1) dominatesM1

and (P2, Q2) dominatesM2, then (P1⊗P2, Q1⊗Q2) dom-
inates the (adaptively) composed mechanismM1 ◦M2.

3. Dominating Pairs for ABLQB

We discuss the dominating pairs for ABLQB for B ∈
{D,P,S} that will be crucial for establishing our results.

Tightly dominating pair for ABLQD. It follows from
the standard analysis of the Gaussian mechanism and paral-
lel composition that a tightly dominating pair for ABLQD
is the pair (PD := N (1, σ2), QD := N (0, σ2)), leading to
a closed-form expression for δD(ε).

Proposition 3.1 (Theorem 8 in Balle & Wang (2018)). For
all ε ≥ 0, it holds that

δD(ε) = Φ
(
−σε+ 1

2σ

)
− eεΦ

(
−σε− 1

2σ

)
,

where Φ(·) is the cumulative density function (CDF) of the
standard normal random variable N (0, 1).

Tightly dominating pair of ABLQP . Zhu et al. (2022)
showed6 that the tightly dominating pair for a single step of

5Zhu et al. (2022) define “tightly dominating pair” differently,
in a manner that is guaranteed to exist. They additional define the
notion of a “worst-case pair”, which is a pair of adjacent datasets
x ∼ x′ such that (M(x),M(x′)) is a tightly dominating pair.
Thus, our notion of “tightly dominating pair” refers precisely to
the pair (M(x),M(x′)) for a worst-case adjacent pair x, x′. It is
also worth noting that our notation for “tightly dominating pairs” is
asymmetric as it only considers pairs x →z x′; the reverse setting
is handled implicitly because (P,Q) dominates (M(x),M(x′))
if and only if (Q,P ) dominates (M(x′),M(x)).

6This was implicit in prior work, e.g., (Koskela et al., 2020).
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ABLQP , a Poisson sub-sampled Gaussian mechanism, is
given by the pair (A = (1− q)N (0, σ2)+ qN (1, σ2), B =
N (0, σ2)), where q is the sub-sampling probability of each
record, namely q = b/n, and in the case where n = b · T ,
we have q = 1/T . Since ABLQP is a T -fold composition
of this Poisson subsampled Gaussian mechanism, it follows
that the tightly dominating pair for ABLQP is (PP :=
A⊗T , QP := B⊗T ).

The hockey stick divergence Deε(PP∥QP) does not have a
closed-form expression, but there are privacy accountants
based on the methods of Rényi DP (RDP) (Mironov, 2017)
as well as privacy loss distributions (PLD) (Meiser & Mo-
hammadi, 2018; Sommer et al., 2019), the latter providing
numerically accurate algorithms (Koskela et al., 2020; Gopi
et al., 2021; Ghazi et al., 2022; Doroshenko et al., 2022),
and have been the basis of multiple open-source implemen-
tations from both industry and academia including (Prediger
& Koskela, 2020; Google’s DP Library., 2020; Microsoft.,
2021). While Rényi-DP-based accounting provides an
upper bound on max{Deε(PP∥QP), Deε(QP∥PP)}, the
PLD-based accounting implementations can provide upper
and lower bounds on max{Deε(PP∥QP), Deε(QP∥PP)}
to high accuracy, as controlled by a certain discretization
parameter.

Tightly dominating pair for ABLQS? It is not clear
which adjacent pair would correspond to a tightly domi-
nating pair for ABLQS , and moreover, it is even a priori
unclear if one even exists. However, in order to prove lower
bounds on the privacy parameters, it suffices to consider a
specific instantiation of the adaptive query method A, and a
particular adjacent pair x ∼ x′. In particular, we instantiate
the query method A as follows.

Consider the input space X = [−1, 1], and assume that the
query method A is non-adaptive, and always produces the
query ψt(x) = x. We consider the adjacent datasets:

• x = (x1 = −1, . . . , xn−1 = −1, xn = 1), and

• x′ = (x1 = −1, . . . , xn−1 = −1, xn = ⊥).

In this case, when the differing record falls in batch t, then
output of the mechanism on all batches t′ ̸= t is centered at
−b, and is centered at −b+ 2 (on input x) or at −b+ 1 (on
input x′) on batch t. Thus it follows that the distributions
A = ABLQS(x) and B = ABLQS(x

′) are given as:

A =
∑T

t=1
1
T · N (−b · 1+ 2et, σ

2I),

B =
∑T

t=1
1
T · N (−b · 1+ et, σ

2I),

where 1 denotes the all-1’s vector in RT and et denotes the
tth standard basis vector in RT . Shifting the distributions by
b·1 does not change the hockey stick divergenceDeε(A∥B),

hence we might as well consider the pair

PS :=
∑T

t=1
1
T · N (2et, σ

2I), (1)

QS :=
∑T

t=1
1
T · N (et, σ

2I). (2)

Thus, δS(ε) ≥ max{Deε(PS∥QS), Deε(QS∥PS)}. We
conjecture that this pair is in fact tightly dominating for
ABLQS for all instantiations of query methods A (includ-
ing adaptive ones). We elaborate more in Section 4.3.1.

Conjecture 3.2. The pair (PS , QS) tightly dominates
ABLQS for all adaptive query methods A.

The results in this paper do not rely on this conjecture be-
ing true, as we only use the dominating pair (PS , QS) to
establish lower bounds on δS(·).

4. Privacy Loss Comparisons
4.1. ABLQD vs ABLQS

We first note that ABLQS enjoys stronger privacy guaran-
tees than ABLQD.

Theorem 4.1. For all σ, ε ≥ 0 and T ≥ 1: δS(ε) ≤ δD(ε).

This follows from a standard technique that shuffling cannot
degrade the privacy guarantee satisfied by a mechanism. For
completeness, we provide a proof in Appendix B.

4.2. ABLQD vs ABLQP

We show that ABLQD and ABLQP have incomparable
privacy loss. In particular, we show the following.

Theorem 4.2. For all σ > 0 and T > 1, there exist ε0, ε1 ≥
0 such that,

(a) ∀ε ∈ [0, ε0), it holds that δD(ε) > δP(ε), and

(b) ∀ε > ε1, it holds that δD(ε) < δP(ε).

We defer the detailed proof to Appendix C, and provide a
proof sketch here. Part (a) is shown by first establishing
that the total variation distance (corresponds to D1(·∥·))
between PD and QD is strictly larger than the total variation
distance between PP and QP when T > 1 and σ > 0. This
implies that, δD(0) > δP(0). By using the continuity of
Deε(·∥·) in ε, we conclude the same for all ε < ε0.

For part (b), we construct an explicit set
E such that PP(E) − eεQP(E) > δD(ε).
In particular, we choose a halfspace E :={
w ∈ RT

∣∣∑
i wi > (ε+ log 2 + T log T )σ2 + T

2

}
and show that PP(E) − eεQP(E) is at least
1
2Φ

(
− εσ√

T
− (T log T+log 2)σ√

T
−

√
T

2σ

)
. For large ε,

the dominant term is −εσ/
√
T . On other hand, δD(ε) is

at most Φ(−εσ + 1
2σ ) (from Proposition 3.1), which has

the dominant term −εσ. Since −εσ/
√
T decays slower
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Figure 2. δD(ε) and δP(ε) for σ = 0.3 and T = 10.

than −εσ, we get that for sufficiently large ε1, it holds that
δD(ε) < δP(ε) for all ε > ε1.

Even though Theorem 4.2 was proved for some values of
ε0 and ε1, we conjecture that it holds for ε0 = ε1.

Conjecture 4.3. Theorem 4.2 holds for ε0 = ε1.

We do not rely on this conjecture being true in the rest of
this paper. We provide a numerical example that validates
Theorem 4.2 and provides evidence for Conjecture 4.3. In
Figure 2, for σ = 0.3 and T = 10, we plot the numerically
computed δD(ε) (using Proposition 3.1), as well as lower
and upper bounds on δP(ε), computed using the open source
dp accounting library (Google’s DP Library., 2020).

4.3. ABLQP vs ABLQS

From Theorems 4.1 and 4.2, it follows that there exists an
ε1 such that for all ε > ε1, it holds that δS(ε) ≤ δD(ε) <
δP(ε). On the other hand, while we know that δD(ε) >
δP(ε) for sufficiently small ε, this does not imply anything
about the relationship between δS(ε) and δP(ε) for small ε.

We demonstrate simple numerical settings where δS(ε) is
significantly larger than δP(ε). We prove lower bounds on
δS(ε) by constructing specific sets E and using the fact that
δS(ε) ≥ PS(E)− eεQS(E).

In particular, we consider sets EC parameterized by C of
the form {w ∈ RT : maxt wt ≥ C}; note that EC is the
complement of T -fold Cartesian product of the set (−∞, C).
For a single Gaussian distribution D = N (µ, σ2I), we can
compute the probability mass of EC under measure D as:

D(EC) = 1−D(RT ∖ EC)

= 1−
∏T

t=1 Prx∼N (µt,σ2)[x < C]

= 1−
∏T

t=1 Φ
(

C−µt

σ

)
.

In particular, when µ is α · et for any standard basis vector
et, we have D(EC) = 1−Φ

(
C−α
σ

)
·Φ

(
C
σ

)T−1
. Thus, we

Figure 3. δD(ε), upper bounds on δP(ε) and a lower bound on
δS(ε) for varying ε and fixed σ = 0.4 and T = 10, 000.

have that PS(EC) is

PS(EC) =
∑T

t=1
1
TDt(EC) for Dt = N(2et, σ

2I)

= 1− Φ
(
C−2
σ

)
· Φ

(
C
σ

)T−1
.

Similarly, we have QS(EC) = 1− Φ
(
C−1
σ

)
· Φ

(
C
σ

)T−1
.

Thus, we use the following lower bound:

δS(ε) ≥ max
C∈C

PS(EC)− eεQS(EC) (3)

for any suitable set C that can be enumerated over. In our
experiments described below, we set C to be the set of all
values of C ranging from 0 to 100 in increments of 0.01.

In Figure 3, we set σ = 0.4 and number of steps T =
10, 000 and plot δD(ε), an upper bound on δP(ε) (obtained
using dp accounting) and a lower bound on δS(ε) as ob-
tained via (3). We find that while δP(4) ≤ 1.18 · 10−5,
δS(4) ≥ 0.226, that is close to δD(4) ≈ 0.244. Even
δS(12) ≥ 7.5 · 10−5 is larger than δP(4). While the
(4, 1.2 · 10−5)-DP guarantee of ABLQP could have been
considered as sufficiently private, ABLQS only satisfies
much worse privacy guarantees. We provide additional ex-
amples in Appendix A.

4.3.1. INTUITION FOR CONJECTURE 3.2

We attempt to shed some intuition for why ABLQS does
not provide as much amplification over ABLQD, compared
to ABLQP , and why we suggest Conjecture 3.2.

For sake of intuition, let’s consider the setting where the
query methodA always generates the query ψt(x) = x, and
we have two adjacent datasets:

• x = (x1 = −L, . . . , xn−1 = −L, xn = 1), and
• x′ = (x1 = −L, . . . , xn−1 = −L, xn = ⊥).

The case of L > 1 is not valid, since in this case |ψt(x)| =
L > 1. However, we can still ask how well the privacy

7



How Private are DP-SGD implementations?

of the nth example is preserved by ABLQB, by consider-
ing the hockey stick divergence between ABLQB(x) and
ABLQB(x

′).

The crucial difference between ABLQP and ABLQS is
that the privacy analysis of ABLQP does not depend at all
on the non-differing records in the two datasets. In the case
of ABLQS , we observe that for any fixed σ and T , the
hockey stick divergence Deε(ABLQS(x)∥ABLQS(x

′))
approaches δD(ε) as L → ∞. We sketch this argument
intuitively: For any batch St that does not contain n,
the corresponding gt = −bL + et for et ∼ N (0, σ2).
Whereas for the batch St that contains n, the correspond-
ing gt = −(b − 1)L + 1 + et in case of input x or
gt ∼ −(b − 1)L + et in case of input x′. As L → ∞,
we can identify the batch St that contains n with probability
approaching 1, thereby not providing any amplification.

In summary, the main differing aspect about ABLQS and
ABLQP is that in the former, the non-differing examples
can leak information about the location of the differing ex-
ample in the shuffled order, but it is not the case in the latter.
While we sketched an argument that works asymptotically
as L→∞, we see glimpses of it already at L = 1.

Our intuitive reasoning behind Conjecture 3.2 is that even
in the case of (vector-valued) adaptive query methods,
in order to “leak the most information” about the differ-
ing record xi between x and x′, it seems natural that
the query ψt(xj) should evaluate to −ψt(xi) for all j ̸=
i. If the query method satisfies this condition for all t,
then it is easy to show that (PS , QS) tightly dominates
(ABLQS(x),ABLQS(x

′)). Conjecture 3.2 then asserts
that this is indeed the worst case.

5. Conclusion & Future Directions
We identified significant gaps between the privacy analysis
of adaptive batch linear query mechanisms, under the deter-
ministic, Poisson, and shuffle batch samplers. We find that
while shuffling always provides better privacy guarantees
over deterministic batching, Poisson batch sampling can
provide a worse privacy guarantee than even determinis-
tic sampling at large ε. But perhaps most surprisingly, we
demonstrate that the amplification guarantees due to shuffle
batch sampling can be severely limited compared to the am-
plification due to Poisson subsampling, in various regimes
that could be considered of practical interest.

Several interesting directions remain to be investigated. In
our work, we provide a technique to only provide a lower
bound on the privacy guarantee when using a shuffle batch
sampler. It would be interesting to have a tight accounting
method for ABLQS . A first step towards this could be to
establish Conjecture 3.2, which if true, might make numeri-
cal accountants for computing the hockey stick divergence

possible. While this involves computing a high-dimensional
integral, it might be possible to approximate using impor-
tance sampling; e.g., such approaches have been attempted
for ABLQP (Wang et al., 2023). Also, our approach for
analyzing the privacy with shuffle batch sampler is limited
to a “single epoch” mechanism, whereas in practice, it is
common to use DP-SGD with multiple epochs. Extending
our approach to multiple epochs will be interesting.

However, it remains to be seen how the utility of DP-SGD
would be affected when we use the correct privacy anal-
ysis for ABLQS instead of the analysis for ABLQP ,
which has been used extensively so far and treated as a
good “approximation”. Alternative approaches such as
DP-FTRL (Kairouz et al., 2021; McMahan et al., 2022)
that do not rely on amplification might turn out to be better
if we instead use the correct analysis for ABLQS , in the
regimes where such methods are currently reported to under
perform compared to DP-SGD.

An important point to note is that the model of shuffle
batch sampler we consider here is a simple one. There
are various types of data loaders used in practice, which
are not necessarily captured by our model. For example
tf.data.Dataset.shuffle takes in a parameter of buffer
size b. It returns a random record among the first b records,
and immediately replaces it with the next record ((b+1)st in
this case), and continues repeating this process. This leads
to an asymmetric form of shuffling, when the dataset size
exceeds the size of the buffer. Such batch samplers might
thus require more careful privacy analysis.

The notion of DP aims to guarantee privacy even in the
worst case. For example in the context of DP-SGD, it aims
to protect privacy of a single record even when the model
trainer and all other records participating in the training
are colluding to leak information about this one record.
And moreover, releasing the final model is assumed to leak
as much information as releasing all intermediate iterates.
Such strong adversarial setting might make obtaining good
utility to be difficult. Alternative techniques for privacy
amplification such as amplification by iteration (Feldman
et al., 2018; Altschuler & Talwar, 2022) or through con-
vergence of Langevin dynamics (Chourasia et al., 2021)
have been studied, where only the last iterate of the model
is released. However, these analyses rely on additional as-
sumptions such as convexity and smoothness of the loss
functions. Investigating whether it is possible to relax these
assumptions to make amplification by iteration applicable
to non-convex models, even if under some assumptions that
are applicable to the ones used in practice, is an interesting
future direction.
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A. Additional Evaluations
A.1. ε vs. σ for fixed δ and T

We first plot ε against σ for fixed δ and T . We compute upper bounds on εP(δ) using Rényi DP (RDP) as well as using
privacy loss distributions (PLD). These accounting methods are provided in the open source Google dp accounting

library (Google’s DP Library., 2020).

In particular we consistently find that for small values of σ, ABLQS provides almost no improvement over ABLQD, and
has εS that is significantly larger than εP .

• In Figure 4, we set δ = 10−6 and number of steps T = 100, 000. In particular, for σ = 0.4, we find that εP(δ) ≤ 3 (as
per PLD accounting) and εP(δ) ≤ 4.71 (as per RDP accounting), whereas on the other hand, εS(δ) ≥ 14.45, which is
very close to εD(δ). For σ = 1.3, we find that εP(δ) < 0.01 (as per PLD accounting), whereas, εS(δ) > 0.029.

Figure 4. εD(δ), upper bounds on εP(δ) and a lower bound on εS(δ) for varying σ and fixed δ = 10−6 and T = 10, 000.

• In Figure 5, we set δ = 10−5 and number of steps T = 1000. In particular, for σ = 0.7, εP(δ) ≤ 0.61 (as per PLD
accounting) and εP(δ) ≤ 1.64 (as per RDP accounting), whereas on the other hand, εS(δ) ≥ 6.528 and εD(δ) ≈ 6.652.
For σ = 1.3, we find that εP(δ) < 0.092 (as per PLD accounting), whereas, εS(δ) > 0.83.

Figure 5. εD(δ), upper bounds on εP(δ) and a lower bound on εS(δ) for varying σ and fixed δ = 10−5 and T = 1000.
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A.2. δ vs. ε for fixed σ and T

Next, we plot δ against ε for fixed σ and T . We compute upper bounds on δP(ε) using Rényi DP (RDP) as well as using
privacy loss distributions (PLD).

In particular when σ is closer to 1.0, we find that our lower bound on δS(ε) is distinctly smaller than δD(ε), but still
significantly larger than δP(ε).

• In Figure 6, we set σ = 0.8 and number of steps T = 1000. In particular, while δP(1) ≤ 9.873 · 10−9 (as per PLD
accounting) and δP(1) ≤ 3.346 · 10−5 (as per RDP accounting), we have that δS(1) ≥ 0.018 and δS(4) ≥ 1.6 · 10−4.
For ε = 4, we find the upper bound using PLD accounting to be larger than the upper bound using Rényi DP accounting.
This is attributable to the numerical instability in PLD accounting when δ is very small.

Figure 6. δD(ε), upper bounds on δP(ε) and a lower bound on δS(ε) for varying ε and fixed σ = 0.8 and T = 1000.

• In Figure 7, we set σ = 1.0 and number of steps T = 1000. In particular, while δP(1) ≤ 2.06 · 10−10 (as per PLD
accounting) and δP(1) ≤ 8.45 · 10−5 (as per RDP accounting), we have that δS(1) ≥ 0.004 and δS(4) ≥ 4.38 · 10−7

(last one not shown in plot).
For ε > 1.0, we find the upper bound using PLD accounting appears to not decrease as much, which could be due to
the numerical instability in PLD accounting when δ is very small.

Figure 7. δD(ε), upper bounds on δP(ε) and a lower bound on δS(ε) for varying ε and fixed σ = 1.0 and T = 1000.

B. Proof of Theorem 4.1: (ABLQD vs ABLQS)
We use the joint convexity property of hockey stick divergence. While this is standard, we include a proof for completeness.
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Lemma B.1 (Joint Convexity of Hockey Stick Divergence). Given two mixture distributions P =
∑m

i=1 αiPi and
Q =

∑m
i=1 αiQi, it holds for all ε ∈ R that Deε(P∥Q) ≤

∑
i αiDeε(Pi∥Qi) .

Proof. We have that

Deε(P∥Q) = sup
E
{P (E)− eεQ(E)}

= sup
E

{
m∑
i=1

αi (Pi(E)− eεQi(E))

}

≤
m∑
i=1

αi · sup
E
{Pi(E)− eεQi(E)} =

m∑
i=1

αiDeε(Pi∥Qi) .

Thus, it follows that shuffling the dataset first cannot degrade the privacy guarantee of any mechanism as shown below.

Lemma B.2. Fix a mechanismM : X ∗ → ∆O, and letMS be defined asMS(x) :=M(xπ) for a random permutation
π over [n] where xπ := (xπ(1), . . . , xπ(n)). Then, ifM satisfies (ε, δ)-DP, thenMS also satisfies (ε, δ)-DP.

Proof. Consider any adjacent pair of dataset x ∼ x′. For any permutation π over [n], let Pπ :=M(xπ) andQπ :=M(x′
π),

and let P =MS(x) and Q =MS(x
′). It is easy to see that

P =
∑

π
1
n! · Pπ and Q =

∑
π

1
n! ·Qπ .

SinceM satisfies (ε, δ)-DP it follows that Deε(Pπ∥Qπ) ≤ δ for all permutations π. Thus, from Lemma B.1, it follows that
Deε(P∥Q) ≤

∑
π

1
n!Deε(Pπ∥Qπ) ≤ δ. HenceMS also satisfies (ε, δ)-DP.

Proof of Theorem 4.1. The proof follows by observing that if we chooseM = ABLQD in Lemma B.2, then ABLQS is
precisely the corresponding mechanismMS .

C. Proof of Theorem 4.2 (ABLQD vs ABLQP)
We first state and prove some intermediate statements required for the proof of Theorem 4.2. We use the Gaussian measure
of a halfspace.

Proposition C.1. For P = N (µ, σ2I) and the set E := {w ∈ Rd : a⊤w − b ≥ 0}, it holds that P (E) = Φ
(

a⊤µ−b
σ∥a∥2

)
.

Proposition C.2. For all T ∈ N and distributions A,B, it holds that D1(A
⊗T ∥B⊗T ) ≤ 1− (1−D1(A∥B))T . And hence

D1(A
⊗T ∥B⊗T ) ≤ T ·D1(A∥B) and equality can occur only if T = 1 or D1(A∥B) = 0.

Proof. Recall that D1(A∥B) is the total variation distance between A and B, which has the following characterization
inf(X,Y ) Pr[X ̸= Y ] where (X,Y ) is a coupling such that X ∼ A, Y ∼ B. Given any coupling (X,Y ) for A,B, we
construct a coupling ((X1, . . . , XT ), (Y1, . . . , YT )) of A⊗T , B⊗T by sampling (Xi, Yi) independently according to the
coupling (X,Y ). From this, we have

Pr[(X1, . . . , XT ) ̸= (Y1, . . . , YT )]

= 1− Pr[(X1, . . . , XT ) = (Y1, . . . , YT )]

= 1− Pr[X = Y ]T .

By taking the infimum over all (X,Y ) such that X ∼ A, Y ∼ B, we arrive at the desired bound.

We also note that a simple observation that for all P,Q, the hockey stick divergence Deε(P∥Q) is a 1-Lipschitz in eε.

Proposition C.3. For ε1 < ε2, it holds that Deε1 (P∥Q)−Deε2 (P∥Q) ≤ eε2 − eε1 .

13
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Proof. We have that

Deε1 (P∥Q)−Deε2 (P∥Q) = sup
E

[P (E)− eε1Q(E)]− sup
E′

[P (E′)− eε2Q(E′)]

≤ sup
E

[P (E)− eε1Q(E)− P (E) + eε2Q(E)]

= (eε2 − eε1) · sup
E
Q(E)

= eε2 − eε1 .

Proof of Theorem 4.2. We prove each part as follows:

For part (a), first we consider the case of ε = 0. In this case, Deε(P∥Q) is simply the total variation distance between
P and Q. Recall that PP = A⊗T and QP = B⊗T , where A = (1 − 1

T )QD + 1
T PD and B = QD. Observe that

D1(A∥B) = 1
T ·D1(PD∥QD). Thus, we have that

D1(PP∥QP) = D1(A
⊗T ∥B⊗T )

< T ·D1(A∥B) (Proposition C.2)

= T · 1
T
·D1(PD∥QD)

= D1(PD∥QD) .

Note that the inequality is strict for T > 1. Since Deε(P∥Q) is continuous in ε (see Proposition C.3), there exists some
ε0 > 0, such that for all ε ∈ [0, ε0), δD(ε) > δP(ε).

For part (b), we construct an explicit bad event E ⊆ RT such that PP(E)− eεQP(E) > Deε(PD∥QD). In particular, we
consider:

E :=
{
w ∈ RT

∣∣∑
i wi > (ε+ log 2 + T log T )σ2 + T

2

}
.

The choice of E is such that,

log PP(w)
QP(w) =

∑T
t=1 log

A(wt)
B(wt)

=
∑T

t=1 log
(
1− 1

T + 1
T · e

2wt−1

2σ2

)
≥

∑T
t=1

(
2wt−1
2σ2 − log T

)
≥

∑T
t=1 wt

σ2 − T log T − T
2σ2

≥ ε+ log 2 for all w ∈ E .

Hence it follows that log PP(E)
QP(E) ≥ ε + log 2, or equivalently, PP(E) ≥ 2eεQP(E). This implies that Deε(PP∥QP) ≥

1
2PP(E).

Next, we obtain a lower bound on PP(E). For Nµ := N (µ, σ2I) and pk = 1
T−k (1− 1

T )
T−k, it holds that

PP(E) =
∑

µ∈{0,1}T p∥µ∥1
Nµ(E) ≥ N0(E)

= Φ
(
− εσ√

T
− (T log T+log 2)σ√

T
−

√
T

2σ

)
, (4)

where we use Proposition C.1 in the last two steps. On the other hand, we have from Proposition 3.1 that

δD(ε) = Φ
(
−εσ + 1

2σ

)
− eεΦ

(
−εσ − 1

2σ

)
≤ Φ

(
−εσ + 1

2σ

)
. (5)
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There exists a sufficiently large ε1 such that

δP(ε) ≥ Deε(PP∥QP)

≥ 1
2PP(E)

≥ 1
2Φ

(
− εσ√

T
− (T log T+log 2)σ√

T
−

√
T

2σ

)
(6)

≥ Φ
(
−εσ + 1

2σ

)
(for ε > ε1) (7)

≥ δD(ε) ,

by noting that for large ε the most significant term inside Φ(·) in (6) is −εσ/
√
T , whereas in (7) the most significant term

inside Φ(·) is −εσ, which decreases much faster as ε→∞, for a fixed T > 1 and σ > 0.
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