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Abstract

Diffusion models have emerged as a new standard technique
in generative AI due to their huge success in various applica-
tions. However, their training can be prohibitively resource-
and time-consuming, resulting in high-carbon footprint. To
address this issue, we propose a novel and practical training
strategy that significantly reduces the training time, even en-
hancing generation quality. We observe that diffusion mod-
els exhibit different convergence rates and training patterns
at different time steps, inspiring our MDM (Multi-expert
Diffusion Model). Each expert specializes in a group of time
steps with similar training patterns. We can exploit the vari-
ations in iteration required for convergence among differ-
ent local experts to reduce total training time significantly.
Our method improves the training efficiency of the diffusion
model by (1) reducing the total GPU hours and (2) enabling
parallel training of experts without overhead to further reduce
the wall-clock time. When applied to three baseline models,
our MDM accelerates training ×2.7 - 4.7 faster than the cor-
responding baselines while reducing computational resources
by 24 - 53%. Furthermore, our method improves FID by 7.7%
on average, including all datasets and models.

Introduction
Diffusion models have emerged as a powerful new family of
generative models for both conditional (Li et al. 2022; Lug-
mayr et al. 2022; Nichol et al. 2022; Rombach et al. 2022;
Saharia et al. 2022) and unconditional (Ho, Jain, and Abbeel
2020; Nichol and Dhariwal 2021; Song et al. 2021b) genera-
tion tasks, offering notable advantages over existing models,
such as generative adversarial networks (GANs (Goodfel-
low et al. 2014)). The advancements in model design and
training strategies (Dhariwal and Nichol 2021; Karras et al.
2022; Nichol and Dhariwal 2021) have led diffusion mod-
els to beat the current state-of-the-art in several fields (Deng
et al. 2009; Yu et al. 2015).

However, training large-scale diffusion models is ex-
tremely expensive and time-consuming. Training time in-
creases quadratically by the resolution of the dataset. For
instance, training a diffusion model on 512 × 512 Im-
ageNet (Deng et al. 2009) dataset using a single V100
GPU (Dhariwal and Nichol 2021) takes up to 1914 days.
This substantial training expenses cause the emission of a
huge amount of carbon dioxide, resulting in environmental

destruction. In this paper, our research objective centers on
improving the training efficiency of diffusion models.

The training efficiency can be evaluated from two per-
spectives: (1) the total cost of fully training a model (TC),
measured in GPU days, and (2) the actual training time
(wall-clock time, WCT), measured in days. The relationship
between them can be expressed as TC = WCT×RT, where
RT denotes resource throughput, representing the number
of distributed GPUs or nodes employed. For example, if a
model takes 100 V100 days (TC) to converge, it takes 25
days (WCT) with four V100 GPUs (RT), assuming ideally
distributed training. Considering both TC and WCT are es-
sential when evaluating training efficiency.

To reduce WCT, we can increase the RT of the model by
parallelizing the training process across multiple modules.
However, computational overhead from communication be-
tween devices (Shi, Wang, and Chu 2018; Wu et al. 2022)
slows down training. For example, if the batch size is split in
half between two GPUs, the WCT should be 50% compared
to training with single GPU. However, the actual WCT is
around 58% due to the computational overhead. If this situa-
tion is extended from inter-GPU to inter-node, this overhead
significantly increases.

With this objective in mind, we focus on the inherent
property of time-independent training in diffusion mod-
els. Training each time step xt is conducted indepen-
dently (Song, Meng, and Ermon 2020) across the entire time
step range t ∈ (0, T ] (where t = T represents the fully
noisy step). Our investigation reveals that there is a signif-
icant variation in convergence speed among each timestep.
Based on this observation, we propose a multi-expert diffu-
sion model (MDM), an algorithm that accelerates training
via time step-adaptive local experts. We carefully identify
three time intervals, each exhibiting a similar training pat-
tern based on an activation analysis. Then, we train three
experts independently, each responsible for each interval.
Since MDM consists of multiple independent experts, it nat-
urally aligns with exploiting sufficiently large RT with neg-
ligible overheads. This effectively reduces WCT by using a
large RT while keeping TC fixed. To further reduce TC, we
allocate different resources (i.e., iterations) to each expert
to take advantage of their varying convergence speeds. This
simple modification accelerates overall convergence. We in-
terpret that fast convergence can be achieved by minimizing
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Figure 1: Quantitative evaluation for the normalized WCT (NWCT) and normalized TC (NTC) axes. The total WCT and TC
of training the baseline for 500K iterations are set to 100%NWCT and 100%NTC, respectively. The best FID value for each
model is denoted by ‘◦’ markers and its value as horizontal dotted lines. The termination point for full iteration is denoted as
‘×’ marker. We determine the model convergence point as the first point where the score difference between adjacent points is
smaller than 0.1 for three consecutive sampling points, and at the same time, the score gap to the best FID value is smaller than
0.3 as marked with ‘♢’.

negative interactions across different time intervals. Conse-
quently, MDM can reduce both WCT and TC by early stop-
ping rapidly converging experts.

We thoroughly investigate the advantages of the multi-
expert approach by analyzing training patterns of diffusion
models along with different time intervals. In our exper-
iments, we apply MDM on several baseline models and
demonstrate the effect of MDM in terms of efficiency (i.e.,
training time) and performance (i.e., generation quality).
Overall, our method improves FID by 7.7% on average, in-
cluding all datasets and baselines. Furthermore, MDM of-
fers ×2.7 - 4.7 faster training and reduces TC by 24 - 53%
to reach the best baseline score.

Related works
Denoising diffusion probabilistic model. Diffusion mod-
els (Ho, Jain, and Abbeel 2020; Dhariwal and Nichol 2021;
Nichol and Dhariwal 2021; Song, Meng, and Ermon 2020)
aim to generate data through a learned denoising process.
Starting from a Gaussian noise xT , they iteratively denoise
xt to xt−1 using a denoising autoencoder until obtaining a
final image x0. We discuss theoretical backgrounds in Ap-
pendix. ADM (Dhariwal and Nichol 2021) proposes the op-
timized network architecture and proves that the diffusion
model can achieve higher image sample quality than state-
of-the-art GANs in several benchmark datasets (Deng et al.
2009; Yu et al. 2015). We use ADM as our baseline to inves-
tigate the training dynamics of diffusion time steps in diffu-
sion model dissection section.

Several works focus on the time steps of the diffusion
model to improve sample quality. P2W (Choi et al. 2022)

identifies that diffusion models learn coarse features in later
time steps, rich contents at medium, and finally, remove
remaining noise at early time steps. They propose a new
weighting scheme for the training objective by assigning
small weights to the unnecessary noise-removal stage while
assigning higher weights to the others. Since the diffusion
model exhibits an unstable denoising process nearly at t = 0
(infinite signal-to-noise ratio), both discrete and continuous
time-based diffusion models (Ho, Jain, and Abbeel 2020;
Song et al. 2021b,a) truncate the smallest time step (early-
stopping denoising process before it reaches t = 0). Soft-
truncation (Kim et al. 2021) sets the truncation hyperpa-
rameter to be randomly chosen at every optimization step
to secure both NLL and FID. P2W and Soft-truncation im-
prove the image quality by regularizing the model along
time steps. However, based on our observation, they train
the entire time steps at once, causing a negative influence
among different time steps. Unlike these methods, our work
identifies and then effectively eliminates such negative influ-
ences.

Also, several researchers have attempted to enhance the
training efficiency of diffusion models. LDM (Rombach
et al. 2022) seeks to reduce the parameter size of the
model by reducing data resolution via autoencoders. Patch-
Diffusion (Wang et al. 2023) proposes a data- and resource-
efficient diffusion model by generating images in a patch-
wise manner. Their focus is to improve model efficacy by
changing from natural images to patch images in the data
domain. These approaches are orthogonal to our method as
they modify the domain of data distribution. Several meth-
ods (Balaji et al. 2022; Feng et al. 2023) utilize multi-
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Figure 2: Training losses for (a) the baseline ADM (Dhari-
wal and Nichol 2021) and (b) the eight-expert settings. To
improve visualization, we average five adjacent points to fil-
ter out the noise in the graph. The color-shaded area depicts
the range between minimum and maximum values for adja-
cent points.

expert fine-tuning on a pre-trained text-to-image diffusion
model to seamlessly reflect the text-conditional signal. Al-
though they utilize a multi-expert strategy (Artetxe et al.
2021; Shazeer et al. 2017; Riquelme et al. 2021), their ex-
perts share the same pretrained model as initial points for
fine-tuning. This approach limits training efficiency since
those require a resource-intensive pretraining stage. Further-
more, they focus on conditional generation scenarios, which
enhance text-and-image alignment through fine-tuning. We
(1) do not deal with pre-trained models but the training ef-
ficiency of the model when training from scratch and (2)
target unconditional diffusion models, which affects vari-
ous applications. More importantly, our method works as an
add-on module to these researches to enhance their training
efficiency.

Multi-expert diffusion model
We propose the Multi-expert Diffusion Model (MDM) as
an efficient training solution for diffusion models. Our ap-
proach centers around two objectives: (1) partitioning the
model for independent training that better aligns with a large
resource throughput (RT) and (2) improving the conver-
gence speed of each expert to reduce the total cost (TC). Our
investigation reveals distinct training patterns within the dif-
fusion model, characterized by three groups of time steps ex-
hibiting similar training patterns. Based on this observation,
we introduce a training strategy that involves three experts,
each responsible for training a specific group of three-time
step intervals: τA, τB , τC .

Following Ho, Jain, and Abbeel (2020), we employ a de-
noising autoencoder to model the reverse process of the dif-
fusion model. The learnable parameters θ(t) of MDM, given
by a denoising autoencoder fθ(t)(xt, t), can be expressed as:

θ(t) =


θA, t ∈ τA,

θB , t ∈ τB ,

θC , t ∈ τC .

(1)

τA, τB , and τC vary depending on the baseline model and
the image resolution. The range of each interval determined
for each experiment is specified in implementation details
section. The experts in MDM (fθA , fθB , and fθC ) are trained

independently within their designated time interval. For a
fair comparison with the baseline, we initially set the max-
imum number of iterations Ie for each expert equally to
(|τe|/T )Ibaseline, e ∈ {A,B,C}. In this context, |τe| denotes
the number of time steps within the interval τe, and Ibaseline
indicates the total iterations for training the baseline model.
Then, we assign additional iterations to the expert with a rel-
atively slower convergence while maintaining the sum of all
Ie equal to Ibaseline. Each expert’s architecture remains con-
sistently the same.
Remarks on training efficiency. Our multi-expert approach
offers two advantages: (1) utilizing a large RT with negligi-
ble overhead and (2) faster convergence to optimal perfor-
mance for each expert. These two advantages reduce WCT
and TC, respectively.

Firstly, training multiple experts independently empow-
ers us to effectively reduce WCT by employing a large RT
while minimizing additional overhead. Although the base-
line model can be trained on multiple GPUs (or nodes), it
is limited by practical resistance, such as finite batch size
(which limits the maximum number of devices used) and
communication overhead between devices. In contrast, our
model has three independent experts, allowing us to increase
RT more effectively than training the baseline with multi-
ple nodes, with negligible practical resistance (see overhead
analysis).

Secondly, our method trains each time interval indepen-
dently, thereby focusing on each distinct training pattern.
This mitigates the potential negative interactions among dif-
ferent time steps when training the entire time step simulta-
neously (Fig. 2). As a result, we consistently observe that
any of the three experts in MDM reach optimal parame-
ters faster than the baseline model. Furthermore, we as-
sign additional iterations to the experts in τA and τC due
to their slower convergence compared to the expert in τB .
Our strategic allocation of training resources to the slower
experts accelerates the overall convergence, reducing TC.
Overhead analysis. MDM utilizes three experts, resulting
in three times the number of parameters compared to the
baseline. However, the model capacity remains unchanged
in terms of vRAM (or other equivalent limiting devices),
serving as a true bottleneck in computing resources, as train-
ing and inferring each expert is independent of each other.
The additional storage space required to store the parame-
ters can be achieved with more affordable and sufficient op-
tions, such as flash memory. The slight increase in loading
time required to transfer the model to vRAM is negligible
compared to TC. Therefore, from a practical standpoint, the
resource overhead associated with our method is manage-
able.

Diffusion model dissection
In this section, we delve into the detailed process of dis-
secting the time steps of diffusion models into three main
groups for our MDM. We analyze the training patterns of
the diffusion model and conclude that the standard method
of training all time steps at once hinders fast convergence.
We divide whole time steps into three groups for efficient
training based on activation analysis.
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Figure 3: ADM time steps analysis. (a) Performance con-
vergence in FID of eight experts for each time step range
τi. (b) Concentration of attention weights during the denois-
ing process. Each legend ‘r-o’ indicates o-th r × r attention
layer.

Method FID↓ sFID↓ Precision↑ Recall↑
Uniform 12.42 27.34 0.5777 0.6247
Importance 18.35 34.77 0.5532 0.6355

Table 1: Comparison between uniform and importance sam-
pling strategies for time step sampling in the CIFAR-10
dataset. We train the baseline (Dhariwal and Nichol 2021)
using uniform sampling and importance sampling and eval-
uate them after 300K iterations.

Training dynamics analysis
Each time step in the diffusion model is trained indepen-
dently, and the loss scale diverges as t → 0 (Kim et al. 2021).
We hypothesize that simultaneously training the entire time
steps with varying loss scales (standard method) can hinder
the training process. Therefore, we explore the impact of di-
viding the whole time steps into distinct groups and training
each separately.

We divide the time steps into eight sub-intervals (τi)
8
i=1

and assign an expert fθi . In this experiment, each expert
shares the same architecture of ADM (Dhariwal and Nichol
2021). The expert fθ1 is responsible for generating the final
clean image, while fθ8 starts denoising from the noisy la-
tent. We train each fθi for τi = {t|t ∈ (125(i − 1), 125i]}
on CIFAR-10 dataset (Krizhevsky, Hinton et al. 2009). We
evenly assign 62.5K iterations per expert, where a total of
500K iterations are used for both MDM and the baseline.
We investigate the multi-expert setting in two aspects: con-
vergence speed and training loss.
Convergence speed. To measure the convergence speed of
each expert, we vary the iteration for the i-th expert while
keeping the other experts fully trained (62.5K iterations).
We calculate FID between the sampled 10K images and the
10K images of the CIFAR-10 validation set. Fig. 3(a) visu-
alizes the FID values at each iteration for each expert. Inter-
estingly, we observe different convergence speeds for each
expert. The experts of middle time intervals show the rapid
convergence at around 26K iterations. In contrast, the expert
fθ8 converges at around 45K iterations, demonstrating the
slowest convergence speed. The second slowest expert be-
comes fθ1 , which starts with a lower FID and converges at
around 35K iterations.

𝜏𝜏𝐴𝐴 𝜏𝜏𝐵𝐵 𝜏𝜏𝐶𝐶

Figure 4: Visualization of the image sampling process and its
attention layer weights. Odd rows depict the image predic-
tion samples (x0) obtained from DDIM (Song, Meng, and
Ermon 2020) sampling. Even rows demonstrate the atten-
tion layer’s activations, normalized by dividing them with
the maximum value for improved visualization.

Training losses. We compare the training losses of the base-
line (ADM) and the multi-expert setting (Fig. 2). We dis-
cover two key findings: (1) Training losses for each time step
exhibit different loss lower-bound (Kim et al. 2021), and (2)
the loss of the baseline presents fluctuations, especially in τ8.
Investigating each loss, the time range τ1 produces a signif-
icantly higher loss (×20) than τ8, thus largely affecting the
parameter updates. However, as observed in Fig. 3(a), the
time range τ8 exhibits the slowest convergence, indicating
a challenging stage to train. Despite its convergence chal-
lenges, the baseline cannot focus on τ8 due to its low loss
scale. In this regard, we recognize that importance sampling
proposed by (Nichol and Dhariwal 2021) has a limited im-
pact on performance improvement since it relies more on
training time steps with higher losses without considering
convergence trends. As a result, when we apply importance
sampling to the baseline, we observe the performance degra-
dation (Tab. 1).

The second observation indicates greater instability
within each time interval of the baseline model compared
to the multi-expert setting. Specifically, the loss for τ8 de-
picts significant fluctuations. This result is consistent with
the previous observation that τ8 is the most challenging time
interval to train. This phenomenon is significantly reduced in
our multi-expert setting (Fig. 2(b)). Here, we speculate that
training the entire time steps with a single model could re-
sult in sub-optimal performance due to adverse interactions
among different time intervals.

Activation analysis for dissection
Our analysis demonstrated that multi-expert training can al-
leviate the negative impacts among time steps, ultimately
improving training efficiency. Now, we arrive at a question:
How should we partition the intervals for developing MDM?

We focus on the attention layers within the diffusion



Dataset Method Normalized WCT (%) Normalized TC (%)
Converged Best score Baseline equiv. Converged Best score Baseline equiv.

CIFAR-10

ADM 76.0 76.0 76.0 76.0
+MDM 23.8 43.4 17.5 46.4 62.0 35.7
P2W 44.0 48.0 44.0 48.0
+MDM 29.4 39.2 17.9 48.0 57.4 36.3

ImageNet-32 Soft-trunc - 86.0 - 86.0
+MDM - 31.2 18.4 - 67.6 42.0

Table 2: Comparison of training time and resource requirements. NWCT (%) and NTC (%) are normalized by 500K training
iterations for ADM and P2W, and 5.0M for Soft-truncation. ‘Converged’ indicates the convergence point of the model. ‘Best
score’ refers to the first WCT and TC, where the model achieves the best FID. ‘Baseline equiv.’ denotes the first WCT and
TC, surpassing the best FID of the baseline model. For ImageNet-32, we omit ‘Converged’ due to significant performance
fluctuations in the baseline model.

Dataset Method FID↓ sFID↓ Prec.↑ Rec.↑

C-10

ADM 12.42 27.34 0.5777 0.6247
+MDM 11.42 24.86 0.553 0.6455
P2W 11.14 25.32 0.5405 0.6263
+MDM 10.61 24.74 0.5559 0.6569

IN-32 Soft-trunc 9.18 4.74 0.6018 0.5966
+MDM 8.25 4.24 0.5879 0.6020

Table 3: Quantitative evaluation. All metrics report the
best FID score of each model. ‘C-10’ and ‘IN-32’ refer to
CIFAR-10 and ImageNet-32, and ‘Prec.’ and ‘Rec.’ refer to
precision and recall, respectively. For CIFAR-10, the best
score within the same baseline (ADM or P2W) is in bold.
The best score in all experiments is marked with an un-
derline. MDM consistently improves FID, sFID, and Recall
when applied to each baseline model.

model to derive distinct intervals of MDM. Previous stud-
ies (Caron et al. 2021; Tumanyan et al. 2022) have demon-
strated that attention layers provide rich visual information,
such as the semantic layout of scenes. Specifically, these at-
tention layers selectively concentrate on structural proper-
ties among features (Caron et al. 2021). Motivated by this
insight, we analyze the visual information captured by the
diffusion model at each time step through attention weight
analysis. For that, we leverage softmax weights within the
attention layer:

Attention(Q,K, V ) = softmax(QK⊤/
√
d)V. (2)

For each attention layer, we compute the average standard
deviation of softmax weights for each image as follows.

Et

[√
VARs(softmaxs(QctKcs/

√
dk))

]
, (3)

where subscripts follow Einstein’s summation conven-
tion. A low standard deviation implies that the weight distri-
bution is close to the uniform distribution (e.g., 0 if all values
are 1/HW , where H and W are the height and width of the
attention map). Conversely, a high standard deviation repre-
sents weight concentration in a specific region (e.g., ∞ if the
distribution follows the Dirac delta function). Fig. 4 demon-
strates the attention layer’s activations at each DDIM (Song,

Meng, and Ermon 2020) sampling time step. Fig. 3(b) illus-
trates the average standard deviation of the attention layer’s
weights from 1K samples at resolutions of 8×8 and 16×16.

Herein, we identify two distinct transitions in terms of
attention concentration. As depicted in Fig. 3(b), the first
group τA consistently increases attention concentration. In
this stage, the model generates the overall outline of the
resulting image, as also reported in (Choi et al. 2022). In
contrast, the second group τB shows minimal changes in at-
tention concentration. The outline from the previous stage
remains unchanged while incorporating additional details.
Lastly, the third group, τC , shows a rapid decrease in con-
centration. This is because it removes an overall noise while
adding natural high-frequency details (Balaji et al. 2022).
These unique characteristics are used to determine three in-
tervals of [τA, τB , τC ], allowing each dedicated expert to
handle distinct training patterns. Therefore, MDM assigns
three experts for three distinct intervals derived in this study.

Experiments
Implementation details
Dataset. We use CIFAR-10 (Krizhevsky, Hinton et al. 2009)
and ImageNet-32 dataset (Chrabaszcz, Loshchilov, and Hut-
ter 2017) to train and evaluate our model. We conduct eval-
uations with validation sets comprised of 10K images for
CIFAR-10 and 50K for ImageNet-32, respectively.
Architecture. We applied MDM on three baselines:
ADM (Dhariwal and Nichol 2021), P2W (Choi et al. 2022)
and Soft-truncation (Kim et al. 2021). ADM is the repre-
sentative baseline model with widely used architectures for
diffusion models. P2W is a recent training strategy tailored
to diffusion models. Soft-truncation represents a universal
training technique for score-based models, including both
discrete and continuous time-based models. We show that
our method can be combined with these baselines to im-
prove the generation quality and reduce training resources.
For ADM, we employ three attention layers at resolutions
of 32, 16, and 8, with three residual blocks per resolu-
tion in Unet (Ronneberger, Fischer, and Brox 2015). The
noise schedule is set as cosine. Our model has 128 channels
with 32 channels per attention head and a dropout rate of
0.3. The batch size is 128, and the learning rate is 0.0001.



P2W is implemented on top of ADM. We set k=1, γ=1.
For sampling, we apply DDIM (Song, Meng, and Ermon
2020) with 50 sampling steps. We set full-time step T to
1000. For the soft-truncation, we follow the identical config-
uration for ImageNet-32 training that uses DDPM++ (Song
et al. 2021a) architecture. For ADM and P2W, we set
τA = {t|t ∈ (0.8T, T ]}, τB = {t|t ∈ (0.1T, 0.8T ]},
and τC = {t|t ∈ (0, 0.1T ]}. For Soft-truncation we use
τA = {t|t ∈ (0.6T, T ]}, τB = {t|t ∈ (0.2T, 0.6T ]}, and
τC = {t|t ∈ (0, 0.2T ]}. We observe that τA, τB , and τC are
consistent along with model and image resolution regardless
of the training dataset. Furthermore, the attention concen-
tration of the model (Fig.3(b)) depicts similar patterns even
when we train the model using only 10% of total iterations.
Thus, we can obtain time step intervals without significant
overheads.
Sample quality metric. We use four metrics to assess the
quality of the generated samples. FID measures the sym-
metric distance on the first raw and second central momen-
tum between the two image distributions in the Inception-
V3 (Szegedy et al. 2016) latent space. To capture struc-
tural relations between the data distributions more effec-
tively than FID, we utilize sFID (Nash et al. 2021), which
evaluates spatial features of Inception-V3. We also report
precision and recall on the latent distribution of Inception-
V3 (Kynkäänniemi et al. 2019) as FID cannot explicitly
measure the distribution coverage of the generated samples.
Computational resources. We train our model with
NVIDIA A6000 GPU. Training ADM and P2W on the
CIFAR-10 dataset with a batch size of 128 for 500K iter-
ation takes 270 hours. Soft-truncation on the ImageNet-32
dataset with a batch size of 128 for 5.0M iterations requires
462 hours.

Time and resource efficiency evaluation
We evaluate the practical aspects of different models by
comparing their training time and resource requirements.
Tab. 2 reports WCT and TC at three key points: (1) model
convergence, (2) the point of achieving the best FID, and
(3) surpassing the baseline model. We set the WCT and TC
of the baseline model to 100%NWCT (normalized WCT)
and 100%NTC (normalized TC), respectively. We consider
the model to be converged when the FID difference between
consecutive points is less than 0.1 for three consecutive sam-
pling points. Simultaneously, the FID gap to the best value
should be smaller than 0.3 in the CIFAR-10 dataset. ADM
converges at 76.0%NWCT, while MDM on ADM converges
about 3.2 times faster (23.8%NWCT). Similarly, P2W con-
verges at 44.0%NWCT, whereas MDM on P2W converges
at 29.4%NWCT, meaning 1.5 times faster.

We also identify when our MDM reaches its best FID and
the best baseline FID score. Surprisingly, MDM-equipped
baselines attain the best baseline score at an average of
17.9%NWCT and 38.0%NTC, being up to 4.7 times faster.
Then, MDM reaches its best performance at an average of
37.9%NWCT and 62.3%NTC, still less than the baseline
best score requirements. The result is visualized in Fig. 1.
In conclusion, MDM effectively reduces training time and

τA τB ∪ τC FID↓ sFID↓ Prec.↑ Rec.↑
ADM ADM 12.42 27.34 0.5777 0.6247
MDM ADM 11.04 25.26 0.5604 0.6485

Table 4: Ablation results on different model combinations
along time steps in the CIFAR-10 dataset. ‘Prec.’ and ‘Rec.’
refer to precision and recall, respectively. Each experiment
uses ADM for τB ∪ τC and only differs in the model for τA.

resources because of (1) higher RT with negligible compu-
tational overhead and (2) faster convergence of each expert.

Quality evaluation
Tab. 3 presents the quality evaluation results, reporting the
minimum FID achieved by each model. Applying MDM
consistently improves performance across all baselines. No-
tably, our approach demonstrates a significant improvement
in sFID and recall compared to other metrics. To identify
which local expert contributes to our model to cover more
diverse structures, we conduct a simple case study. As in
Tab. 4, we compare the original ADM with a partially mod-
ified ADM where fθA of MDM is exclusively applied for
time interval τA. This investigation shows that fθA signifi-
cantly improves sFID and recall compared to the baseline.
This is because the time steps τA play a pivotal role in shap-
ing the overall outline, and our independent training strategy
allows fθA to generate diverse structures without negative
impact from other time intervals.

Although we can manipulate precision-recall trade-off via
guidance methods (Dhariwal and Nichol 2021; Ho and Sal-
imans 2021) for the diffusion model, increasing recall is
known to be a more challenging problem (the guidance can
improve precision by sacrificing recall while the opposite is
not yet available). In this view, we can conclude that MDM
is capable of capturing diverse structures that lead to notable
advantages in both sFID and recall.

Conclusion
This paper introduces a multi-expert diffusion model
(MDM) as an efficient approach for training diffusion mod-
els. MDM capitalizes on the time-independent training na-
ture of the diffusion model. Specifically, we carefully select
three-time intervals according to activation analysis and as-
sign a dedicated expert to each interval. Three experts of
our model are trained independently on their respective time
step groups. This approach allows us to increase resource
throughput while minimizing the computational overhead,
which effectively reduces the wall-clock time required for
training full iterations. Furthermore, our multi-expert strat-
egy enables each expert to focus solely on each designated
time step without any negative impacts from other time
ranges. This improves overall convergence speed and leads
to a significant reduction in the total cost of training the dif-
fusion model. As a result, our model reduces total costs by
24 - 53% and training time by 63 - 79% compared to the
baselines, all while achieving the improvement in the aver-
age FID by 7.7% over all datasets.
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Appendix
In this document, we provide backgrounds of DDPM (Ho, Jain, and Abbeel 2020) and DDIM (Song, Meng, and Ermon 2020)
and qualitative results of our proposed method.

Background
Denoising Diffusion Probabilistic Model (DDPM)

DDPM is a latent-variable generative model that gradually transforms a noise distribution into a data distribution x0 ∼ q(x0)
(Ho, Jain, and Abbeel 2020). DDPM consists of a forward process q that iteratively adds a noise on the data distribution, and
a reverse process p that iteratively denoises a noise distribution toward a final data distribution. The forward process adds a
Gaussian noise to xt using a Markov process according to a variance schedule {βt}Tt=1:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (4)

Ho et al. state that it is possible to sample xt from x0 directly, using the notation αt := 1− βt and ᾱt :=
∏t

s=0 αs:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) =

√
ᾱtx0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I) (5)

Using Bayes theorem, posterior q(xt−1|xt, x0) is also a Gaussian distribution with mean µ̃t(xt, x0) and variance β̃t:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI),

where µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt (6)

With sufficiently large T and a well defined βt, the latent xT becomes nearly an isotropic Gaussian distribution. Assuming
this, to sample from the data distribution q(x0), we can first sample from an isotropic Gaussian distribution and then iteratively
apply q(xt−1|xt) to obtain x0. However, q(xt−1|xt) depends on the entire data distribution so it is hard to exactly compute
when the data distribution is unknown. As a result, we train a neural network to predict a mean µθ and a diagonal covariance
matrix Σθ:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (7)

The network is trained by optimizing the usual variational bound on negative log likelihood, Lvlb:

Lvlb := L0 + L1 + ...+ LT−1 + LT (8)
L0 := − log pθ(x0|x1) (9)

Lt−1 := DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)) (10)
LT := DKL(q(xT |x0) || p(xT )) (11)

Ho et al. identify that training the model to predict ϵ in Eq. 5 improves sample quality than directly predicting µθ(xt, t).
Therefore, Lvlb is simplified to:

Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt, t)||2

]
(12)

When the training is done, we can sample from the data distribution by inserting the predicted ϵθ(xt, t) to the equation:

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

ϵθ (xt)

)
+ σtzt, (13)

where zt ∼ N (0, I) and σ2
t is a variance which is set to σ2

t = βt.
DDPM shows a powerful performance on image generation but is has a severe drawback of significantly slow sampling

speed. To sample one image, it should feedforward a neural network for each denoising step, total T times. DDIM (Song,
Meng, and Ermon 2020) accelerates the sampling speed of DDPM.



Denoising Diffusion Implicit Model (DDIM)
DDIM generalizes DDPM as a class of non-Markovian diffusion processes (Song, Meng, and Ermon 2020):

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I) (14)

Consequently, the reverse process becomes

xt−1 =
√
αt−1

(
xt −

√
1− αtϵt (xt)√

αt

)
︸ ︷︷ ︸

”predicted x0 ”

+
√
1− αt−1 − σ2

t · ϵt (xt)︸ ︷︷ ︸
”direction pointing to xt ”

+ σtzt︸︷︷︸
random noise

(15)

When σt =
√
(1− αt−1) / (1− αt)

√
1− αt/αt−1 for all t, the forward process becomes Markovian which means that the

reverse process becomes a DDPM. When σt = 0, the forward process becomes deterministic and produces high quality samples
much faster.

Qualitative results
We provide qualitative results of MDM applied on ADM (Dhariwal and Nichol 2021), P2W (Choi et al. 2022) and Soft-
truncation (Kim et al. 2021).



Figure 5: Image samples of MDM+ADM trained on CIFAR-10 dataset.



Figure 6: Image samples of MDM+P2W trained on CIFAR-10 dataset.



Figure 7: Image samples of MDM+Soft-truncation trained on ImageNet-32 dataset.


