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Abstract
There has been a surge of interest in continual
learning and federated learning, both of which
are important in deep neural networks in real-
world scenarios. Yet little research has been
done regarding the scenario where each client
learns on a sequence of tasks from private lo-
cal data stream. This problem of federated con-
tinual learning poses new challenges to contin-
ual learning, such as utilizing knowledge from
other clients, while preventing interference from
irrelevant knowledge. To resolve these issues,
we propose a novel federated continual learning
framework, Weighted Inter-client Transfer (Fed-
WeIT), which decomposes the network weights
into global federated parameters and sparse task-
specific parameters, and each client receives se-
lective knowledge from other clients by taking
a weighted combination of their task-specific pa-
rameters. FedWeIT minimizes interference be-
tween incompatible tasks, and also allows positive
knowledge transfer across clients during learn-
ing. We validate our FedWeIT against existing
federated learning and continual learning meth-
ods under varying degree of task similarity across
clients, and our model significantly outperforms
them with large reduction in the communication
cost.

1. Introduction
Continual learning (1; 2; 3; 4; 5) describes a learning sce-
nario where a model continuously trains on a sequence of
tasks; it is inspired by the human learning process, as a per-
son learns to perform numerous tasks with large diversity
over his/her lifespan, making use of the past knowledge to
learn about new tasks without forgetting previously learned
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ones. Continual learning is a long-studied topic since having
such an ability leads to the potential of building a general ar-
tificial intelligence. However, there are crucial challenges in
implementing it with conventional models such as deep neu-
ral networks (DNNs), such as catastrophic forgetting, which
describes the problem where parameters or semantic repre-
sentations learned for the past tasks drift to the direction of
new tasks during training. The problem has been tackled by
various prior work (4; 6; 7; 8). More recent works tackle
other issues, such as scalability or order-robustness (5; 9).

However, all of these models are fundamentally limited in
that the models can only learn from its direct experience -
they only learn from the sequence of the tasks they have
trained on. Contrarily, humans can learn from indirect ex-
perience from others, through different means (e.g. verbal
communications, books, or various media). Then wouldn’t
it be beneficial to implement such an ability to a continual
learning framework, such that multiple models learning on
different machines can learn from the knowledge of the
tasks that have been already experienced by other clients?
One problem that arises here, is that due to data privacy
and communication cost, it may not be possible to com-
municate data directly between the clients or between the
server and clients. Federated learning (10; 11; 12; 13) is a
learning paradigm that tackles this issue by communicating
the parameters instead of the raw data itself. We may have a
server that receives the parameters locally trained on multi-
ple clients, aggregates it into a single model parameter, and
sends it back to the clients. Motivated by our intuition on
learning from indirect experience, we tackle the problem
of Federated Continual Learning (FCL) where we perform
continual learning with multiple clients trained on private
task sequences, which communicate their task-specific pa-
rameters via a global server.

Yet, the problem of federated continual learning also brings
new challenges. First, there is not only the catastrophic
forgetting from continual learning, but also the threat of
potential interference from other clients. Figure 1 (a) de-
scribes this challenge with the results of a simple experiment.
Here, we train a model for MNIST digit recognition while
communicating the parameters from another client trained
on a different dataset. When the knowledge transferred from
the other client is relevant to the target task (SVHN), the
model starts with high accuracy, converge faster and reach
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(a) Challenges of Federated Continual Learning (b) Weighted Inter-client Transfer

Figure 1. (a): Challenge of FCL. Knowledge interference from other clients hinder optimal training of target clients (Red) while positive
experience from other clients is beneficial (Green). (b): Overview of FedWeIT. Each client continuously learns on a private task
sequence with inter-client knowledge transfer as selectively utilizing the encoded knowledge of tasks learned at other clients.

higher accuracy (green line), whereas the model underper-
forms the base model if the transferred knowledge is from
a task highly different from the target task (CIFAR-10, red
line). Thus, we need to selective utilize knowledge from
other clients to minimize the inter-client interference and
maximize inter-client knowledge transfer. Another problem
with the federated learning is efficient communication, as
communication cost could become excessively large when
utilizing the knowledge of the other clients, since the com-
munication cost could be the main bottleneck in practical
scenarios when working with edge devices. Thus we want
the knowledge to be represented as compactly as possible.

To tackle these challenges, we propose a novel framework
for federated continual learning, Federated Weighted Inter-
client Transfer (FedWeIT), which decomposes the model
parameters into a dense global parameter and sparse task-
adaptive parameters. As illustrated in Figure 1 (b), FedWeIT
reduces the interference between different tasks since the
global parameters (θG) will encode task-generic knowl-
edge, while the task-specific knowledge will be encoded
into the task-adaptive parameters (A(t)

c ). When we utilize
the generic knowledge, we also want the client to selectively
utilize task-specific knowledge obtained at other clients. To
this end, we allow each model to take a weighted combi-
nation of the task-adaptive parameters broadcast from the
server, such that it can select task-specific knowledge helpful
for the task at hand. FedWeIT is communication-efficient,
since the task-adaptive parameters are highly sparse and
only need to be communicated once when created. We also
perform selective transmission of the parameters to further
reduce communication cost.

We validate our method on multiple different scenarios with
varying degree of task similarity across clients against vari-
ous federated learning and local continual learning models.
The results show that our model obtains significantly su-
perior performance over all baselines, adapts faster to new
tasks, with largely reduced communication cost.

The main contributions of this paper are as follows:

• We introduce a new problem of Federated Contin-
ual Learning (FCL), where multiple models contin-
uously learn on distributed clients, which poses new
challenges such as prevention of inter-client interfer-
ence and inter-client knowledge transfer.

• We propose a novel framework for federated con-
tinual learning, which allows each client to adap-
tively update the federated parameter and utilize the
past knowledge from other clients, by communicating
sparse parameters.

• We validate our model under FCL setting with both
Overlapped and non-IID task sequences, on which it
largely outperforms existing federated learning and
local continual learning approaches with significantly
reduced communication cost.

2. Related Work
Continual Learning While continual learning (1; 2; 3) is
a long-studied topic with a vast literature, we only discuss
recent relevant works. Regularization-based approaches:
A popular approach for continual learning is to use regu-
larizations that prevent catastrophic forgetting. EWC (4)
leverages Fisher Information Matrix to restrict the change
of the model parameters such that the model finds solution
that is good for both previous and the current task, and IMM
(6) proposes to learn the posterior distribution for multiple
tasks as a mixture of Gaussians. Architecture-based ap-
proaches: PGN (14) progressively expands the networks
with fixed number of neurons/filters at each layer. DEN (15)
tackles this issue by expanding the networks size with mini-
mum number of neurons/filters that are necessary via itera-
tive neuron/filter pruning and splitting, and RCL (16) tackles
the same problem using reinforcement learning. APD (9)
additively decompose the parameters into shared and task-
specific parameters to minimize the increase in the network
complexity. Coreset-based approaches: VCL (17) per-
forms online variational inference by continuously training
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the model while approximating the likelihood for the core-
set, and GEM variants (18; 19) minimize the loss on both
of actual dataset and stored episodic memory. FRCL (20)
memorizes approximated posteriors of previous tasks with
sophisticatedly constructed inducing points. To the best of
our knowledge, none of the existing approaches considered
the communicability for continual learning of deep neural
networks, which we tackle. CoLLA (21) aims at solving
multi-agent lifelong learning with sparse dictionary learn-
ing, but it is not applicable to federated learning or continual
deep learning.

Federated learning Federated Learning is a distributed
learning framework under differential privacy, which aims
to learn a global model on a server while aggregating the
parameters learned at the clients on their private data. There
are diverse approaches to aggregate the local models. Fe-
dAvg (10) aggregates the model trained across multiple
clients by computing a weighted average of them based
on the number of data points trained. TWAFL (11) and
ASO-fed (22) follow weighted averaging in FedAvg while
assigning larger weights to newer parameters by leverag-
ing timestamps. FedProx (12) trains the local models with
a proximal term which restricts their updates to be close
to the global model. FedCurv (23) aims to minimize the
model disparity across clients during federated learning by
adopting a modified version of EWC (4). Recent works
(13; 24) introduce well-designed aggregation policies by
leveraging Bayesian non-parametric methods. Another cru-
cial challenge is the reduction of communication cost, as
communicating the full network weights may be too costly.
TWAFL (11) tackles this problem by performing layer-wise
parameter aggregation, where some layers(i.e. shallow lay-
ers) are aggregated at every step, but other layers(i.e. deep
layers) are aggregated in the last few steps of a loop. Our
method also solves the problem of efficient communication
by performing weighted inter-client knowledge transfer.

3. Federated Continual Learning with
Weighted Inter-client Transfer

Motivated by the human learning process from indirect expe-
riences, we introduce a novel continual learning under fed-
erated learning setting, which we refer to as Federated Con-
tinual Learning (FCL). FCL assumes that multiple clients
are trained on a sequence of tasks from private data stream,
while communicating the learned parameters with a global
server. We first formally define the problem in Section 3.1,
and then propose naive solutions that straightforwardly com-
bine the existing federated learning and continual learning
methods in Section 3.2. Then, following Section 3.3 and 3.4,
we discuss about two novel challenges that are introduced
by federated continual learning, and propose a novel frame-
work, Federated Weighted Inter-client Transfer (FedWeIT)
which can effectively handle the two problems while also

reducing the client-to-sever communication cost.

3.1. Problem Definition

In the standard continual learning (on a single machine),
the model iteratively learns from a sequence of tasks
{T (1), T (2), ..., T (T )} where T (t) is a labeled dataset of
tth task, T (t) = {x(t)i , y(t)i }

Nt
i=1, which consists of Nt

pairs of instances x(t)i and their corresponding labels y(t)i .
Assuming the most realistic situation, we consider the
case where the task sequence is a task stream with an un-
known arriving order, such that the model is allowed to
access T (t) only at the training period of task t which be-
comes inaccessible afterwards. Given T (t) and the model
learned so far, the learning objective at task t is as follows:
minimizeθ(t) L(θ(t);θ(t−1), T (t)), where θ(t) ∈ RN×M is
a set of the parameters in the model at task t.

We now extend the conventional continual learning to the
federated learning setting with multiple clients and a global
server. Let us assume that we have C clients, where at each
client cc ∈ {c1, . . . , cC} trains a model on a privately acces-
sible sequence of tasks {T (1)

c , T (2)
c , ..., T (t)

c } ⊆ T . Now
the goal is to effectively train C continual learning models
on their own private task streams, via communicating the
model parameters with the global server, which aggregates
the parameters sent from each client, and redistributes them
to clients.

3.2. Communicable Continual Learning

In conventional federated learning settings, the learning is
done with multiple rounds of local learning and parame-
ter aggregation. At each round of communication r, each
client cc and the server s perform the following two proce-
dures: local parameter transmission and parameter aggre-
gation & broadcasting. In the local parameter transmission
step, for a randomly selected subset of clients at round r,
C(r) ⊆ {c1, c2, ..., cC}, each client cc sends updated param-
eters θ(r) to the server. The server-clients transmission is
not done at every client because some of the clients may
be temporarily disconnected. Then the server aggregates
the parameters θ(r)

c sent from the clients into a single pa-
rameter. The most popular frameworks for this aggregation
are FedAvg (10) and FedProx (12). However, naive feder-
ated continual learning with these two algorithms on local
sequences of tasks may result in catastrophic forgetting.
One simple solution is to use a regularization-based, such
as Elastic Weight Consolidation (EWC) (4), which allows
the model to obtain a solution that is optimal for both the
previous and the current tasks. There exist other advanced
solutions (14; 15; 16; 17; 19) that successfully prevents
catastrophic forgetting. However, the prevention of catas-
trophic forgetting at the client level is an orthogonal problem
from federated learning.
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Figure 2. Updates of FedWeIT. (a) A client sends sparsified federated parameter Bc �m(t)
c . After that, the server redistributes aggregated

parameters to the clients. (b) The knowledge base stores previous tasks-adaptive parameters of clients, and each client selectively utilizes
them with an attention mask.

Thus we focus on challenges that newly arise in this feder-
ated continual learning setting. In the federated continual
learning framework, the aggregation of the parameters into a
global parameter θG allows inter-client knowledge transfer
across clients, since a task T (q)

i learned at client ci at round
q may be similar or related to T (r)

j learned at client cj at
round r. Yet, using a single aggregated parameter θG may
be suboptimal in achieving this goal since knowledge from
irrelevant tasks may not to be useful or even hinder the train-
ing at each client by altering its parameters into incorrect
directions, which we describe as inter-client interference.
Another problem that is also practically important, is the
communication-efficiency. Both the parameter transmission
from the client to the server, and server to client will incur
large communication cost, which will be problematic for
the continual learning setting, since the clients may train on
possibly unlimited streams of tasks.

3.3. Federated Weighted Inter-client Transfer

How can we then maximize the knowledge transfer between
clients while minimizing the inter-client interference, and
communication cost? We now describe our model, Feder-
ated Weighted Inter-client Transfer (FedWeIT), which can
resolve the these two problems that arise with a naive com-
bination of continual learning approaches with federated
learning framework.

The main cause of the problems, as briefly alluded to earlier,
is that the knowledge of all tasks learned at multiple clients
is stored into a single set of parameters θG. However, for
the knowledge transfer to be effective, each client should
selectively utilize only the knowledge of the relevant tasks
that is trained at other clients. This selective transfer is also
the key to minimize the inter-client interference as well as
it will disregard the knowledge of irrelevant tasks that may
interfere with learning.

We tackle this problem by decomposing the parameters, into
three different types of the parameters with different roles:
global parameters (θG) that capture the global and generic
knowledge across all clients, local base parameters (B)
which capture generic knowledge for each client, and task-
adaptive parameters (A) for each specific task per client.
This decomposition scheme is motivated by (9). A set of
the model parameters θ(t)

c for task t at continual learning
client cc is then defined as follows:

θ(t)
c = B(t)

c �m(t)
c + A(t)

c +
∑
i∈C

∑
j<|t|

α
(t)
i,jA(j)

i (1)

where B(t)
c ∈ RN×M is the set of base parameters for cth

client shared across all tasks in the client, m(t)
c ∈ RM is

a sparse mask which allows to adaptively transform B(t)
c

for the target task, A(t)
c ∈ RN×M is a sparse matrix of

task-adaptive parameters for the task t at client cc.

The first term allows selective utilization of the global knowl-
edge. We want the base parameter B(t)

c at each client to
capture generic knowledge across all tasks across all clients.
In Figure 2 (a), we initialize it at each round t with the
global parameter from the previous iteration, θ(t−1)

G which
aggregates the parameters sent from the client. This allows
B(t)
c to also benefit from the global knowledge about all

the tasks. However, since θ
(t−1)
G also contains knowledge

irrelevant to the current task, instead of using it as is, we
learn the sparse mask m(t)

c to select only the relevant pa-
rameters for the given task. This sparse parameter selection
helps minimize inter-client interference, and also allows
for efficient communication. The second term is the task-
adaptive parameters A(t)

c . Since we additively decompose
the parameters, this will learn to capture knowledge about
the task that is not captured by the first term, and thus will
capture specific knowledge about the task T (t)

c . The final
term describes inter-client knowledge transfer. We have a
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Algorithm 1 Federated Weighted Inter-client Transfer

input Dataset {D(1:t)
c }Cc=1, and Global Parameter θ(0)

G

output {Bc, m(1:t)
c , α

(1:t)
c , A(1:t)

c }Cc=1

1: Initialize Bc to θ
(0)
G for all c ∈ C ≡ {1, ..., C}

2: for task t = 1, 2, ... do
3: for round r = 1, 2, ..., R do
4: Select communicable clients C(r) ⊆ C
5: A(t−1,R)

c∈C(r) and B̂
(t,r)

c∈C(r) are transferred from C(r) to the
central server

6: Compute θ
(t,r)
G ← 1

|C(r)|

∑
c∈C(r) B̂

(t,r)

c

7: Distribute θ(t,r)
G and {A(t−1,R)

j }j∈C(r) to client c ∈ C(r)
8: Minimize Eq. (2) for solving each local CL problems
9: end for

10: end for

set of parameters that are transmitted from the server, which
contain all task-adaptive parameters from all the clients. To
selectively utilizes these indirect experiences from other
clients, we further allocate attention α

(t)
c on these parame-

ters, to take a weighted combination of them. By learning
this attention, each client can select only the relevant task-
adaptive parameters that help learn the given task. To reduce
a burden of the parameter communication, we send previous
task-adaptive parameters at each first training round per task
t.

Training. We learn the decomposable parameter θ(t)
c by

optimizing for the following objective:

minimize
B(t)
c , m(t)

c , A(1:t)
c , α

(t)
c

L
(
θ(t)
c ; T (t)

c

)
+ λ1Ω({m(t)

c ,A(1:t)
c })

+λ2

t−1∑
i=1

‖∆B(t)
c �m(i)

c −∆A(i)
c ‖22,

(2)

where L is a loss function and Ω(·) is a sparsity-inducing
regularization term for the task adaptive parameter and the
masking variable (we use `1-norm regularization), to make
them sparse. The final regularization term is used for retroac-
tive update of the past task-adaptive parameters, which helps
the task-adaptive parameters to maintain the original solu-
tions for the target tasks, by reflecting the change of the
base parameter. Here, ∆B(t)

c = B(t)
c − B(t−1)

c is the dif-
ference between the base parameter at the current and pre-
vious timestep, and ∆A(i)

c is the difference between the
task-adaptive parameter for task i at the current and previ-
ous timestep. This regularization is essential for preventing
catastrophic forgetting. λ1 and λ2 are hyperparameters con-
trolling the effect of the two regularizers.

3.4. Efficient Communication via Sparse Parameters

FedWeIT learns via server-to-client communication. As
discussed earlier, a crucial challenge here is to reduce the

Figure 3. Configuration of task sequences: We first split a
dataset D into multiple sub-tasks in non-IID manner ((a) and
(b)). Then, we distribute them to multiple clients (C#). Mixed
tasks from multiple datasets (colored circles) are distributed across
all clients ((c)).

communication cost. We describe what happens at the client
and the server at each step.

Client: At each round r, each client cc updates its base
parameter with the nonzero components of the global pa-
rameter sent from the server; that is, Bc(i) = θG(i) where i
is a nonzero element of the global parameter. After training
the model using Eq. (2), it obtains a sparsified base parame-

ter B̂
(t)

c = B(t)
c �m(t)

c and the newly learned task-adaptive

parameter A(t)
c . Then, the client sends both B̂

(t)

c and A(t)
c

to the server. Since both parameters are highly sparse, this
results in the large reduction of the client-to-server commu-
nication cost.

Server: The server first aggregates the sparsified base pa-
rameters sent from all the clients by taking an weighted
average of them: θ

(t)
G = 1

C
∑

c B̂
(t)

c . Then, it broadcasts
θ
(t)
G along with all task adaptive parameters {A(t)

c }Cc=1 to all
the clients. Algorithm 1 describes our FedWeIT algorithm.

4. Experiments
We validate our FedWeIT under different configurations
of task sequences against baselines which are namely
Overlapped-CIFAR-100 and NonIID-50. 1) Overlapped-
CIFAR-100: We group 100 classes of CIFAR-100 dataset
into 20 non-iid superclasses tasks. Then, we randomly sam-
ple 10 tasks out of 20 tasks and split instances to create a task
sequence for each of the clients with overlapping tasks. 2)
NonIID-50: We use the following eight benchmark datasets:
MNIST (25), CIFAR-10/-100 (26), SVHN (27), Fashion-
MNIST (28), Not-MNIST (29), FaceScrub (30), and Traf-
ficSigns (31). We split the classes in the 8 datasets into 50
non-IID tasks, each of which is composed of 5 classes that
are disjoint from the classes used for the other tasks. This
is a large-scale experiment, since we use 280, 000 images
of 293 classes from 8 heterogeneous datasets. After gener-
ating and processing tasks, we randomly distribute them to
multiple clients as illustrated in Figure 3.

Experimental setup We use a modified version of
LeNet (25) for the experiments with both Overlapped-
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Table 1. Averaged Per-task performance on NonIID-50 and Overlapped-CIFAR-100 during FCL with 5 clients. We measured task accuracy
and model capacity ratio after completing all learning phases over 3 individual trials.

NonIID-50 Dataset Overlapped-CIFAR-100
Methods Accuracy (%) Capacity C2S Cost Accuracy (%) Capacity C2S Cost

Local-STL 85.78 ± 0.17 1,000 % N/A 57.15 ± 0.07 1,000 % N/A
Local-EWC (4) 74.30 ± 0.08 100 % N/A 44.26 ± 0.43 100 % N/A
Local-APD (9) 81.42 ± 0.72 147 % N/A 50.82 ± 0.33 119 % N/A
FedCurv (23) 72.39 ± 0.32 100 % 100 % 40.36 ± 0.44 100 % 100 %
FedCurv-EWC 70.59 ± 0.39 100 % 100 % 40.59 ± 0.31 100 % 100 %
FedProx-EWC 68.18 ± 0.58 100 % 100 % 41.91 ± 0.47 100 % 100 %
FedProx-APD 81.20 ± 1.24 130 % 100 % 52.20 ± 0.41 124 % 100 %
FedWeIT (Ours) 84.11 ± 0.27 128 % 33 % 55.16 ± 0.19 126 % 33 %

Table 2. Average Per-task Performance on Overlapped-CIFAR-
100 during FCL with 20 and 100 clients.

20 clients 100 clients
Methods Acc. Capa. Acc. Capa.
Local-APD 46.48% 153% 37.50% 329%
FedWeIT 50.38% 155% 39.58% 330%

Table 3. FCL results on NonIID-50 dataset with ResNet-18.
ResNet-18

Methods Accuracy Capacity
Local-APD 92.44% 110%
FedProx-APD 92.89% 121%
FedWeIT 94.86% 109%

CIFAR-100 and NonIID-50 dataset. Further, we use ResNet-
18 (32) with NonIID-50 dataset. We followed other experi-
mental setups from (33) and (9). We use an Adam optimizer
with adaptive learning rate decay, which decays learning
rate by a factor of 3 for every 5 epochs that validation loss
does not consecutively decrease. For LeNet with 5 clients,
we initialize by 1e−3 × 1

3 at the beginning of each new task.
Mini-batch size is 100, the rounds per task is 20, an the
epoch per round is 1. The setting for ResNet-18 is identical
excluding initial learning rate, 1e−4. In the case of exper-
iments with 20 and 100 clients, we set the same settings
except reducing minibatch size from 100 to 10 with an ini-
tial learning rate 1e−4 and exploring client fraction 0.25 and
0.05, respectively. we set λ1 = [1e−1, 4e−1] and λ2 = 100
for all experiments. Further, we use µ = 5e−3 for FedProx,
λ = [1e−2, 1.0] for EWC and FedCurv.

Baselines and our models 1) Local-EWC: Continual
learning with EWC (4). 2) Local-APD: Continual learning
with APD (9). 3) FedCurv: FCL with FedCurv algorithm
(23) which reduces the parameter disparity across clients
using Fisher Information Matrix. 4) FedCurv-EWC: Fed-
curv algorithm with EWC. 5) Fed-EWC: Federated contin-
ual learning, that is trained using FedProx (12) algorithm
with EWC. 6) Fed-APD: Federated continual learning with
APD using FedProx algorithm. 7) FedWeIT: Our federated
weighted inter-client transfer algorithm.

Figure 4. Averaged task adaptation during training last two (9th

and 10th) tasks with 20 and 100 clients.

4.1. Experimental Results

We first validate our model on both Overlapped-CIFAR-100
and NonIID-50 task sequences against single task learning
(STL), continual learning (EWC, APD), federated learning
(FedCurv), and naive federated continual learning (Fed-
Curv, FedProx-based) baselines. Table 1 shows the final
average per-task performance after the completion of (fed-
erated) continual learning on both datasets. We observe
that FedProx-based federated continual learning (FCL) ap-
proaches degenerate the performance of continual learning
(CL) methods over the same methods without federated
learning. This is because the aggregation of all client pa-
rameters that are learned on irrelevant tasks results in se-
vere interference in the learning for each task, which leads
to catastrophic forgetting and suboptimal task adaptation.
While FedCurv reduces inter-task disparity in parameters,
it cannot minimize inter-task interference, which results
it to underperform single-machine CL methods. On the
other hand, FedWeIT significantly outperforms both single-
machine CL baselines and naive FCL baselines on both
datasets. Even with larger number of clients (C = 20,
C = 100), FedWeIT consistently outperforms Local-APD
(Table 2). This improvement largely owes to FedWeIT’s
ability to selectively utilize the knowledge from other clients
to rapidly adapt to the target task, and obtain better final
performance (Figure 4). The fast adaptation to new task
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Figure 5. (a) Accuracy over C2S cost. We report the relative communication cost to the original network. All results are averaged over
the 5 clients. (b) Inter-client transfer for NonIID-50. We compare the scale of the attentions at first FC layer which gives the weights on
transferred task-adaptive parameters from other clients.

(Ours)
Models BWT
Local-EWC (4) -0.045395
Local-APD (9) -0.004639
FedCurv (23) -0.191676
FedCurv-EWC -0.186957
FedProx-EWC -0.080083
FedProx-APD -0.002015
FedWeIT (Ours) -0.000655

Figure 6. Left: The performance at 3rd, 6th, and 8th tasks during federated continual learning on NonIID-50. Right: Forgetting measure
using Backward Transfer (BWT).

Table 4. Ablation studies to analyze the effectiveness of param-
eter decomposition on FedWeIT. All experiments performed on
NonIID-50 dataset.

NonIID-50
Methods Accuracy Capacity C2S Cost

FedWeIT 84.11% 128% 33%
w/o B comm. 77.88% 115% 2%
w/o A comm. 79.21% 130% 30%
w/o A 65.66% 100% 30%
w/o m 78.71% 143% 104%

is another clear advantage of inter-client knowledge trans-
fer. To further demonstrate the practicality of our method
with larger networks, we experiment on Non-IID dtaset with
ResNet-18 ( Table 3), on which FedWeIT still significantly
outperforms the strongest baseline (FedProx-APD) while
using fewer parameters.

Efficiency of FedWeIT We also report the accuracy as
a function of network capacity in Table 1, 3, which we
measure by the number of parameters used. We observe
that FedWeIT obtains much higher accuracy while utilizing
less number of parameters compared to FedProx-APD. This
efficiency mainly comes from the reuse of task-adaptive
parameters from other clients, which is not possible with
single-machine CL methods or naive FCL methods.

We also examine the communication cost of each method.
Table 1 reports the client-to-server communication cost
(C2S Cost) and, Figure 5 (a) shows the accuracy as func-
tion of communication cost. We observe that FedWeIT is

significantly more communication-efficient than naive FCL
baselines although it broadcasts task-adaptive parameters,
due to high sparsity of the parameters.

Ablation study We perform an ablation study to analyze
the role of each component of our FedWeIT. We compare
the performance of four different variations of our model.
w/o B communication describes the model that does not
transfer the base parameter B and only communicates task-
adaptive ones. w/o A communication is the model that
does not communicate task-adaptive parameters. w/o A is
the model which trains the model only with sparse trans-
mission of local base parameter, and w/o m is the model
without the sparse vector mask. As shown in Table 4, with-
out communicating B or A, the model yields significantly
lower performance compared to the full model since they do
not benefit from inter-client knowledge transfer. The model
w/o A obtains very low performance due to catastrophic for-
getting, and the model w/o sparse mask m achieves lower
accuracy with larger capacity and cost, which demonstrates
the importance of performing selective transmission.

Catastrophic forgetting Further, we examine how the
performance of the past tasks change during continual learn-
ing, to see the severity of catastrophic forgetting with each
method. Figure 6 Left shows the performance of FedWeIT
and FCL baselines on the 3rd, 6th, and 8th tasks, at the
end of training for later tasks. We observe that naive FCL
baselines suffer from more severe catastrophic forgetting
than local continual learning with EWC because of the inter-
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client interference, where the knowledge of irrelevant tasks
from other clients overwrites the knowledge of the past
tasks. Contrarily, our model shows no sign of catastrophic
forgetting. This is mainly due to the selective utilization
of the prior knowledge learned from other clients through
the global/task-adaptive parameters, which allows it to ef-
fectively alleviate inter-client interference. FedProx-APD
also does not suffer from catastrophic forgetting, but they
yield inferior performance due to ineffective knowledge
transfer. We also report Backward Transfer (BWT), which
is a measure on catastrophic forgetting for all models (more
positive the better) and our FedWeIT notably prevents the
catastrophic forgetting with a BWT of almost zero.

Weighted inter-client knowledge transfer By analyzing
the attention α in Eq. (1), we examine which task param-
eters from other clients each client selected. Figure 5 (b),
shows example of the attention weights that are learned for
the 0th split of MNIST and 10th split of CIFAR-100. We
observe that large attentions are allocated to the task param-
eters from the same dataset (CIFAR-100 utilizes parameters
from CIFAR-100 tasks with disjoint classes), or from a sim-
ilar dataset (MNIST utilizes parameters from Traffic Sign
and SVHN). This shows that FedWeIT effectively selects
beneficial parameters to maximize inter-client knowledge
transfer. This is an impressive result since it does not know
which datasets the parameters are trained on.

4.2. Effect of the Communication Frequency

We provide an analysis about the effect of the communi-
cation frequency of the model, measured by the number
of training epochs per communication round. We run the
4 different FedWeIT given 1, 2, 5, and 20 training epochs
per round. Table 5 shows the performance of our FedWeIT
variants. As clients frequently update the model parame-
ters through the communication with the central server, the
model gets higher performance while maintaining smaller
network capacity since the model with a frequent commu-
nication efficiently updates the model parameters as trans-
ferring the inter-client knowledge. However, it requires
much heavier communication costs than the model with
sparser communication. For example, the model who trains
1 epochs at each round may need to about 16.9 times larger
entire communication cost than the model who trains 20
epochs at each round. Hence, there is a trade-off between
model performance of federated continual learning and com-
munication efficiency whereas FedWeIT variants consis-
tently outperform (federated) continual learning baselines.

5. Conclusion
We tackled a novel problem of federated continual learning,
whose goal is to continuously learn local models at each
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Methods Accuracy (%) Capacity Epochs
/ Round

FedWeIT (Ours) 54.70 ± 0.24 14.8 MB
(122%) 1

FedWeIT (Ours) 54.72 ± 0.08 15.3 MB
(126%) 2

FedWeIT (Ours) 53.73 ± 0.44 16.5 MB
(136%) 5

FedWeIT (Ours) 53.22± 0.14 17.5 MB
(144%) 20

Table 5. Average Per-task Performance across the number of
training epochs per communication rounds on Overlapped-
CIFAR-100 for FedWeIT with 5 clients. All models transmit full of
local base parameters and highly sparse task-adaptive parameters.
All results are the mean accuracies over 5 clients and we run 3
random splits. Gray arrows at each point describes the error bar
about the standard deviation of the performance.

client while allowing it to utilize indirect experience (task
knowledge) from other clients. This poses new challenges
such as inter-client knowledge transfer and prevention of
inter-client interference between irrelevant tasks. To tackle
these challenges, we additively decomposed the model pa-
rameters at each client into the global parameters that are
shared across all clients, and sparse local task-adaptive pa-
rameters that are specific to each task. Further, we allowed
each model to selectively update the global task-shared pa-
rameters and selectively utilize the task-adaptive parameters
from other clients. The experimental validation of our model
under various task similarity across clients, against existing
federated learning and continual learning baselines shows
that our model obtains significantly outperforms baselines
with reduced communication cost. We believe that federated
continual learning is a practically important topic of large
interests to both research communities of continual learn-
ing and federated learning, that will lead to new research
directions.
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