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Abstract

The widespread use of large language models has resulted in a multi-
tude of tokenizers and embedding spaces, making knowledge transfer in
prompt discovery tasks difficult. In this work, we propose FUSE (Flex-
ible Unification of Semantic Embeddings)1, an inexpensive approach to
approximating an adapter layer that maps from one model’s textual em-
bedding space to another, even across different tokenizers. We introduce
a third-order tensor-based representation of a model’s embedding space
that aligns semantic embeddings that have been split apart by different
tokenizers, and use this representation to derive an approximation of the
gradient of one model’s outputs with respect to another model’s embed-
ding space. We show the efficacy of our approach via multi-objective op-
timization over vision-language and causal language models for image
captioning and sentiment-based image captioning.

1 Introduction

The current popularity of large language models (LLMs) has led to many individuals and
organizations training and fine-tuning models for their own needs, resulting in a myriad
of models with unique ways of processing, tokenizing, and embedding text. This diversity
creates a challenge for knowledge transfer and interoperability across models, effectively
siloing the insights and capabilities of any single model. One popular way of enabling in-
teroperability is through prompting strategies. These approaches leverage the ability for text
to be passed across models, by converting tasks into formats that LLMs can solve. How-
ever, the uniqueness of different models’ token and embedding spaces creates difficulties
in automated methods for prompt discovery.

While prompting strategies have found success across a variety of tasks including adver-
sarial text generation (Zou et al., 2023), text summarization (Zhang et al., 2022), and prompt
discovery for generative models (Wen et al., 2024), the non-differentiable nature of text re-
mains a limitation. One way of addressing this challenge is by encouraging a standard-
ized tokenization and embedding strategy, where every new model or architecture uses
the same tokenizer and embedding space. Despite the potential for fostering cooperation
across models, it is unlikely that model developers will converge on a single tokenization.
Yet, such a standardized representation may not be necessary if we can freely compute
forward and backward passes across models, regardless of their tokenization.

In our work, we propose one such method of computing gradients across different models’
discrete embedding spaces, even if these spaces are defined in terms of different tokenizers.
Our approach, which we call FUSE (Flexible Unification of Semantic Embeddings) inserts a
simple module that approximates the functionality of an adapter layer that maps between
the embeddings of multiple models without finetuning. We find that rather than focusing
on individual tokens, if we instead focus on groups of tokens separated by whitespace, then

1https://github.com/jnwilliams/FUSE prompt inversion.git
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we can track how a full word is represented in the embeddings space and create a necessary
equivalence among tokenizers that can be leveraged to map from one model to another.
We then derive a strategy to compute one such differentiable map, and find that we can
approximate the gradient of a language model’s output with respect to another model’s
embedding space solely in terms of the first model’s embedding and a precomputed tensor.

We show the effectiveness of our approach through a zero-shot captioning task and zero-
shot captioning with sentiment, where each task is solved via a multi-objective optimiza-
tion over the sum of the models’ losses. Our contributions are as follows: 1) We introduce
a new framing for optimizing problems across embedding spaces that focus on groups of
whitespace-separated tokens, rather than individual tokens. 2) We show how to compute
an approximate gradient through the input embedding spaces of different models, even
in the case where the tokenizer and vocabulary for each model varies significantly. 3) We
show how we can enable zero-shot tasks by composing multiple specialized models with
no additional finetuning, through image captioning tasks.

2 Background and Related Work

2.1 Prompt Engineering and Discovery

Prompting has become a very useful tool for unlocking the knowledge of large, pretrained
language models. By carefully crafting prompts to LLMs, we can find simple strategies
that can be used to guide the model toward a specific task. For example, Radford et al.
(2019) have framed the task of text summarization as an LLM task by appending “TLDR:”
at the end of an article and then having the model generate the text that best follows.

Prompt engineering and discovery (Chen et al., 2023; Gu et al., 2023) focus on finding ef-
fective prompts for a variety of tasks. Early approaches, such as AutoPrompt (Shin et al.,
2020) used a gradient-based search strategy to discover appendable suffixes for a prompt
that guide the model to act as a sentiment classifier on its original input. FluentPrompt (Shi
et al., 2022) improved upon this by applying a language prior on the suffix, better aligning
prompt discovery with more human-like prompts. This approach has also been successful
as an adversarial attack on aligned models. Zou et al. (2023) have introduced Greedy Co-
ordinate Gradients (GCG), to discovers suffixes that can be appended to a harmful prompt
in order to circumvent safety measures in the LLM and generate harmful responses. Ad-
ditional work (Zhu et al., 2023; Chao et al., 2023) further built on these attacks in order to
efficiently find adversarial prompts to elicit harmful behaviors in the models.

These strategies extend to generative image models. Wen et al. (2024) leverage CLIP (Rad-
ford et al., 2021), to find prompts that align well with an image, enabling them to “invert”
the image generation process. In contrast to other search methods (Zou et al., 2023; Shin
et al., 2020), the authors introduce an approach that finds prompts via a form of projected
gradient descent. Mahajan et al. (2023) use similar projected gradient descent methods to
optimize prompts directly through the diffusion process of a diffusion model. Their ap-
proach has found prompts more closely tailored to a specific generative process. ClipCAP
(Mokady et al., 2021) and ZeroCAP (Tewel et al., 2022), have found additional success in
image captioning by finetuning and optimizing aspects of pretrained language models in
order to better align their output with the CLIP similarity of the prompt with the image.

2.2 Prompt Discovery with Knowledge Transfer

While automated prompt discovery for a single model is powerful, we can both broaden
the number of applicable tasks and improve upon existing methods by allowing multiple
systems to exchange information (Geraci, 1991; Nilsson, 2019; Hu et al., 2023). For example,
Chao et al. (2023) have found that using a discriminator to determine the degree of success
for an attack in tandem with other prompt discovery approaches can find successful natu-
ral language prompts that elicit harmful behavior faster than alternative apporaches.

We focus our work on knowledge transfer from one model to another by centering our at-
tention on the text embedding layers of language models. In contrast to the above methods,
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our work aligns with prior work on adapter models, in which a new layer is inserted be-
tween layers of pretrained models (He et al., 2021; Houlsby et al., 2019; Bapna et al., 2019).
These layers are then finetuned, adapting the model to new tasks, including knowledge
transfer between multiple models (Wang et al., 2020). By inserting a new layer just before
the embedding layer of a model that approximates the behavior of an adapter from one
model’s embedding space to another, we can make use of a weighted combination models
to solve tasks without requiring a specific architecture nor requiring additional fine-tuning.
By allowing the gradients to flow freely across models with different tokenizers and em-
bedding spaces, we can optimize prompts for zero-shot tasks leveraging the knowledge
within multiple models with relatively little overhead.

3 Methodology

Before going into detail on our approach, we first introduce key concepts and notation that
will be necessary for understanding our method. Throughout this work, scalars, vectors,
matrices, and tensors are denoted as lowercase, a, bolded lowercase a, uppercase A, and as
uppercase with a tilde Ã, respectively.

3.1 Language Model Embeddings

Given a string, a tokenizer maps it to a set of tokens, t ∈ {0, ..., |V|}s, where s is the length
of the tokenized string and |V| is the number of unique tokens in the tokenizer. The model
then applies a mapping E : {0, ..., |V|}s → Rs×d which indexes these tokens across a dis-
crete set, mapping each to a unique d-dimensional embedding, E ∈ Rs×d.

Alternatively, we can represent the embedding function (E ) itself as a matrix, V ∈ R|V|xd,
where each row corresponds to the embedding vector for a specific token in the vocabulary.
By representing the tokens as one-hot encodings over the vocabulary, X ∈ {0, 1}s×|V|, we
can express the embedding vectors with a lookup operation E = XV. In this framing, V is
both a matrix and denotes the set of discrete embedding vectors for a model.

With this set of preliminary information in hand, we proceed to outline our approach, start-
ing from the simple case in which models share a tokenizer, but have different embeddings
(i.e., strings will always be tokenized to the same t, but the embedding mapping, E(t) dif-
fers between models. We then build on this case and extend it to the case in which models
tokenize words differently and have different embedding mappings (i.e., words may be
separated arbitrarily, the model vocabularies have different lengths, and each embedding
may have a different dimensionality across models).

For the latter case, understanding how to multiply tensors is crucial for our approach.
When working with tensors of order greater than 2, their multiplication has been well-
defined in terms of the t-product operator, ∗ (Kilmer & Martin, 2011). The t-product defines
an associative and left/right distributive multiplication operation of Ã ∈ Rm×k×p1×···×pn

and B̃ ∈ Rk×n×p1×···×pn , where Ã ∗ B̃ ∈ Rm×n×p1×···pn . We also make use of the folding
and unfolding operation introduced alongside the t-product that reshapes an Rd1×d2×···×dn

tensor into a partitioned tensor in Rd1dn×···×dn−1 tensor and back,

unfold(X̃) =
[
X̃1 X̃2 · · · X̃n

]T fold(unfold(X̃)) = X̃.

Note that Kilmer & Martin (2011) require, Ã and B̃ to have their first two dimensions of the
appropriate shape for matrix multiplication and each of the remaining dimensions must be
the same size, however this product can also be generalized to arbitrary tensor sizes as long
as the first two dimensions are appropriate sizes for matrix multiplication. See Appendix
A for a further primer on the t-product and this generalization.

The key idea in our work is that while current tokenizers may split the same word arbi-
trarily, they always respect white-space separation. We can build shared representations
across embedding spaces by focusing on groups of white-space separated tokens and their
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embeddings, represented as third order tensors, rather than individual tokens and embed-
dings represented by matrices. In doing so, we find that we can approximate the gradient
of a language model’s output with respect to another model’s embedding space solely in
terms of the first model’s embedding of a string and a precomputed tensor.

3.2 Shared Tokenizers

Recall that the embedding of a set of tokens for model i, can be represented as, Ei = XVi,
where X is a one-hot encoding across the vocabulary, Vi

2. Our goal is to solve a multi-
objective optimization over K models, in which each model is solving a different task
whose loss is computed with a differentiable Li(Ei).

arg min
X

K

∑
i=1
Li(XVi). (1)

As each model uses the same tokenizer, X is shared for each model. This problem can
clearly be solved via any off-the-shelf optimizer. However, consider the pedagogical case
in which we want to directly optimize the embedding vectors, Ei, instead of the one-hot
encodings. Solving equation (1) becomes less clear. One approach is to choose one model
to be the primary model, and use its embeddings as input to all other models by introducing
an adapter Ti:j : Vi → Vj that maps from model i’s vocabulary to model j’s vocabulary.
With the introduction of Ti:j, we only optimize in the primary model’s embedding space
and our objective becomes,

arg min
Ei

Li(Ei) + ∑
j ̸=i
Lj(Ti:j(Ei)). (2)

With a differentiable representation of Ti:j, then this equation can be solved via gradient-
based optimization. However, as the vocabulary matrices are not square, they are not
invertible; we cannot directly map from the embedding space to back to token space. We
instead approximate a linear map for Ti:j using the Moore-Penrose inverse (pseudoinverse)
of the model’s vocabulary, V+

i = VT
i (ViVT

i )−1. By using the pseudoinverse, EiV+
i ≈ X, we

can substitute EiV+
i for every instance of X in Equation (1) and set Ti:j(Ei) = Ej ≈ EiV+

i Vj.
The gradient of Equation (2), is then a simple application of the chain rule,

∇EiLj(Ti:j(Ei)) ≈
(
∇EjLj(Ej)

)
V+

i Vj. (3)

Pay particular attention to the fact that the approximate gradient is no longer dependent
on the embedding of the model that we want to map from, only on the embedding that we
want to map to. We can thus map Ei to Ej in a non-differentiable way (e.g., convert back to
text and retokenize), compute the gradient of the loss for model j, with respect to its own
embeddings, and then multiply this gradient by V+

i Vj to approximate the gradient of the
loss of any secondary model with respect to the embeddings of the primary model. This
enables us to freely have access to noisy descent methods across a variety of models and
zero-shot tasks, while only keeping track of a single di × dj matrix per additional model.

3.3 Different Tokenizers

While the previous section enables gradient-based methods directly on the embedding
space, it relies on models tokenizing words in the same way. For example, if we tokenize
the word “Happy”, equation (3) assumes that the k-th token in every model’s vocabulary
is the embedding for “Happy”. But when using different tokenizers, this is no longer true.
If one model tokenizes the word “Happy” as {‘Ha’,‘ppy’} and another as a single token,
{‘Happy’}, equation (3) gives incompatibly sized gradients in R2×d and R1×d. The primary
question becomes: “How do we reconcile these incompatible gradients?”

2Note that Vi uses the subscript i to denote the vocabulary of a particular model, not the token
index within a model’s vocabulary.
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Ṽi =



[ the ] , [ Ø ]
[ qui ] , [ ck ]
[ br ] , [ own ]
[ fox ] , [ Ø ]
[ j ] , [ umps ]
[ over ] , [ Ø ]
[ the ] , [ Ø ]
[ l ] , [ azy ]
[ dog ] , [ Ø ]


Ṽj =



[ the ] , [ Ø ]
[ q ] , [ uick ]
[ brown ] , [ Ø ]
[ fox ] , [ Ø ]
[ jump ] , [ s ]
[ ov ] , [ er ]
[ the ] , [ Ø ]
[ lazy ] , [ Ø ]
[ d ] , [ og ]



Figure 1: An R9×d×2 tensor vocabulary over words: “the quick brown fox jumps over the
lazy dog”. Each plain-text word represents its corresponding Rd embedding, and each Ø
is a 0 vector. We approximate the gradient for a mapping from modelMi’s embeddings to
Mj’s embeddings by computing the t-product Ṽ+

i ∗ Ṽj, where Ṽ+
i .

Consider a case in which we split a string into a batch of its component white-space sepa-
rated words and then compute the gradient of some function over each word in the batch.
Even if words are tokenized differently, the total derivative with respect to a word’s multi-
token representation still provides information on a loss-minimizing direction.

We therefore propose an embedding representation that focuses on batches of words, rather
than individual tokens, by introducing split and merge 3 operations analogous to the fold
and unfold operations used by Kilmer & Martin (2011) when defining the t-product.

split(E) =
(
Ẽ1 Ẽ2 · · · Ẽk

)
merge(split(E)) = E,

where Ẽi ∈ R1×d×li is the third-order tensor representation of the a set of tokens in E, and
li are the number of tokens that make up the word represented by Ẽi. The split operation
does not return a tensor (denoted by the change from brackets to parenthesis) but a list of
tensors where each element is a whitespace-separated set of tokens in the original string
that can have variable length, li 4. The merge operation stacks these tensors back into their
original shape. Using the limited vocabulary in Figure 1 (and denoting each embedding
vector in Rd as the plain-text token that it represents), calling ‘split’ on an embedding,
ϵ ∈ R6×d that represents the phrase: “the quick brown fox”, gives

split(ϵ) =
([[

the
]] [[

qui
][

ck
] ] [ [

br
][

own
]] [[

fox
]])

.

Using this lens, we extend the second-order vocabulary tensor to a third-order tensor, Ṽ ∈
Rw×l×d, where w are the number of words that that can be represented by the original
vocabulary V using at most l tokens. Any set of tokens that requires fewer than l tokens to
represent is assumed zero-padded. See Figure 1 for an example of Ṽ across two models.

Importantly, Jin et al. (2017) have shown the Moore-Penrose inverse still exists for arbitrary
tensors under the t-product. We can therefore reuse the ideas in section 3.2, however, rather
than matrix multiplication, we instead use the tensor t-product. If the embedding for a
word is represented as

Ẽ = X̃ ∗ Ṽ X̃ = fold([X 0 · · · 0]),

where Ẽ ∈ Rs×d×l , X̃ ∈ {0, 1}s×|V|×l is the one-hot tensor encoding for the t-product and
X ∈ {0, 1}s×|V| is the matrix one-hot encoding. We can construct Ẽi and Ẽj with a sys-
tem of equations and follow the same process from Section 3.2 to compute a differentiable

3For clarity, we simplify the split and merge operations throughout this section. Each split and
merge are specific to a model and both have access to the original string that the embeddings repre-
sent. A more formal notation may be, spliti

S(E), however this may introduce unnecessary confusion
for the reader. Throughout 3.3, assume that split and merge have all necessary information to shape
tensors into their appropriate shapes for each operation.

4For convenience, we also define the split operation to be distributive for any arbitrary function,
except for the merge function that acts as an inverse. f (split(E)) =

(
f (Ẽ1) f (Ẽ2) · · · f (Ẽk)

)
.
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Fuse Adapter
Forward Pass

Backward Pass

Convert to Plain Text
Retokenize With 

Tokenizer 2
Input Embedding

Shifted Embedding 

Input Embedding

Shifted Embedding 

Model 1

Model 2

Figure 2: The FUSE adapter connecting two transformer models for parallel inference. In-
puts from Model 1 flow through the adapter by converting to text, retokenizing with Model
2’s tokenizer, and embedding into Model 2’s input space. The backward pass receives the
gradient from Model 2, and multiplies it by the precomputed Ṽ+

1 ∗ Ṽ2.

approximation to X̃ that can be reused across the models i and j, Ẽj ≈ Ẽi ∗ Ṽ+
i ∗ Ṽj. In

this case, we overload notation from Ti:j and allow T to be a differentiable map between
tensors of words, rather than tokens. Equation (2), can then be rephrased in terms of sets
of whitespace-separated tokens, where ‘merge(Ti:j(split(Ei)))’ is simply a mapping of an
embedding from model i to model j in terms of our tensor-based vocabulary,

arg min
Ei

Li(Ei) + ∑
j ̸=i
Lj

(
merge(Ti:j(split(Ei))

)
. (4)

Every Ẽ in split(E) =
(
Ẽ1 Ẽ2 · · · Ẽk

)
may have a potentially different length l, so

if Ẽ1 is the embedding for a model that tokenizes the word “Happy” with two tokens,
{‘Ha’,‘ppy’} and Ẽ2 has been constructed from a model that tokenizes it as a single to-
ken, {‘Happy’}, we still need to ensure Ṽ+

i ∗ Ṽj are of appropriate sizes to compute the
product. We can accomplish this by conditioning the mapping Ṽ+

i ∗ Ṽj on the length, l of
Ẽ ∈ Rw×d×l , and keep track of specific Ṽ+

i ∗ Ṽj maps across ‘sub’-vocabularies in which
Vj is comprised only of words that require l tokens to represent. When computing the
gradients, we simply check how many tokens each word requires and use the appropriate
Ṽ+

i ∗ Ṽj. See Algorithm 2 in Appendix B for a full description.

During a backward pass, we split the gradient from model j into a set of tensors that have
the same shape as calling ‘split’ on the original embeddings. We compute a final, approx-
imate gradient by first converting model i’s embedding to text and then to model j’s em-
bedding space, before computing the gradient of model j’s loss with respect to the correct
embeddings. This gradient is then split apart and separated using the split operation and
each piece is multiplied by the appropriate Ṽ+

i ∗ Ṽj based on its token length, before being
merged back together into the appropriate gradient size for Ei (see Figure 2 for a visualiza-
tion and Algorithm 1 for pseudocode),

∇EiLj

(
merge(Ti:j(split(Ei)))

)
≈ merge

(
(Ṽ+

i ∗ Ṽj) ∗ split(∇EjLj(Ej))

)
. (5)

Just as in the case where we have the same tokenizer across models, this allows us to
approximate the gradient across the tokenizers, enabling us to freely use gradient-based
optimizers, while needing to store a set of parameters of size di × dj ×

(
∑l

i=1 i
)

tensor. In
theory this l could be very large, however, in practice we limit l to a reasonable number,
l = 4 as we expect the number of words that require more than 4 tokens to be fairly rare.
For example, the Llama Tokenizer (Touvron et al., 2023) requires only 4 tokens to represent
97.6% of the text in the BookCorpus (Zhu et al., 2015) dataset.
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Algorithm 1: Pseudocode for computing the FUSE Adapter backward pass.

Input: Gradient from model j: ∇xj f (xj)

Input: List of (V+
i ∗Vj). List index corresponds to size of third tensor dimension

Output: Gradient w.r.t. model i’s embedding
1 L← split(∇xj f (xk)) // Split gradient wrt each word

2 G ← empty list
3

// For each word’s gradient
4 for k← length(L) do
5 m← Sequence Length(L[k]) // Tokens in this word

6 T ← (V+
i ∗Vj)[m] // Index (V+

i ∗Vj) based on token count

7 G[k]← L[k] ∗ T // Compute Tensor Product

8 ∇xi f (Ti:j(xi)) = merge(G) // Stack to matrix

9 return ∇xi f (Ti:j(xi))

4 Experiments

4.1 Datasets

We show that our approach effectively transfers knowledge across multiple models by
focusing on two tasks: image captioning and image captioning with sentiment using the
following datasets:

MS-COCO (Karpathy Test Split) (Lin et al., 2014) COCO provides 5000 images each with
5 human-annotated captions, allowing for the evaluation of image captioning quality.

NoCaps-Val (Agrawal et al., 2019) This dataset seeks to provide a more varied set of ob-
jects and concepts than included in MS-COCO. This dataset consists of 10600 test and 4500
validation images sourced from the Open Images (). Each image is accompanied by 10
human-annoted captions. The dataset is separated into an “in-domain”, “near-domain”,
and “out-domain” splits that describe the degree to which the subset contains object classes
common to MS-COCO images. Here we caption all images in the validation set.

SentiCap (Mathews et al., 2016) This dataset consists of 2360 images from the COCO
Karpathy validation split, each with 6 new captions for each image, 3 positive sentiment
captions and 3 negative sentiment captions. We use this dataset to investigate the ability to
control the sentiment of a caption via a pretrained sentiment classifier.

4.2 Implementation Details

For the above datasets, we construct a simple captioner via a multi-objective optimization:

E∗ = arg min
E
LCE( fθ(E), E) + α1 ·CLIPθ(T f :CLIP(E), I) + α2 · LCE(g(T f :g(E)), s) (6)

This equation minimizes the sum of the clip similarity between an image and the em-
bedding, the cross entropy between this embedding and an arbitrary language model’s
output, and the correctness of the sentiment as determined by a BERT-based sentiment-
classifier. Here f is a pretrained language model (e.g., GPT2-Medium Radford et al.
(2019)), g is a sentiment classifier, LCE is the cross-entropy loss, T f :CLIP is the mapping
from the language model’s embeddings to CLIP’s embeddings, T f :g is the found map-
ping from the language model’s embeddings to the sentiment classifier’s embeddings,
s ∈ {positive, neutral, negative} is the desired sentiment, and αi is a scalar weight. When
captioning without sentiment, we set α2 = 0. In order to better compare with prior zero-
shot methods, we use GPT2-Medium as our language model, and VIT-B/32 for CLIP and
a Bert-based sentiment classifier5.

5cardiffnlp/twitter-roberta-base-sentiment-latest
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No
Sentiment

A typical pizza from the
Norfolk website.

A cow grazing on a patch
of bush close to where she
lived.

A flower pot in the gar-
den of the terrace house.

A player hitting a home
run. Photo: Sierra Vista
College.

Positive A pizza made with or-
ganic ingredients. Photo:
Fairfax

A cow grazing on a hedge
in front of the village.

One of the flowers stands
on a pot in a garden out-
side a house in

The ball hitting the back
of the built-in sliding bat.
Note the

Negative A pizza being served to a
group of students demon-
strated how widespread
this behaviour is.

A cow in front of a ditch
in the southeast country-
side.

A white bucket with a red
flower on it has been

A man hitting and stomp-
ing on a college senior

Figure 3: Example Captions that using a FUSE Adapter to minimize the sum of GPT2-
Medium, CLIP-VIT-B/32, and a Bert-based Sentiment Classifier via AutoDAN (Zhu et al.,
2023). This combination of models controls through synonyms that indicate tone or
through creating additional context for each image to denote tone. Note that AutoDAN
does not have a clear stopping condition, a caption may stop in the middle of a sentence.

When fitting FUSE, we limit it to computing gradients of words that require 4 or fewer
tokens. We fit the adapter using 16384 random words from the Wiki-Text dataset for each
case where words require less than 4 tokens as described in Section 3.3 and Algorithm 2. If a
word uses more than 4 tokens to represent, we treat the Jacobian used by FUSE as a random
matrix, expecting further optimization steps to insert a token with white-spacing, reverting
to the setting that the adapter is fit to. Fitting the adapter for the models considered in
our experiments requires only 4 minutes and 22 seconds on a standard workstation with
32GB of memory. As shown in Figure 2, during optimization, the forward pass consists
of a mapping from embeddings to text and back again, limited only by the time required
to perform this mapping. During the backward pass we only require a single t-product,
which consists of the sum of m2 matrix multiplications, where m is the number of tokens
that make up each word.

We then use the discrete optimizer AutoDAN Zhu et al. (2023) to optimize the objective.
In contrast to methods like, (Zou et al., 2023) and (Wen et al., 2024), AutoDAN optimizes
a prompt one token at-a-time by first computing the log probabilities of the next token
using our given language model and some prefix, and adds these logits to the negative
gradient of the objective. This sum returns a set of scores that describe an estimate of the
improvement in the loss for each token. We choose the top 512 candidates and compute
the true error to determine the best token update. Unlike AutoDAN, which performs this
search greedily, we also use a beam search with a beam width of 5 when searching through
the space of token updates. All captions use the prefix ”An image of” at initialization.

We assess the FUSE Adapter’s performance for image captioning using standard super-
vised metrics: BLEU-N (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), CIDEr
(Vedantam et al., 2015), SPICE (Anderson et al., 2016) that measure caption quality against
human-written references, evaluating captions for n-gram overlap (BLEU-N), semantic
similarity (METEOR), content alignment (CIDEr), and grammatical coherence (SPICE).

5 Results

5.1 Image Captioning

In Table 1, we show our results on MS-COCO and NoCaps-Val. As with other zero-shot
captioning methods, without domain bias for human captions, we do not expect that we
will be able to achieve the same level of performance as models that have been finetuned
for captioning. However, among zero-shot methods, our approach significantly improves
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Metrics MS-COCO NoCaps-Val (Overall)

B-4 M C S C S

Supervised Methods

BLIP-2 (Li et al., 2023) 43.7 - 145.8 - 119.7 15.40
mPLUG (Li et al., 2022) 46.5 32.0 155.1 26.0 114.8 14.8
OFA (Wang et al., 2022) 44.9 32.5 154.9 26.6 - -
CLIP-VL (Tewel et al., 2021) 40.2 29.7 130.3 23.8 - -
VinVL (Zhang et al., 2021) 40.9 30.9 140.4 25.1 90.4 13.07
LEMON-B (Hu et al., 2022) 40.3 30.2 133.3 23.3 79.0 12.3
ClipCap (Mokady et al., 2021) 32.2 27.1 108.35 20.12 65.7 11.1

Zero Shot Methods

ZeroCap (Tewel et al., 2022) 2.60 11.50 14.60 5.50 - -
ConZIC (Zeng et al., 2023) 1.29 11.23 13.26 5.01 - -
Ours ( GPT2-M + VIT-B/32 ) 1.59 14.72 15.93 9.15 20.65 6.64

Table 1: Comparison of SOA image captioning methods.

among most of our metrics. Moreover, we see a significantly larger increase in the SPICE
score over our zero-shot comparison methods; our caption generation process returns more
grammatically consistent text as the comparisons. This is likely due to using AutoDAN as
our discrete optimizer, which places weight on not just the objective but the direct prob-
abilities of each new token before computing the cross-entropy over GPT2-M’s logits. As
our discrete optimizer determines candidates based on the gradient of Equation (6), the ob-
served performance necessitates that the gradient of the CLIP similarity between the image
and the CLIP’s text embeddings, with respect to GPT2-M’s text embedding is meaningful.

5.2 Captioning with Sentiment

Table 2 shows our method’s performance on image captioning with sentiment. As in the
standard captioning task above, we see that combining CLIP-VIT-B/32, GPT2-M, and a
Bert-based sentiment classifier, successfully finds a caption that aligns well with the se-
mantic content of the reference. But, we are less accurate in the found sentiment than the
comparison methods. While most methods insert descriptive adjectives that denote senti-
ment, at every step we are trying to minimize both the image similarity and the sentiment.
As a result, our approach finds synonyms that connote the sentiment. For example, in
Figure 3, a negative caption replaces the “flower pot” with “bucket”. In the context of a
replacement word for ‘flower pot” bucket carries a more negative sentiment, however, at
face value, “a bucket with a red flower” is a neutral statement. Again, our results are not
focused on improving over other methods in terms of performance on such datasets, but
showing that the FUSE Adapter provides meaningful gradients in its backward pass. The
changes to the standard captions elicited by the BERT-based sentiment classifier also neces-
sitate that each gradient step is carrying information from both the image and sentiment.

6 Conclusion and Future Work

In this work, we propose a novel approach for approximating gradients across models
and tokenizers during prompt optimization. We introduce an adapter that precisely maps
across token and embedding spaces in the forward pass. By leveraging a precomputed lin-
ear transformation, we efficiently approximate the behavior of a true differentiable map-
ping between embedding spaces during the backward pass. This adapter not only im-
proves accessibility for knowledge transfer tasks for prompt optimization, but also unlocks
potential new tasks by allowing for easy compositions of distinct models.

We demonstrate the potential of our approach on zero-shot image classification tasks,
where combining a language model, a vision-language model, and a Bert-based sentiment
classifier in a multi-objective optimization, we achieve superior results to prior zero-shot
image captioning methods. This suggests that despite being an approximation our gradi-
ent carries meaningful information.
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Metrics Positive Negative

B-3(↑) M(↑) Acc(↑) B-3(↑) M(↑) Acc(↑)

Supervised

StyleNet (Gan et al., 2017) 12.1 12.1 45.2 10.6 10.9 56.6
MSCap (Guo et al., 2019) 16.2 16.8 92.5 15.4 16.2 93.4
MemCap (Zhao et al., 2020) 17.0 16.6 96.1 18.1 15.7 98.9
ADS-CAP (Cheng et al., 2022) 18.9 18.5 99.7 21.0 18.0 98.2

Zero Shot

ConZIC (Zeng et al., 2023) 1.89 5.39 97.2 1.78 5.54 99.1
Ours ( GPT2-M + VIT-B/32 + Roberta) 1.91 10.40 83.8 2.29 7.42 85.6

Table 2: Comparison of SOA sentiment-based image captioning methods.

While this work introduces a simple adapter, researchers and organizations may prefer
learning an actual mapping through supervised learning of a transformer to translate from
one embedding space to another. Yet, the compute necessary for such a task may not
be universally available. We believe that FUSE may serve a valuable purpose in low-
resource/low-compute settings, in which researchers may want to do inference across
models, yet be unable to train a true adapter. Additionally, this approach may be use-
ful in fast-paced environments, where FUSE can be used as a low-cost preliminary test for
more involved methods requiring a well-trained adapter.

Our work presents an initial step to making prompt optimization more accessible and scal-
able. Future research may explore more memory and storage-efficient approaches while
improving upon the accuracy of our proposed method. Since this work approximates a
differentiable map from one discrete space to another, it is important to note that the tradi-
tional concept of a gradient does not apply, as such traditional ways of validating gradient
approximations were unavailable. Future work may introduce comprehensive validation
methods for mappings and gradients from one discrete embedding space to another. Our
work also opens the door for further investigations of techniques that mitigate the storage
costs associated with longer sequences and integrating more advanced mapping approxi-
mations. While there remain areas to build on, our approach holds promise for improving
methods of prompt optimization, particularly in resource-constrained settings, and lays
the groundwork for future innovations in cross-model interactions.
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A Tensor Products

Recall that the order (aka. modes or ways) of a tensor is the number of dimensions that
make it up. Kolda & Bader (2009) have used one dimensional fibers or two dimensional
slices to define tensors, where a third-order rank one tensor is defined as,

Ã = a ◦ b ◦ c,
where ◦ denotes the outer product operation between vectors a and b, defined as

a ◦ b =


a0b0 · · · a0bn
a1b0 · · · a1bn

...
. . .

...
anb0 · · · anbn

 A ◦ b = [A0b0 A1b1 · · · Anbn]

Multiplication between tensors has been introduced in Kilmer & Martin (2011), in terms of
the ciruclant matrix, where,

a = [a0 a1 a2 a3]
T

then

circ(a) =

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

 .

In order to multiply tensors, we first, we define an unfolding operation that reshapes an
Rd1×d2×···×dn tensor into a partitioned tensor in Rd1dn×···×dn−1 tensor and we conversely
define a fold operation to reshape the tensor back into its original shape,

unfold(X̃) =
[
X̃1 X̃2 · · · X̃n

]T fold(unfold(X̃)) = X̃. (7)

Using this notation, Kilmer & Martin (2011) defines the t-product between tensors recur-
sively as,

Ã ∗ B̃ = fold(circ(unfold(Ã))) ∗ unfold(B̃))

= fold(
[

Ã0 Ã1
Ã1 Ã0

]
∗
[

B̃0
B̃1

]
)

= fold(
[

Ã0 ∗ B̃0 + Ã1 ∗ B̃1
Ã1 ∗ B̃0 + Ã0 ∗ B̃1

]
),

where circ is the circulant matrix. It is well known that the circulant matrix has a strong
connection to circular convolutions as shown in Bamieh (2018). We can thus think of the
t-product as a convolution with circular padding,

Ã ∗ B̃ =
[
Ã0 Ã1

]
⊗

[
B̃0 B̃1 B̃0

]
,

where ⊗ denotes a convolution of Ã across B̃, using the t-product instead of the matrix
multiplication. In this way, we can express a generalization of the t-product. Kilmer &
Martin (2011) defined the t-product in terms of, Ã ∈ Rm×k×p1×···pn and B̃ ∈ Rk×n×p1×···pn ,
where Ã and B̃ must have their first two dimensions of the appropriate shape for matrix
multiplication and each of the remaining dimensions must be the same size for both ten-
sors.

As a circular convolution, we can allow arbitrary tensor products as long as the tensors
are of the same order by applying circular padding. For example, if Ã ∈ Rm×k×2 and
B̃ ∈ Rk×n×4, we can express the product as,

Ã ∗ B̃ =
[
Ã0 Ã1

]
⊗

[
B̃0 B̃1 B̃2 B̃3 B̃0

]
∈ Rm×n×4

Note that this product is equivalent to that described in Kilmer & Martin (2011) when Ã
and B̃ have the same sized dimensions after dimension 2. Moreover, it is easy to verify
that this generalization still follows the same rules of distributivity and associativity as the
standard t-product.

14



Published as a conference paper at COLM 2024

B Precomputing the Gradient V+
i Vj

Algorithm 2: Precomputing the Gradient V+
i Vj for words that are tokenized to l tokens

Input: Text Corpus C, Language modelsMi andMj
Output: Gradient V+

i Vj
1 l ← only consider words that require l tokens inMj;
2 Ti, Tj ← Tokenizer of modelMi,Mj;
3 Ei, Ej ← Mapping from token to embedding ofMi,Mj;
4 di, dj ← Dimensionality ofMi,Mj embeddings;
5 W ← ∅ ; // Initialize an empty list
6 k← 0 ; // keep track of max size to tokenize with Ti
7 foreach word in C do
8 if word /∈W then
9 tj ← Tj(word) ; // Tokenize a single word

10 k← max(k, |Ti(word)|) ; // update k
11 if |tj| = l then
12 W ←W ∪ {word} ; // Add to list if exactly l tokens in j

13 Vi ← initialized zero tensor of |W| rows, di columns, and depth l;
14 Vj ← initialized zero tensor of |W| rows, dj columns, and depth k;
15 for m← 1 to |W| do
16 tj ← Tj(W[m]) ; // Tokenize word W[m] with tokenizer j
17 ti ← Ti(W[m]);
18 for n← 1 to |tj| do
19 (Vj)w,:,m ← (Vj)[m, :, n] + Ej((tj)[n]) ; // Add the embedding of tj to Vj

20 for n← 1 to |ti| do
21 (Vi)w,:,m ← (Vi)[m, :, n] + Ei((ti)[n]) ; // Add the embedding of ti to Vi

22 V+
i ← Pseudoinverse( Vi ) ; // According to Jin et al. (2017)

23 ∇Ei Ti:j(Ei)← V+
i ∗Vj ; // Compute the t-product

24 return ∇Ei Ti:j(Ei)
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