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Abstract001

This paper introduces ThoughtProbe, a novel002
inference-time framework that leverages the003
hidden reasoning features of Large Language004
Models (LLMs) to improve their reasoning per-005
formance. Unlike previous works that manip-006
ulate the hidden representations to steer LLM007
generation, we harness them as discriminative008
signals to guide the tree-structured response009
space exploration. In each node expansion, a010
classifier serves as a scoring and ranking mech-011
anism that efficiently allocates computational012
resources by prioritizing higher score candi-013
dates for continuation. After completing the014
tree expansion, we collect answers from all015
branches to form a candidate answer pool. We016
then propose a branch-aggregation method that017
marginalizes over all supporting branches by018
aggregating their CoT scores, thereby identify-019
ing the optimal answer from the pool. Experi-020
mental results show that our framework’s com-021
prehensive exploration not only covers valid022
reasoning chains but also effectively identi-023
fies them, achieving significant improvements024
across multiple arithmetic reasoning bench-025
marks.026

1 Introduction027

Chain of Thought (CoT) reasoning has emerged as028

a pivotal approach for enhancing LLMs’ problem-029

solving capabilities(Wei et al., 2022). However,030

eliciting this capability from pre-trained base031

LLMs typically requires expensive post-training or032

carefully designed prompting strategies(Yao et al.,033

2023; Kojima et al., 2022; Hoffman et al., 2024).034

Recent research demonstrates that LLMs’ in-035

ternal hidden representations serve as meaningful036

proxies for CoT behaviors, revealing a correspon-037

dence between reasoning patterns and specific lin-038

ear features within the internal activation space(Ye039

et al., 2024). This correspondence has given rise to040

two distinct insights for leveraging representations041

to improve reasoning performance. The first in- 042

sight adopts a causality perspective, viewing hidden 043

representations as causal factors that influence the 044

CoT generation. This has led to activation steering 045

techniques that manipulate representations along 046

specific directions to enhance reasoning capabil- 047

ities(Hong et al., 2025; Tang et al., 2025; Højer 048

et al.). 049

Despite promising results, such approaches face 050

inherent limitations. Direct manipulation risks dis- 051

rupting the model’s internal representational struc- 052

ture, potentially pushing activations out of distri- 053

bution and degrading linguistic quality(von Rütte 054

et al., 2024; Da Silva et al., 2025). Moreover, the 055

high-dimensional nature of the latent space makes 056

it challenging for a single linear direction to cap- 057

ture the complexity of reasoning features, which 058

often involve intricate patterns spanning multiple 059

cognitive dimensions(Luo et al., 2024; Bo et al., 060

2025). 061

In this work, we adopt an alternative perspective, 062

which recognizes the strong correlation between 063

hidden representations and the manifestation of 064

CoT in generated text. Rather than manipulating 065

representations to steer LLM generation, we lever- 066

age their discriminative capacity as indicators to 067

detect reasoning patterns within the model’s natural 068

outputs. Through rigorous empirical investigation, 069

we first demonstrate that representations exhibit 070

remarkable power in distinguishing between CoT 071

and non-CoT content, particularly within specific 072

representation types and network layers, as evi- 073

denced by a simple classifier’s performance. Also, 074

we show the classifier is a reliable evaluator that 075

can assign higher scores to high quality CoT con- 076

tent, supported by both theoretical evidence and 077

empirical validation. 078

Building on these findings, we present Thought- 079

Probe, a novel inference-time computational frame- 080

work that effectively explores CoT paths via re- 081

sponse space exploration. Specifically, Thought- 082
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Figure 1: Pre-trained LLMs could naturally generate both CoT and non-CoT responses when sampling multiple
times, and hidden representations provide a strong signal for discriminating them.

Probe systematically explores the response space as083

an iterative tree expansion process, with the input084

question as the root node, and branches as the can-085

didate CoT paths. At each expansion step, multiple086

token sequences are generated in parallel as candi-087

date child nodes, whose CoT score is evaluated by088

the classifier through probing their hidden represen-089

tations. By prioritizing higher scoring candidates090

for continuation, we efficiently allocate computa-091

tional resources and increase the likelihood of in-092

cluding correct reasoning paths in our exploration093

tree. This exploration process continues until either094

reaching the termination token or exhausting the095

computational budget.096

Upon completion of tree expansion, we obtain097

multiple branches, each leading to a candidate an-098

swer, forming a comprehensive answer pool. To de-099

termine the optimal one, rather than using Best-of-100

N sampling(Huang et al., 2025; Sun et al., 2024a),101

we propose a branch-aggregation selection through102

value marginalization that considers CoT score103

across all branches leading to each candidate an-104

swer. Specifically, the value of each answer is105

computed by aggregating the CoT score of all its106

supporting branches, with the final answer selected107

as the one that achieves the highest marginal value.108

Experiments on multiple reasoning benchmarks109

demonstrate that ThoughtProbe consistently out-110

performs existing inference-time computing meth-111

ods, achieving significant improvements over both112

sampling-based methods (e.g., self-consistency)113

prompting-based techniques (e.g., zero-shot CoT114

and ToT) and activation-steering method. Our115

work provides new insights into enhancing LLMs’116

reasoning capabilities without requiring expensive117

fine-tuning or elaborate prompting strategies, and118

opens up promising directions for developing more 119

robust reasoning systems that can effectively lever- 120

age the model’s internal representations. 121

2 Preliminary 122

2.1 LLMs Architecture and Hidden 123

Representation 124

To provide a foundation for the discussion, we first 125

describe the basic structure of a Transformer-based 126

LLM architecture (Vaswani, 2017). The input text 127

is initially tokenized into a sequence of tokens, 128

which are then mapped to embeddings to form 129

the initial representation sequence x(0) ∈ RT×demb . 130

Here, T is the sequence length, and demb is the 131

embedding dimension. 132

The embeddings are then processed through mul- 133

tiple Transformer layers. In each layer l, its hidden 134

representations are composed of three components: 135

activations from multi-head self-attention (MHA), 136

multi-layer perceptron (MLP), and residual connec- 137

tions. This process can be formulated as: 138

a
(l)
attn = MHA(h(l)) (Attention activations) 139

a
(l)
mlp = MLP(a(l)attn + h(l)) (MLP activations) 140

h(l+1) = a
(l)
mlp + a

(l)
attn + h(l) (Hidden states) 141

2.2 LLMs Reasoning Structure 142

Reasoning structures typically manifest in two fun- 143

damental topologies: sequential chains and branch- 144

ing trees. The chain structure reflects the step- 145

by-step nature of logical deduction, while the tree 146

structure captures the exploration of multiple po- 147

tential reasoning paths. Below, we formally de- 148

fine these structures and their probabilistic formu- 149

lations. 150
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Reasoning Chain: For an input question Q, a151

reasoning chain is defined as a sequence of interme-152

diate thought steps R = [Q, r1, r2, ..., rN ], leading153

to a final answer A. Here, ri represents an inter-154

mediate thought at the i-th step, and N denotes155

the chain length. The answer can be extracted by156

appending a trigger prompt at the end of the chain,157

like “Therefore, the answer is". The probability of158

generating such a chain can be formalized as:159

P (R,A|Q) = P (r1|Q)

N∏
i=2

P (ri|Q, r1:i−1)160

· P (A|Q,R)161

where P (r1|Q) is the probability of the first step,162

P (ri|Q, r1:i−1) is the probability of the i-th step,163

and P (A|Q,R) is the probability of the final an-164

swer. At each step i, a new thought ri is appended165

to form R = [Q, r1, ..., ri−1, ri].166

More specifically, each reasoning step ri is itself167

a token sequence, which can be further decom-168

posed as:169

P (ri|Q, r1:i−1) =

Ti∏
t=1

P (rti |Q, r1:i−1, r
1:t−1
i )170

where, rti denotes the t-th token in the i-th reason-171

ing step, Ti represents the total number of tokens172

in the i-th step, r1:t−1
i represents the previously173

generated tokens in the current step. In each token174

generation, the hidden representation Rep(rti) of175

token rti is accessible for probing.176

Branching Chains into Trees: By sampling177

diverse tokens at each reasoning step, a single chain178

can branch into a tree structure, where Q serves as179

the root node, each node represents an intermediate180

reasoning step. This tree-based expansion explores181

multiple reasoning branches simultaneously and182

can increase the probability of covering the correct183

reasoning chain and answer. At each step ri, we184

could sample k different continuations:185

{r1i , r2i , ..., rki } ∼ Pk(ri | Q, r1:i−1)186

Here, rji represents the j-th sampled continu-187

ation at step i. Each root-to-leaf chain forms a188

distinct branch, leading to its answer, and col-189

lectively these branches generate an answer pool190

A = {A1, A2, ..., Ap}.191

While the tree structure improves solution cov-192

erage, it introduces two key challenges: (1) Can-193

didate Selection: How to evaluate and prioritize194

promising children nodes in each exploration step?195

(2) Answer Determination: How to select the opti-196

mal answer from the pool A?197

3 ThoughtProbe: Classifier-guided 198

Reasoning Tree Exploration 199

This section presents our ThoughtProbe framework 200

that guide the response space exploration where 201

the guidance signal is derived by probing repre- 202

sentations. We first validate the discriminative 203

power of representations in discriminating CoT and 204

non-CoT responses through comprehensive prob- 205

ing experiments across different LLMs. We then 206

introduce a classifier-guided beam search algorithm 207

that systematically explores the response space to 208

construct a diverse answer pool. Finally, we pro- 209

pose marginalization methods to aggregate these 210

answers based on CoT score, enabling effective 211

optimal answer selection. 212

3.1 Probing Representations 213

Setup We construct a binary representation classi- 214

fication dataset by first collecting paired CoT/non- 215

CoT responses for questions sampled from GSM8K 216

(Cobbe et al., 2021) training set. For each question, 217

we generate 10 distinct responses and classify them 218

using GPT4o-as-Judge. We define CoT responses 219

as those exhibiting correct step-by-step reasoning 220

processes, while non-CoT responses provide an- 221

swers directly without intermediate reasoning steps. 222

Subsequently, we extract token-level representa- 223

tions from three widely-used LLMs: Mistral-7b 224

(Jiang et al., 2023), Gemma-2-2b (Team et al., 225

2024), and Phi-1.5 (Li et al., 2023), capturing 226

activations across various layers and representa- 227

tion types. More details are provided in the ap- 228

pendixD.1. 229

Classifier We employ Logistic Regression (LR) 230

as our classifier. LR models the probability of CoT 231

through a two-step process: first computing the 232

logit (log-odds) using a linear function w⊤x + b, 233

then transforming it to probability of positive via 234

the sigmoid function σ. 235

logit = ln
P (y = 1|x)
P (y = 0|x)

= w⊤x+ b 236

P (y = 1|x) = σ(logit) =
1

1 + e−(w⊤x+b)
237

where w is the weight vector, b is the bias term, 238

and x is the input feature vector. 239

For each layer and representation type (Hidden 240

states, Attention activations, and MLP activations), 241

we train LR classifiers and evaluate their perfor- 242

mance using AUC-ROC, and F1-score. 243

Classification Results Figure 2 illustrates clas- 244

sification performance, that varies across represen- 245
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Figure 2: Layer-wise classification performance (F1-
Score and AUC-ROC) across different representation
types and LLMs.

tation types and layers in different LLMs. (1) Rep-246

resentation type analysis: In Mistral-7b, hidden247

states outperform both MLP and Attention activa-248

tions. For Phi-1.5, Attention outputs demonstrate249

stable superiority despite hidden states’ fluctua-250

tions. In Gemma2-2b, Attention outputs maintain251

consistent performance while hidden states and252

MLP activations fluctuate significantly. (2) Layer-253

wise analysis: Layer depth influences performance254

differently across models. Mistral-7b shows a clear255

shallow-to-deep improvement trend, indicating pro-256

gressive CoT feature refinement. Conversely, Phi-257

1.5 and Gemma2-2b exhibit fluctuating patterns258

with no consistent directional trends, suggesting259

more distributed CoT representations throughout260

layers. Despite variations, we conclude that all261

LLMs achieve over 80% performance with their262

optimal configurations, indicating the promising263

discriminative power of representations.264

Logit as Ranking Score Beyond the promising265

classification performance, we also validate that the266

classifier’s logit can serve as a theoretically sound267

score for ranking and selecting higher CoT score268

candidates. Prior research(Sun et al., 2024b) has269

demonstrated that a binary classifier’s logit implies270

ordering equivalence with preference rewards in271

the Bradley-Terry model(Bradley and Terry, 1952),272

establishing that:273

l(x1) > l(x2) =⇒ r(x1) > r(x2)274

where l(x) represents the logit value and r(x) de-275

notes the reward function in the Bradley-Terry276

model. A brief proof is provided in the appendix277

A.1. We empirically validate this ranking capability278

in Figure3. The left subplot shows CoT responses 279

consistently achieve higher logit values than non- 280

CoT responses, while the right subplot demon- 281

strates correct CoT responses maintain higher logit 282

values than incorrect ones. This suggests our clas- 283

sifier captures response quality regardless of rea- 284

soning correctness. Both theoretical and empirical 285

evidence support using the classifier’s logit as a 286

ranking score for tree exploration. 287

Figure 3: Mean logit values and variance regions along
the token sequence. Left: Comparison between CoT
and non-CoT responses. Right: Comparison between
correct and incorrect CoT responses.

3.2 Classifier-guided Beam Search 288

With the classifier’s logit as the ranking score, we 289

propose a classifier-guided beam search for effec- 290

tive response space exploration. Specifically, for a 291

parent node (root question or intermediate reason- 292

ing step), the tree expansion process is formulated 293

as follows: 294

Diverse Beam Construction: The process be- 295

gins by generating diverse candidate continuations, 296

organized into a beam. To encourage diversity, 297

stochasticity must be introduced during token se- 298

quence generation. In this paper, we employ Top-K- 299

Start Greedy Decoding, which explores alternative 300

top-k tokens at the first decoding step, followed 301

by greedy decoding for subsequent steps (Wang 302

and Zhou, 2024). The resulting k reasoning chains, 303

denoted as B = {R1, R2, ..., Rk}, represent po- 304

tential continuations with associated hidden states, 305

forming the initial beam for further processing. 306

Derive CoT Score via Classifier: Once the 307

beam is constructed, a pre-trained classifier is used 308

to evaluate the CoT score of each candidate . The 309

classifier operates on the hidden state representa- 310

tions of the chains and assigns a score to each one. 311

Specifically, for a candidate chain Ri, the CoT 312

score Si is computed as Si = l(Rep(Ri[−1])), 313

where l(·) is the logit output of classifier and 314

Rep(Ri[−1]) represents the hidden state of the last 315

token in Ri. 316

Beam Pruning by Score Ranking: After scor- 317

ing, all candidate chains are ranked based on their 318

CoT scores, and only the top-n highest-scoring 319
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Figure 4: Our classifier-guided tree exploration framework. At each parent node, multiple candidates are sampled
and evaluated by a pre-trained classifier by probing representations. Nodes are selected for further expansion based
on scores. Each exploration branch produces a candidate answer, forming an answer pool from which the final
answer is determined through marginalization across all branches.

candidates are retained for further expansion. The320

pruned beam, denoted as B′, is defined as B′ =321

{Rσ(i) | i ≤ n}, where σ is the permutation that322

sorts the scores in descending order, and Rσ(i) rep-323

resents the candidate corresponding to the i-th high-324

est score. By dynamically adjusting the beam width325

n, we can control the trade-off between exploration326

breadth and computational efficiency. This pruning327

step ensures that only promising reasoning paths328

are preserved, effectively reducing computational329

overhead while maintaining the quality of the rea-330

soning process.331

Implementation Details: Our framework con-332

sists of two phases: a branching phase for system-333

atic exploration with depth m and beam width n,334

followed by a completion phase for final genera-335

tion. During the branching phase, we iteratively336

expand the tree for m steps. At each step i, we337

first generate k candidate responses for each node338

and select the top-n candidates based on their CoT339

scores, with each candidate expanded by generating340

a sequence of Ti tokens. In the completion phase,341

all leaf nodes from the branching phase are ex-342

tended using greedy decoding until either reaching343

a completion token or the maximum length limit.344

For input formatting, we adopt a simple question-345

answer template: “Question:[question]\nAnswer:"346

without any additional prompting techniques.347

3.3 Answer Pool Marginalization348

After completing the tree expansion process, we349

generate final answers by appending the prompt350

“Therefore, the answer is” to each branch, resulting351

in an answer pool A = {A1, A2, ..., Ap}. To select352

the final answer from the pool, several straight-353

forward approaches can be applied: (1) majority 354

voting based on answer frequency, and (2) single- 355

branch selection that selects the answer from indi- 356

vidual branch with the highest score metrics (e.g., 357

final score or mean score). Instead, we propose 358

branch-aggregation selection that determines the 359

final answer by aggregating branch score metrics 360

for each answer. 361

Specifically, for each candidate answer Ai, we 362

collect its supporting branches R(Ai), which con- 363

sists of all branches that arrive at Ai as their fi- 364

nal answer, formally defined as R(Ai) = {R | 365

answer(R) = Ai}. Then we compute the value 366

of each branch from its node score sequence 367

[S1, S2, ..., SN ], using its final score SN as the 368

branch value. For each unique answer, we then ag- 369

gregate the values of all its supporting branches by 370

summation: V alue(Ai) =
∑

R∈R(Ai)
V alue(R). 371

Finally, we select the answer with the highest 372

aggregated value as our final answer: A∗ = 373

argmaxAi∈AV alue(Ai). We provide a detailed 374

comparative analysis of different answer selection 375

methods in Section 4.2. 376

4 Experiments 377

Dataset and LLMs We evaluate our method on 378

popular mathematical reasoning benchmarks: (1) 379

GSM8K (Cobbe et al., 2021), a challenging dataset 380

of grade school math problems; (2) MultiArith 381

(MA) (Roy and Roth, 2016); (3) SVAMP (Patel 382

et al., 2021); (4) MAWPS (Koncel-Kedziorski et al., 383

2016); and a logical reasoning benchmark: (5) 384

CoinFlips (CF) (Srivastava et al., 2022). For our 385

experiments, we use the same LLMs as in Section 386
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3.1: Mistral-7b, Gemma2-2b, and Phi-1.5.387

Baselines We compare our approach with six388

representative baselines: (1) Greedy Decoding: Se-389

lects the highest-probability token at each step of390

generation. (2) Zero-shot CoT prompting (Zs CoT)391

(Kojima et al., 2022): Appends "Let’s think step by392

step" to questions, encouraging step-wise problem-393

solving without task-specific training. (3) Zero-394

shot Tree of Thought prompting (Zs ToT) (Yao395

et al., 2023): Generate multiple reasoning steps via396

prompting and evaluate through self-assessment397

prompts. (4) Activation-Steering (Act-S)(Højer398

et al.): Steers model activations along a direction399

vector derived from the difference between CoT400

and non-CoT hidden states. (5) Chain-of-Thought401

Decoding (CoT-Dec) (Wang and Zhou, 2024): Gen-402

erates multiple solution paths and selects the most403

confident one based on the average probability mar-404

gin between the top two token predictions in the405

answer segment. (6) Self-consistency (SC) (Wang406

et al., 2022): Employs a majority voting mecha-407

nism across multiple generated responses to iden-408

tify the most consistent answer. In appendixC and409

B, we provide a detailed analysis of the time com-410

plexity of each method and reproducing details.411

Hyperparameters Config For the branching412

phase, we set the depth m = 3 and beam width413

n = 3. At each step, we generate k = 10 candi-414

dates and select top-n based on CoT scores, with415

token generation lengths Ti = [1, 20, 20] for steps416

i = 1,2,3. For the completion phase, we extend417

each leaf node with two steps of greedy decoding,418

generating 100 tokens per step. A detailed analy-419

sis of how depth m and beam width n affect the420

framework’s performance is presented in Section421

4.4.422

4.1 Main Experimental Analysis423

As shown in Table 1, our method consistently out-424

performs baseline approaches in most scenarios,425

achieving substantial improvements in problem426

solving accuracy.427

Cross-Model Analysis Our method shows ro-428

bust performance gains across different LLM429

scales. For the larger Mistral-7b model, we ob-430

serve the most significant improvements, with our431

method achieving 40.18% accuracy on GSM8K,432

surpassing the strongest baseline (Zs CoT) by433

14.01%. The performance advantage maintains434

for smaller models like Gemma2-2b and Phi-1.5,435

where our method improves GSM8K accuracy by436

3.7% and 12.36% respectively compared to their437

LLM Methods GSM8K MA SVAMP MAWPS CF

M
is

tr
al

-7
b

Greedy 11.92 15.16 52.66 58.29 47.60
SC 17.13 27.22 58.00 66.56 51.60

Zs CoT 26.17 50.47 56.33 69.81 53.00
Zs ToT 33.82 52.65 59.75 71.69 54.40
Act-S 15.48 18.93 56.48 59.45 48.00

CoT-Dec 25.79 39.76 58.66 64.78 51.20
Ours 40.18 58.57 61.33 80.64 56.80

G
em

m
a2

-2
b

Greedy 6.42 5.53 38.53 46.16 44.40
SC 7.59 8.41 40.00 47.00 49.80

Zs CoT 16.92 42.11 39.33 51.69 48.40
Zs ToT 18.73 45.74 44.08 55.37 53.20
Act-S 7.38 11.43 41.36 49.84 45.00

CoT-Dec 14.34 33.22 38.99 50.28 47.40
Ours 20.62 50.00 48.66 63.86 54.60

Ph
i-

1.
5

Greedy 5.69 24.44 24.33 33.74 42.60
SC 25.02 33.88 29.03 39.16 46.20

Zs CoT 7.21 83.88 39.33 65.18 54.40
Zs ToT 29.56 53.45 41.85 67.18 55.60
Act-S 6.65 25.65 28.66 37.84 44.20

CoT-Dec 23.12 25.00 23.66 50.05 49.40
Ours 37.38 80.56 45.66 68.45 56.80

Table 1: Problem solving accuracy compared with base-
lines across LLMs and datasets

LLMs Methods GSM8K MultiArith SVAMP WAMPS

M
is

tr
al

-7
b Cover Rate 85.44 91.65 90.33 94.33

F Agg/BoN 40.18/27.84 58.57/32.78 61.33/52.45 80.64/63.18
M Agg/BoN 38.21/24.92 55.15/33.42 58.44/51.52 77.33/61.42
IR Agg/BoN 42.92/ 23.52 57.53/35.63 60.21/47.42 79.33/64.21

Vote 39.21 56.15 59.44 78.33

G
em

m
a2

-2
b Cover Rate 79.65 84.33 88.44 90.74

F Agg/BoN 20.62/11.52 50.00/25.53 48.66/16.82 63.86/35.42
M Agg/BoN 18.15/10.83 47.77/27.63 45.33/23.63 61.33/43.85
IR Agg/BoN 21.53/13.53 51.21/34.42 47.44/19.42 62.33/40.91

Vote 19.21 48.15 46.44 62.33

Ph
i-

1.
5

Cover Rate 84.33 89.42 88.63 92.82
F Agg/BoN 37.38/21.72 80.56/56.86 45.66/29.74 68.45/49.72
M Agg/BoN 35.77/20.44 77.21/49.63 42.33/31.42 65.53/50.82
IR Agg/BoN 38.21/21.93 79.53/48.82 44.65/30.84 69.84/51.72

Vote 36.21 78.15 43.44 66.49

Table 2: Performance comparison of different an-
swer selection methods. F Agg/BoN, M Agg/BoN,
and IR Agg/BoN represent the accuracy of branch-
aggregation/best-of-N selection using final scores, mean
scores, and increase ratio respectively. Vote shows the
accuracy of majority voting baseline.

best baselines. This demonstrates our method’s 438

effectiveness and generalizability across different 439

model scales. 440

Cross-Dataset Analysis Our method shows 441

varying effectiveness across different datasets. 442

On GSM8K’s complex multi-step problems, we 443

demonstrate consistent superiority across all mod- 444

els. For MultiArith, while achieving strong perfor- 445

mance with Mistral-7b (58.57%) and Gemma-2-2b 446

(50.00%), Phi-1.5 shows slightly lower accuracy 447

(80.56%) compared to Zs CoT (83.88%), suggest- 448

ing simpler arithmetic problems might benefit less 449

from our approach. On SVAMP and MAWPS, we 450

maintain consistent improvements, with notable 451

gains on MAWPS (3.27%-12.17% over the best 452

baseline). On CoinFlips, we achieve 56.80% ac- 453

curacy, which is higher than the best baseline (Zs 454
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LLMs Dataset
LR SVM

MLP Attn Hidden states MLP Attn Hidden states

Mistral-7b

GSM8K 35.21/18.42 34.57/17.23 40.18/13.75 36.43/17.42 33.37/6.23 38.32/12.39
MultiArith 51.55/16.33 49.82/21.65 58.57/23.39 49.55/18.33 50.59/18.65 57.45/20.11

SVAMP 35.43/28.72 34.65/23.23 61.33/25.76 36.43/27.42 35.43/26.42 60.39/17.23
WAMPS 69.55/39.33 72.81/42.65 80.64/52.46 68.55/38.92 77.52/7.33 79.38/18.65

Gemma2-2b

GSM8K 15.41/6.51 20.62/15.86 17.41/12.39 18.41/5.62 18.41/4.81 19.91/9.71
MultiArith 42.41/17.74 50.00/21.23 40.92/29.72 46.41/6.23 48.41/10.63 41.65/15.85

SVAMP 35.43/13.92 48.66/27.23 45.33/30.76 36.43/16.42 47.43/5.42 44.81/13.84
WAMPS 48.55/28.74 63.86/29.65 47.64/23.59 49.55/27.33 64.55/26.37 46.84/16.65

Phi-1.5

GSM8K 15.41/8.69 37.38/11.82 14.14/9.28 16.41/4.84 36.41/23.48 13.83/7.93
MultiArith 46.41/24.82 80.56/21.23 45.41/24.61 47.41/15.71 75.41/34.72 44.28/19.47

SVAMP 34.43/16.71 45.66/27.75 43.39/25.76 35.43/21.42 46.43/24.24 43.14/24.85
WAMPS 47.55/27.48 68.45/49.65 46.64/32.53 48.55/26.33 67.55/45.62 45.72/29.38

Table 3: Performance comparison of different classifiers (LR and SVM) and representations (MLP, Attention,
Hidden states) using accuracy scores on top-3 and bottom-3 layers (reported as top-3/bottom-3) on math reasoning
datasets.

CoT) by 12.20% in phi-1.5. Notably, we train our455

classifier only on GSM8K training set and use this456

single classifier across all datasets, demonstrating457

strong generalization to various mathematical rea-458

soning datasets.459

4.2 Answer Selection Analysis460

Table 2 presents a comprehensive comparison of461

different approaches for final answer selection from462

the answer pool. We first examine the coverage463

rate - the percentage of correct answers present464

in the pool - which indicates an upper bound for465

selection accuracy. The high coverage rates (79%-466

94%) demonstrate that our exploration strategy ef-467

fectively traverses the response space and captures468

valid reasoning chains.469

We then evaluate two main selection paradigms:470

Best-of-N(BoN) selection and branch-aggregation471

selection, across three score sequence metrics: fi-472

nal scores, average scores, and increase ratio (de-473

fined as the proportion of score improvements be-474

tween adjacent nodes). Our analysis shows that475

branch-aggregation selection consistently outper-476

forms BoN selection across all metrics. Among477

the three metrics, final scores yield the best perfor-478

mance, followed by increase ratio, while average479

scores show relatively inferior results. Additionally,480

we benchmark these methods against the baseline481

majority voting approach, which shows superior482

performance to single-branch selection but falls483

short of branch-aggregation selection.484

4.3 Classifier Feature Analysis485

Table 3 shows the performance comparison of dif-486

ferent classifiers features, including classifier type,487

representation type and layers range.488

Classifier type Study We comparing Support 489

Vector Machine(SVM) and LR classifiers, we ob- 490

serve their comparable performance across differ- 491

ent representations, layers, and LLMs. While SVM 492

shows slightly better results in some cases, the dif- 493

ferences are marginal, suggesting both classifiers 494

can effectively guide the search process. 495

Representation Layer Analysis We analyze the 496

impact of layer by comparing top-3 and bottom- 497

3 layers based on their classification F1-scores. 498

The results show that across all LLMs, using top- 499

performing layers consistently outperforms bottom 500

layers. For GSM8K, the average improvements 501

are 31.36%, 29.79%, and 30.04% on Mistral-7b, 502

Gemma-2-2b, and Phi-1.5 respectively, demonstrat- 503

ing that layer selection significantly affects search 504

effectiveness. 505

Representation Type Study Hidden states yield 506

the best search performance for Mistral-7b, while 507

attention activations prove more effective for both 508

Gemma-2-2b and Phi-1.5. This pattern mirrors 509

the relative strengths we observed in classification 510

performance, suggesting a consistent relationship 511

between classifier logit and reward. 512

4.4 Tree Search Space Scaling Laws 513

We investigate how different search space size con- 514

figurations affect model performance by varying 515

beam width n and tree depth m. For each con- 516

figuration, we maintain the initial sampling size 517

k = 10 while adjusting width n ∈ {1, 2, 3, 4, 5, 6} 518

and depth m ∈ {1, 2, 3, 4, 5, 6}. All generated 519

chains are constrained to a maximum length of 520

240 tokens, with tokens evenly distributed across 521

depth steps (Ti = 240/m tokens per step). Figure 522

5 demonstrates how performance varies with differ- 523
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ent combinations of width and depth, using Phi-1.5524

on GSM8K.525

Beam Width Impact The accuracy improves526

substantially as the beam width increases, demon-527

strating the benefits of maintaining more parallel528

branches at each expansion step. The improvement529

trend begins to plateau around width = 4, suggest-530

ing that maintaining 3-4 parallel reasoning trajecto-531

ries provides sufficient exploration while remaining532

computationally efficient. Further increasing the533

beam width yields diminishing returns, possibly534

due to the introduction of more noise than CoT535

content.536

Search Depth Study The accuracy improves as537

search depth increases and reaches its peak at depth538

3 or 4. Beyond this optimal depth, performance539

gradually declines, suggesting that deeper searches540

may accumulate errors and explore irrelevant rea-541

soning paths. This optimal depth aligns with gen-542

eral problem solving patterns, as most tree search543

methods can solve reasoning problems within 3-4544

key reasoning steps (He et al., 2024; Wang et al.,545

2024).546

Figure 5: The accuracy plot when scaling the search
space with different expansion depth and beam width.

5 Related Work547

5.1 Reasoning Ability Enhancement in LLMs548

Methods to improve LLMs’ reasoning ability can549

be categorized into tuning-based and inference-550

time approaches. Tuning-based methods focus551

on fine-tuning LLMs with high-quality rationales.552

STaR (Zelikman et al., 2022) iteratively bootstraps553

rationales through generation and filtering. TRICE554

(Hoffman et al., 2024) employs MCMC sampling555

to construct training data with rationales and lever-556

ages rationalization for failed cases. DeepseekR1557

(Guo et al., 2025) uses outcome reward to rein-558

forces the CoT ability. Inference-based methods559

design structured reasoning frameworks to guide560

LLMs during inference. Chain-of-thought (CoT)561

(Wei et al., 2022; Kojima et al., 2022) breaks down562

reasoning into sequential steps. Tree-of-thoughts563

(ToT) (Yao et al., 2024; Long, 2023) enables multi- 564

path exploration with backtracking. Graph-of- 565

Thoughts (GoT) (Besta et al., 2024) extends to 566

arbitrary graph topologies for complex reasoning 567

patterns. Tree-based methods have emerged as 568

mainstream by balancing exploration capability 569

with structural simplicity. 570

5.2 Linear Representation Hypothesis in 571

LLMs 572

The Linear Representation Hypothesis (LRH), ini- 573

tially proposed in word embeddings (Mikolov et al., 574

2013), suggests that semantic features exist as lin- 575

ear directions in activation space. Recent work 576

has extended this to LLMs (Luo et al., 2024; von 577

Rütte et al., 2024; Zou et al.; Park et al.), showing 578

that high-level concepts like truthfulness (Li et al., 579

2024; Burns et al., 2022), morality (Zou et al.), and 580

factual knowledge (Gurnee and Tegmark, 2023) 581

can be represented linearly in model’s activation 582

space. This finding enables two key applications: 583

detection and guidance. For detection, linear classi- 584

fiers can effectively probe specific concepts (Chen 585

et al., 2024; Du et al., 2024), with their high per- 586

formance indicating the linear encoding of these 587

concepts. For guidance, these identified directions 588

can be leveraged to steer model behavior during 589

inference (Lee et al.; Li et al., 2024; Zhao et al., 590

2024). 591

6 Conclusion 592

In this work, we present ThoughtProbe, a pure 593

inference-time framework that leverages LLMs’ 594

hidden reasoning features to improve reasoning 595

performance. Our probing experiments reveal that 596

LLM architectures encode CoT differently across 597

representation types and layers, with simple lin- 598

ear classifiers achieving strong performance. We 599

also show theoretically and empirically that these 600

classifiers effectively score and rank candidates to 601

guide the search process. Building on this discov- 602

ery, we develop a classifier-guided beam search 603

algorithm that effectively explores the reasoning 604

space by prioritizing promising candidates. Our 605

framework combines tree-structured exploration 606

with branch aggregation for final answer determi- 607

nation, enabling systematic utilization of valid rea- 608

soning chains within response space. Extensive 609

experiments across multiple benchmarks demon- 610

strate the effectiveness of our approach, achieving 611

significant improvements over existing methods. 612
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Limitations613

Despite our approach’s effectiveness, we acknowl-614

edge several limitations that may warrant further615

investigation. First, our current implementation616

relies on fixed token lengths to segment interme-617

diate thoughts during tree node expansion, which618

may disrupt natural reasoning by forcing arbitrary619

branching points. Future work should explore more620

flexible, semantic-aware splitting criteria to bet-621

ter preserve complete units of reasoning. Second,622

while the answer pool achieves promising coverage623

rates for correct answers, our final answer selection624

process has room for improvement. The observ-625

able gap between coverage and accuracy suggests626

current chain evaluation and branch-aggregation627

strategies may not optimally capture answer quality.628

Future research could develop more sophisticated629

scoring metrics and aggregation methods.630
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A Appendix 845

A.1 Justification of using classifier logit as a 846

scoring and ranking mechanism 847

In this section, we provide a brief proof that a 848

binary classifier’s logit implies ordering equiva- 849

lence with preference rewards in the Bradley-Terry 850

model(Sun et al., 2024b; Bradley and Terry, 1952). 851

852

Binary Classification Setting: Let X be the 853

input space. For any x ∈ X : 854

• P (y = 1|x) denotes the probability of posi- 855

tive class 856

• l(x) := logit is the classifier logit output 857

• P (y = 1|x) = sigmoid(l(x)) 858

Bradley-Terry Preference Model: Given a 859

question q, for any two responses x1, x2 ∈ X : 860

• P (x1 ≻ x2|q) denotes preference probability 861

that response x1 is preferred to x2 862

• P (x1 ≻ x2|q) = exp(r(x1|q))
exp(r(x1|q))+exp(r(x2|q)) = 863

softmax(r(x1|q), r(x2|q)). 864

• r(·|q) is the underlying reward function that 865

evaluates the quality of a response. We omit 866

the question q in the following discussion for 867

brevity. 868

Lemma A.1 (Classification-Preference Connec- 869

tion). For any instance x ∈ X : 870

P (y = 1|x) = Ej∼p(j)[P (x ≻ j)] (1) 871

Proof. In binary classification, we can view the 872

process as a competition where: 873

• x competes against a random competitor j 874

• P (y = 1|x) represents the winning probabil- 875

ity of x 876

• When j is randomly sampled from p(j), this 877

probability equals Ej∼p(j)[P (x ≻ j)] 878

879

Suppose that the classifier is trained on prefer- 880

ence data derived from the Bradley-Terry model, 881

where preference pairs are treated as binary clas- 882

sification data, we have the following theorem to 883

connect the classifier logit and the reward function: 884

11



Theorem A.2 (Logit implies reward ordering).885

Given two instances x1 and x2:886

l(x1) > l(x2) ⇒ r(x1) > r(x2) (2)887

Proof. We prove l(x1) > l(x2) ⇒ r(x1) > r(x2)888

using preference probabilities’ strict monotonicity.889

Given l(x1) > l(x2), the sigmoid function’s890

strict monotonicity means P (y = 1|x1) > P (y =891

1|x2). Using the Classification-Preference Connec-892

tionA.1 and Bradley-Terry model, we show:893

∑
j

p(j)·
[

exp(r(x1))

exp(r(x1)) + exp(r(j))
894

− exp(r(x2))

exp(r(x2)) + exp(r(j))

]
> 0895

Since p(j) > 0 and f(r, j) = exp(r)
exp(r)+exp(r(j))896

is strictly increasing in r, at least one j has897

f(r(x1), j) > f(r(x2), j), implying r(x1) >898

r(x2).899

Therefore, the logit ordering implies the reward900

ordering.901

Theorem A.3 (Logit is lower bounded by reward).902

There exists a constant C dose not depend on x,903

such that:904

l(x) ≥ r(x)− C (3)905

Proof. Under the Bradley-Terry model:906

P (y = 1|x) = Ej

[
exp(r(x))

exp(r(x)) + exp(r(j))

]
(4)907

By Jensen’s inequality, since f(t) = a
a+t is con-908

vex in t for a > 0:909

P (y = 1|x) ≥ exp(r(x))

exp(r(x)) + E[exp(r(j))]
(5)910

Taking logit transformation:911

l(x) = logitP (y = 1|x) = log
P (y = 1|x)

1− P (y = 1|x)
912

≥ r(x)− log(E[exp(r(j))])︸ ︷︷ ︸
C

913

914

The above theorem shows that we can use the915

classifier logit as a scoring and ranking mechanism916

for the responses during the tree search. As we917

define CoT responses are preferred to non-CoT918

responses and are treated as positive samples in919

classifier training, the above theorem implies that920

the logit of CoT responses are higher than that of 921

non-CoT responses. 922

It’s important to note that using classifiers as 923

complete substitutes for reward models in down- 924

stream optimization scenarios requires additional 925

theoretical constraints and considerations. We refer 926

readers to the comprehensive analysis presented in 927

(Sun et al., 2024b). 928

B Baselines Reproducing Details 929

For the activation steering method, we follow the 930

implementation described in (Højer et al., 2025), 931

calculating a control vector v using the difference- 932

in-mean approach. Specifically, we feed all positive 933

and negative responses to the LLM and compute 934

the mean hidden representations for both positive 935

and negative responses. The control vector v is 936

then derived as the difference between these two 937

means. During inference, we input a question to 938

the LLM and apply the control vector v to steer 939

the hidden representations in the forward pass. The 940

representation types and layers selected for steering 941

match those used in our ThoughtProbe method for 942

each LLM. We set the steering strength parameter 943

to 1 across all experiments. 944

For the zero-shot ToT, we follow the implemen- 945

tation described in the appendix B.1 of (Yao et al., 946

2023). The task format prompt is "the answer is 947

n" where n is a number. The standard IO prompt 948

is ’Answer the following question with format: in- 949

put’. The thought generation prompt is Answer 950

the following question: input Make a strategy then 951

write. Your output should be of the following for- 952

mat: Strategy: Your strategy about how to answer 953

the question. Answer: Your answer to the question. 954

It should end with format. The voting/evaluation 955

prompt is Given an instruction and several choices, 956

decide which choice is most promising. Analyze 957

each choice in detail, then conclude in the last line 958

"The best choice is s", where s the integer id of the 959

choice.. 960

C Computation Complexity Notion and 961

Discussion 962

We show computational complexity notions of all 963

methods. 964

The computational complexity analysis in Table 965

4 reveals several key insights about the efficiency 966

of different reasoning methods. Traditional ap- 967

proaches like Greedy decoding and ZS-CoT main- 968

tain linear complexity with respect to sequence 969
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Method Computational Complexity
Greedy O(T ) -

single sequence processing
ZS-CoT O(T + P ) -

P is prompt overhead
SC O(n× T ) -

n parallel sequences
CoT-Dec O(n× T ) + confidence scoring
Act-S O(T + L×H) -

L=layers number,
H=Steering overhead

ZS-ToT O(bd × (CT + CE)) -
d=tree depth,
b=thoughts number,
CT=thought prompt cost,
CE=evaluation prompt cost

ThoughtProbe O(k × nm × (C + 1)) -
n=beam width, m=depth,
C=classifier cost,
k=candidates per step

Table 4: Computational complexity comparison of dif-
ferent methods.

length, making them computationally efficient but970

limited in reasoning capability. Self-consistency971

methods (SC) scale linearly with the number of972

parallel sequences, offering a reasonable balance973

between computational cost and performance.974

Activation steering (Act-S) introduces additional975

overhead proportional to the number of layers be-976

ing steered, but maintains the same asymptotic977

complexity as standard decoding. In contrast, tree-978

based methods like ZS-ToT face exponential com-979

plexity growth (O(bd)) as tree depth increases,980

severely limiting their practical application to com-981

plex reasoning tasks despite their strong perfor-982

mance.983

Our ThoughtProbe method achieves a favorable984

complexity profile of O(k×nm× (C+1)), where985

n is the beam width, m is the exploration depth, k986

is the number of candidates per step, and C repre-987

sents the classifier cost. While this still involves988

exponential growth with depth, our approach is989

more efficient in practice than traditional tree-based990

methods like ZS-ToT because: (1) we typically use991

smaller beam widths and depths, (2) our classifier-992

guided pruning effectively reduces the search space,993

and (3) the linear classifier overhead is minimal994

compared to token generation costs. This analysis995

demonstrates that ThoughtProbe offers an effec-996

tive balance between computational efficiency and 997

reasoning capability, making it practical for deploy- 998

ment in real-world applications while maintaining 999

comparable or superior performance to more com- 1000

putationally intensive methods. 1001
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D More Probing Experiments Details1002

D.1 Classifier Training Data Construction1003

Details1004

We first employ Top-K-Start Greedy Decoding,1005

which explores alternative top-k tokens at the first1006

decoding step, followed by greedy decoding for1007

subsequent steps, to sample 10 distinct responses.1008

To ensure response quality, we first filter the sam-1009

pled responses to remove potential repetitions of1010

input questions as LLMs occasionally exhibit a1011

pattern where they restate the original question1012

after providing their answer. We apply a post-1013

processing step to extract only the solution-relevant1014

content, ensuring each response contains purely1015

reasoning and answer components without redun-1016

dant question restatements. After filtering, we1017

prompt GPT4o as a judge to label the filtered re-1018

sponses as either CoT or non-CoT responses. The1019

prompt is as follows:1020

You are an expert at analyzing reasoning pat-1021

terns in AI responses. Given a question-response1022

pair, your task is to determine whether the response1023

follows a Chain of Thought (CoT) reasoning pat-1024

tern or not.1025

Chain of Thought (CoT) responses show explicit1026

step-by-step reasoning before arriving at the fi-1027

nal answer. They break down the problem, work1028

through intermediate steps, and show the logical1029

progression that leads to the conclusion.1030

Non-CoT responses provide direct answers with-1031

out showing the reasoning process or intermediate1032

steps.1033

For the question-response pair provided be-1034

low, analyze whether the response uses Chain of1035

Thought reasoning by checking if it: 1. Shows ex-1036

plicit reasoning steps 2. Breaks down the problem1037

into parts 3. Works through intermediate calcu-1038

lations or logical steps 4. Explains the thinking1039

process before giving the final answer1040

Reply with: - "COT" if the response demon-1041

strates Chain of Thought reasoning with clear inter-1042

mediate steps - "NON-COT" if the response gives a1043

direct answer without showing the reasoning pro-1044

cess Question: [Question will be inserted here]1045

Response: [Response will be inserted here]1046

D.2 Classifier Training Settings1047

For our experiments, we collected a dataset com-1048

prising 1245 positive (CoT) and 1868 negative1049

(non-CoT) samples, with each sample represent-1050

ing a question-response pair. Analysis of response1051

lengths revealed that CoT responses averaged 131.7 1052

tokens, while non-CoT responses averaged only 1053

15.8 tokens. 1054

We extracted token-wise hidden representations 1055

from all layers of the LLM network and trained a 1056

separate classifier for each layer. To address the 1057

imbalance in response lengths between positive 1058

and negative samples, we implemented a strategic 1059

sampling approach: extracting hidden representa- 1060

tions every five tokens for CoT responses and every 1061

token for non-CoT responses, thereby creating a 1062

more balanced training dataset. 1063

We train the classifier using the Logistic Regres- 1064

sion and Support Vector Machine (SVM) classi- 1065

fiers. The epoch number is 100, the learning rate is 1066

0.001, using stochastic gradient descent (SGD) as 1067

the optimizer. 1068

E More Probing Experiments Results 1069

E.1 Classifier Classification Performance 1070

Building upon our main findings, we conduct an ex- 1071

tensive evaluation using both Logistic Regression 1072

(LR) and Support Vector Machine (SVM) classi- 1073

fiers, assessed through Accuracy, F1-score, and 1074

AUC-ROC metrics. As shown in Figures 6 and 7, 1075

these complementary metrics reinforce and extend 1076

our key observations: 1077

(1) Representation type analysis: The distinct 1078

patterns observed across different LLMs are con- 1079

sistently reflected across all metrics. In Mistral-7b, 1080

hidden states maintain their superior performance 1081

across both classifiers and all evaluation metrics, 1082

with MLP and attention activations showing com- 1083

parable but slightly lower performance. For Phi- 1084

1.5, the notable fluctuation in hidden states and 1085

the stable superiority of attention outputs are ro- 1086

bustly captured by all metrics. In Gemma2-2b, 1087

attention activations consistently demonstrate the 1088

strongest discriminative power across all evalua- 1089

tion criteria, while hidden states and MLP outputs 1090

show substantial variations. This consistent pattern 1091

across different evaluation frameworks strengthens 1092

our observation about model-specific architectural 1093

strategies for encoding thoughtful reasoning. 1094

(2) Layer-wise analysis: The layer-specific 1095

trends identified in our main analysis persist across 1096

different classification approaches and metrics. 1097

Mistral-7b’s progressive improvement in deeper 1098

layers is consistently observed in both LR and 1099

SVM results, regardless of the evaluation metric 1100

used. The more distributed patterns in Phi-1.5 and 1101
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Gemma2-2b, characterized by fluctuations with-1102

out clear directional trends, are similarly preserved1103

across all evaluation frameworks. These consis-1104

tent findings across multiple metrics provide strong1105

validation for our conclusions about how different1106

LLMs architecturally encode thoughtfulness fea-1107

tures.1108

E.2 Classifier logit value analysis1109

We conduct a detailed analysis of classifier logit1110

value distributions across multiple language mod-1111

els (Mistral-7b, Gemma2-2b, Phi-1.5). Using both1112

Logistic Regression and SVM classifiers, we com-1113

pare the distributional patterns between the most1114

discriminative layers (top-3 F1 scores) and least1115

discriminative layers (bottom-3 F1 scores).1116

Figures 8, 9 present comprehensive comparisons1117

of classifier logit values for Gemma2-2B. Figures1118

10, 11 present comprehensive comparisons of clas-1119

sifier logit values for Mistral-7B. Figures 12, 131120

present comprehensive comparisons of classifier1121

logit values for Phi-1.5.1122

Specifically, Figure 8 compares thoughtful cor-1123

rect responses against intuitive responses, while1124

Figure 9 contrasts thoughtful correct responses1125

with thoughtful incorrect responses. These compar-1126

isons are conducted within both top-3 and bottom-31127

performing layers (ranked by F1-scores), spanning1128

across different classifier architectures (Logistic1129

Regression and SVM) and various representation1130

types (attention activations, MLP activations, and1131

hidden states), providing a thorough validation of1132

the scoring and ranking ability of the classifier’s1133

logit.1134

Notably, in attention activations, which achieve1135

the best classification performance among all rep-1136

resentation types, thoughtful correct responses con-1137

sistently receive higher logit values than both in-1138

tuitive responses and thoughtful but incorrect re-1139

sponses, demonstrating the robust discriminative1140

ability of our approach. However, this clear rank-1141

ing pattern is occasionally violated in MLP activa-1142

tions and hidden states, where thoughtful correct re-1143

sponses sometimes receive lower logit values than1144

the other response types. Moreover, this ranking1145

trend is more pronounced in top-3 performing lay-1146

ers compared to bottom-3 layers, suggesting that1147

layers with stronger discriminative power better1148

preserve the desired response quality ordering.1149

Similar patterns are observed in Mistral-7B and1150

Phi-1.5 models, indicating that our trained classi-1151

fiers demonstrate strong scoring and ranking capa-1152

bilities across different model architectures, mak- 1153

ing them reliable guides for thought space explo- 1154

ration. 1155
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Figure 6: LR classification performance across LLMs and representation types

Figure 7: SVM classification performance across LLMs and representation types
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Figure 8: Mean logit values and variance regions in Gemma2-2b, comparing lengthy thoughtful correct responses
with concise intuitive incorrect ones.
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Figure 9: Mean logit values and variance regions in Gemma2-2b, comparing lengthy thoughtful correct responses
with lengthy incorrect ones.
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Figure 10: Mean logit values and variance regions in Mistral-7b, comparing lengthy thoughtful correct responses
with concise intuitive incorrect ones.
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Figure 11: Mean logit values and variance regions in Mistral-7b, comparing lengthy thoughtful correct responses
with lengthy incorrect ones.
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Figure 12: Mean logit values and variance regions in Phi-1.5, comparing lengthy thoughtful correct responses with
concise intuitive incorrect ones.
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Figure 13: Mean logit values and variance regions in Phi-1.5, comparing lengthy thoughtful correct responses with
lengthy incorrect ones.

22


	Introduction
	Preliminary
	LLMs Architecture and Hidden Representation
	LLMs Reasoning Structure

	ThoughtProbe: Classifier-guided Reasoning Tree Exploration
	Probing Representations
	Classifier-guided Beam Search
	Answer Pool Marginalization

	Experiments
	Main Experimental Analysis
	Answer Selection Analysis
	Classifier Feature Analysis
	Tree Search Space Scaling Laws

	Related Work
	Reasoning Ability Enhancement in LLMs
	Linear Representation Hypothesis in LLMs

	Conclusion
	Appendix
	Justification of using classifier logit as a scoring and ranking mechanism

	Baselines Reproducing Details
	Computation Complexity Notion and Discussion
	More Probing Experiments Details
	Classifier Training Data Construction Details
	Classifier Training Settings

	More Probing Experiments Results
	Classifier Classification Performance
	Classifier logit value analysis


