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Abstract

A Standard Operating Procedure (SOP) defines a step-by-step written guide for a
business software workflow. SOP generation is a crucial step towards automating
end-to-end software workflows. Manually creating SOPs can be time-consuming.
Recent advancements in large video-language models offer the potential for au-
tomating SOP generation by analyzing recordings of human demonstrations. How-
ever, current large video-language models face challenges with zero-shot SOP
generation. In this work, we first explore in-context learning with video-language
models for SOP generation. We then propose In-Context Ensemble Learning, to
aggregate pseudo labels of SOPs. The proposed in-context ensemble learning
increases test-time compute and enables the models to learn beyond its context
window limit with an implicit consistency regularisation. We report that in-context
learning helps video-language models to generate more temporally accurate SOPs,
and the proposed in-context ensemble learning can consistently enhance the capa-
bilities of the video-language models in SOP generation.

1 Introduction

Video-language models are an emerging family of large foundational models attracting growing
research interest. These models typically pre-train a visual encoder to project visual inputs into
tokens, which are then utilised by large language models to interpret visual signals alongside text
instructions. Recent video-language models have achieved significant success in high-level video
understanding, such as high-level video summarisation, as reflected in their strong performance
across diverse VQA benchmarks Maaz et al. [2024], Lin et al. [2024], Chen et al. [2024b]. However,
current video-language models still face challenges when it comes to more complicated tasks. For
instance, most available models have limited context windows for long videos or multiple short videos.
Another challenge is their lack of competence in complex low-level video understandingWornow et al.
[2024]. Standard Operating Procedure (SOP) generation is a typical low-level video understanding
task Wornow et al. [2024]. SOP involves detailed, step-by-step descriptions of the chronological
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ordering of actions taken in a software workflow on a recorded screen. The automatic generation of
accurate SOPs can pave the way for the automation of business software.

In this work, we focus on improving the frontier video-language models in SOP generation from
two perspectives: fine-tuning and increasing test-time compute. Since a lot of business software are
domain specific, SOP generation is a novel task to the large models. One promising paradigm to
fine-tune pre-trained large models to new unseen tasks is to use In-Context Learning Brown et al.
[2020], Von Oswald et al. [2023], Pan et al. [2023], Akyürek et al. [2023], Bietti et al. [2023], Wei
et al. [2022b,a]. In-Context Learning includes both the training samples and testing questions during
the prompt. Unlike supervised fine-tuning, in-context learning requires no model parameter updates.
In our case, we need to include training videos as a part of the multimodal prompt. However, in our
preliminary exploratory experiments, we found that video-language models cannot receive as many
video-training samples as the text- or images-training counterparts. This leads to an issue that the
models hit the context window limit before it sees enough number of training videos, hampering the
usability of in-context learning. Apart from fine-tuning, we also focus on extending the test-time
computation. This is a common strategy for complicated reasoning tasks Wang et al. [2023], Wei et al.
[2022c], Yao et al. [2023], Madaan et al. [2023], Snell et al. [2024], Khan et al. [2024] based on the
intuition that humans normally spend more time generating multiple plausible reasoning paths before
deciding the next action in complicated cognitive tasks. In order to increase the test-time compute
without violating the context window limit at the same time, we present a new in-context learning
strategy called In-Context Ensemble (ICE) Learning to achieve both the targets simultaneously. In
summary, our main contributions of this paper can be summarized into two-fold:

1. We present the first evaluation of multimodal in-context learning in SOP generation with
video-language models. We report that in-context learning consistently helps models to
predict the step-by-step actions in a more accurate temporal order.

2. We introduce a multimodal in-context ensemble learning approach to increase the test-
time compute of the video-language models in SOP generation with pseudo-labels. The
in-context ensemble learning enables the models to learn from more video examples beyond
their context window limit, with a self regularisation effect. We report that the proposed
multimodal in-context ensemble learning consistently improves the models’ predictions.
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Figure 1: The proposed Multimodal In-Context Ensemble (ICE) learning with pseudo-labels. ICL:
in-context learning. SOP: standard operating procedure, detailing chronological step-by-step actions
in the video.

2 In-Context Ensemble Learning

By combining pseudo labelling Lee [2013], Xu et al. [2024, 2022b, 2024], Asano et al. [2020] with
In-Context Learning (ICL) Brown et al. [2020], Von Oswald et al. [2023], Pan et al. [2023], Akyürek
et al. [2023], Bietti et al. [2023], Wei et al. [2022b,a], we present Multimodal In-Context Ensemble
(ICE) learning to enhance video-language models’ understanding of low-level actions in videos. An
illustration of the ICE pipeline is shown in above Fig 1. Our ICE pipeline first applies multimodal
ICL to train several video-language models on different batches of training videos, along with their
gold standard SOP text labels. Those fine-tuned video-language models then create different pseudo
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labels of SOPs from the testing videos. Finally, another video-language model processes the testing
videos, along with those different pseudo labels as priors, to generate the final predictions of the
SOPs. The proposed ICE pipeline offers four key benefits:

1. The introduction of the pseudo labelling in the reasoning process linearly scales up the test-
time compute of the video-language models, improving the models’ reasoning ability. Our
ICE can be seen as an analogy to a black-box version of test-time tree search for aggregating
multiple potential reasoning paths. But our ICE is much simpler than the test-time tree
search methods.

2. Secondly, the ICE stage enables the model to learn from more examples beyond its context
window limit. For instance, we could only feed up to 8 high-resolution videos as training
examples to GPT-4o-mini due to the context window length. However, ICE allows the
models to learn from the equivalent of 24-videos rather than 8-videos.

3. The third benefit is that the provided pseudo-labels sometimes share similar actions with
variations. This implicit self consistency regularisation also aids the model’s reasoning.

4. Lastly, the model does not need to utilise the entire context window to store the training
video examples in the prompt, allowing it to focus more on the testing video. This is
to address a common drawback of the large models that they struggles with information
retrieval in extremely long tokens (e.g. needle search in a haystack) Kuratov et al. [2024],
Lewis et al. [2020], Gu and Dao [2024], Ye et al. [2024].

3 Experiments

Data The WONDERBREAD benchmark Wornow et al. [2024] is a recently curated benchmark
containing 2928 videos of distinct workflows and the detailed SOPs of the chronological step-by-step
actions in the videos. We use a subset called "Gold Demo" from the WONDERBREAD benchmark
of 724 videos. We randomly split the data into two parts, 30% training (217 videos) and 70% testing
(507 videos). We subsequently split the training data into 28 batches, each batch contains 8 videos.
Due to the limited computational resources, we only used the first 3 training batches.

Baseline 1: zero-shot We aim to evaluate the effectiveness of in-context learning with video-language
models in SOP generation. The original zero-shot evaluation in the WONDERBREAD benchmark
Wornow et al. [2024] injects additional information such as intent (a high-level summary of the
video) and action trace (a detailed log of all user interactions with the screen, including elements’
coordinates). We argue that providing such additional information to the models may not necessarily
reflect the actual reasoning abilities of the foundational models. Therefore, we only feed the models
the raw visual information, namely the key frames of the videos.

Baseline 2: ensemble We want to compare our multimodal in-context ensemble against traditional
ensemble with video-language models in SOP generation. Therefore, our second baseline is a majority
voting ensemble of the pseudo labels in text using the models, referred to as "Ensemble". We prompt
the large models (GPT-4o-mini and Gemini-1.5-flash) to do automatic majority voting ensemble of
the pseudo labels.

Video-Language Models As our approach requires long context windows with supports for multiple
rounds of conversations, our choices of the models are limited to mostly closed models. Further
considering the trade-off between performance and cost, we use GPT-4o-mini (OpenAI) and Gemini-
1.5-flash (Google). We also include a zero-shot evaluation of a very recent public model from
Microsoft, Phi-3.5. Throughout the experiments, to accommodate the context length window limits,
if a video is longer than 20 frames, we down-sample the video to 20 frames. We also keep the videos
at a high resolution of 1024 x 768.

Metrics Precision measures how many steps in the prediction match those in the gold standard SOP.
Recall measures how many steps of the gold standard SOP are included in the predictions. Temporal
order evaluates whether the sequence of steps in the prediction aligns with the sequence in the gold
standard SOP. All evaluations are performed using GPT-4o-mini, following the original guidelines in
Wornow et al. [2024].
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Method Training Data Precision (%) ↑ Recall (%) ↑ Temporal Order (%) ↑
GPT-4o mini

zero-shot n/a 42.62 78.13 32.93
8-shot ICL Batch 1 43.16 78.13 33.46
8-shot ICL Batch 2 45.95 (+3.33) 78.13 34.15
8-shot ICL Batch 3 44.51 78.13 33.08
Ensemble Batch 1 - 3 36.05 72.31 21.47

ICE Batch 1 - 3 44.34 (+1.72) 84.79 (+6.66) 37.17 (+4.24)
Gemini-1.5 flash

zero-shot n/a 34.35 45.16 27.82
8-shot ICL Batch 1 34.10 45.18 35.15
8-shot ICL Batch 2 33.99 41.96 29.42
8-shot ICL Batch 3 34.08 40.75 29.77

24-shot ICL Batch 1 - 3 29.75 39.42 26.47
Ensemble Batch 1 - 3 30.30 40.52 26.12

ICE Batch 1 - 3 40.77 (+6.42) 54.38 (+9.22) 35.89 (+8.07)
GPT-4o mini + Gemini-1.5 flash

ICE Batch 1 - 3 41.54 83.34 34.33
Phi-3.5

zero-shot n/a 31.66 45.88 24.42
Table 1: Testing results on 507 videos from the “Gold Demo” subset of WONDERBREAD bench-
markWornow et al. [2024]. Our evaluation is more challenging than the original one in Wornow et al.
[2024] as we only feed videos into the models, without trace information (e.g. mouse clicks). ICL:
in-context learning. ICE: in-context ensemble. Ensemble: majority voting of pseudo labels

Results As shown in Tab. 3, we observe that GPT-4o-mini generally outperforms Gemini-1.5-flash.
And Gemini-1.5-flash slightly surpasses Phi-3.5. In-context learning (ICL) consistently improves the
models’ ability to predict more correct order of steps compared to zero-shot baselines across different
settings. ICE further enhances the models’ performance for both GPT4o-mini and Gemini-1.5-flash.
Notably, for Gemini-1.5-flash, ICE resulted in a 9.22% improvement in recall. With GPT-4o-mini,
ICE achieves high recall at 84.79% but low precision at 44.34%, suggesting that, while the model
can successfully predict most of the steps, it may have added too many intermediate steps that were
omitted in the ground truth. ICE also significantly outperforms the majority voting "Ensemble",
highlighting the necessity of multimodal training samples in SOP generation. Further investigations
are required to understand why "Ensemble" underperforms its individual components. Interestingly,
the 24-shot ICL experiment with Gemini-1.5-flash shows that the model’s prediction accuracy varies
inversely with the number of training samples. This may suggest that the foundational models
naturally struggles to attend to too many high-resolution images at once. However, it is interesting
to see that our ICE works well to address that issue. More results including analysis, discussion on
related works, examples of successful and failed cases can be found in the Appendix ABC.

4 Future Works

We identify a few research directions: 1) scaling the proposed ICE pipeline; 2) standarlisation of SOP
format, such as the length; 3) improving current AI-based evaluation of the temporal order of SOPs;
4) improving the effectiveness of video-language models at learning from long videos; 5) integration
of other prompting techniques, such as self-reflection Shinn et al. [2023], Madaan et al. [2023].

5 Conclusion

We conducted an exploratory evaluation of in-context learning for SOP generation and proposed
an In-Context Ensemble (ICE) learning approach using pseudo-labels for SOP generation. Our
preliminary results suggest that the proposed ICE pipeline is effective in enhancing foundational
video-language models in SOP generation. However, we also observe that the current performance of
available foundational models has not yet reached a satisfactory level in SOP generation, highlighting
the challenges of low-level video understanding from visual inputs alone.
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A Related Work

Ensemble Ensemble scales the inference compute by treating each candidate prediction equally to
improve the base model’s reasoning to reach a more accurate final prediction. The most common
strategy of ensemble is majority voting. Majority voting picks up the most frequent prediction of
all of the candidate predictions as the final prediction Wang et al. [2023], Chen et al. [2024a], Snell
et al. [2024]. A lot of existing large models (e.g. Google Gemini, OpenAI GPT4) provide options for
enabling majority voting during inference. We also use the majority voting ensemble as a baseline
in our experiments. Different from traditional majority voting ensemble, our proposed ICE has a
proposal sampling distribution with large variances. This is because the traditional majority voting
ensemble samples candidate predictions from the same model Snell et al. [2024], whereas our ICE
samples per candidate prediction from each differently fine-tuned model.

Consistency Prompts Consistency regularisation has been playing a pivotal role in semi-supervised
and self-supervised learning Chen and He [2021], Xu et al. [2022a], Sohn et al. [2020], Xu et al.
[2023]. The general idea is to apply a consistency restraint on the predictions from different experts
that are fed with the same source input. A recent work Roy and Etemad [2024] also discovered that
consistency regularisation improves the video-language models at few-shot learning while the inputs
prompts are differently perturbed. Although our In-Context Ensemble (ICE) does not specifically
implement the consistency regularisation. By learning from different pseudo labels, our ICE implicitly
enforces consistency regularisation, because sometimes, the same actions do appear among different
pseudo labels but with variations.

Test-Time Tree Search Tree search has been a popular tool to scale up test-time compute by
aggregating the candidate sequential reasoning processes Chen et al. [2024a], Snell et al. [2024],
Feng et al. [2023], Silver et al. [2017] for better complex reasoning. From the end-to-end perspective,
our ICE shares similiarities with Test-Time Tree Search, especially Lookahead Search. Each SOP can
be seen as a sequential reasoning process, changing the status of the screen from the first frame to the
last frame, following a particular temporal path. Multiple SOP pseudo labels resemble a tree structure
and the generation of the final SOP is a black-box version of steps aggregation of pseudo labels,
thereby an analogy to Tree Search methods. However, there are noticeable differences between the
Tree Search methods and our ICE. In Beam Search or Lookahead Search, a Verifier Lightman et al.
[2024], Wang et al. [2024], Cobbe et al. [2021] is used to select the action step-wise, at each level
of the tree, focusing on exploiting the options. Whereas in our ICE, we use a large video-language
model to consider the pseudo labels to generate the final chain-of-the-steps, focusing on conditioning
exploration, which is beyond exploiting available candidate pseudo labels. In addition, we do not
train an extra Verifier and we do not have an explicit selection process per action.

Reflection Prompts Self-revision has also been another popular tool to scale up test-time compute
by iteratively prompting the same large language model to refine its initial prediction Madaan
et al. [2023], Saunders et al. [2022], Khan et al. [2024]. This approach is simple yet effective,
computationally affordable too. In our ICE method, the models are implicitly asked to do self-
reflection on the old predictions, which are the pseudo labels. However, different from the single
model based reflection Madaan et al. [2023], Saunders et al. [2022], our ICE involved with multiple
models which are respectively fine-tuned on different data. We argue that by doing so, we can
increase the variance of the proposal distribution for better reasoning outcomes.
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B Analysis

Figure 2: Accumulated histograms of testing results with the ICE with GPT-4o-mini. The red vertical
lines indicate the 50-percentile of testing cases.

We visualised the accumulated histograms of the metrics in the above Fig.2. The 50th percentile of
recall is above 90%, showing that the model is capable at predicting the actions in the ground truth.
However, the 50th percentile of precision is lower than 50%, and the 50th percentile of temporal
ordering is even lower at, less than 40%. We hypothesise that the unsatisfactory performance in
precision and ordering metrics might be due to the model having its own preferences for the style in
which the output steps are written. To explore this further, we examined the relationship between
the lengths of the SOPs and the model’s performance, as SOP length reflects the model’s preferred
writing style.

Figure 3: Kernel density estimate plots of lines of SOPs. ICE with GPT-4o-mini.
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Figure 4: Histogram of ratios between number of lines of ground truth SOPs and the number of
frames for each testing case.

In Fig.3, we plotted the kernel density estimates of both the gold and predicted SOPs. The predicted
SOPs have an average of 18.01 steps, with most concentrated around this value. In contrast, the gold
SOPs average 8.44 steps, with a more even distribution across cases. This suggests that the model fails
to capture the diversity seen in the gold SOPs, implying that it may have developed its own writing
style to write the SOPs, that is different from the styles shown in the training examples. Additionally,
we plotted the ratios between the number of SOP lines and the number of frames in Fig.4, observing
a wide distribution. This raises the possibility that even among the ground truth SOPs, there may be
inconsistencies in writing styles, hindering the effectiveness of in-context learning. We then further
grouped the predictions according to the length of their ground truth SOPs in the following Fig. 5,
6, 7. It is clear to see that, the more different between the lengths of the ground truth SOPs and the
mean length of the predicted SOPs, the worse the performances.

Figure 5: Violin plots of binned precision according to gold SOP lengths.
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Figure 6: Violin plots of binned recall according to gold SOP lengths.

Figure 7: Violin plots of binned temporal ordering according to gold SOP lengths.

Based on our above observations, we propose following future research directions:

1. Investigation into standardised writing style of SOPs is necessary. For example, one step of
the SOP for each frame, with a fixed number of frames per video.

2. Examination into the impact of the format of SOPs during prompt engineering might be
beneficial.

3. The current GPT-4o-mini based evaluation of temporal ordering is limited; a better metric or
evaluation pipeline is required to further our insight into the impact of the models.

4. Integration of other prompting techniques can further enhance the pipeline, such as self-
reflection Shinn et al. [2023], Madaan et al. [2023].

11



C A Successful Case

Video 578 @ 2024-01-07-17-23-54: Frame No.1

Video 578 @ 2024-01-07-17-23-54: Frame No.14

Figure 8: Testing video (578-2024-01-07-17-23-54). Row 1: 1st frame from the video. Row 2: 9th
frame from the video.

The task "578-2024-01-07-17-23-54" in Fig. 8 involves adding new users to a GitLab repository
as reporters. The model used was ICE with GPT-4o-mini. As shown in Fig. 9, all steps of the
ground truth were correctly predicted, but the prediction included extra details, highlighted in red.
The metrics calculated by GPT-4o-mini for this task are: precision 81.25%, recall 93.75%, and
temporal order correctness 68.75%. We observed that both workflows actually follow the same
temporal order, though they are not perfectly synchronised. This highlights a limitation in the use of
GPT-4o-mini for evaluation, suggesting that the model’s foundational ability may lack some basic
temporal understanding. Consequently, the model’s performance may not be as poor as the metrics
indicate.
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Ground Truth

1. Click the purple/gray search bar on the top
left of the screen (icon with three lines
stacked).

2. Type ‘millennials-to-snake-people’.

3. Press enter.

4. Click the first pane on the top of the field of
panes of projects that show up in the middle,
with black text that has words like timeline,
item, management, extension.

5. Click the black bold “Project Information”
tab on the top left side of the screen above
“Repository.”

6. Click the black bold “Members” text on the
left side of the screen under “Labels.”

7. Click the blue “Invite members” button on
the top right side of the screen.

8. Type "yjlou."

9. Click the pane with the colored avatar that
pops up below.

10. Click the right side of the text box that says
“Username or email address.”

11. Type "a11yproject."

12. Click the pane with the colored avatar that
pops up below.

13. Click the right side of the text box that says
“Username or email address.”

14. Click the dropdown underneath the black
text saying “Select a role.”

15. Click “Reporter” from the dropdown.

16. Click the blue “Invite” button on the bottom
right.

Prediction

1. Navigate to Projects: Click on the "Projects"
tab located in the top navigation bar of the
GitLab dashboard, positioned next to the
"Dashboard" tab.

2. Search for Project: In the search bar at the
top of the Projects page, which is labeled
"Search GitLab," click to focus on it.

3. Type Project Name: Type
"millennials-to-snake-people" into the
search bar.

4. Select Project: Wait for the suggestions to
load and then click on the project name
"millennials-to-snake-people" from the
dropdown suggestions to navigate to the
project’s main page.

5. Access Members Section: In the left sidebar
of the project page, click on "Project
information" to expand the section.

6. Click Members: Under the expanded
"Project information" section, click on the
"Members" option to go to the members
page.

7. Open Invite Members Dialog: In the
Members section, locate and click the blue
"Invite members" button on the top right
side of the screen to open the invite
members dialog.

8. Focus on Username Field: In the "Invite
members" pop-up window, click into the
text box labeled "Username or email
address."

9. Type Username: Type "yjlou" into the text
box to search for the user you want to invite.

10. Select User from Results: Wait for the
system to display the search results. When
"yjlou" appears in the results, click on it to
select that user.

11. Open Role Dropdown: Below the selected
username, click on the dropdown menu
labeled "Select a role" to choose the role for
the invited member.

12. Choose Role: From the dropdown options,
select "Reporter" by clicking on it to set the
user’s access level.

13. Leave Expiration Date Blank: If necessary,
locate the "Access expiration date
(optional)" field and leave it blank.

14. Send Invitation: Click the blue "Invite"
button located at the bottom right of the
pop-up window to send the invitation.

15. Confirm Invitation Success: After the
invitation is sent, observe the confirmation
message that appears, indicating that the
member has been successfully added.

16. Review Members List: Finally, review the
list of project members to ensure that
"yjlou" now appears in the members’ list,
confirming the successful invitation.

Figure 9: Comparison of the Ground Truth with the Prediction of "578-2024-01-07-17-23-54".
Precision: 81.25%. Recall: 93.75%. Temporal order: 68.75%.
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D A Failed Case

Video 317 @ 2024-02-17-14-32-37: Frame No.1

Video 317 @ 2024-02-17-14-32-37: Frame No.8

Figure 10: Testing video (317-2024-02-17-14-32-37). This task involves listing the names and
number of commits of the top three contributors to a GitLab repository called "metaseq." Row 1: 1st
frame from the video. Row 2: 8th last frame from the video.
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Ground Truth

1. Click on "Explore" under the
"Projects" heading

2. Click on the search bar in the top
right

3. Type in "metaseq"

4. From the results below, click on
"Administrator / metaseq"

5. Click on the "Repository" tab in
the left sidebar.

6. Click on the "Contributors" tab in
the left sidebar.

7. Report the information of the top
three people listed (top left, top
right, second left)

Prediction

1. On the GitLab dashboard, locate
the "Projects" tab in the top
navigation bar, situated between
the "Dashboard" and "Groups"
options, and click on it.

2. In the "Projects" section, observe
the list of projects displayed.
Scroll down until you can see the
project titled "The A11Y Project /
a11yproject.com", which is the
fourth project from the top.

3. Click on the project titled "The
A11Y Project / a11yproject.com"
to navigate to its main page.

4. Once on the project page, locate
the "Project Information" tab on
the top left side, directly under the
project name, and click on it.

5. In the expanded options under
"Project Information," click on the
"Members" tab, located directly
beneath the "Project Information"
heading.

6. Click the blue “Invite members”
button located at the top right of
the members section, next to the
“Invite a group” option.

7. In the popup window that appears,
click on the text box labeled
"Username or email address."

8. Type "Koushik" into the
"Username or email address" text
box.

9. Press Enter to select "Koushik
Dutra" from the dropdown that
appears as you type.

10. Click on the dropdown labeled
"Select a role" located directly
beneath the username text box.

11. Choose "Guest" from the options
available in the dropdown list.

12. Click the blue "Invite" button
located at the bottom right of the
popup window inside the shaded
area to send the invitation.

13. Confirm that the member has been
successfully added by checking for
a notification on the screen that
states "Members were successfully
added."

Figure 11: Comparison of the Ground Truth with the Prediction of "317-2024-02-17-14-32-37". Pre-
cision: 0%. Recall: 0%. Temporal order: 0%. The model’s prediction is a completely different SOP
for adding new guests to the GitLab repository. This indicates that the model does not fundamentally
understand the software.
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