
Under review as submission to TMLR

Accelerating Fair Federated Learning:
Adaptive Federated Adam

Anonymous authors
Paper under double-blind review

Abstract

Federated learning is a distributed and privacy-preserving approach to train a statistical
model collaboratively from decentralized data of different parties. However, when datasets
of participants are not independent and identically distributed, models trained by naive fed-
erated algorithms may be biased towards certain participants, and model performance across
participants is non-uniform. This is known as the fairness problem in federated learning.
In this paper, we formulate fairness-controlled federated learning as a dynamical multi-
objective optimization problem to ensure fair performance across all participants. To solve
the problem efficiently, we study the convergence and bias of Adam as the server optimizer
in federated learning, and propose Adaptive Federated Adam (AdaFedAdam) to accelerate
fair federated learning with alleviated bias. We validated the effectiveness, Pareto optimal-
ity and robustness of AdaFedAdam with numerical experiments and show that AdaFedAdam
outperforms existing algorithms, providing better convergence and fairness properties of the
federated scheme.

1 Introduction

Federated Learning (FL), first proposed by McMahan et al. (2017), is an emerging collaborative learn-
ing technique enabling multiple parties to train a joint machine learning model with input privacy being
preserved. By iteratively aggregating local model updates done by participating clients using their local,
private data, a joint global model is obtained. The promise of federated learning is that this global model
will have superior performance compared to the models that could be obtained by each participant in isola-
tion. Compared with traditional distributed machine learning, FL works with larger local updates and seeks
to minimize communication cost while keeping the data of participants local and private. With increasing
concerns about data security and privacy protection, federated learning has attracted much research interest
(Li et al., 2020b; Kairouz et al., 2021) and has been proven to work effectively in various application domains
(Li et al., 2020a; Xu et al., 2021).

When datasets at the client sites are not independent and identically distributed (IID), the standard al-
gorithm for federated learning, FedAvg, can struggle to achieve good model performance, with an increase
of communication rounds needed for convergence (Li et al., 2019b; Zhu et al., 2021). Moreover, the global
model trained with heterogeneous data can be biased towards some of the participants, while performing
poorly for others (Mohri et al., 2019). This is known as unfairness problem in federated learning. There are
ways to improve fairness in federated learning, at the cost of model convergence (Mohri et al., 2019; Li et al.,
2019a; 2021; Hu et al., 2022). This study aims to contribute to enabling fair federated learning without
negatively impacting the convergence rate.

Acceleration techniques for federated learning aim at reducing the communication cost and improving con-
vergence. For instance, momentum-based and adaptive optimization methods such as AdaGrad, Adam, Mo-
mentum SGD have been applied to accelerate the training process (Wang et al., 2019; Karimireddy et al., 2020;
Reddi et al., 2020). However, default hyperparameters of adaptive optimizers tuned for centralized training
do not tend to perform well in federated settings (Reddi et al., 2020). Furthermore, optimal hyperparameters
are not generalizable for federated learning, and hyperparameter optimization with e.g. grid search is needed

1

Under review as submission to TMLR

for each specific federated task, which is infeasible due to the expensive (sometimes unbounded) nature for
federated learning. Further research is needed to understand how to adapt optimizers for federated learning
with minimal hyperparameter selection.

In this study, to accelerate the training of fair federated learning, we formulate fairness-aware federated learn-
ing as a dynamical multi-objective optimization problem (DMOO) problem. By analyzing the convergence and
bias of federated Adam, we propose Adaptive Federated Adam (AdaFedAdam) to solve the formulated DMOO
problem efficiently. With experiments on standard benchmark datasets, we illustrate that AdaFedAdam alle-
viates model unfairness and accelerates federated training. In additional, AdaFedAdam is proved to be robust
against different levels of data and resource heterogeneity, which suggests that the its performance on fair
federated learning can be expected in real-life use cases.

The remainder of the paper is structured as follows. Section 2 summarizes related work including different
acceleration techniques for federated training and the fairness problem in federated learning. Then fair
federated learning problem is formulated in Section 3 and Federated Adam is analyzed in Section 4. Section
5 introduces the design of AdaFedAdam and shows the convergence guarantee for AdaFedAdam. Experimental
setups and results are presented in Section 6. Finally, Section 7 concludes the paper and suggests future
research directions.

2 Related Work

In this section, we review recent techniques to accelerate federated training as well as studies of model
fairness in FL.

2.1 Acceleration Techniques for Federated Learning

Adaptive methods and momentum-based methods accelerate centralized training of neural networks over
vanilla SGD (Kingma & Ba, 2014; Zeiler, 2012). In the context of federated learning, Hsu et al. (2019) and
Wang et al. (2019) introduced first-order momentum to update the global model by treating local updates as
pseudo-gradients, showing the effectiveness of adaptive methods for federated learning. Further, Reddi et al.
(2020) demonstrated a two-level optimization framework FedOpt for federated optimization. On the local
level, clients optimize the local objective functions while local updates are aggregated as "pseudo-gradients"
to update the global model on the server level. By applying adaptive optimizers (e.g. Adam) as the server
optimizer, we obtain adaptive federated optimizers (e.g. FedAdam). It has been empirically validated that
adaptive federated optimizers are able to accelerate training with careful fine-tuning (Reddi et al., 2020).

Fine-tuning for server optimizers is challenging for the following reasons:

• Due to the inherent differences of federated and centralized training, default hyperparameters of op-
timizers which work well on centralized training does not necessarily have satisfactory performances
in federated training.

• For adaptive optimizers, grid search needs to be done to get multiple hyperparameters optimized
(Reddi et al. (2020)), which is prohibitively expensive considering the orchestration cost for the
entire federation.

• The optimal hyperparameters for server-side optimizers are not generalizable between different fed-
erated tasks, and fine-tuning must be done for each individual task.

It would greatly ease the use of server-side optimizers if the selection of hyperparameters were automatic.
The proposed methods AdaFedAdam minimizes the efforts of fine-tuning by adapting default hyperparameters
of Adam in centralized settings to federated training.

2.2 Model Fairness

The concept of model unfairness describes the differences of model performance across participants (Mohri
et al., 2019). In a federated training process, model performances of clients may be not uniform when data

2

Under review as submission to TMLR

across participants are heterogeneous, and the global model can be biased towards some participants. To re-
duce the unfairness, Mohri et al. (2019) proposed the algorithm Agnostic Federated Learning, a minimax
optimization approach that only optimizes the single device with the worst performance. Inspired by fair
resource allocation, Li et al. (2019a) formulated fair federated learning as a fairness-controlled optimization
problem with α-fairness function (Mo & Walrand, 2000). An algorithm q-FedAvg was proposed to solve the
optimization problem, which dynamically adjust step sizes of local SGD by iteratively estimating Lipschitz
constants. More recently, Hu et al. (2022) interpreted federated learning as a multi-objective optimization
problem, and adapted Multi-Gradient Descent Algorithm to federated settings as FedMGDA+ to reduce the un-
fairness. Alternatively, Li et al. (2021) proposed Ditto to improve the performance fairness by personalizing
global models on client sites.

Unlike previous work that are based on FedAvg with improved fairness at a cost of model convergence,
the here proposed approach formulates fair federated learning as a dynamic multi-objective function and
proposes AdaFedAdam to solve the formulated problem. Compared with other FedAvg-based algorithms for
fairness control, AdaFedAdam offer equivalent fairness guarantee with improved convergence properties.

3 Preliminaries & Problem Formulation

3.1 Standard Federated Learning

Considering the distributed optimization problem to minimize the global loss function F (x) across K clients
as follows:

min
x

[F (x) :=
K∑

k=1
pkFk(x)] (1)

where x denotes the parameter set of function F , Fk(x) is the local objective function of client k w.r.t local
dataset Dk, and pk := |Dk|∑

|D|
denotes the relative sample size of Dk with number of samples |Dk| in Dk.

The data distribution on client k is denoted by Dk.

3.2 Fair Federated Learning

When Dk across clients are non-IID, the standard formulation of federated learning can suffer from significant
fairness problem (Mohri et al., 2019) in addition to a potential loss of convergence. To improve the model
fairness, federated learning can be formulated with α-fairness function as α-Fair Federated Learning (also
known as q-Fair Federated Learning in Li et al. (2019a)) as follows:

min
x

[F (x) :=
K∑

k=1

pk

α + 1F α+1
k (x)] (2)

where notations is as in equation 1 with additional α ≥ 0.

However, it is challenging to solve the problem with distributed first-order optimization. With only access to
gradients of local objective functions ∇tFk(x), the gradient of F (x) at xt and the update rule of distributed
SGD are given as follows:

∇F (xt) =
K∑

k=1
pkF α

k (xt)∇Fk(xt) (3)

xt+1 := xt − η∇F (xt) (4)

The gradient ∇F (xt) has decreasing scales due to the factor F α(xt). With the number of iterations t
increases, decreasing F α(xt) scales ∇F (xt) down drastically. With a fixed learning rate η, the update of SGD
−η∇F (xt) scales down correspondingly and thus, the convergence deteriorates. To improve the convergence,
Li et al. (2019a) proposes q-FedAvg to adjust learning rates adaptively to alleviate the problem. However,

3

Under review as submission to TMLR

the convergence of q-FedAvg is still slow since the scaling challenge is introduced by the problem formulation
intrinsically. To have a better convergence for federated learning with fairness control, reformulating the
problem is required.

3.3 Problem Formulation

In the field of multi-task learning, neural networks are designed to achieve multiple tasks at the same time
by summing multiple component objective functions up as a joint loss function. In a similar spirit to fair
federated learning, training multitask deep neural networks also requires to keep similar progress for all
component objectives. Inspired by Chen et al. (2018), we formulate fair federated learning as a dynamic
multi-objective optimization problem in the following form:

min
x

[F (x, t) :=
∑K

k=1 pkIα
k (t)Fk(x)∑K

k=1 pkIα
k (t)

] (5)

where identical notations in equation 1. Additionally, inverse training rate is defined as Ik(t) :=
Fk(xt)/Fk(x0) for client k at round t, to quantify its training progress. α ≥ 0 is a hyperparameter to
adjust the model fairness similar to α in α-fairness function. The problem reduces to the federated opti-
mization without fairness control if setting α = 0, and it restores the minimax approach for multi-objective
optimization (Mohri et al., 2019) if setting α a sufficiently large value.

Compared with α-Fair Federated Learning, the proposed formulation has equivalent fairness guarantee with-
out the problem of decreasing scales of gradients. With a global model x0 initialized with random weights,
we assume that Fi(x0) ≃ Fj(x0) for ∀i, j ∈ [K]. Then the gradient of F (x, t) at xt is given by:

∇F (xt, t) ≃
∑K

k=1 pkF α
k (xt)∇Fk(xt)∑K

k=1 pkF α
k (xt)

(6)

∝
K∑

k=1
pkF α

k (xt)∇Fk(xt) (7)

The gradient F (xt, t) of the DMOP formulation is proportional to the gradient of the α-Fairn Federated
Learning equation 2. Thus, with first-order optimization methods, the solution of the DMOP formulation is
also the solution of the α-fairness function, which has been proved to enjoy (p, α)-Proportional Fairness (Mo
& Walrand, 2000). Moreover, the DMOP formulation of Fair Federated Learning does not have the problem
of decreasing gradient scales in the α-fairness function, so that distributed first-order optimization methods
can be applied to solve the problem more efficiently.

4 Analysis of FedAdam

In this section, we analyze the performance of Adam as the server optimizer in federated learning. We first
study the effect of using accumulated updates as pseudo-gradients for Adam in centralized training. The bias
introduced by averaging accumulated local updates without normalization in FedAdam is then discussed.

4.1 From Adam to FedAdam

As the de facto optimizer for centralized deep learning, Adam provides stable performance with little need
of fine-tuning. Adam provides adaptive stepsize selection based on the initial stepsize η for each individual
coordinate of model weights. The adaptivity of stepsizes can be understood as continuously establishing
trust regions based on estimations of the first- and second-order momentum (Kingma & Ba, 2014), which
are updated by exponential moving averages of gradient estimations and their squares with hyperparameters
β1 and β2 in each step.

4

Under review as submission to TMLR

The choice of hyperparameters in Adam can be explained by the certainty of directions for model updates.
In centralized Adam, directions for updates are from gradient estimations ∇ζ∼DF (x) obtained from a small
batch of data ζ with large variances, indicating low certainty of update directions. Thus, large β1 and β2
(0.9 and 0.999 by default) are set to assign less weight for each gradient estimation when updating first-
and second-order momentum. Low certainty of update directions also only allow small trust regions to be
constructed from small initial stepsize η (0.001 by default).

In federated learning, FedAdam is obtained if we apply Adam as the server optimizer. The size-weighted
average of clients’ local updates at round t, ∆t, acts as the pseudo-gradient. Although empirical results have
shown that FedAdam outperforms the standard FedAvg with careful fine-tuning in terms of average error
(Reddi et al., 2020), several problems exist in FedAdam. In the following subsections, we analyze the problem
of convergence loss of FedAdam and bias of pseudo-gradients used for FedAdam.

4.2 Adam with Accumulated Updates

When data between clients are statistically homogeneous, the average of local updates is an unbiased esti-
mator of accumulated updates of multiple centralized SGD steps. Therefore, in IID cases, FedAdam shrinks
as Adam with gradient estimation given by accumulated updates of N SGD steps (N-AccAdam). The Pseudo-
codes of N-AccAdam is given in the Appendix B. We prove that even in centralized settings, N-AccAdam has
less convergence guarantee than standard Adam with same hyperparameters.

Theorem 1 (Convergence of N-AccAdam) Assume the L-smooth convex loss function f(x) has bounded
gradients ∥∇∥∞ ≤ G for all x ∈ Rd. Hyperparameters ϵ, β2 and η in N-AccAdam are chosen with the
following conditions: η ≤ ϵ/2L and 1 − β2 ≤ ϵ2/16G2. The accumulated update of N SGD updates at step
t ∆xt := −

∑N
n=1 ∆nxt is applied to Adam, where ∆nxt denotes the local update after n SGD steps with a

fixed learning rate on model xt. SGD exhibits approximately linear convergence with constants (A, c). In the
worst case, the algorithm has no convergence guarantee. In the best cases where Rt = N for all t ∈ [T], the
converge guarantee is given by:

1
T

T∑
t=1
∥∇f(xt)∥2 ≤ f(x1)− f(x∗)(

√
β2G + ϵ)

(Nc

1− (1− c)N
− 1

2)︸ ︷︷ ︸
S

ηT
(8)

where Rt := min |∆t,i

∇t,i
| for i ∈ [d]

The proof for Theorem 1 is deferred to Appendix A.1. In the best case where Rt = N (which is almost not
feasible), N-AccAdam gains S speedup compared with Adam. However, the computation cost of N-AccAdam
is linear to N but the speedup S is sublinear to N . Thus, with a fixed computation budget, the convergence
rate of N-AccAdam is slower than Adam with the same hyperparameters. Compared with gradient estimation
by a small batch of data, accumulated updates of multiple SGD steps have larger certainty about directions
of updates for the global model. To improve the convergence of N-AccAdam, it is possible to construct larger
trust regions with larger stepsize η and smaller βs with accumulated updates.

4.3 Bias of Pseudo-gradients for FedAdam

In federated settings, when data among clients are heterogeneous, averaging all local updates weighted by
sizes of client datasets introduces bias toward a portion of clients. The biased pseudo-gradients lead to even
lower convergence and increase the unfairness of FedAdam.

Wang et al. (2020) has proved that there exists objective inconsistency between the stationary point and
the global objective function, and biases are caused by different local SGD steps taken by clients. They
propose FedNova to reduce the inconsistency by normalizing local updates with the number of local steps.
The convergence analysis of FedNova assumes that all local objective functions have the same L-smoothness,
which is also identical to the smoothness constant of the global objective function. However, in federated

5

Under review as submission to TMLR

learning with highly heterogeneous datasets, smoothness constants Lk of local objective functions Fk(x) are
very different across clients and from Lg of the global objective function. Although the assumption and proof
still holds if taking Lg := max(Lk) for all k ∈ [K], we argue that the inconsistency still exists in FedNova if
only normalizing local updates with number of steps regardless of differences of Lk-smoothness constant of
local objectives.

In one communication round, with the same numbers of local SGD steps and a fixed learning rate η, it is
likely to happen that while objectives with small L-constant are still slowly converging, local objectives with
large L-constants have converged in a few steps and extra steps are ineffective. In such cases, normalizing
local updates with number of local SGD steps implicitly over-weights updates from objectives with smaller L-
constants when computing pseudo-gradients. Normalization of local updates to de-bias the pseudo-gradients
is yet to be improved to take both different numbers of local steps and L-smoothness constants of local
objectives into consideration.

5 AdaFedAdam

To address the drawbacks mentioned above, we propose Adaptive FedAdam (AdaFedAdam) to make better use
of accumulated local updates for fair federated learning (equation 5) with little efforts on fine-tuning.

5.1 Algorithm

The pseudo-code of the algorithm is presented as Algorithm 1 and Figure 1 is an illustration of AdaFedAdam.

Algorithm 1 AdaFedAdam: Adaptive Federated Adam
Require: initial model x0, η, β1, β2, ϵ

Initialize m and v: m0 ← 0, v0 ← 0
Initialize correction factors for m and v: c0,m ← 1, c0,v ← 1
for round t in {0, 1, ...T − 1} do

gt, Ct = GetPseudoGradient(xt) ▷ Compute pseudo-gradient and its certainty
βt,1 ← βCt

1 , βt,2 ← βCt

2 ▷ Adapt β1 and β2
ηt ← Ctη ▷ Adapt step size η
ct+1,m ← ct,mβt,1, ct+1,v ← ct,vβt,2 ▷ Update correction factors
mt+1 ← (1− βt,1)gt + βt,1mt

vt+1 ← (1− βt,2)gt ⊙ gt + βt,2vt ▷ Update m and v
m̂t+1 ← mt+1/(1− ct+1,m)
v̂t+1 ← vt+1/(1− ct+1,v) ▷ Correct m and v
xt+1 ← xt − ηm̂t+1/(

√
v̂t+1 + ϵ) ▷ Update model weights

end for

AdaFedAdam has following three improvements over standard FedAdam:

Normalization of local updates: Due to different L-smoothness constants of local objectives and local
steps across participants, lengths of accumulated updates ∆k are not at uniform scales and normalization of
local updates is necessary as discussed in Section 4. Natural scales for local updates are the ℓ2-norms of local
gradients ∥∇Fk(xt)∥2 on client k. By normalizing ∆k to the same ℓ2-norm of ∥∇Fk(xt)∥2, a normalized
update Uk and a supportive factor η′

k are obtained. Intuitively, ∆k can be seen as one update step following
a "confident" update direction −Uk with a large learning rate η′

k on the model xt given by client k. The
certainty of the direction Uk is defined as Ck := log(η′

k/ηk) + 1 (ηk as the learning rate of the local solver),
and the greater Ck is, the larger update can be made following Uk.

Fairness control: Following the formulation of the loss function in fair federated learning in Section 3, the
pseudo-gradient gt of the global model xt is correspondingly the average of the normalized local updates
with adaptive weights Iα

k , where Ik is the inverse training rate and α is the predefined hyperparameter for
fairness control. The certainty of gt is given by the weighted average of local certainties Ck for all k ∈ [K].

6

Under review as submission to TMLR

Algorithm 2 Pseudo-gradient calculation
Require: α

function GetPseudoGradient(x))
Broadcast x to all clients
for client k in {0, 1, ...K − 1} parallel do

Calculate Fk(x) and ∇Fk(x)
xk = LocalSolver(x, ηk) ▷ Local training on client datasets
∆k ← xk − x
η′

k ←
∥∆k∥2

∥∇Fk(xt)∥2

Uk ← −∆k

η′
k

▷ Normalize local updates
Ck ← log(η′

k/ηk) + 1 ▷ Estimate certainty of local updates
Ik = Fk(x)/Fk(x0)
Report (Uk, Ck, Ik) to the server

end for
g←

∑
SkIα

k Uk∑
SkIα

k

, C ←
∑

SkIα
k Ck∑

SkIα
k

▷ Aggregate local updates
Return g, C

end function

Pseudo gradient

I

II

Model update

III

I Normalising local updates, calculating update certainty

II Adaptively rebalance local updates for fairness control

III Accelerating the training with Adam taking advantages of update certainty

I

Local updates

Normalized
updates

Figure 1: Illustration of AdaFedAdam: xt, x∗
k and x∗ denote the global model at round t, the optima of local

objective functions of client k and the optima of the global objective function, respectively.

Adaptive hyperparameters for federated Adam: Hyperparameters of FedAdam are adapted as follows
to make better use of pseudo-gradients g from accumulated updates:

• βt,1 ← βC
1 , βt,2 ← βC

2 : Adaptive βt,1 and βt,2 dynamically control the weight of the current update
for the momentum estimation. AdaFedAdam assigns more weight to more "certain" pseudo-gradients
to update the average, and thus β1 and β2 are adapted exponentially following the form of expo-
nentially weighted moving average.

• ηt ← Cη: The base stepsize ηt is adjusted based on the certainty of the pseudo-gradient C as well.
Greater certainty enables larger ηt to construct larger trust regions and vice versa.

7

Under review as submission to TMLR

Theoretically, AdaFedAdam ensures the following features:

• Fairness Guarantee: The fairness of the model has been formulated into the objective function in
fair federated learning to be optimized together with the error with theoretical (p, α)-Proportional
Fairness (Mo & Walrand, 2000). Also, the algorithm can be adapted to different fairness levels by
adjusting α in the problem formulation.

• Fine-tuning Free: The adaptivity of AdaFedAdam derives from dynamic adjustment of hyperpa-
rameters for Adam. All initial hyperparameters of AdaFedAdam can be chosen as the default values in
the standard Adam for the centralized setting, and they are adaptively adjusted during the federated
training process.

• Allowance for Resource Heterogeneity: Thanks to the normalization of local updates,
AdaFedAdam allows arbitrary numbers of local steps, which could be caused by resource limitation
of clients (also known as resource heterogeneity).

• Compatibility with Arbitrary Local Solvers: The normalization of local updates only relies on
the ℓ2-norm of the local gradient estimation. Thus, any first-order optimizers are compatible with
AdaFedAdam.

These features of AdaFedAdam are empirically validated and discussed in Section 6.

5.2 Convergence analysis for AdaFedAdam

The convergence guarantee of AdaFedAdam for convex functions is proved as follows.

Theorem 2 (Convergence of AdaFedAdam) Assume the L-smooth convex loss function f(x) has bounded
gradients ∥∇∥∞ ≤ G for all x ∈ Rd, and hyperparameters ϵ, β2,0 and η0 are chosen according to the following
conditions: η0 ≤ ϵ/2L and 1− β2,0 ≤ ϵ2/16G2.The pseudo-gradient gt at step t is given by Algorithm 1 with
its certainty Ct. The convergence guarantee of AdaFedAdam is given by:

1
T

T∑
t=1
∥∇f(xt)∥2) ≤

2(f(x1)− f(x∗))(
√

β2,0G + ϵ)
RCη0

(9)

where R := mint(mini | gt,i

∇t,i
|) for all i ∈ [d], t ∈ [T] and C := min Ct for t ∈ [T].

The proof of Theorem 2 is deferred to Appendix A.2. By normalizing local updates to the same ℓ2-norm
of local gradients, the convergence of AdaFedAdam can be guaranteed. When the client optimizers are fixed
as SGD and 1 step is performed locally, the federated training is identical to minibatch Adam and Theorem 2
gives the identical convergence guarantee of Adam (Reddi et al., 2019). It should be noticed that Theorem
2 does not provide a tight bound for the convergence rate but only focuses on the convergence guarantee.
Better empirical performance of AdaFedAdam can be expected.

6 EXPERIMENTAL RESULTS

Experimental Setups To validates the effectiveness and robustness of AdaFedAdam, four federated setups
are used: 1). Femnist setup: A multi-layer perceptron (MLP) network (Pal & Mitra, 1992) for image
classification on Federated EMNIST dataset (Deng, 2012), proposed by Caldas et al. (2018) as a benchmark
task for federated learning; 2). Cifar10 setup: VGG11 (Simonyan & Zisserman, 2014) for image classification
on Cifar10 dataset (Krizhevsky et al., 2009) partitioned by Dirichlet distribution Dir(0.05) for 16 clients;
3). Sent140 setup: A stacked-LSTM model (Gers et al., 2000) for sentiment analysis on the Text Dataset
of Tweets (Go et al., 2009); 4). Synthetic setup: A linear regression classifier for multi-class classification
on a synthetic dataset (Synthetic), proposed by Caldas et al. (2018) as a challenging task for benchmarking
federated algorithms. Details of the model architectures and experimental settings are available in Appendix
C.1. All code, data, and experiments are publicly available at GitHub (the link will appear in the final
manuscript).

8

Under review as submission to TMLR

Convergence & Fairness We benchmark AdaFedAdam against FedAvg, FedAdam, FedNova and q-FedAvg
with q = 1. All hyperparameters of the optimizers are set as the default values in centralized settings. The
fairness of the model is quantified by the standard deviation (STD) of local accuracy on clients and the
average accuracy of the worst 30% clients. The training curves are shown in Figure 2 with numerical details
in Appendix C.2. Figure 2 shows that AdaFedAdam consistently converges faster than other algorithms, with
better worst 30% client performance for all setups. Distributions of local accuracy indicate that federated
models trained with AdaFedAdam provide the most uniform distributions of local accuracy for the partici-
pants. It is also noticeable that other federated algorithms without fine-tuning does not provide consistent
performance in different setups with default hyperparameters, which validates the necessity of fine-tuning.
In contrast, AdaFedAdam provides the best and the most stable performances in all setups with default hy-
perparameters. To summarize, AdaFedAdam is able to train federated models with fair performances among
participants with better convergence without fine-tuning.

0 100 200 300 400 500
Num. of rounds

50

60

70

80

90

Ac
cu

rac
y /

 %

FEMNIST: Test accuracy

fedavg
fedadam
qfedavg
fednova
adafedadam

0 50 100 150 200
Num. of rounds

0

20

40

60

80

Ac
cu

rac
y /

 %

CIFAR10: Test accuracy

0 200 400 600 800 1000
Num. of rounds

40

50

60

70

80

Ac
cu

rac
y /

 %

SENT140: Test accuracy

0 200 400 600 800 1000
Num. of rounds

70

75

80

85

90

95

100

Ac
cu

rac
y /

 %

SYNTHETIC: Test accuracy

0 100 200 300 400 500
Num. of rounds

0

20

40

60

80

Ac
cu

rac
y o

f w
ors

t 3
0%

 / %

FEMNIST: Test accuracy of worst 30%

fedavg
fedadam
qfedavg
fednova
adafedadam

0 50 100 150 200
Num. of rounds

0

10

20

30

40

50

60

Ac
cu

rac
y o

f w
ors

t 3
0%

 / %

CIFAR10: Test accuracy of worst 30%

0 200 400 600 800 1000
Num. of rounds

0

10

20

30

40

50

60

Ac
cu

rac
y o

f w
ors

t 3
0%

 / %

SENT140: Test accuracy of worst 30%

0 200 400 600 800 1000
Num. of rounds

0

20

40

60

80

100

Ac
cu

rac
y o

f w
ors

t 3
0%

 / %

SYNTHETIC: Test accuracy of worst 30%

0 20 40 60 80 100
Accuracy / %

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e 2
FEMNIST: Local accuracy distribution

fedavg
fedadam
qfedavg
fednova
adafedadam

0 20 40 60 80 100
Accuracy / %

0

2

4

6

8

De
ns

ity

1e 3
CIFAR10: Local accuracy distribution

0 20 40 60 80 100
Accuracy / %

0

1

2

3

4

De
ns

ity

1e 3
SENT140: Local accuracy distribution

0 20 40 60 80 100
Accuracy / %

0

2

4

6

De
ns

ity
1e 3
SYNTHETIC: Local accuracy distribution

Figure 2: Metrics of local test accuracy during the training process: FedAvg, FedAdam, FedNova, q-FedAvg
and AdaFedAdam on different setups. Top: Average of local test accuracy of participants. Middle: Average
of local test accuracy of the worst 30% participants. Bottom: Distribution of local test accuracy of partici-
pants. Figures in each row share the same legend in the first figure. For all setups, AdaFedAdam consistently
outperforms baseline algorithms, with better model convergence and fairness among the participants.

Choice of α Hyperparameter α is to control the level of desired model fairness. By increasing α, models
become more fair between clients at a cost of convergence. Thus, for each federated learning process, there
exists a Pareto Front Ngatchou et al. (2005) for the trade-off. Taken the Synthetic setup as an example, the
average and relative standard deviation (RSD) of local validation error during the training process and the
formed Pareto Front is shown as Figure 3. It is observed that with increase of α from 1 to 4, the RSD of
the local error decreases significantly with a slight decrease of the convergence. With α > 4, the RSD of the
local error does not reduce significantly but the convergence continues to decrease. By plotting the average
and RDS of local error of models trained with AdaFedAdam for different α together with other federated
algorithms, it can be observed that FedAvg, FedAdam, FedNova and q-FedAvg are sub-optimal in the blue
area in Figure 3. By default, 1 ≤ α ≤ 4 is enough to provide proper model fairness without losing much
convergence.

9

Under review as submission to TMLR

0 200 400 600 800 1000
Num. of rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

err
or

adafedadam: Average of test error
alpha=1
alpha=2
alpha=4
alpha=8
alpha=16
alpha=32

0 200 400 600 800 1000
Num. of rounds

0.4

0.6

0.8

1.0

1.2

RS
D

of
tes

t e
rro

r

adafedadam: RSD of test error

0.150 0.175 0.200 0.225 0.250
Error

1

2

3

4

RS
D

of
Er

ror

=1=2 =4 =8 =16 =32

fedavg

fedadam

fednova
qfedavg

Pareto Front of the Synthetic Setup

Figure 3: Left: Training curves of AdaFedAdam with different α on the Synthetic setup. Middle: RSD of
local error of AdaFedAdam with different α on the Synthetic setup. Right: Pareto Front of the Synthetic
setup formed by AdaFedAdam with different α. By adjusting values of α, the trade-off between the convergence
and the fairness can be observed together with the suboptimality of other federated algorithms.

Robustness Experiments to validate the robustness of AdaFedAdam against resource heterogeneity and
different levels of data heterogeneity are conducted with the Cifar10 setup.

Robustness against resource heterogeneity is important for algorithms to be applied in real life. Due to the
heterogeneity of clients’ computing resources, the server cannot expect all participants perform requested
number of local steps / epochs in each global round and thus, clients may perform arbitrary numbers of
local steps on the global model in each communication round. To simulate settings of resource heterogeneity,
time-varying numbers of local epochs are randomly sampled from a uniform distribution U(1, 3) in each
communication round for each participant. The results are shonw in Table 6. With resource heterogeneity,
AdaFedAdam outperform other federated algorithms with higher average accuracy and more fairness.

Table 1: Experimental results of federated algorithms against resource heterogeneity on the Cifar10 setup.
Time-varying numbers of local epochs are sampled from a uniform distribution U(1, 3) in each communication
round.

Algorithm Avg.(%) STD.(%) Worst 30. (%)

FedAvg 36.82 ±1.45 21.32 ±1.89 10.69 ±3.29
FedAdam 54.57 ±1.87 13.03 ±2.53 40.32 ±5.11
q-FedAvg 27.36 ±1.09 24.34 ±1.35 2.67 ±1.16
FedNova 38.03 ±1.18 24.99 ±2.15 6.24 ±2.96
AdaFedAdam 63.26 ±1.41 8.64 ±1.35 45.07 ±2.38

Robustness against different non-IID levels ensures the performance of an algorithm in various application
cases. To simulate different non-IID levels, the Cifar10 dataset is partitioned by the Dirichlet distribution
over labels with different concentration parameters β ∈ [0, 1], denoted as Dir(β). A smaller value of β
indicates larger level of data heterogeneity. The results are shown in Table 2. With different levels of data
heterogeneity, AdaFedAdam is able to converge, and better performance and fairness are obtained in settings
with less data heterogeneity, as expected.

Table 2: Experimental results of AdaFedAdam in different levels of non-iid settings on the Cifar10 setup.

Distribution Avg.(%) STD.(%) Worst 30. (%)

Dir(0.05) 62.81 ±1.02 8.18 ±1.33 46.01 ±2.23
Dir(0.1) 66.16 ±1.13 6.58 ±0.77 55.26 ±2.83
Dir(0.5) 71.43 ±0.81 5.4 ±0.22 64.93 ±1.04
Dir(1) 72.77 ±0.44 3.05 ±0.11 69.57 ±0.54

Compatibility with Local Momentum We also show that AdaFedAdam is compatible with momentum-
based local optimizers beside SGD, which can further improve the model performance. Adaptive optimizers as
client solvers (e.g. Adam) do not guarantee better performance over vanilla SGD without synchronizing states

10

Under review as submission to TMLR

of local optimizers, as discussed in Yu et al. (2019) and Yuan & Ma (2020). There are reported algorithms to
synchronize states of local optimizers and AdaFedAdam is orthogonal and compatible with these algorithms.
Full experimental results for different local solvers are deferred to Appendix C.2

Table 3: Experimental results of the AdaFedAdam with different local optimizers on the Synthetic setup,
including vanilla SGD, SGD with momentum and SGD with Nesterov momentum.

Local Optimizer Avg.(%) STD.(%) Worst 30. (%)

Vanilla SGD 94.18 ±0.45 8.52 ±0.37 87.07 ±2.28
SGD w. Momen. 97.19 ±0.11 3.32 ±0.02 93.41 ±0.11
SGD w. Neste. Momen. 97.27 ±0.16 3.19 ±0.21 94.19 ±0.24

7 Conclusion

In this work, we formulated federated learning as a dynamic multi-objective optimization problem by adjust-
ing the weights of local objectives to achieve fair model performance among the participants. To solve the
problem efficiently, we presented AdaFedAdam, which reduces biases in FedAdam and accelerates the training
of fair federated learning with minor extra efforts in fine-tuning. Empirically we validated the efficiency and
fairness of AdaFedAdam and verified its Pareto optimality compared with other federated learning algorithms.
Further, we demonstrated the robustness of AdaFedAdam against resource heterogeneity and different levels
of data heterogeneity. We have also shown the compatibility of AdaFedAdam with other local optimizers. All
code, data, and experiments are publicly available at GitHub (the link will appear in the final manuscript).
Future directions include testing AdaFedAdam in real-world geographically distributed setups for both cross-
silo and cross-device settings with production grade open source frameworks (Yang et al., 2019; Ekmefjord
et al., 2022).

References
Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-

han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normal-
ization for adaptive loss balancing in deep multitask networks. In International conference on machine
learning, pp. 794–803. PMLR, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Morgan Ekmefjord, Addi Ait-Mlouk, Sadi Alawadi, Mattias Åkesson, Prashant Singh, Ola Spjuth, Salman
Toor, and Andreas Hellander. Scalable federated machine learning with fedn. In 2022 22nd IEEE Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 555–564. IEEE, 2022.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm.
Neural computation, 12(10):2451–2471, 2000.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision. CS224N
project report, Stanford, 1(12):2009, 2009.

Chirag Gupta, Sivaraman Balakrishnan, and Aaditya Ramdas. Path length bounds for gradient descent and
flow. J. Mach. Learn. Res., 22(68):1–63, 2021.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Zeou Hu, Kiarash Shaloudegi, Guojun Zhang, and Yaoliang Yu. Federated learning meets multi-objective
optimization. IEEE Transactions on Network Science and Engineering, 2022.

11

Under review as submission to TMLR

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in federated learning.
arXiv preprint arXiv:2008.03606, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers &
Industrial Engineering, 149:106854, 2020a.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated learning.
In International Conference on Learning Representations, 2019a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020b.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR, 2021.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg
on non-iid data. In International Conference on Learning Representations, 2019b.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pp. 1273–1282. PMLR, 2017.

Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based congestion control. IEEE/ACM Transac-
tions on networking, 8(5):556–567, 2000.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In International
Conference on Machine Learning, pp. 4615–4625. PMLR, 2019.

Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. Pareto multi objective optimization. In Proceedings of
the 13th international conference on, intelligent systems application to power systems, pp. 84–91. IEEE,
2005.

Sankar K Pal and Sushmita Mitra. Multilayer perceptron, fuzzy sets, classifiaction. 1992.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pp. 1532–1543, 2014.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237, 2019.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International Conference on
Learning Representations, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving communication-
efficient distributed sgd with slow momentum. In International Conference on Learning Representations,
2019.

12

Under review as submission to TMLR

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. Advances in neural information processing systems, 33:
7611–7623, 2020.

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated learning for
healthcare informatics. Journal of Healthcare Informatics Research, 5(1):1–19, 2021.

Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. Federated learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 13(3):1–207, 2019.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient momentum sgd
for distributed non-convex optimization. In International Conference on Machine Learning, pp. 7184–7193.
PMLR, 2019.

Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. Advances in Neural
Information Processing Systems, 33:5332–5344, 2020.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data: A survey.
Neurocomputing, 465:371–390, 2021.

A Proof for Theorems

A.1 Proof for Theorem 1

In this section we provide the proof for Theorem 1.

Lemma 3 (Path length bound for Stochastic Gradient Descent) With same assumptions for func-
tion f(x) in Theorem 1, if the SGD iterates with learning rate η exhibit approximately linear convergence
with constants (A, c) for N steps, then the path length LN :=

∑N
0 ∥xn+1 − xn∥2 is bounded as:

LN ≤∥x0 − x∗∥2

N∑
0

(1− c)nηAL

≤∥x0 − x∗∥2
1− (1− c)N

c
AL

The proof of the lemma can be referred to Gupta et al. (2021).

Here we analyze the convergence with no momentum (β1 = 0), and the result can be extended to general
cases (Zaheer et al., 2018).

To simplify the notation, we denote ∇t,i as the ith element of the gradient of model ∇f(xt) at round t, and
∆t,i for the ith element of ∆t. The path length of SGD updates for at step t is denoted as Lt

N

Recall that the update rule of N-AccAdam is given by

xt+1 = xt − η
∆t√
vt + ϵ

for all i ∈ [d]. Let Rt := min |∆t,i

∇t,i
| for i ∈ [d] and Pt

N := ∥∆t∥2
∥∇f(xt)∥2

. L-smoothness of function f(x) guarantees
that

13

Under review as submission to TMLR

f(xt+1) ≤ f(xt) + ⟨∇t, xt+1 − xt⟩+ L

2 ∥xt+1 − xt∥2
2

= f(xt)− η

d∑
i=1

(∇t,i ·
∆t,i√
vt,i + ϵ

) + Lη2

2

d∑
i=1

∆2
t,i

(√vt,i + ϵ)2

= f(xt)− η

d∑
i=1

(∇t,i · (
∆t,i√
vt,i + ϵ

− Rt∇t,i√
β2vt−1,i + ϵ

+ Rt∇t,i√
β2vt−1,i + ϵ

)) + Lη2

2

d∑
i=1

∆2
t,i

(√vt,i + ϵ)2

≤ f(xt)−Rtη

d∑
i=1

∇2
t,i√

β2vt−1,i + ϵ

+ η

d∑
i=1
∇t,i |

∆t,i√
vt,i + ϵ

− Rt∇t,i√
β2vt−1,i + ϵ

|︸ ︷︷ ︸
T

+ Lη2

2

d∑
i=1

∆2
t,i

(√vt,i + ϵ)2

T is bounded by

T = | ∆t,i√
vt,i + ϵ

− Rt∇t,i√
β2vt−1,i + ϵ

|

≤ | ∆t,i√
vt,i + ϵ

− ∆t,i√
β2vt−1,i + ϵ

|

≤ |∆t,i| · |
1

√
vt,i + ϵ

− 1√
β2vt−1,i + ϵ

|

= |∆t,i|
(√vt,i + ϵ)(

√
β2vt−1,i + ϵ)

·
(1− β2)∆2

t,i
√

vt,i +
√

β2vt−1,i

≤ 1
(√vt,i + ϵ)(

√
β2vt−1,i + ϵ)

·
√

1− β2∆2
t,i

≤
√

1− β2∆2
t,i

(
√

β2vt−1,i + ϵ)ϵ

With the bound above and ∥∇f(xt)∥∞ ≤ G for all i ∈ [d], we have following

f(xt+1) ≤ f(xt)−Rtη

d∑
i=1

∇2
t,i√

β2vt−1,i + ϵ

+ ηG
√

1− β2
ϵ

d∑
i=1

∆2
t,i√

β2vt−1,i + ϵ
+ Lη2

2ϵ

d∑
i=1

∆2
t,i√

vt,i + ϵ

≤ f(xt)− ηRt

d∑
i=1

∇2
t,i√

β2vt−1,i + ϵ

+ P
t
N ηG

√
1− β2

ϵ

d∑
i=1

∇2
t,i√

β2vt−1,i + ϵ
+ P

t
N Lη2

2ϵ

d∑
i=1

∇2
t,i√

β2vt−1,i + ϵ

14

Under review as submission to TMLR

From the parameters η, ϵ and β stated in Adam, Lη/2ϵ ≤ 1/4 and G
√

1− β2/ϵ ≤ 1/4 hold. Using the
inequality conditions and let Vt := ∥∆t∥2

∥∇f(xt)∥2
, we have

f(xt+1) ≤ f(xt)− (Rt −
Pt

N

2)η
d∑

i=1

∇2
t,i√

β2vt−1,i + ϵ

≤ f(xt)− (Rt

Pt
N

− 1
2) η√

β2G + ϵ
∥∇f(xt)∥2

Using a telescope sum and rearranging the inequality, we have

η√
β2G + ϵ

T∑
t=1

(Rt

Pt
N

− 1
2)∥∇f(xt)∥2) ≤ f(x1)− f(xt+1)

Due to the fact that 0 ≤ Rt ≤ N for all t and f(x∗) ≤ f(xt+1), in the case where Rt ≤ Pt
N /2, the algorithm

does not converge.

With ∥∆t∥2 ≤ ηsLt
N and ∇f(xt) = ηsLt

1, we have Pt
N = ∥∆t∥2

ηsLt
1
≤ LN

L1
≤ 1−(1−c)N

c for all t < T . In the best
case where Rt = N , the convergence rate can be derived as follows:

1
T

T∑
t=1
∥∇f(xt)∥2 ≤ f(x1)− f(x∗)(

√
β2G + ϵ)

(Nc
1−(1−c)N − 1

2)ηT

When N = 1, the convergence rate of N-AccAdam is the same as Adam (Zaheer et al., 2018).

A.2 Proof for Theorem 2

In this section we provide the proof for Theorem 2. We analyze the convergence with no momentum (β1 = 0)
and α = 0 here. Similar to the proof for Theorem 1, the convergence analysis can be extended to general
cases. The notation in the proof follows A.1. In AdaFedAdam, gt is given by gt :=

∑
SkUk∑

Sk
where Uk is

the normalized local update given by client k in round t with its certainty Ck (i.e. ∥Uk∥2 = ∥∇k∥2 and

∆k = ηkCkUk). The certainty of gt is given by Ct :=
√∑

SkCk∑
Sk

.

Recall that the update rule of AdaFedAdam is given by

xt+1 = xt − (log Ct + 1)η0
gt√

vt + ϵ

15

Under review as submission to TMLR

for all i ∈ [d]. Let Rt := min ∥ gt,i

∇f(xt)i
∥ for i ∈ [d]. L-smoothness of the function f(x) guarantees that

f(xt+1) ≤f(xt) + ⟨∇t, xt+1 − xt⟩+ L

2 ∥xt+1 − xt∥2
2

=f(xt)− (log Ct + 1)η0

d∑
i=1

(∇t,i ·
gt,i√

vt,i + ϵ
) + L((log Ct + 1)η0)2

2

d∑
i=1

g2
t,i

(√vt,i + ϵ)2

=f(xt)− (log Ct + 1)η0

d∑
i=1

(∇t,i · (
gt,i√

vt,i + ϵ
− Rt∇t,i√

β2,tvt−1,i + ϵ
+ Rt∇t,i√

β2,tvt−1,i + ϵ
))

+ L((log Ct + 1)η0)2

2

d∑
i=1

g2
t,i

(√vt,i + ϵ)2

≤f(xt)−Rt(log Ct + 1)η0

d∑
i=1

∇2
t,i√

β2,tvt−1,i + ϵ

+ (log Ct + 1)η0

d∑
i=1
∇t,i |

gt,i√
vt,i + ϵ

− Rt∇t,i√
β2,tvt−1,i + ϵ

|︸ ︷︷ ︸
T

+ L((log Ct + 1)η0)2

2

d∑
i=1

g2
t,i

(√vt,i + ϵ)2

T is bounded by

T = | gt,i√
vt,i + ϵ

− Rt∇t,i√
β2,tvt−1,i + ϵ

|

≤ | gt,i√
vt,i + ϵ

− gt,i√
β2,tvt−1,i + ϵ

|

≤ |gt,i| · |
1

√
vt,i + ϵ

− 1√
β2,tvt−1,i + ϵ

|

= |gt,i|
(√vt,i + ϵ)(

√
β2,tvt−1,i + ϵ)

·
(1− β2,t)g2

t,i
√

vt,i +
√

β2,tvt−1,i

≤ 1
(√vt,i + ϵ)(

√
β2,tvt−1,i + ϵ)

·
√

1− β2,tg2
t,i

≤
√

1− β2,tg2
t,i

(
√

β2,tvt−1,i + ϵ)ϵ

16

Under review as submission to TMLR

With the bound above and ∥∇f(xt)∥∞ ≤ G, we have following

f(xt+1) ≤f(xt)−Rt(log Ct + 1)η0

d∑
i=1

∇2
t,i√

β2,tvt−1,i + ϵ

+
(log Ct + 1)η0G

√
1− β2,t

ϵ

d∑
i=1

g2
t,i√

β2,tvt−1,i + ϵ

+ L((log Ct + 1)η0)2

2ϵ

d∑
i=1

g2
t,i√

vt,i + ϵ

≤f(xt)− (log Ct + 1)η0Rt

d∑
i=1

∇2
t,i√

β2,tvt−1,i + ϵ

+
(log Ct + 1)η0G

√
1− β2,t

ϵ

d∑
i=1

∇2
t,i√

β2,tvt−1,i + ϵ

+ L((log Ct + 1)η0)2

2ϵ

d∑
i=1

∇2
t,i√

β2,tvt−1,i + ϵ

From the parameters η, ϵ and β stated in Adam, Lη0/2ϵ ≤ 1/4 and G
√

1− β2,0/ϵ ≤ 1/4 hold. The inequality
G

√
1− βCt

2,0/η ≤ (log Ct + 1)/4 holds if β2,0 ≥ log2 2 ≈ 0.520 and Ct ≥ 1, which is true since β2,0 is close to
1 with the default value β2,0 = 0.999 and Ct ≥ 1. Using the inequality conditions, we have

f(xt+1) ≤ f(xt)− (Rt −
(log Ct + 1)

2)(log Ct + 1)η0

d∑
i=1

∇2
t,i√

β2,tvt−1,i + ϵ

≤ f(xt)−
Rt

2
(log Ct + 1)η0√

β2,0G + ϵ
∥∇f(xt)∥2

The second inequality is due to the fact that Rt ≥ Ct > (log Ct + 1) and β2,t ≤ β2,0 if Ct ≥ 1. Using a
telescope sum and rearranging the inequality, we have

η0√
β2,0G + ϵ

T∑
t=1

Rt(log Ct + 1)∥∇f(xt)∥2 ≤ f(x1)− f(xt+1)

Let R := min Rt and C := min Ct for all t ∈ [T], by rearranging the inequality, we obtain

1
T

T∑
t=1
∥∇f(xt)∥2 ≤

2(f(x1)− f(x∗))(
√

β2,0G + ϵ)
R(log C + 1)η0

17

Under review as submission to TMLR

B PSEUDO CODES FOR ALGORITHMS

Pseudo codes for Adam, N-AccAdam and minibatch SGD are given as Algorithm 3 and Algorithm 4.

Algorithm 3 Adam and N-AccAdam
Require: model weights x0, stepsize η, β1, β2, ϵ for both Adam and N-AccAdam, ηs and N for N-AccAdam

m0 ← 0
v0 ← 0
for step t in {0, 1, ...T − 1} do

Adam: ∆t = ∇ζ∼DF (xt)
N-AccAdam: ∆t = (xt − SGD(xt,∇ζ∼D, ηs, N))/ηs

mt+1 ← (1− β1)∆t + β1mt

vt+1 ← (1− β2)∆2
t + β2vt

m̂t+1 ← mt+1/(1− βt+1
1)

v̂t+1 ← vt+1/(1− βt+1
2)

xt+1 ← xt − ηm̂t+1/(
√

v̂t+1 + ϵ)
end for

Algorithm 4 Minibatch Stochastic Gradient Descent (SGD)
Require: model weights x0, learning rate ηs, batch size ζ and number of steps N

for step n in {0, 1, ...N − 1} do
Sample a batch of data with size of ζ from the training dataset
Calculate gradient estimation ∇ζ∼DF (xn)
Update model xn+1 = xn − ηs∇ζ∼DF (xn)

end for

Pseudo codes for FedOpt (Reddi et al. (2020)) is given as Algorithm 5.

Algorithm 5 Adaptive federated optimization (FedOpt)
Require: Seed model x0

for round t in {0, 1, ...T − 1} do
for client k in {0, 1, ...K − 1} parallel do

xt
k := ClientOpt(xt) ▷ Client-side

∆t
k := xt

k − xt

end for
∆t := Aggre({∆t

k, 0 ≤ k < K}) ▷ Server-side
xt+1 := ServerOpt(∆t)

end for

18

Under review as submission to TMLR

C Experiments

C.1 Experimental details

Platform All experiments in the paper are conducted on a server with Intel(R) Xeon(R) Gold 6230R CPU
and and 2x NVidia RTX A5000 GPUs. All codes are implemented in PyTorch.

Setups Details of all federated setups are shown as follows:

• Femnist: A multi-layer perceptron network (MLP) for the classification of the EMNIST dataset.
The MLP used for the setup consisted 128 hidden nodes activated by ReLu functions with a loss
function of cross-entropy. The EMNIST dataset is partitioned according to the writer of images and
each partition acts as a local dataset for each client. Local datasets are thus intrinsically non-IID
due to different writing characteristics from different writers.

• Cifar10: A VGG11 (Simonyan & Zisserman (2014)) model for Cifar10 dataset. The model used
for the setup is VGG11 with slight modifications to be compatible with Cifar10 dataset. The
architecture of the model is shown as Figure 4 with a loss function of cross-entropy. The Cifar10
dataset is partitioned into 16 subsets by the Dirichlet distribution Dir16(0.05) over labels.

• Sent140: An LSTM model (Gers et al. (2000)) for the sentiment analysis for the Sent140 dataset
(Go et al. (2009)). Input words are embedded with pretrained Glove (Pennington et al. (2014))
and logits are output after two LSTM layers with 100 hidden units and one dense layer, with
architecture shown in Figure 5. The partitioning of the Sent140 dataset follows Caldas et al. (2018)
and a collection of tweets from each twitter account acts as the local dataset of one client.

• Synthetic: A linear regression classifier for multi-class classification on a synthetic dataset, proposed
by Caldas et al. (2018) as a challenging task for the benchmark of federated learning algorithms.
The model is y = argmax(softmax(Wx + b)), where x ∈ R60, W ∈ R10×60 and b ∈ R10 with a loss
function of cross-entropy. In the Synthetic dataset, there are 100 partitions, the sizes of which follow
a power law.

For all setups, each client is associated with a partition and randomly split the local partition with a ratio
of 8 : 2 acting as its local training and testing set before federated training starts. A summary of four setups
are shown in Table 4.

Table 4: A summary of setups: the four setups cover different Federated Learning scenarios, non-IID types
and task types.

Setup # Clients Model Scenario Non-IID Type Task Type

Femnist 3500 MLP Cross Device Intrinsic Computer Vision
Cifar10 16 CNN Cross Silo Dirichlet Computer Vision
Sent140 697 LSTM Cross Device Intrinsic Natural Language Process
Synthetic 100 Linear Model Cross Device/Silo Synthetic Classification

Hyperparameter settings For all experiments without specifications, local optimizers for clients are
fixed as SGD, with the default Learning rate ηc = 0.01 for all setups. In each communication round, clients
train the model for 1 epoch with batch size 10 in the Femnist, Sent140 and Synthetic setup, and 2 epochs
with batch size 32 in the CIFAR10 setup. If local optimizers are set as SGD with (Nesterov) momentum,
the momentum factor is fixed as 0.9 by default. For server optimizers, FedAvg has the default learning rate
η = 1, FedAdam has the default hyperparameter set (η = 0.001, β1 = 0.9 and β2 = 0.999), and q-FedAvg has
learning rate η = 1 and q = 1. Total communication rounds are 500, 200, 1000 and 1000 for the Femnist,
Cifar10, Sent140 and Synthetic setup, respectively. For each experiment, global models are initialized with
3 different random seeds and trained independently, and averaged metrics are reported.

19

Under review as submission to TMLR

Figure 4: Architecture of VGG11 for the CIFAR10 setup.

Figure 5: Architecture of the two-layer LSTM for the Sent140 setup.

20

Under review as submission to TMLR

C.2 Full experimental results

Convergence & Fairness Table 5 shows the full results of the experiment of fairness and convergence.

Table 5: Full experimental results of convergence and fairness: Statistics of test accuracy on clients for
AdaFedAdam compared to FedAvg, FedAdam, FedNova and q-FedAvg with q = 1, for Femnist, Cifar10, Sent140
and Synthetic setups.

Settings Algorithms Avg.(%) STD.(%) Worst 30%(%)

Femnist FedAvg 77.77 ±0.64 13.20 ±0.91 60.11 ±2.19
FedAdam 82.97 ±0.26 11.44 ±0.76 67.65 ±1.80
q-FedAvg 76.91 ±0.21 10.94 ±0.26 64.06 ±0.37
FedNova 78.31 ±0.53 10.77 ±0.36 64.97 ±1.01
AdaFedAdam 84.48 ±0.50 8.62 ±0.25 74.16 ±0.30

Cifar10 FedAvg 36.47 ±0.75 20.28 ±0.90 4.45 ±3.51
FedAdam 60.03 ±0.86 12.33 ±1.90 46.3 ±5.06
q-FedAvg 28.01 ±0.81 21.92 ±0.47 9.15 ±3.25
FedNova 36.25 ±0.88 24.34 ±1.34 5.00 ±3.24
AdaFedAdam 62.81 ±1.02 8.18 ±1.33 50.01 ±3.26

Sent140 FedAvg 62.71 ±3.20 21.97 ±3.09 36.21 ±7.34
FedAdam 69.25 ±0.26 18.95 ±0.31 46.48 ±0.55
q-FedAvg 57.29 ±0.82 24.22 ±2.50 26.89 ±2.83
FedNova 63.20 ±3.03 22.48 ±2.09 35.61 ±6.31
AdaFedAdam 68.90 ±0.31 18.63 ±0.52 46.82 ±1.13

Synthetic FedAvg 88.34 ±0.55 16.77 ±0.44 25.94 ±1.30
FedAdam 89.71 ±0.47 14.57 ±0.78 57.15 ±10.56
q-FedAvg 90.04 ±0.66 12.48 ±0.76 76.50 ±1.50
FedNova 92.20 ±0.16 10.96 ±0.09 83.41 ±1.47
AdaFedAdam 94.18 ±0.45 8.52 ±0.37 87.07 ±2.28

Robustness against different levels of data heterogeneity Figure 6 shows label distributions of dif-
ferent non-IID levels of the Cifar10 setup. Table 6 shows the full results of comparison between different
algorithms on the Cifar10 setup. Different levels of data heterogeneity are generated with Dirichlet distribu-
tion of different concentration parameter β ranging from 0.05 to 0.5 and together with an IID partitioning. It
can be observed that AdaFedAdam consistently outperforms other algorithms with the highest test accuracy
and lowest STD of test accuracy in all different settings.

Compatibility with local momentum Table 7 shows the full results of different federated algorithms
with different local solvers. It is observed that AdaFedAdam is not only compatible with momentum-based
local solvers, it also provides better results compared to other federated algorithms.

21

Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Client Idx
0.0

0.2

0.4

0.6

0.8

1.0
De

ns
ity

Label Distribution of Non-IID Cifar10: Dir(0.05)
Class

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Client Idx
0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Label Distribution of Non-IID Cifar10: Dir(0.1)
Class

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Client idx
0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Label Distribution of Non-IID Cifar10: Dir(0.5)
Class

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Client Idx
0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Label Distribution of Non-IID Cifar10: Dir(1)
Class

0
1
2
3
4
5
6
7
8
9

Figure 6: Label distributions of local datasets of the Cifar10 setup for different non-IID levels.

Table 6: Full experimental results of federated algorithms against different levels of data heterogeneity on
the Cifar10 setup.

Data Distribution Algorithm Avg.(%) STD.(%) Worst 30%(%)

Dir(0.05) FedAvg 36.47 ±0.75 20.28 ±0.90 9.45 ±3.51
FedAdam 56.33 ±0.96 11.77 ±1.99 40.4 ±5.13
q-FedAvg 28.01 ±0.81 21.92 ±0.47 3.15 ±3.25
FedNova 36.25 ±0.88 24.34 ±1.34 5.00 ±3.24
AdaFedAdam 62.81 ±1.02 8.18 ±1.33 46.01 ±2.23

Dir(0.1) FedAvg 50.41 ±0.46 13.21 ±0.36 33.20 ±3.98
FedAdam 65.79 ±0.91 8.61 ±0.51 55.92 ±2.36
q-FedAvg 38.95 ±0.73 12.46 ±0.20 24.59 ±2.11
FedNova 48.09 ±1.82 14.29 ±0.58 33.34 ±3.28
AdaFedAdam 66.16 ±1.13 8.59 ±0.39 56.48 ±1.45

Dir(0.5) FedAvg 49.38 ±0.92 7.29 ±2.60 41.22 ±3.25
FedAdam 70.49 ±0.78 3.97 ±0.49 65.83 ±0.84
q-FedAvg 44.95 ±0.41 4.60 ±0.51 39.73 ±0.61
FedNova 49.47 ±1.06 6.09 ±2.19 43.00 ±3.26
AdaFedAdam 71.43 ±0.81 5.40 ±0.22 64.93 ±1.04

Dir(1): FedAvg 40.97 ±0.66 4.93 ±0.47 35.53 ±1.12
FedAdam 71.22 ±0.17 2.95 ±0.27 68.01 ±0.02
q-FedAvg 36.27 ±0.95 5.40 ±0.75 30.63 ±1.56
FedNova 40.28 ±0.10 4.70 ±0.49 35.30 ±0.40
AdaFedAdam 72.77 ±0.44 3.05 ±0.11 69.57 ±0.54

22

Under review as submission to TMLR

Table 7: Full experimental results of federated algorithms in cooperation with local momentum on the
Synthetic setup.

Local Solver Algorithm Avg.(%) STD.(%) Worst 30%(%)

Vanilla SGD FedAvg 88.34 ±0.55 16.77 ±0.44 25.94 ±1.30
FedAdam 89.71 ±0.47 14.57 ±0.78 57.15 ±10.56
q-FedAvg 90.04 ±0.66 12.48 ±0.76 76.50 ±1.50
FedNova 92.20 ±0.16 10.96 ±0.09 83.41 ±1.47
AdaFedAdam 94.18 ±0.45 8.52 ±0.37 87.07 ±2.28

SGD with Momen. FedAvg 95.26 ±0.22 8.42 ±0.24 68.65 ±0.19
FedAdam 91.60 ±0.32 12.32 ±0.66 59.52 ±4.79
q-FedAvg 94.64 ±0.22 5.73 ±0.03 88.04 ±0.02
FedNova 96.12 ±0.09 3.82 ±0.05 93.07 ±0.15
AdaFedAdam 97.19 ±0.11 3.32 ±0.02 93.41 ±0.11

SGD with Neste. Momen. FedAvg 95.24 ±0.14 8.34 ±0.05 68.80 ±0.36
FedAdam 91.79 ±0.19 12.07 ±0.43 61.51 ±3.52
q-FedAvg 94.56 ±0.02 5.80 ±0.12 87.85 ±0.02
FedNova 96.85 ±0.04 3.80 ±0.30 94.02 ±0.11
AdaFedAdam 97.27 ±0.16 3.19 ±0.21 94.19 ±0.24

23

	Introduction
	Related Work
	Acceleration Techniques for Federated Learning
	Model Fairness

	Preliminaries & Problem Formulation
	Standard Federated Learning
	Fair Federated Learning
	Problem Formulation

	Analysis of FedAdam
	From Adam to FedAdam
	Adam with Accumulated Updates
	Bias of Pseudo-gradients for FedAdam

	AdaFedAdam
	Algorithm
	Convergence analysis for AdaFedAdam

	EXPERIMENTAL RESULTS
	Conclusion
	Proof for Theorems
	Proof for Theorem 1
	Proof for Theorem 2

	PSEUDO CODES FOR ALGORITHMS
	Experiments
	Experimental details
	Full experimental results

