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Abstract: Using the language of dynamical systems, Imitation learning (IL) pro-
vides an intuitive and effective way of teaching stable task-space motions to robots
with goal convergence. Yet, these techniques are affected by serious limitations
when it comes to ensuring safety and fulfillment of physical constraints. With
this work, we propose to solve this challenge via TamedPUMA, an IL algorithm
augmented with a recent development in motion planning called geometric fab-
rics. We explore two variations of this approach, which we name the forcing pol-
icy method and the compatible potential method. The result is a stable imitation
learning strategy within which we can seamlessly blend geometrical constraints
like collision avoidance and joint limits. Beyond providing a theoretical analysis,
we demonstrate TamedPUMA with simulated and real-world tasks, including a
7-DoF manipulator.
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1 Introduction

As robotic solutions rapidly enter unstructured environments such as the agriculture sector, homes,
and the food industry, there is a critical need for methods that allow non-experts to easily adapt robots
for new tasks. These sectors demand that robots safely interact with dynamic, fragile environments
where humans are present. Currently, experts manually program these tasks, a method that is costly
and not scalable for widespread use.

A possible solution to this societal challenge comes from Imitation Learning (IL). Using this tech-
nique, robots can learn motion profiles from demonstrations provided by non-expert users. Further-
more, by encoding the learned trajectories as solutions of a dynamical system, established math-
ematical tools from dynamical system theory can be used to guarantee global convergence to the
goal [1, 2]. An influential methodology in learning stable dynamical systems is Dynamical Move-
ment Primitives (DMPs) [3] ensuring convergence towards a simple manually-designed dynami-
cal system. This approach is extended to non-Euclidean state spaces [4], probabilistic environ-
ments [5, 6], and in the context of deep neural network (DNN) [7, 8]. To ensure stability, several
approaches enforce a specific structure on the function approximators, such as enforcing positive
or negative definiteness [9, 10, 11], or invertibility [12, 13, 14]. In contrast, [15, 16] enforce sta-
bility via additional loss functions derived using tools from the deep metric learning literature [17].
Importantly, [16] extends the ideas of [15] to more general scenarios, achieving better results in
non-Euclidean state spaces and 2nd-order dynamical systems.

In a robotics context, these learned dynamical systems commonly encode the navigation policy
towards a goal within a task space - such as the evolution of the end-effector pose of a manipula-
tor while pouring water in a glass from all possible initial locations. However, this focus on task
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space motions renders IL fundamentally limited when it comes to considering physical constraints
involving the body of the robot impacting with itself or interacting with the external environment.
Substantial recent research has looked into the problem, e.g. [18, 19, 20, 21, 22, 23], although most
methods lack simulatenously addressing stability guarantees and real-time fulfillment of physical
constraints for a system with many degrees of freedom.

This work introduces TamedPUMA, a safe and stable extension of the IL algorithm PUMA [16],
which allows for an increased motion expressiveness in contrast to [24, 25]. The key enabling
idea behind this new method is to look at the learned stable motion primitives as the navigation
policy within a recently introduced geometrical framework for motion planning called geometric
fabrics [26]. To make this possible, the learned model has to be formulated as a 2nd-order (neural)
dynamical system as fabrics operate within the Finsler Geometry framework where vector fields
must be defined at the acceleration level [27]. Also, the learned dynamics must admit an aligned po-
tential, which roughly means a scalar function whose gradient is aligned with the acceleration field
when the velocity is null. In the paper, we show how we can ensure that both conditions are met. We
propose two variations on TamedPUMA: the forcing policy method, treating the learned DNN as a
forcing term within the geometric fabrics formulation, and the compatible potential method, intro-
ducing an energy-regulation term requiring the design of a so-called compatible potential. We eval-
uate the performance of TamedPUMA with a simulated and real-world 7-DoF manipulator, where
we also benchmark it against vanilla geometric fabrics, vanilla learned stable motion primitives and
a modulation-based IL approach leveraging collision-aware IK.

2 TamedPUMA: Combining learned stable motion primitives and fabrics

With learned stable motion primitives, complex tasks can be learned from demonstrations, while
converging to the goal. By incorporating these learned dynamical systems into the navigation policy
of geometric fabrics, stable and safe motions are generated respecting whole-body obstacle avoid-
ance and physical constraints of the robot. In the following, we propose two variations of Tamed-
PUMA, the Forcing Policy Method (FPM) and Compatible Potential Method (CPM).

The Forcing Policy Method (FPM): First, we introduce the FPM. Via Policy via neUral Metric
leArning (PUMA), a dynamical system is learned in task space T , fT

θ (x, ẋ) = φθ(ρθ(x, ẋ)),
where ρθ : X → L encodes the first 1, ..., l layers and φθ : L → X the last l + 1, ..., L layers of
the DNN. We define the dynamical system fC

θ in configuration space C resulting from applying a
pullback operation [28] to the learned system:

q̈ = fC
θ (q, q̇) = pullϕT

(
fT
θ (x, ẋ)

)
, (1)

Then, leveraging the definition of a forced system of Definition II.4 in [28], in the FPM we propose
to use the pulled system obtained via PUMA as the policy that forces the energy-conservative fabric
h̃ : S = (M̃ , ξ̃)X where h̃ conserves a Finsler energy,

q̈ = h̃(q, q̇) + fC
θ (q, q̇). (2)

Assuming the loss function of PUMA has already been minimized, the system fT
θ comes to rest at

the equilibrium xg, implying that fC
θ converges to the configuration qg where multiple values of qg

may exist in the case of a redundant system. This collection of states qg corresponds to the zero set
of fC

θ . From Proposition II.17 in [28], we know that if the system in Eq. (2) reaches the zero set of
fC
θ , it will stay there (which comes from the observation that fabrics are conservative). However, we

cannot make any claims regarding the convergence of Eq. (2) to the zero set of fC
θ . Therefore, we

propose the CPM, a method with stronger convergence guarantees.

The Compatible Potential Method (CPM): As a second approach, we propose the CPM that ex-
ploits the concept of compatible potentials to obtain a stronger notion of convergence. A potential
compatible with a dynamical system generally points in the same direction as the system’s vector
field. More formally:
Definition 1 (Compatible potential [28]). A potential function ψ is compatible with f if: (1)
∂ψ(q) = 0 if and only if f(q,0) = 0, and (2) −∂ψ⊤f(q,0) > 0 wherever f(q,0) ̸= 0.

2



From this, [28] introduces Theorem III.5, which states that given a dynamical system with a com-
patible potential, then the following system converges to the zero set of f ,

q̈ = energizeH[h+ f ] + γ(q, q̇) with γ(q, q̇) = −
(

q̇q̇⊤

q̇⊤MLe
q̇

)
∂ψ − βq̇. (3)

Consequently, we aim to leverage this result by using fC
θ (Eq. 1) as the system f in Eq. (3) with

the compatible potential. From the previous section, we already concluded that the zero set of this
system maps to the equilibrium xg ∈ T . Hence, it remains to find a compatible potential for this
function to employ the result from Theorem III.5 [28].

Notably, if the stability loss of PUMA is successfully minimized, it is possible to design a com-
patible potential for the system fT

θ in the latent space L using the mapping ρθ by setting ẋ = 0.
Specifically, we can construct a potential using the latent-space variable y and the encoder ρθ of
PUMA,

ψ(x) = ∥yg − y∥2 = ∥ρθ(xg,0)− ρθ(x,0)∥2. (4)

To observe that this is a compatible potential of fT
θ , first, we highlight that since xg is asymptoti-

cally stable, we have ∂ψ(xg) = 0 if and only if f(xg,0) = 0. This satisfies the first condition of
Definition 1. Second, we note that for all x ̸= xg, the stability loss enforces the value of ψ(x) to
decrease as fT

θ evolves over time, provided that ρθ has a Lipschitz constant that is not large, which
can be controlled through regularization. Thus, this potential also satisfies the second condition of
Definition 1. Finally, it only remains to express the gradient of this potential in configuration space,
previously denoted as ∂ψ. For clarity, we will henceforth write this as ∂ψ/∂q. To achieve this, we
require the forward kinematics from configuration space C to task space T , denoted ϕT . Then, we
obtain

∂ψ =
∂ψ

∂q
=
∂ψ

∂x
· JϕT (x), (5)

where JϕT is the Jacobian matrix of the forward kinematics. The matrix JϕT is commonly available
in robotic frameworks, and the term ∂ψ/∂x can be approximated via automatic differentiation tools
for DNNs.

3 Experimental Results

Experimental setup and performance metrics: To showcase the performance of the two varia-
tions of TamedPUMA, FPM and CPM, simulations using the Pybullet physics simulation [29] and
real-world experiments are performed on a 7-DoF KUKA iiwa manipulator. Two tasks are analyzed,
picking a tomato from a crate and pouring liquid from a cup, where a DNN is trained for each task
using 10 demonstrations. The proposed FPM and CPM, are compared against vanilla geometric fab-
rics, vanilla PUMA and modulation-IK. Modulation-IK modifies PUMA to be obstacle-free within
the task space using a modulation matrix [30]. Then, whole-body collision avoidance is achieved
by tracking the modified desired pose using a collision-aware Inverse Kinematics (IK) [31]. All
methods are evaluated based on their success rate and time-to-success, which respectively indicate
the ratio of successful scenarios and the time required for the robot to reach the goal pose. The
methodologies are also compared on the average minimum clearance between the collision shapes
of the robot and obstacles over all scenarios and computation time. In addition, the path difference
to the desired path by PUMA is denoted as 1

P

∑
∥xee − xPUMA∥2 where xee and xPUMA correspond

Table 1: Statistics for 30 simulated scenarios. The path difference to PUMA is measured in an obstacle-free
environment, while all other metrics are compared in an obstacle-rich environment.

Success-Rate Time-to-Success [s] Min Clearance [m] Computation time [ms] Path difference to PUMA
PUMA 0.5 5.2 ± 1.6 0.02 ± 0.03 4.7 ± 0.5 0

Modulation-IK 0.6 2.7 ± 1.8 0.01 ± 0.01 13.5 ± 8.5 0.38 ± 0.42
Fabrics 0.9 6.5 ± 3.1 0.06 ± 0.04 0.41 ± 0.04 0.15 ± 0.19
FPM 1 7.3 ± 5.0 0.05 ± 0.02 5.9 ± 0.8 0.04 ± 0.07
CPM 1 10.9 ± 6.7 0.05 ± 0.02 7.1 ± 0.5 0.06 ± 0.09
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(a) Initial pose (b) Bowl approaches (c) Avoid the bowl (d) Avoid the hand (e) Goal reached

Figure 1: Selected time frames of CPM during a tomato-picking task.

to the end-effector poses along the path with length P . The path difference is computed in obstacle-
free scenarios, where we aim to track the DNN as closely as possible and in obstacle-rich settings,
allowing for deviations from this path.

Simulation experiments on a 7-DOF manipulator: In simulation, 30 realistic scenarios are ex-
plored, including 15 scenarios of a tomato-picking task and 15 scenarios of a pouring task. In each
task, the initial robot configuration and obstacle locations change. Moreover, 10 scenarios included
moving goals, and 7 scenarios included moving obstacles. As depicted in Table 1, the two varia-
tions of TamedPUMA improve the success rate with respect to PUMA as it allows for whole-body
obstacle avoidance. In contrast to geometric fabrics, FPM and CPM can track the desired motion
profile leading to a smaller path difference with PUMA of 0.04 ± 0.07 and 0.06 ± 0.09 respectively,
compared to geometric fabrics, 0.15 ± 0.19, in an obstacle-free environment. In an obstacle-rich
environment, geometric fabrics result in a deadlock in 3 of the 30 scenarios where the robot does
not reach the goal as it is unable to move around the edge of the crate or object. The benchmark
Modulation-IK is also unable to achieve all tasks due to collisions or deadlocks. In comparison
to FPM and CPM, Modulation-IK has a higher computation time due to the optimization-based
IK solver with high varieties depending on the difficulty of the scenario. Although the CPM has
stronger theoretical guarantees compared to FPM, performance is similar when comparing the two
proposed approaches in Table 1. Even though we do not optimize over the time-to-success or min-
imum clearance, both FPM and CPM achieve the task within a reasonable time while remaining
collision-free. Computation times are within the order of 4-7 ms on a standard laptop (i7-12700H)
making the methodologies well suitable for real-time reactive motion planning.

Real-world experiments on a 7-DOF manipulator: Experiments are performed on the real 7-
DOF for the tomato-picking and pouring task where all obstacles, e.g. a bowl, a person’s hand and
a helmet, are dynamically tracked in real-time via an optitrack system. Snapshots of a real-world
experiment of the CPM are illustrated in Fig. 1. If the obstacles are not blocking the trajectory of
the robot, the observed behavior of the proposed methods, FPM and CPM, are similar to PUMA and
showcases clearly the learned behavior as demonstrated by the human. The user can push the robot
away from the goal or change the goal online, and TamedPUMA recovers from this disturbance. In
the presence of obstacles, FPM and CPM achieve collision avoidance between the considered links
on the robot and the obstacles while reaching the goal pose, as illustrated in Fig. 1.

4 Conclusion

Imitation learning via stable motion primitives is a well-suitable approach for learning motion pro-
files from demonstrations while providing convergence to the goal. We introduced TamedPUMA, a
safe and stable extension of learned stable motion primitives augmented with the recently developed
geometric fabrics for safe and stable operations in the presence of obstacles. We proposed two vari-
ations, the Forcing Policy Method and Compatible Potential Method, ensuring respectively that the
goal is stable, or the stronger notion that the system converges towards the reachable goal. Experi-
ments were carried out both in simulation and in the real world. When trained on a tomato-picking
task or pouring task, the proposed TamedPUMA generates a desired motion profile using a DNN
while taking whole-body collision avoidance and joint limits into account, with a computation time
of just 4-7 ms.
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