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Abstract

The scaling law for large language models (LLMs) depicts that the path towards
machine intelligence necessitates training at large scale. Thus, companies con-
tinuously build large-scale GPU clusters, and launch training jobs that span over
thousands of computing nodes. However, LLM pre-training presents unique chal-
lenges due to its complex communication patterns, where GPUs exchange data in
sparse yet high-volume bursts within specific groups. Inefficient resource schedul-
ing exacerbates bandwidth contention, leading to suboptimal training performance.
This paper presents Arnold, a scheduling system summarizing our experience to
effectively align LLM communication patterns with data center topology at scale.
An in-depth characteristic study is performed to identify the impact of physical
network topology to LLM pre-training jobs. Based on the insights, we develop a
scheduling algorithm to effectively align communication patterns with the physical
network topology in modern data centers. Through simulation experiments, we
show the effectiveness of our algorithm in reducing the maximum spread of com-
munication groups by up to 1.67x. In production training, our scheduling system
improves the end-to-end performance by 10.6% when training with more than
9600 GPUs, a significant improvement for our training pipeline.

1 Introduction

Pre-training large language models (LLMs) at scale is a highly resource-intensive process that requires
vast computational infrastructure. The performance of LLM training is fundamentally dependent on
three factors: dataset size, computational power, and model parameters [19]. To meet these demands,
companies continually enhance their computing infrastructure by incorporating cutting-edge GPUs
and redesigning network architectures [[14} 32, |40]. However, LLM pre-training presents unique
challenges that distinguish it from conventional deep learning tasks — in this paper, we explore
how to develop an efficient resource scheduling mechanism to support the LLM training workflow to
accommodate the resource-intensive and complex communication patterns in modern data centers.

LLM pre-training is an exceptionally resource-intensive process. Given the pressing need to com-
mercialize LLMs swiftly, accelerating the training process is paramount. However, training these
models often spans weeks, requiring the deployment of thousands of GPU nodes per run. The ability
to efficiently schedule and allocate resources is critical for both performance optimization and cost

*Equal contribution.
"Work done during internship at ByteDance Seed.
fCorrespondence to: Youhe Jiang <yj367 @cam.ac.uk>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



management. Furthermore, the unique data transmission patterns in LLM training — wherein GPUs
communicate sparsely but at a high volume within specific groups — pose an additional challenge in
leveraging modern multi-tier network topologies effectively.

Existing cluster schedulers (e.g., [42, 43| |44} 45| [7] 15]) fail to integrate network topology-aware
scheduling specific to LLM workloads. The primary limitation is their lack of awareness of the
high-volume, yet sparsely active distributed communication patterns inherent in LLM training. For
example, Figure[Ta]indicates that 30% - 50% of the time is spent on communication during production
LLM training, but studies [40] show that more than 99% of the GPU pairs do not exhibit direct traffic,
with data exchange occurring exclusively within specific communication groups, as shown in Figure
[Ib] Meanwhile, modern GPU clusters use multi-tier, fat-tree network topologies [1]] (Figure 2b), and
inefficient job placement leads to significant bandwidth loss and communication overhead. Current
schedulers are not designed to optimize network-aware placement at the scale required by LLM
pre-training jobs (LPJs).
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training in production.

» Unaddressed trade-offs across communica-
tion dimensions. There is a fundamental trade-off between aligning data parallel (DP) and pipeline
parallel (PP) communication patterns. Since GPUs participate in both groups, perfect alignment
for both is unachievable, and schedulers must carefully balance the two during placement.

To address the challenges, we present Arnold, a system that co-designs training frameworks and
cluster scheduling, effectively aligning LPJs with modern data center network topology. To optimize
training performance, we performed an in-depth characterization study to investigate the impact
of physical network topology on LLM training. Based on the observation, we devise a scheduling
algorithm to reduce the maximum weighted spread of communication groups for LPJs. We also
develop a resource management policy that manages job queues to reserve nodes for imminent LPJs.

Through trace-based experiments, we show the effectiveness of our scheduling algorithm by bench-
marking against other SOTA algorithms. We also perform a production run with 9600+ GPUs and
show our proposed system improves the end-to-end training performance by 10.6%. In summary, our
contributions include the following:

Contribution 1. We identify the challenge of aligning LLM communication patterns with modern
data center topology for large-scale pre-training. We characterize the impact of physical network
topology on individual communication operations and end-to-end training performance in modern
data centers.

Contribution 2. We design a scheduling algorithm to effectively align communication patterns to
the topology of the data center for LPJs, and a resource management policy to reserve nodes for the
placement.

Contribution 3. Through comprehensive simulation experiments, we evaluate the effectiveness of
the scheduling algorithm in reducing the maximum spread of communication groups by up to 1.67x.
In a production run, we verify the proposed scheduler can improve a 9600+ GPUs LPJ by 10.6%.

2 Background

Distributed training. LLMs are billion-parameter transformer-based models that must be trained with
multi-GPU systems[39} 35]. Common training frameworks [36}134] employ hybrid parallelization
strategies to parallelize and accelerate the training process, including:



* Data parallelism (DP). The Zero Redundancy Optimizer (ZeRO) [33] shards model weights and
gradients across data parallel processes and performs synchronization at the end of a training step
by all-gather and reduce-scatter communication operations.

* Pipeline parallelism (PP). The layers of models are divided into several stages (PP size), and each
stage interleave communication to adjacent stages as well as the computation within the stages.
Inter-stage communication is performed by P2P communication operation like send-recv.

* Tensor parallelism (TP). Model weights within an PP stage are further sharded across multi-GPUs
to alleviate the memory pressure. All-gather and reduce-scatter are necessary to synchronize the
intermediate activation during forward pass and backward pass.

The combination of parallelism, i.e. hybrid parallelism, forms diverse communication patterns for
GPUs, and training frameworks use communication group to manage the complexity. Each GPU is
assigned to a DP, TP, and PP communication group at initialization. The illustrations of different
parallelisms and communication groups are demonstrated in Figure 2a] Other parallelism strategies,
such as sequence parallelism and expert parallelism, are excluded from discussion as they are for
specific scenarios (long context and MoE models respectively).

Previous works [24} 36] have identified that TP communication groups should be prioritized to GPUs
located within the same node to utilize the high-bandwidth NVLink interconnection due to stringent
data dependencies. Thus, the inter-node communication only takes place within the DP and PP groups.
As only inter-node communication is sensitive to physical network topology, the communication
patterns of DP group and PP groups are the focus of this paper.
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(b) Data center topology. S-SW: spine switches.
(a) Hybrid parallelism. L-SW: leaf switches. H: computing nodes.

Figure 2: LLMs parallelism and data center topology.

Data center topology. Figure 2b|gives an overview of our HPC cluster, which is similar to other
modern data centers. More than 2000 nodes are interconnected by three layers of switches, forming a
CLOS-like topology [8]]. The leaf switch (L-SW) is denoted as sO, which interconnects nodes within
the same rack. Then, several sO switches link to a spine switch (s1), forming a minipod of nodes.
Finally, s1 switches link to core switches, enabling communication between minipods. The switches
in each layer have 32 ports both for uplinks and downlinks. The greatest number of hops occurs
when the nodes of two different minipods communicate with each other. The compute nodes are
equipped with 8 H800 GPUs, each of which is connected to an InfiniBand [26] NIC. GPUs within
a node are connected by high-bandwidth links such as NVLink [29] with a bandwidth of 400GB/s,
while inter-node communication is achieved via the InfiniBand network (400GB/s).

3 Observation and Challenges

Given a user-specified number of GPUs and degree of hybrid parallelism of an LPJ, job scheduling
systems enqueue the job and perform resource scheduling to find the best placement in GPU clusters.
However, we observe existing scheduling systems fail to align LLM communication patterns with
data center topology in practice.



(a) Fully misaligned. (b) PP-aligned. (c) DP-aligned.

Figure 3: Alignment of communication patterns. One DP group and PP group is highlighted.

Observation 1: Misalignment of job placement results in increased cross-switch communication.
SOTA cluster schedulers [42] 2| |44] apply a bin-packing strategy to enhance GPU locality of LPJs.
However, as shown in Figure [3a] even if the scheduler packs an 4-node (32 GPUs) LPJ inside a
minipod, the communication groups may still not be aligned, because both DP and PP groups engage
cross-spine-switch communication that has a longer distance. This misalignment stems from the
scheduler’s lack of awareness of the LPJ’s communication structure at scheduling time, limiting its
ability to allocate GPU resources according to the job’s communication patterns.

Observation 2: Unresolved trade-offs between DP and PP communication priorities. Figure 3D|
and [3¢|show two potential alignments of the LPJ, with one prioritizing DP communication and the
other prioritizing PP. This presents a fundamental trade-off between the two, because DP and PP are
orthogonal parallelism strategies widely used in LLM training. Each GPU participates in both a DP
and an PP group, making it impossible to perfectly align both communication patterns simultaneously.
A well-designed scheduler must consider this trade-off and balance the alignment needs of both group
types during job placement.

Challenge: Communication and topology-aligned scheduling for LPJs. To effectively schedule
LPJs, the scheduler must be aware of the diverse communication patterns and minimize their spread
in data centers. Furthermore, effective balance between the spread of DP and PP groups is critical,
which requires in-depth characterization of communication patterns in modern data centers.

4 Characterization of Communication Patterns for LPJs

Although prior studies [44] 2] have explored locality and topology, their scope is constrained by (1) a
focus on data-parallel (all-reduce) workloads and (2) limited consideration of inter-node topology.
To address these gaps, we conduct NCCL tests, a benchmarking suite designed to measure the
latency and bandwidth of communication operations used by NCCL [27, 28]}, to study the impact of
inter-node topology. We focus on inter-node topology across minipods, as the scale of LPJs typically
necessitates allocating computing nodes across multiple minipods, where the slowest communication
path often dictates the overall communication overhead.

Communication operation performance. Figure [] studies the performance of communication
operations. We use the bus bandwidth (BusBw) as a performance measurement, which reflects the
peak hardware bandwidth by accounting for the number of ranks for collective communication.
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Figure 4: Performance of communication operation. (AR: all-reduce, AG: all-gather, RS: reduce-
scatter, SR: send-recv)

Figure [fa] measures the inter-minipod communication bandwidth and illustrates the performance of
different communication patterns over message sizes. For collective communication, the message size
must be larger than 2% (=~ 256) megabytes to fully utilize the bandwidth, while for P2P communication
like send-recv, a small message size (= 2 megabytes) can saturate the bandwidth. Using a widely



adopted analytical model detailed in Appendix [B|and substituting the parameters with a 7B GPT-
based model, we can obtain that the data volumes of the DP and PP groups are 2 GB and 30 MB
respectively, indicating that the bandwidth is fully utilized.

The degradation in BusBw by expanding communication groups across minipods is illustrated in
Figures#bland[c| Performance decreases by up to 17% for collective operations and 70% for the P2P
operation as communication extends over additional minipods, highlighting the critical importance of
GPU locality and alignment. Additionally, our findings suggest that co-located jobs may experience
reduced bandwidth contention in multi-tenant cluster environments, as evidenced by the inter-job
interference patterns documented in Appendix [C]

End-to-end training performance. Based on the characterization of individual communication
operations, we proportionally down-scaled a production model and ran the workload with 96 GPUs,
spanning 2 minipods, to further understand the impact of network topology on LLM training.
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Figure 5: End-to-end training performance.

Figure [5a] shows the throughput of the LPJ under the three different placement strategies. The
dp-aligned placement is illustrated in Figure [I2} The throughput becomes stable after 200 steps
except for a slight fluctuation around the 550th step due to garbage collection. PP-aligned placement
consistently outperforms the other two, demonstrating that prioritizing PP group communication
leads to improved performance. The average improvement for the dense model and the MoE model
is 2.3% and 1.8% respectively. For the dense model, we also observe that the PP communication
dominates the communication overhead, since prioritizing the placement of DP groups leads to no
speedup. For the MoE model, reducing the spread of both the DP and PP groups contributes to
performance gains, with the optimizations of the PP group providing more improvements.

Figure [5b] shows that if we scale the model size by adding more layers, the performance improvement
continues to increase. We attribute this to communication being the primary performance bottleneck,
with larger models further amplifying communication volume. Thus, more pronounced benefits are
obtained as the model size increases.

We further examine the sensitivity of training performance to intra-minipod network topology by
varying node placement within a single minipod. For a dense 24B parameter model, the maximum
observed performance variation is 0.3%, and the impact is negligible for other models. Since the
communication overhead of a group is typically dominated by the slowest link, and LPJ communi-
cation groups frequently span multiple minipods, we conclude that training performance is largely
insensitive to intra-minipod topology.

We repeated the characterization experiment in another GPU cluster detailed in Appendix [D] and
found that the best placement can be subjected to model sizes and GPU types. Since LPJs are typically
scheduled in advance and deployed for a long duration, it is essential to perform a characterization
beforehand to identify communication bottlenecks within the group. This enables the optimization of
placement strategies accordingly and balances the trade-off, as detailed in §3]

5 Scheduling Algorithm

The core component of Arnold is its scheduling module, which is designed to effectively allocate
GPUs to LPJs based on the user-specified number of GPUs and the degree of hybrid parallelism. In
this section, we formally define the scheduling problem and present our proposed solution.



5.1 Workload Representation

Arnold represents an LPJ by a communication matrix, where a row represents a PP group and a
column represents a DP group. Formally, given a job specification including the total number of
GPUs, the degree of PP, TP, and then Arnold computes the size of the communication matrix using
Equation

DP = #GPUs/TP/PP

#row = DP/(8/TP) (1

#col = PP

An example of 96 GPUs and DP = 6, PP = 2 is shown in Figure [I2] For a node v;; in the
communication matrix, it is attached with a vector [v,,, vq, v,], representing the size of weight, the
DP and PP communication volume per GPU respectively. Those values are computed using the
analytical model in Appendix|B} and is used to balance the trade-off between DP and PP groups.

5.2 Objectives

The scheduling objective function aims to minimize the maximum spread for both DP and PP groups.
For a node v;; in the communication matrix, the number of possible assignments to a minipod is k.
Therefore, it has a one-hot decision vector x;; of length k, representing the decision to place to one
of the £ minipods. Then the objective function can be written as Equation

MIN [amax(D(zi1, Ti2, ...Zin)) + Bmax(D(x1;, Taj, ..., Tmyj))] )
7 J
Where, the distance D between the n vectors is defined as follows:

D(vy,v2,...,v,) = [{i: 34,0 € {1,2,...,n},j # L,v;[i] # vi]}] 3)

Intuitively, the distance measures the spread of a communication group, i.e. if any two vectors differ
in the ith position, the ith position adds one to the distance. The objective function aims to minimize
the weighted sum of the maximum spread of DP and PP groups, and the maximum is taken because
the slowest communication group is the straggler to slow down the whole training process. The
weight parameters « and (3 represent the affinity that controls the trade-off between DP and PP groups,
and o 4 8 = 1. Equation 2] cannot be solved by off-the-shelf solvers efficiently for online scheduling
due to the discrete distance calculation, and we seek for simplifications.

Domain-specific simplification. We identify

that communication groups are homogeneous MIN o Z(yﬂ') + BT} S
and synchronous for LPJs because nodes are Y

gang-scheduled and must synchronize their gra- st Vi Z sij <T (Max Spread) Q)
dients at the end of a training step. As a result, J

each PP group always starts approximately at
the same time and performs the same amount
of computation and communication. Similarly,

Vi :Zpij < cjy; (Capacity Const.) (6)

3

DP groups perform gradient synchronization at Vi Zpij =1 (Allocation Const.)  (7)
the same time. The characteristics allow us to J

simplify the scheduling objective function by Vi, j pij < si;  (Minipod Selection) ®)
coarsening a scheduling unit as a communica- Vi y; € {0,1} )
tion group. We therefore transform Equation 2] Vi, j :si; € {0,1}, pi; € [0, 1] (10)

into a bin-packing-like formulation:

Where y; indicates whether the j-th minipod is used and c; is the normalized capacity of the
minipod, updated dynamically based on the number of available nodes. s;; denotes whether the i-th
communication group is allocated to minipod j, p;; denotes the percentage of the ¢-th communication
group allocated to minipod j. T is an introduced auxiliary variable that allows us to minimize the
maximum spread of communication groups. « and 3 are the affinity parameters as before. Overall,
minimizing T effectively consolidates communication groups into the smallest possible number of
minipods, while the objective term > j (y;) controls the spread of the other communication group.

A simple example. We consider the PP group as a scheduling unit. By setting o = 0, the scheduler
can place each PP group into a minipod, causing more cross-switch communication for DP groups,



while by setting 3 = 0, the scheduler minimizes the overall usage of minipods, although the
placement may cause cross-switch communication for PP groups. Together, Equation (4) is the
balanced optimization objective function. Equation (5) restricts the maximum spread of PP groups to
be less than or equal to T'. Equation (6) restricts that the allocation cannot exceed the capacity of
a minipod. Equation (7) suggests that the sum of the allocation percentage must be equal to 1 for
every PP group. Equation (8) suggests that if a minipod has some percentage of a PP group, then
it is considered used. Finally, Equation (9) and (10) define the range of the binary variable y;, s;;
and the continuous variable p;;. As a concrete example, the values for those variables in a simulated
experiment are listed in Appendix

In this formulation, all variables are either an integer or a fraction. Therefore, the objective function
can be solved using off-the-shelf mixed-integer programming (MIP) solvers efficiently for online
scheduling [4]. After solving the MIP, we assign continuous rank indices to nodes belonging to the
same minipod to reduce cross-switch communication within each communication group.

Balancing the trade-off. The affinity parameters in Equation 4] require balance of the trade-off
between the DP and PP groups, which depends on the model configurations and GPU types (§4). To
perform online scheduling, we store the characterization results in §4|to a database, and we search
for the best match to determine the values of the affinity parameters. The communication matrix
computes the per-GPU parameters (v,,) and communication volumes (vg, v,). We then compute the

average ratio of computation-to-communication and DP-to-PP volume as r; = % and ry = Z—;",
where mb is the size of the microbatch. These ratios are used to find the best matching job in the
database by comparing the Euclidean distance, i.e. MIN,, ., +/(r1 — ;)% + (r2 — r;)?, because
GPUs exhibit comparable performance characteristics if they have similar computational load and
communication volume.

LPJs are associated with metadata (GPU,ype, jap, Jpp)» Where jap, jpp corresponds to the improvement
of DP-aligned, and PP-aligned placement strategies. The affinity parameters v and § are then derived

s n the relative performance improvement of jg, and j,p, i.e. o = —22— an = Jew
based on the relative performance improvement of j4, and j,p, i.e. Mpﬂppad,b’ Totio

Due to the importance of LLM training and their unified architectures, LPJs are scheduled in advanced
and pre-characterized, so the profiling data in the database can be looked up in online scheduling. For
example, for a 24b dense model in the H800 GPU cluster, the scheduling unit is set to the PP group
and « is set to zero as PP groups clearly dominate the communication overhead. For the 24b MoE
model, « = 0.3 and 5 = 0.7.

5.3 Resource Management

The scheduling algorithm computes a globally optimal placement for LPJs in the GPU cluster, which
inevitably conflicts with other jobs. To address this, we develop a queuing policy to manage the job
queue and reserve resources for the imminent LPJ.

Algorithm|[I]illustrates our scheduling policy. Once the LPJ is planned, the scheduler solves the MIP
equation and reserves the resources. Since then, incoming jobs are preferentially allocated outside the
reserved zone. Otherwise, to improve resource utilization, if the predicted job completion time (JCT)
of an incoming job precedes the arrival time of the LPJ, it may still be scheduled within the reserved
zone. If neither of the conditions can be satisfied, the job is delayed in the scheduling interval. We
also employ an ML-driven JCT predictor to balance the trade-off of queuing delay and resource
utilization. The setup and evaluation are detailed in Appendix [Fand [G|respectively.

6 System Implementation

We have implemented a prototype of Arnold with more than 3k lines of Python codes. The prototype
consists of the scheduling module and a trace-driven simulator that can replay production traces. We
also have a version of the deployment integrated with Kubernetes [21]. For training frameworks,
we build on top of Megatron [24] and modify it to ensure that communication groups follow the
placement provided by Arnold. Figure [§ gives an overview of Arnold.

7
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Figure 6: Architecture overview of Arnold.

7 Evaluation

We evaluate Arnold using both simulation and real-cluster experiments. To benchmark scheduling
algorithms cost-effectively, we develop a simulator, as direct evaluation on production clusters is
prohibitively expensive. After identifying the highest-performing scheduling algorithm through
simulation, we deploy it on our production cluster to validate its effectiveness under real workloads.

7.1 Simulation Experiments

Baselines. We compare the scheduling algorithm with the following baselines.
1. Best-fit [31] assigns the nodes to the minipod with the least remaining resources.

2. Random-fit [43]] assigns nodes to minipods randomly such that the assignment is balanced and
fair.

3. GPU-packing [42}/44] is an effective placement strategy applied by state-of-the-art GPU cluster
schedulers that pack multiple jobs to the same GPU. We modify the algorithm to pack multi-GPU
jobs to a minipod to satisfy the network topology semantics.

4. Topo-aware [2] is a GPU topology-aware placement algorithm. It represents the workload as a
job graph (similar to our communication matrix) and the topology as a physical graph. Then it
recursively bi-partitions the physical graph and maps the job graph to the sub-graphs (Hierarchical
Static Mapping Dual Recursive Bi-partitioning [[10]). The graph bi-partitioning is implemented by
the Fiduccia Mattheyses algorithm [11]].

Metrics. The weighted sum of the maximum spread as in Equation 2]is used to evaluate scheduling
algorithms. To evaluate scalability, we measure the scheduling latency.

Table 1: Benchmark setting. Network topology {x}, {y} represent {x} minipod and {y} nodes in
total, and the numbers in job configurations are the degree of DP, TP, PP. The scheduling unit is the
PP group.

Settings | Network Topology | Job Configs
1) 3,18 12,4,2
(i1) 5,438 24,4, 8
(ii1) 11,1019 46,8, 8

Setups. We use 3 settings in the benchmark as listed in Table[l) where the network topology is taken
from a subset of our GPU cluster, and the job configurations are representative for small, medium,
large jobs respectively. We also vary the value of « to investigate different degree of affinity.

Figure [7] compares the performance of different algorithms. Our algorithm consistently outperforms
other baselines and up to 1.67x compared to the best baseline. On average, it leads to 1.2x reduction
of the weighted sum of the maximum spread for communication groups. In the simple topology
(setting (7)), our algorithm achieves the same score as best-fit, gpu-pack and topo-aware, because the
network topology and job configurations are relatively simple, so there is no room to improve the
placement. For medium and large jobs, our algorithm is better than the other baselines due to the
large search space of possible placement.



We also observe that as « increases,
our scheduling algorithm is closer to
other baselines. This is because «
controls the affinity of the DP group,
and if « is 1, the objective function
reduces to a bin-packing formulation
and therefore has no difference from
other bin-packing algorithms. In prac-
tice, we would not set « greater than
0.5 as observed from our characteri-
zation results (§4). As a result, our
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Figure 7: Weighted spread of communication groups under differ-
ent scheduling algorithms.

algorithm usually scores higher than other baselines.
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Empirically, it can cause a scheduling

latency of 30s in a simple topology (setting (i)) when scheduling 14 nodes. In a medium topology
(setting (ii)) it takes 100s+ to schedule a job with 10 nodes. In contrast, our algorithm has a low
latency even if it is required to schedule a 512 node job in a cluster with 1000+ nodes.

7.2 Cluster Experiment

To evaluate the effectiveness of Arnold in real-world environments, we run experiments in our GPU
cluster. The specific information such as the number of GPUs and the model size, is hidden due to
business concerns. One of our LLMs is a MoE variant and was trained previously with more than
9600 GPUs (1200+ nodes). We first run the experiment by scheduling the job with 208 GPUs, and
validate the speedup achieved by Arnold. We then run the pre-training at full scale. We compare
Arnold with an SOTA production system for LLMs, MegaScale [[18]], which takes a full-stack solution
to optimize LLMs training and scale to O(10, 000) GPUs.
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Figure 9: Cluster experiments.

End-to-end experiments. Figure [9a) and O] illustrate the average throughput of the two systems.
Arnold achieves an average speedup of 5.7% and 10.6% respectively. We observe that Arnold reduces
the maximum spread for the DP group and the PP group by 3x and 2x in the medium-scale experiment,
while for the full-scale experiment, the reduction is 1.5x and 1.3x. This is because it is more likely to
spread nodes across minipods in the cluster for medium-scale experiment if not planned carefully.
However, for the full-scale experiment, the requested GPUs take up more than 50% of the total
number of GPUs in the cluster, and therefore the space of scheduling is shrunk.

Nevertheless, we observe that as the model size scales and more nodes are added, the speedup
achieved by Arnold also increases. The finding is consistent with Figure [5b]in §4} in which the
effectiveness of optimized placement is more prominent as the model size scales up. Our production



deployment encompasses significantly larger models exceeding 400 billion parameters distributed
across a substantially higher number of nodes, resulting in intensive network communication demands.

Figure [Oc| plots the performance of the full-scale experiment over the training steps. Despite the
performance fluctuation at the 160-th step due to torch profiling, we observe that the Arnold out-
performs MegaScale consistently. The LPJ runs for more than one month, and the improvement is
significant for downstream tasks as well as cost savings (GPU hours and human resources), since
cloud providers price one Hopper GPU at $2.99/h. Moreover, the proposed optimization is orthogonal
to those reviewed in §8] allowing it to be applied in conjunction with existing methods. Importantly,
the optimization is fully transparent to end users.

We also evaluate the scheduling algorithms on an open-source model (Llama3 8B), replacing the
InfiniBand network with a RoCE network and using 12 nodes equipped with L20 GPUs, and the
results are shown in Appendix [} It indicates our scheduling algorithm generalizes well across models
and hardware configurations.

Breakdown analysis. Figure [I0] shows kernel-level ex-
amination of both systems using the Torch profiler. It re- i 06 4
veals that communication and topology-aligned placement 0 i [ Ee—
strategies yield a nuanced impact: while they enhance e (3@' &@\

the performance of a communication kernel as expected, & =4 ©

they simultaneously introduce performance degradation

in other kernels, including a computation kernel. Through Figure 10: Breakdown analysis.
systematic ablation studies in Appendix |J| we identify re-

source contention between GPU streams as the fundamental mechanism underlying this phenomenon,
which presents when communication and computation kernels execute concurrently across multi-
ple streams. These observations broaden the scope of topology-aware scheduling by showing that
its impact extends beyond communication efficiency, influencing the execution characteristics of
computation kernels as well.

Diff. (ms)

8 Related Works

LLMs training. LLMs have become a significant workload in the field of machine learning [30,
37,149], and the computing infrastructure continues to evolve to adapt to the challenging workload.
For example, efficient parallelization strategies are searched by model parallelizers [51) 22} 38]],
training frameworks specialized for training scalability are built to orchestrate large-scale worker
nodes [18], 136, 24], and high-performance operators are developed to maximize the utilization of
hardware accelerators [91 16} [12]]. However, those works are orthogonal to the optimization proposed in
this paper, as the physical network topology is only visible at the cluster scheduling layer. Therefore,
our work is transparent to the underlying infrastructure codes and the speedup is achieved on top of
existing effort to accelerate the training performance.

Deep learning job schedulers. Job scheduling systems for deep learning tasks have been widely
deployed by companies [[7, 44, 43\ [2,25]]. However, none of deep learning jobs have come even close
to the scale and importance of LLM pre-training jobs. Arnold addresses this gap by providing a
solution tailored to scheduling LLM pre-training jobs, complementing existing schedulers. Recent
studies have begun to explore the characteristics of LLM workloads in GPU clusters [13]. In contrast,
our work specifically targets the optimization of LLM pre-training performance.

Emerging network architectures. Emerging network architectures [40} 32| have significant impacts
on future design of scheduling algorithms, and we believe that the presented algorithm is capable
of handling other network topologies, for production GPU clusters follow a multi-tier design. The
collective communication is bottlenecked by the highest hierarchy, i.e. the inter-minipod communica-
tion in our case. In our case, we observe little impact of intra-minipod topologies; however, we can
also solve the MIP in intra-minipod level if we can observe any performance degradation.

9 Conclusion

In this work, we present Arnold, a scheduling system that summarizes our experience in effectively
scheduling LPJs at scale. In-depth characterization is performed and a scheduling algorithm is
developed to align LPJs with the topology of modern data centers. Through experiments, we show
the effectiveness both in simulation-based and real-world GPU clusters.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: In the abstract and introduction, we state our contributions and the paper scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: In Appendix [A] we explicitly discuss the limitation of the algorithm and future
work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
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3. Theory assumptions and proofs
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a complete (and correct) proof?
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Justification: This paper presents a scheduling system for LLM training. The results are
empirically evaluated both on simulation and real experiments.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:

Justification: The simulation results are fully disclosed and reproducible. The cluster
experiment contains sensitive information regarding the size of the LLM, the number of the
GPUs in our cluster, and we are unable to provide that information.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will open source the simulator and the scheduling algorithms.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all details regarding the scheduling system. Other information such
as data splits is irrelevant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The simulation experiment is deterministic and can be fully reproduced. The
cluster experiment is shown with several steps of stable performance measurement.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We specify both the GPU types and network topology to reproduce the
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We conform to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: The paper improves the LLM training in modern data centers, and has no
negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper describes LLM training from a system perspective, and has no risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The creators have been credited and licensed.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We have not introduced new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: We do not have any human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: We do not have any human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: We did not use LLMs to develop our core method.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitation and Future Works

Failure recovery. On hardware failure, the optimal placement of LPJs will inevitably change, but it
is too expensive to solve the MIP and then migrate to the new placement. A potential approach is to
increase the number of GPUs of communication groups in the initial scheduling as backups, which
only run preemptive jobs and can be replaced with failure nodes when needed.

Other network topology. The characterization results, while derived from our in-house data center
environments, exhibit broad applicability to CLOS-based network topologies, which represent the
predominant network architecture in modern data center deployments. By varying the affinity
parameters, one can effectively trade-off the balance of DP and PP groups in their own data centers.
Therefore, the characterization methodology and the scheduling algorithm are generalizable to other
data centers for large-scale LPJs.

B Analytical Estimation for Communication Volume

To estimate the communication volume of pre-training jobs, we adopt an analytical model for GPT-
based variants. We use the same notation from previous work [24] by denoting the vocabulary size
V, global batch size gb, micro-batch size mb, sequence length s, hidden dimension h, the number of
layers [, the DP size dp, the PP size pp, the number of VPP size vp, number of microbatches m. We
have:

__gb
m_mb*dp (i

* DP groups. GPUs within the same group replicate the model weights and exchange parame-
ters as well as gradients, so the communication volume can be computed using Equation

12
DP — volume = h * (V ! 4h* 4+ 2h + 8h* + Th 12
volume # (V4 s) +1/pp* (4h” + 2h + 8h” + Th) (12)
dense layer
For MoE models, we can replace the number of parameters with MoE layers accordingly.

» PP groups. GPUs exchange intermediate activation to adjacent PP stages, and thus we apply
Equation [[3]to estimate the data volumes.

PP —volume =2xmbxsx*xh (13)
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Figure 11: Bandwidth interference.

Since GPU clusters are usually multi-tenant to improve resource utilization, we also study the
interference between inter-node communication quantitatively. Before we bring our cluster online,
we perform large-scale stress test on our cluster by running NCCL tests. We record the time series
of bus bandwidths and show in Figure The stress test consists of 3 jobs, requesting thousands
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of GPUs each, and spanning across multiple minipods in the cluster. Each job performs all-to-all
communication with a message size of 2GB constantly, which simulates jobs performing extensive
inter-node communication on a busy cluster because all-to-all generates large amount of flows in the
network.

We can observe performance fluctuation for all three jobs. For example, after job 1 is launched at
01 : 22, job 3 has a slight performance degradation of 0.5GB/s (3%). The maximum performance
degradation is up to 5% for job 3 during the stress test period. This suggests that jobs spanning a
larger number of minipods not only suffer from increased bandwidth loss but are also more exposed
to interference from other workloads in the cluster.

D Ada Lovelace GPUs

We repeat the characterization experiment in another GPU cluster, where each node is equipped with
L20 GPUs, to ensure our finding is not limited to H800 GPUs, and we briefly summarize the results
in Table 21

Best placement | Model size | speedup
DP-aligned dense 7b 1.4%
PP-aligned dense 14b 0.5%

Table 2: Results on L.20 GPUs cluster.

We observe that DP-aligned can yield greater speedups for certain model configurations. This is likely
because during training, L20 GPU uses a 8-bit data format, which halves the communication volumes
between PP stages. However, DP groups still use 32-bit for parameter and gradient synchronization,
so the communication volumes remain unchanged. As a result, DP group communication can become
the dominant overhead, making a placement strategy that prioritizes DP groups more beneficial.
However, as the size of the model grows, the bottleneck shifts back to the communication of the PP
group, so the PP-aligned is preferential.

E Communication Matrix

PP2.:PP3|! PP4, | PP5,| PP6,
11

®

Figure 12: Example placement (96 GPUs and 12 nodes) of a LPJ.

The example placement in Figure [[2 has a DP group size of 6, and PP group size of 2. Nodes in
different colors represent they are placed in different minipods. The number is the rank of the node.
In this example, DP group is aligned and the communication of PP group must cross spine switches.

F Queue Management

Algorithm I]illustrates our queuing policy. It manages the job queue and reserve resources for the
imminent LPJ. It also employs an ML-driven job completion time (JCT) predictor to balance the
trade-off of queuing delay and resource utilization

JCT predictor. The JCT prediction enables opportunistically scheduling short-lived jobs to the
reserved resources as long as they can finish before the arrival of LPJ. This helps improve resource
utilization and decrease queuing delay. The prediction is based on metadata associated with jobs,
such as the number of requested CPUs and GPUs, the requested amount of drives, the department of
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Algorithm 1 Job scheduling policy

1: J; //job’s configurations and metadata

2: V; /lphysical view of the cluster

3: @; //job queue, sorted by priority and arrival time
4: O; //delay list

5: function SCHEDULER(J, V, Q)

6: while True do
7.
8

O« 10
while Q # 0 do
9: J « Q.pop()
10: if preemptable(.J) then
11: sched(J, V)
12: else if J.request < V. free_resource then
13: sched(J, V)
14: else if pred_JCT(J) < arrival_time then
15: sched(J, V)
16: else
17: O.add(J)
18: end if
19: end while
20: Q<+ O
21: sleep(interval)

22: end while
23: end function

task owners, etc. Although estimating the exact JCT is inherently difficult, we adopt a coarse-grained
forecasting strategy, which classifies the JCT into different time intervals.

To train the JCT predictor, we retrieve historical trace data from the database. Then, we pre-process
the data, such as removing jobs that are early killed by users, and divide the JCT into 10-minute
intervals. We then train models to predict the interval into which incoming jobs may fall by the
metadata associated with the jobs. We tried both a deep neural network (DNN) and a gradient
boosting predictor (GBM)[20], and found that GBM achieves higher performance, likely due to its
ability to handle categorical variables.

Uncertainty = —— Predicted ——- Actual —— Predicted -==Actual
15
101
5
\""Q\'V\%\'V\b‘\'v\‘)\”\b\”{\@'\%@’\o’ \"‘;\9 \'VQ \'V\% \'V\b‘ \'V\% \'V\(Q \'V\(\ \'V\% \'V\O’ \”99
(a) GBM: RMSE 1.61. (b) DNN: RMSE: 2.12.

Figure 13: JCT prediction.

To demonstrate effectiveness, we extract 4-month trace data and divide them into a training set (90%)
and a test set (10%). Figure [13|shows an example of prediction in the test set. We apply randomized
grid search to optimize hyper-parameters and also use bagging to determine uncertainty estimation.
We observe that the RMSE is 1.61 in the test set, and recent studies suggest that such prediction could
help scheduling decision [42} 3]].
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Figure 14: Allocation and retention rate over time since a LLM pre-training job is planned.

G Evaluation of Queue Management

We collect job traces and replay in the trace-driven simulator. Figure[T4]shows the allocation and
retention rate over time. The allocation rate is determined by dividing the total number of nodes by
the nodes with allocated jobs. The retention rate measures how many planned nodes for the LLMs
job are occupied by other jobs, which inevitably requires manual preemption when the LLMs job
arrives. At 18 : 00, Arnold is told the arrival time of the LLMs job at 22 : 00, and so it triggers the
code path to plan and reserve resources accordingly. We use a default bin-pack algorithm to schedule
other jobs.

The allocation rate is 0.9 initially and then gradually decreases to below 0.5 due to the need to
reserve 1200+ nodes in the cluster. At the beginning of the imminent period, the retention rate is
relatively high and matches the allocation rate because the previous allocated jobs are not aware of
the incoming LLMs pre-training job. Then the retention rate decreases faster than the allocation rate
since nodes have been reserved, and is close to 0 at the end of the period, showing the effectiveness
of the scheduling policy.

For the reserving-and-packing policy [42], it does not offer strong semantics for reservation (i.e. best
effort). Thus, the scheduler will not be able to generate a feasible solution as the LLM job arrives,
not to mention optimal placement (orange line). The JCT prediction navigates the trade-off space
between resource utilization and guarantees by scheduling opportunistically short-lived jobs to the
reserved zone. In its absence, both queuing delays and resource idle times increase, as indicated by
the green line.

H Example MIP solution
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Table 3: The MIP solution values for setting (i) in

s 0* 00 00 1.0
s_.1.* 00 00 1.0
s2* 00 00 10
s3* 00 10 0.0
s4* 00 10 0.0
s 5.* 00 10 0.0

0_* 00 00 1.0
1_* 00 00 1.0
2% 00 00 1.0
3% 00 1.0 00
4 * 00 10 0.0
p_5_* 00 10 0.0

Index Value

y[0] 0.0
y[1] 1.0
y[2] 1.0

I Evaluation on open-source models

Table 4: Average throughput (PetaFlops) comparison on Llama3 8B.

Scheduling algorithm llama3 8B
Bin-pack (used by MegaScale) 3.80
GPU-pack 3.82
Ours 3.86
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J Break-down analysis
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Figure 15: Breakdown analysis of the ablation experiment.

We compare aggregated kernel-level metrics by summing the duration for each type of kernel. Figure
@l illustrates the speedup achieved by Arnold (in green) and the slowdown (in red) of the full-scale
experiment. We only report kernels whose difference is significant. The most significant speedup
is the broadcast kernel (10%), which is the optimized P2P implementation of our communication
library. However, the speedup is slightly offset by the slowdown of a reduce-scatter kernel and
even a computational kernel. The slowdown contradicts our expectations, as Arnold’s scheduling
also reduces the spread of DP groups. Moreover, we have not changed other configurations, so the
slowdown of the GEMM kernel is unexpected.

After thorough investigation, we suspect the slowdown is due to the interference between GPUs’
streams. Due to hybrid parallelism, GPUs maintain multiple streams that issue operations concurrently
during training. Although overlapping computation with communication indicates good performance
optimization, it also causes resource contention and interference.

Network topology affects computation kernels. To investigate the counter-intuitive results, we
isolate the impact of streams by modifying NCCL. For example, we add additional environmental
variables such as NCCL_DP_MIN_NCHANNELS to have fine-grained controls on the DP stream. We
disable channel auto-tuning and rerun jobs with and without setting the NCCL variable. Figure
shows the breakdown analysis. Communication kernels have speedups by setting the NCCL variable,
whereas computation kernels have slowdown. Since the only change is the NCCL variable, it indicates
if we allocate more GPU SMs to communication, computation kernels suffer from performance loss
for less available SMs.

In production training, the NCCL variables are dynamically auto-tuned, so given that network
topology-optimized scheduling influences the communication of DP and PP groups, ultimately it
causes variations in the computation kernels.
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