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Abstract
There has been a surge of interest in continual
learning and federated learning, both of which
are important in deep neural networks in real-
world scenarios. Yet little research has been
done regarding the scenario where each client
learns on a sequence of tasks from private lo-
cal data stream. This problem of federated con-
tinual learning poses new challenges to contin-
ual learning, such as utilizing knowledge from
other clients, while preventing interference from
irrelevant knowledge. To resolve these issues,
we propose a novel federated continual learning
framework, Weighted Inter-client Transfer (Fed-
WeIT), which decomposes the network weights
into global federated parameters and sparse task-
specific parameters, and each client receives se-
lective knowledge from other clients by taking
a weighted combination of their task-specific pa-
rameters. FedWeIT minimizes interference be-
tween incompatible tasks, and also allows positive
knowledge transfer across clients during learn-
ing. We validate our FedWeIT against existing
federated learning and continual learning meth-
ods under varying degree of task similarity across
clients, and our model significantly outperforms
them with large reduction in the communication
cost.

1. Introduction
Continual learning (1; 2; 3; 4; 5) describes a learning sce-
nario where a model continuously trains on a sequence of
tasks; it is inspired by the human learning process, as a per-
son learns to perform numerous tasks with large diversity
over his/her lifespan, making use of the past knowledge to
learn about new tasks without forgetting previously learned

*Equal contribution 1KAIST, Daejeon, South Ko-
rea 2Agency for Defense Development, South Korea
3AITRICS, Seoul, South Korea. Correspondence to: Jae-
hong Yoon <jaehong.yoon@kaist.ac.kr>, Sung Ju Hwang
<sjhwang82@kaist.ac.kr>.

Proceedings of the 4 th Lifelong Machine Learning Workshop @
ICML, Vienna, Austria, 2020. Copyright 2020 by the author(s).

ones. Continual learning is a long-studied topic since having
such an ability leads to the potential of building a general ar-
tificial intelligence. However, there are crucial challenges in
implementing it with conventional models such as deep neu-
ral networks (DNNs), such as catastrophic forgetting, which
describes the problem where parameters or semantic repre-
sentations learned for the past tasks drift to the direction of
new tasks during training. The problem has been tackled by
various prior work (4; 6; 7; 8). More recent works tackle
other issues, such as scalability or order-robustness (5; 9).

However, all of these models are fundamentally limited in
that the models can only learn from its direct experience -
they only learn from the sequence of the tasks they have
trained on. Contrarily, humans can learn from indirect ex-
perience from others, through different means (e.g. verbal
communications, books, or various media). Then wouldn’t
it be beneficial to implement such an ability to a continual
learning framework, such that multiple models learning on
different machines can learn from the knowledge of the
tasks that have been already experienced by other clients?
One problem that arises here, is that due to data privacy
and communication cost, it may not be possible to com-
municate data directly between the clients or between the
server and clients. Federated learning (10; 11; 12; 13) is a
learning paradigm that tackles this issue by communicating
the parameters instead of the raw data itself. We may have a
server that receives the parameters locally trained on multi-
ple clients, aggregates it into a single model parameter, and
sends it back to the clients. Motivated by our intuition on
learning from indirect experience, we tackle the problem
of Federated Continual Learning (FCL) where we perform
continual learning with multiple clients trained on private
task sequences, which communicate their task-specific pa-
rameters via a global server.

Yet, the problem of federated continual learning also brings
new challenges. First, there is not only the catastrophic
forgetting from continual learning, but also the threat of
potential interference from other clients. Figure 1 (a) de-
scribes this challenge with the results of a simple experiment.
Here, we train a model for MNIST digit recognition while
communicating the parameters from another client trained
on a different dataset. When the knowledge transferred from
the other client is relevant to the target task (SVHN), the
model starts with high accuracy, converge faster and reach
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(a) Challenges of Federated Continual Learning (b) Weighted Inter-client Transfer

Figure 1. (a): Challenge of FCL. Knowledge interference from other clients hinder optimal training of target clients (Red) while positive
experience from other clients is beneficial (Green). (b): Overview of FedWeIT. Each client continuously learns on a private task
sequence with inter-client knowledge transfer as selectively utilizing the encoded knowledge of tasks learned at other clients.

higher accuracy (green line), whereas the model underper-
forms the base model if the transferred knowledge is from
a task highly different from the target task (CIFAR-10, red
line). Thus, we need to selective utilize knowledge from
other clients to minimize the inter-client interference and
maximize inter-client knowledge transfer. Another problem
with the federated learning is efficient communication, as
communication cost could become excessively large when
utilizing the knowledge of the other clients, since the com-
munication cost could be the main bottleneck in practical
scenarios when working with edge devices. Thus we want
the knowledge to be represented as compactly as possible.

To tackle these challenges, we propose a novel framework
for federated continual learning, Federated Weighted Inter-
client Transfer (FedWeIT), which decomposes the model
parameters into a dense global parameter and sparse task-
adaptive parameters. As illustrated in Figure 1 (b), FedWeIT
reduces the interference between different tasks since the
global parameters (�G) will encode task-generic knowl-
edge, while the task-specific knowledge will be encoded
into the task-adaptive parameters (A(t)

c ). When we utilize
the generic knowledge, we also want the client to selectively
utilize task-specific knowledge obtained at other clients. To
this end, we allow each model to take a weighted combi-
nation of the task-adaptive parameters broadcast from the
server, such that it can select task-specific knowledge helpful
for the task at hand. FedWeIT is communication-efficient,
since the task-adaptive parameters are highly sparse and
only need to be communicated once when created. We also
perform selective transmission of the parameters to further
reduce communication cost.

We validate our method on multiple different scenarios with
varying degree of task similarity across clients against vari-
ous federated learning and local continual learning models.
The results show that our model obtains significantly su-
perior performance over all baselines, adapts faster to new
tasks, with largely reduced communication cost.

The main contributions of this paper are as follows:

� We introduce a new problem of Federated Contin-
ual Learning (FCL), where multiple models contin-
uously learn on distributed clients, which poses new
challenges such as prevention of inter-client interfer-
ence and inter-client knowledge transfer.

� We propose a novel framework for federated con-
tinual learning, which allows each client to adap-
tively update the federated parameter and utilize the
past knowledge from other clients, by communicating
sparse parameters.

� We validate our model under FCL setting with both
Overlapped and non-IID task sequences, on which it
largely outperforms existing federated learning and
local continual learning approaches with significantly
reduced communication cost.

2. Related Work
Continual Learning While continual learning (1; 2; 3) is
a long-studied topic with a vast literature, we only discuss
recent relevant works. Regularization-based approaches:
A popular approach for continual learning is to use regu-
larizations that prevent catastrophic forgetting. EWC (4)
leverages Fisher Information Matrix to restrict the change
of the model parameters such that the model finds solution
that is good for both previous and the current task, and IMM
(6) proposes to learn the posterior distribution for multiple
tasks as a mixture of Gaussians. Architecture-based ap-
proaches: PGN (14) progressively expands the networks
with fixed number of neurons/filters at each layer. DEN (15)
tackles this issue by expanding the networks size with mini-
mum number of neurons/filters that are necessary via itera-
tive neuron/filter pruning and splitting, and RCL (16) tackles
the same problem using reinforcement learning. APD (9)
additively decompose the parameters into shared and task-
specific parameters to minimize the increase in the network
complexity. Coreset-based approaches: VCL (17) per-
forms online variational inference by continuously training
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the model while approximating the likelihood for the core-
set, and GEM variants (18; 19) minimize the loss on both
of actual dataset and stored episodic memory. FRCL (20)
memorizes approximated posteriors of previous tasks with
sophisticatedly constructed inducing points. To the best of
our knowledge, none of the existing approaches considered
the communicability for continual learning of deep neural
networks, which we tackle. CoLLA (21) aims at solving
multi-agent lifelong learning with sparse dictionary learn-
ing, but it is not applicable to federated learning or continual
deep learning.

Federated learning Federated Learning is a distributed
learning framework under differential privacy, which aims
to learn a global model on a server while aggregating the
parameters learned at the clients on their private data. There
are diverse approaches to aggregate the local models. Fe-
dAvg (10) aggregates the model trained across multiple
clients by computing a weighted average of them based
on the number of data points trained. TWAFL (11) and
ASO-fed (22) follow weighted averaging in FedAvg while
assigning larger weights to newer parameters by leverag-
ing timestamps. FedProx (12) trains the local models with
a proximal term which restricts their updates to be close
to the global model. FedCurv (23) aims to minimize the
model disparity across clients during federated learning by
adopting a modified version of EWC (4). Recent works
(13; 24) introduce well-designed aggregation policies by
leveraging Bayesian non-parametric methods. Another cru-
cial challenge is the reduction of communication cost, as
communicating the full network weights may be too costly.
TWAFL (11) tackles this problem by performing layer-wise
parameter aggregation, where some layers(i.e. shallow lay-
ers) are aggregated at every step, but other layers(i.e. deep
layers) are aggregated in the last few steps of a loop. Our
method also solves the problem of efficient communication
by performing weighted inter-client knowledge transfer.

3. Federated Continual Learning with
Weighted Inter-client Transfer

Motivated by the human learning process from indirect expe-
riences, we introduce a novel continual learning under fed-
erated learning setting, which we refer to as Federated Con-
tinual Learning (FCL). FCL assumes that multiple clients
are trained on a sequence of tasks from private data stream,
while communicating the learned parameters with a global
server. We first formally define the problem in Section 3.1,
and then propose naive solutions that straightforwardly com-
bine the existing federated learning and continual learning
methods in Section 3.2. Then, following Section 3.3 and 3.4,
we discuss about two novel challenges that are introduced
by federated continual learning, and propose a novel frame-
work, Federated Weighted Inter-client Transfer (FedWeIT)
which can effectively handle the two problems while also

reducing the client-to-sever communication cost.

3.1. Problem Definition

In the standard continual learning (on a single machine),
the model iteratively learns from a sequence of tasks
fT (1); T (2); :::; T (T )g where T (t) is a labeled dataset of
tth task, T (t) = fx(t)

i ; y(t)
i g

Nt
i=1, which consists of Nt

pairs of instances x(t)
i and their corresponding labels y(t)

i .
Assuming the most realistic situation, we consider the
case where the task sequence is a task stream with an un-
known arriving order, such that the model is allowed to
access T (t) only at the training period of task t which be-
comes inaccessible afterwards. Given T (t) and the model
learned so far, the learning objective at task t is as follows:
minimizeθ(t) L(�(t); �(t�1); T (t)), where �(t) 2 RN�M is
a set of the parameters in the model at task t.

We now extend the conventional continual learning to the
federated learning setting with multiple clients and a global
server. Let us assume that we have C clients, where at each
client cc 2 fc1; : : : ; cCg trains a model on a privately acces-
sible sequence of tasks fT (1)

c ; T (2)
c ; :::; T (t)

c g � T . Now
the goal is to effectively train C continual learning models
on their own private task streams, via communicating the
model parameters with the global server, which aggregates
the parameters sent from each client, and redistributes them
to clients.

3.2. Communicable Continual Learning

In conventional federated learning settings, the learning is
done with multiple rounds of local learning and parame-
ter aggregation. At each round of communication r, each
client cc and the server s perform the following two proce-
dures: local parameter transmission and parameter aggre-
gation & broadcasting. In the local parameter transmission
step, for a randomly selected subset of clients at round r,
C(r) � fc1; c2; :::; cCg, each client cc sends updated param-
eters �(r) to the server. The server-clients transmission is
not done at every client because some of the clients may
be temporarily disconnected. Then the server aggregates
the parameters �(r)

c sent from the clients into a single pa-
rameter. The most popular frameworks for this aggregation
are FedAvg (10) and FedProx (12). However, naive feder-
ated continual learning with these two algorithms on local
sequences of tasks may result in catastrophic forgetting.
One simple solution is to use a regularization-based, such
as Elastic Weight Consolidation (EWC) (4), which allows
the model to obtain a solution that is optimal for both the
previous and the current tasks. There exist other advanced
solutions (14; 15; 16; 17; 19) that successfully prevents
catastrophic forgetting. However, the prevention of catas-
trophic forgetting at the client level is an orthogonal problem
from federated learning.
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(a) Communication of General Knowledge (b) Communication of Task-adaptive Knowledge

Figure 2.Updates ofFedWeIT. (a) A client sends sparsi�ed federated parameterBc � m( t )
c . After that, the server redistributes aggregated

parameters to the clients.(b) The knowledge base stores previous tasks-adaptive parameters of clients, and each client selectively utilizes
them with an attention mask.

Thus we focus on challenges that newly arise in this feder-
ated continual learning setting. In the federated continual
learning framework, the aggregation of the parameters into a
global parameter� G allows inter-client knowledge transfer
across clients, since a taskT (q)

i learned at clientci at round
q may be similar or related toT ( r )

j learned at clientcj at
roundr . Yet, using a single aggregated parameter� G may
be suboptimal in achieving this goal since knowledge from
irrelevant tasks may not to be useful or even hinder the train-
ing at each client by altering its parameters into incorrect
directions, which we describe asinter-client interference.
Another problem that is also practically important, is the
communication-ef�ciency. Both the parameter transmission
from the client to the server, and server to client will incur
large communication cost, which will be problematic for
the continual learning setting, since the clients may train on
possibly unlimited streams of tasks.

3.3. Federated Weighted Inter-client Transfer

How can we then maximize theknowledge transferbetween
clients while minimizing theinter-client interference, and
communication cost? We now describe our model,Feder-
ated Weighted Inter-client Transfer (FedWeIT), which can
resolve the these two problems that arise with a naive com-
bination of continual learning approaches with federated
learning framework.

The main cause of the problems, as brie�y alluded to earlier,
is that the knowledge of all tasks learned at multiple clients
is stored into a single set of parameters� G . However, for
the knowledge transfer to be effective, each client should
selectivelyutilize only the knowledge of therelevanttasks
that is trained at other clients. This selective transfer is also
the key to minimize the inter-client interference as well as
it will disregard the knowledge of irrelevant tasks that may
interfere with learning.

We tackle this problem by decomposing the parameters, into
three different types of the parameters with different roles:
global parameters(� G ) that capture the global and generic
knowledge across all clients,local base parameters(B)
which capture generic knowledge for each client, andtask-
adaptive parameters(A) for each speci�c task per client.
This decomposition scheme is motivated by (9). A set of
the model parameters� ( t )

c for taskt at continual learning
client cc is then de�ned as follows:

� ( t )
c = B( t )

c � m( t )
c + A( t )

c +
X

i 2C

X

j< j t j

� ( t )
i;j A( j )

i (1)

whereB( t )
c 2 RN � M is the set of base parameters forcth

client shared across all tasks in the client,m( t )
c 2 RM is

a sparse mask which allows to adaptively transformB( t )
c

for the target task,A( t )
c 2 RN � M is a sparse matrix of

task-adaptive parameters for the taskt at clientcc.

The �rst term allows selective utilization of the global knowl-
edge. We want the base parameterB( t )

c at each client to
capture generic knowledge across all tasks across all clients.
In Figure 2 (a), we initialize it at each roundt with the
global parameter from the previous iteration,� ( t � 1)

G which
aggregates the parameters sent from the client. This allows
B( t )

c to also bene�t from theglobal knowledge about all
the tasks. However, since� ( t � 1)

G also contains knowledge
irrelevant to the current task, instead of using it as is, we
learn the sparse maskm( t )

c to select only the relevant pa-
rameters for the given task. This sparse parameter selection
helps minimize inter-client interference, and also allows
for ef�cient communication. The second term is the task-
adaptive parametersA( t )

c . Since we additively decompose
the parameters, this will learn to capture knowledge about
the task that is not captured by the �rst term, and thus will
capture speci�c knowledge about the taskT ( t )

c . The �nal
term describes inter-client knowledge transfer. We have a


